
HISTORY OF ARTIFICIAL INTELIGENCE

Maturation of Artificial Intelligence (1943-1952)

o Year 1943: The first work which is now recognized as AI was done by Warren

McCulloch and Walter pits in 1943. They proposed a model of artificial neurons.

o Year 1949: Donald Hebb demonstrated an updating rule for modifying the

connection strength between neurons. His rule is now called Hebbian learning.

o Year 1950: The Alan Turing who was an English mathematician and pioneered

Machine learning in 1950. Alan Turing publishes "Computing Machinery and

Intelligence" in which he proposed a test. The test can check the machine's

ability to exhibit intelligent behavior equivalent to human intelligence, called

a Turing test.

The birth of Artificial Intelligence (1952-1956)

o Year 1955: An Allen Newell and Herbert A. Simon created the "first artificial

intelligence program"Which was named as "Logic Theorist". This program had

proved 38 of 52 Mathematics theorems, and find new and more elegant proofs

for some theorems.

o Year 1956: The word "Artificial Intelligence" first adopted by American Computer

scientist John McCarthy at the Dartmouth Conference. For the first time, AI

coined as an academic field.

At that time high-level computer languages such as FORTRAN, LISP, or COBOL were

invented. And the enthusiasm for AI was very high at that time.

The golden years-Early enthusiasm (1956-1974)

o Year 1966: The researchers emphasized developing algorithms which can solve

mathematical problems. Joseph Weizenbaum created the first chatbot in 1966,

which was named as ELIZA.

Year 1972: The first intelligent humanoid robot was built in Japan which was

named as WABOT-1.

 he golden years-Early enthusiasm (1956-1974)

o Year 1966: The researchers emphasized developing algorithms which can solve

mathematical problems. Joseph Weizenbaum created the first chatbot in 1966,

which was named as ELIZA.

o Year 1972: The first intelligent humanoid robot was built in Japan which was

named as WABOT-1.

The first AI winter (1974-1980)

o The duration between years 1974 to 1980 was the first AI winter duration. AI

winter refers to the time period where computer scientist dealt with a severe

shortage of funding from government for AI researches.

o During AI winters, an interest of publicity on artificial intelligence was decreased

o

o A boom of AI (1980-1987)

o Year 1980: After AI winter duration, AI came back with "Expert System". Expert

systems were programmed that emulate the decision-making ability of a human

expert.

o In the Year 1980, the first national conference of the American Association of

Artificial Intelligence was held at Stanford University.

The emergence of intelligent agents (1993-2011)

o Year 1997: In the year 1997, IBM Deep Blue beats world chess champion, Gary

Kasparov, and became the first computer to beat a world chess champion.

o Year 2002: for the first time, AI entered the home in the form of Roomba, a

vacuum cleaner.

o Year 2006: AI came in the Business world till the year 2006. Companies like

Facebook, Twitter, a

THE STATE OF ART IN AI

Artificial Intelligence has various applications in today's society. It is becoming essential

for today's time because it can solve complex problems with an efficient way in multiple

industries, such as Healthcare, entertainment, finance, education, etc. AI is making our

daily life more comfortable and fast.

Following are some sectors which have the application oF Artificial Intelligence:

1. AI in Astronomy

o Artificial Intelligence can be very useful to solve complex universe problems. AI

technology can be helpful for understanding the universe such as how it works,

origin, etc.

2. AI in Healthcare

o In the last, five to ten years, AI becoming more advantageous for the healthcare

industry and going to have a significant impact on this industry.

o Healthcare Industries are applying AI to make a better and faster diagnosis than

humans. AI can help doctors with diagnoses and can inform when patients are

worsening so that medical help can reach to the patient before hospitalization.

3. AI in Gaming

o AI can be used for gaming purpose. The AI machines can play strategic games

like chess, where the machine needs to think of a large number of possible

places.

4. AI in Finance

o AI and finance industries are the best matches for each other. The finance

industry is implementing automation, chatbot, adaptive intelligence, algorithm

trading, and machine learning into financial processes.

