
MEMORY-REFERENCE 
INSTRUCTIONS



MEMORY-REFERENCE INSTRUCTIONS

• The decoded output Di for i = 0,1, 2, 3, 4, 5,
and 6 from the operation decoder that
belongs to each instruction.

• The effective address of the instruction is in
the address register AR and was placed there
during timing signal T2 when I = 0, or during
timing signal T3 when I = 1.

• The execution of the memory-reference
instructions starts with timing signal T4.



MEMORY-REFERENCE INSTRUCTIONS

• The symbolic description of each instruction is specified in the
following table in terms of register transfer notation.
Symbol Operation Decoder Symbolic description
AND D0 AC ← AC Λ M[AR]
ADD D1 AC ← AC + M[AR], E ←Cout
LDA D2 AC ← M[AR]
STA D3 M[AR] ← AC
BUN D4 PC ← AR
BSA D5 M[AR ← PC, PC ← AR + 1
ISZ D6 M[AR] ← M[AR] + 1,

If M[AR] + 1 = 0 then
PC ←PC + 1



AND to AC

• This is an instruction that performs the AND logic
operation on pairs of bits in AC and the memory
word specified by the effective address.

• The result of the operation is transferred to AC.
• The microoperations that execute this instruction

are :
D0 T4 : DR ← M[AR]
D0 T5: AC ← AC Λ DR, SC ← 0



ADD to AC

• The instruction adds the content of the memory
word specified by the effective address to the
value of AC.

• The sum is transferred into AC and the output
carry Cout is transferred to the E (extended
accumulator) flip-flop.

• The microoperations needed to execute this
instruction are

D1 T4: DR ← M[AR]
D1T5: AC ← AC + DR, E ← Cout, SC ← 0



LDA : Load to AC

• This instruction transfers the memory word
specified by the effective address to AC.

• The microoperations needed to execute this
instruction are

D2 T4: DR ← M[AR]
D2 T5: AC ← DR, SC ← 0



STA : Store AC

• This instruction stores the content of AC into
the memory word specified by the effective
address.

• Since the output of AC is applied to the bus
and the data input of memory is connected to
the bus, we can execute this instruction with
one microoperation:

D3 T4: M[AR] ← AC, SC ← 0



BUN : Branch Unconditionally

• This instruction transfers the program to the
instruction specified by the effective address.

• This instruction is executed with one
microoperation:

D4 T4: PC ← AR, SC ← 0



BSA : Branch and Save Return Address

• This instruction is useful for branching to a
portion of the program called a subroutine.

• When executed, the BSA instruction stores the
address of the next instruction in sequence
(which is available in PC) into a memory location
specified by the effective address.

• The effective address plus one is then transferred
to PC to serve as the address of the first
instruction in the subordinate.

• Micro operation required for this instruction are:
M[AR] ← PC, PC ← AR + 1



BSA : Branch and Save Return Address



ISZ : Increment and Skip if Zero
• This instruction increments the word specified by the

effective address, and if the incremented value is equal to 0,
PC is incremented by 1.

• As this negative number is repeatedly incremented by one, it
eventually reaches the value of zero. At that time PC is
incremented by one in order to skip the next instruction in
the program.

• This is done with the following sequence of microoperations:
D6 T4: DR ← M[AR]
D6 T5: DR ← DR + 1
D6 T6 : M[AR] ← DR, if (DR = 0) then (PC ← PC + 1), SC ← 0