5. AI in Data Security

o The security of data is crucial for every company and cyber-attacks are growing

very rapidly in the digital world. AI can be used to make your data more safe and

secure. Some examples such as AEG bot, AI2 Platform,are used to determine

software bug and cyber-attacks in a better way.

6. AI in Social Media

o Social Media sites such as Facebook, Twitter, and Snapchat contain billions of

user profiles, which need to be stored and managed in a very efficient way. AI can

organize and manage massive amounts of data. AI can analyze lots of data to

identify the latest trends, hashtag, and requirement of different users.

7. AI in Travel & Transport

o AI is becoming highly demanding for travel industries. AI is capable of doing

various travel related works such as from making travel arrangement to

suggesting the hotels, flights, and best routes to the customers. Travel industries

are using AI-powered chatbots which can make human-like interaction with

customers for better and fast response.

8. AI in Automotive Industry

o Some Automotive industries are using AI to provide virtual assistant to their user

for better performance. Such as Tesla has introduced TeslaBot, an intelligent

virtual assistant.

o Various Industries are currently working for developing self-driven cars which can

make your journey more safe and secure.

9. AI in Robotics:

o Artificial Intelligence has a remarkable role in Robotics. Usually, general robots

are programmed such that they can perform some repetitive task, but with the

help of AI, we can create intelligent robots which can perform tasks with their

own experiences without pre-programmed.

o Humanoid Robots are best examples for AI in robotics, recently the intelligent

Humanoid robot named as Erica and Sophia has been developed which can talk

and behave like humans.

10. AI in Entertainment

o We are currently using some AI based applications in our daily life with some

entertainment services such as Netflix or Amazon. With the help of ML/AI

algorithms, these services show the recommendations for programs or shows.

11. AI in Agriculture

o Agriculture is an area which requires various resources, labor, money, and time

for best result. Now a day's agriculture is becoming digital, and AI is emerging in

this field. Agriculture is applying AI as agriculture robotics, solid and crop

monitoring, predictive analysis. AI in agriculture can be very helpful for farmers.

12. AI in E-commerce

o AI is providing a competitive edge to the e-commerce industry, and it is

becoming more demanding in the e-commerce business. AI is helping shoppers

to discover associated products with recommended size, color, or even brand.

13. AI in education:

o AI can automate grading so that the tutor can have more time to teach. AI

chatbot can communicate with students as a teaching assistant.

o AI in the future can be work as a personal virtual tutor for students, which will be

accessible easily at any time and any place.

 STRUCTURE OF AGENTS

Agents can be grouped into five classes based on their degree of perceived intelligence and capability. All these

agents can improve their performance and generate better action over the time. These are given below:

o Simple Reflex Agent

o Model-based reflex agent

o Goal-based agents

o Utility-based agent

o Learning agent

1. Simple Reflex agent:

o The Simple reflex agents are the simplest agents. These agents take decisions on the basis of the

current percepts and ignore the rest of the percept history.

o These agents only succeed in the fully observable environment.

o The Simple reflex agent does not consider any part of percepts history during their decision and action

process.

o The Simple reflex agent works on Condition-action rule, which means it maps the current state to

action. Such as a Room Cleaner agent, it works only if there is dirt in the room.

o Problems for the simple reflex agent design approach:

o They have very limited intelligence

o They do not have knowledge of non-perceptual parts of the current state

o Mostly too big to generate and to store.

o Not adaptive to changes in the environment.

2. Model-based reflex agent

o The Model-based agent can work in a partially observable environment, and track the situation.

o A model-based agent has two important factors:

o Model: It is knowledge about "how things happen in the world," so it is called a Model-based

agent.

o Internal State: It is a representation of the current state based on percept history.

o These agents have the model, "which is knowledge of the world" and based on the model they

perform actions.

o Updating the agent state requires information about:

a. How the world evolves

b. How the agent's action affects the world.

3. Goal-based agents

o The knowledge of the current state environment is not always sufficient to decide for an agent to what

to do.

o The agent needs to know its goal which describes desirable situations.

o Goal-based agents expand the capabilities of the model-based agent by having the "goal" information.

o They choose an action, so that they can achieve the goal.

o These agents may have to consider a long sequence of possible actions before deciding whether the

goal is achieved or not. Such considerations of different scenario are called searching and planning,

which makes an agent proactive.

4. Utility-based agents

o These agents are similar to the goal-based agent but provide an extra component of utility

measurement which makes them different by providing a measure of success at a given state.

o Utility-based agent act based not only goals but also the best way to achieve the goal.

o The Utility-based agent is useful when there are multiple possible alternatives, and an agent has to

choose in order to perform the best action.

o The utility function maps each state to a real number to check how efficiently each action achieves the

goals.

5. Learning Agents

o A learning agent in AI is the type of agent which can learn from its past experiences, or it has learning

capabilities.

o It starts to act with basic knowledge and then able to act and adapt automatically through learning.

o A learning agent has mainly four conceptual components, which are:

a. Learning element: It is responsible for making improvements by learning from environment

b. Critic: Learning element takes feedback from critic which describes that how well the agent is doing

with respect to a fixed performance standard.

c. Performance element: It is responsible for selecting external action

d. Problem generator: This component is responsible for suggesting actions that will lead to new and

informative experiences.

Hence, learning agents are able to learn, analyze performance, and look for new ways to improve the

performance.

 Agents in
Artificial Intelligence

An AI system can be defined as the study of the rational agent and its environment. The agents sense the

environment through sensors and act on their environment through actuators. An AI agent can have mental

properties such as knowledge, belief, intention, etc.

What is an Agent?

An agent can be anything that perceiveits environment through sensors and act upon that environment

through actuators. An Agent runs in the cycle of perceiving, thinking, and acting. An agent can be:

o Human-Agent: A human agent has eyes, ears, and other organs which work for sensors and hand,

legs, vocal tract work for actuators.

o Robotic Agent: A robotic agent can have cameras, infrared range finder, NLP for sensors and various

motors for actuators.

o Software Agent: Software agent can have keystrokes, file contents as sensory input and act on those

inputs and display output on the screen.

Hence the world around us is full of agents such as thermostat, cellphone, camera, and even we are also agents.

Before moving forward, we should first know about sensors, effectors, and actuators.

9.5M

197

Java Try Catch

Sensor: Sensor is a device which detects the change in the environment and sends the information to other

electronic devices. An agent observes its environment through sensors.

Actuators: Actuators are the component of machines that converts energy into motion. The actuators are only

responsible for moving and controlling a system. An actuator can be an electric motor, gears, rails, etc.

Effectors: Effectors are the devices which affect the environment. Effectors can be legs, wheels, arms, fingers,

wings, fins, and display screen.

Intelligent Agents:

An intelligent agent is an autonomous entity which act upon an environment using sensors and actuators for

achieving goals. An intelligent agent may learn from the environment to achieve their goals. A thermostat is an

example of an intelligent agent.

Following are the main four rules for an AI agent:

o Rule 1: An AI agent must have the ability to perceive the environment.

o Rule 2: The observation must be used to make decisions.

o Rule 3: Decision should result in an action.

o Rule 4: The action taken by an AI agent must be a rational action.

Rational Agent:

A rational agent is an agent which has clear preference, models uncertainty, and acts in a way to maximize its

performance measure with all possible actions.

A rational agent is said to perform the right things. AI is about creating rational agents to use for game theory

and decision theory for various real-world scenarios.

For an AI agent, the rational action is most important because in AI reinforcement learning algorithm, for each

best possible action, agent gets the positive reward and for each wrong action, an agent gets a negative

reward.

Note: Rational agents in AI are very similar to intelligent agents.

Rationality:

The rationality of an agent is measured by its performance measure. Rationality can be judged on the basis of

following points:

o Performance measure which defines the success criterion.

o Agent prior knowledge of its environment.

o Best possible actions that an agent can perform.

o The sequence of percepts.

Note: Rationality differs from Omniscience because an Omniscient agent knows the actual outcome of its action and

act accordingly, which is not possible in reality.

Structure of an AI Agent

The task of AI is to design an agent program which implements the agent function. The structure of an

intelligent agent is a combination of architecture and agent program. It can be viewed as:

1. Agent = Architecture + Agent program

Following are the main three terms involved in the structure of an AI agent:

Architecture: Architecture is machinery that an AI agent executes on.

Agent Function: Agent function is used to map a percept to an action.

https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai
https://www.javatpoint.com/agents-in-ai

1. f:P* → A

Agent program: Agent program is an implementation of agent function. An agent program executes on the

physical architecture to produce function f.

Agent Environment in AI

An environment is everything in the world which surrounds the agent, but it is not a part of an agent itself. An

environment can be described as a situation in which an agent is present.

The environment is where agent lives, operate and provide the agent with something to sense and act upon it.

An environment is mostly said to be non-feministic.

NAATURE of Environment

As per Russell and Norvig, an environment can have various features from the point of view of an agent:

1. Fully observable vs Partially Observable

2. Static vs Dynamic

3. Discrete vs Continuous

4. Deterministic vs Stochastic

5. Single-agent vs Multi-agent

6. Episodic vs sequential

7. Known vs Unknown

8. Accessible vs Inaccessible

1. Fully observable vs Partially Observable:

o If an agent sensor can sense or access the complete state of an environment at each point of time then

it is a fully observable environment, else it is partially observable.

o A fully observable environment is easy as there is no need to maintain the internal state to keep track

history of the world.

o An agent with no sensors in all environments then such an environment is called as unobservable.

2. Deterministic vs Stochastic:

o If an agent's current state and selected action can completely determine the next state of the

environment, then such environment is called a deterministic environment.

o A stochastic environment is random in nature and cannot be determined completely by an agent.

o In a deterministic, fully observable environment, agent does not need to worry about uncertainty.

3. Episodic vs Sequential:

o In an episodic environment, there is a series of one-shot actions, and only the current percept is

required for the action.

o However, in Sequential environment, an agent requires memory of past actions to determine the next

best actions.

4. Single-agent vs Multi-agent

o If only one agent is involved in an environment, and operating by itself then such an environment is

called single agent environment.

o However, if multiple agents are operating in an environment, then such an environment is called a

multi-agent environment.

o The agent design problems in the multi-agent environment are different from single agent

environment.

5. Static vs Dynamic:

o If the environment can change itself while an agent is deliberating then such environment is called a

dynamic environment else it is called a static environment.

o Static environments are easy to deal because an agent does not need to continue looking at the world

while deciding for an action.

o However for dynamic environment, agents need to keep looking at the world at each action.

o Taxi driving is an example of a dynamic environment whereas Crossword puzzles are an example of a

static environment.

6. Discrete vs Continuous:

o If in an environment there are a finite number of percepts and actions that can be performed within it,

then such an environment is called a discrete environment else it is called continuous environment.

o A chess gamecomes under discrete environment as there is a finite number of moves that can be

performed.

o A self-driving car is an example of a continuous environment.

7. Known vs Unknown

o Known and unknown are not actually a feature of an environment, but it is an agent's state of

knowledge to perform an action.

o In a known environment, the results for all actions are known to the agent. While in unknown

environment, agent needs to learn how it works in order to perform an action.

o It is quite possible that a known environment to be partially observable and an Unknown environment

to be fully observable.

8. Accessible vs Inaccessible

o If an agent can obtain complete and accurate information about the state's environment, then such an

environment is called an Accessible environment else it is called inaccessible.

o An empty room whose state can be defined by its temperature is an example of an accessible

environment.

o Information about an event on earth is an example of Inaccessible environment.

o

Unit 2

Search algorithms are one of the most important areas of Artificial Intelligence. This topic will explain

all about the search algorithms in AI.

Problem-solving agents:

In Artificial Intelligence, Search techniques are universal problem-solving methods. Rational

agents or Problem-solving agents in AI mostly used these search strategies or algorithms to solve a

specific problem and provide the best result. Problem-solving agents are the goal-based agents and

use atomic representation. In this topic, we will learn various problem-solving search algorithms.

Search Algorithm Terminologies:

o Search: Searchingis a step by step procedure to solve a search-problem in a given search space.

A search problem can have three main factors:

a. Search Space: Search space represents a set of possible solutions, which a system may

have.

b. Start State: It is a state from where agent begins the search.

c. Goal test: It is a function which observe the current state and returns whether the goal

state is achieved or not.

Search tree: A tree representation of search problem is called Search tree. The root of the search tree

is the root node which is corresponding to the initial state.

Actions: It gives the description of all the available actions to the agent.

Transition model: A description of what each action do, can be represented as a transition model.

Path Cost: It is a function which assigns a numeric cost to each path.

Solution: It is an action sequence which leads from the start node to the goal node.

Optimal Solution: If a solution has the lowest cost among all solutions.

Properties of Search Algorithms:

Following are the four essential properties of search algorithms to compare the efficiency of these

algorithms:

Completeness: A search algorithm is said to be complete if it guarantees to return a solution if at least

any solution exists for any random input.

Optimality: If a solution found for an algorithm is guaranteed to be the best solution (lowest path cost)

among all other solutions, then such a solution for is said to be an optimal solution.

Time Complexity: Time complexity is a measure of time for an algorithm to complete its task.

Space Complexity: It is the maximum storage space required at any point during the search, as the

complexity of the problem.

Types of search algorithms

Based on the search problems we can classify the search algorithms into uninformed (Blind

search) search and informed search (Heuristic search) algorithms.

Uninformed/Blind Search:

The uninformed search does not contain any domain knowledge such as closeness, the location of the

goal.

It operates in a brute-force way as it only includes information about how to traverse the tree and how

to identify leaf and goal nodes.

 Uninformed search applies a way in which search tree is searched without any information about the

search space like initial state operators and test for the goal, so it is also called blind search.

It examines each node of the tree until it achieves the goal node.

It can be divided into five main types:

Breadth-first search

Uniform cost search

Depth-first search

Iterative deepening depth-first search

Bidirectional Search

Informed Search

Informed search algorithms use domain knowledge. In an informed search, problem information is

available which can guide the search.

Informed search strategies can find a solution more efficiently than an uninformed search strategy.

Informed search is also called a Heuristic search.

A heuristic is a way which might not always be guaranteed for best solutions but guaranteed to find a

good solution in reasonable time.

Informed search can solve much complex problem which could not be solved in another way.

An example of informed search algorithms is a traveling salesman problem.

1. Greedy Search

2. A* Search

Uninformed Search Algorithms

Uninformed search is a class of general-purpose search algorithms which operates in brute force-

way. Uninformed search algorithms do not have additional information about state or search

space other than how to traverse the tree, so it is also called blind search.

Following are the various types of uninformed search algorithms:

1. Breadth-first Search

2. Depth-first Search

3. Depth-limited Search

4. Iterative deepening depth-first search

5. Uniform cost search

6. Bidirectional Search

1. Breadth-first Search:

o Breadth-first search is the most common search strategy for traversing a tree or graph. This

algorithm searches breadthwise in a tree or graph, so it is called breadth-first search.

o BFS algorithm starts searching from the root node of the tree and expands all successor node

at the current level before moving to nodes of next level.

o The breadth-first search algorithm is an example of a general-graph search algorithm.

o Breadth-first search implemented using FIFO queue data structure.

Advantages:

o BFS will provide a solution if any solution exists.

o If there are more than one solutions for a given problem, then BFS will provide the minimal

solution which requires the least number of steps.

Disadvantages:

o It requires lots of memory since each level of the tree must be saved into memory to expand

the next level.

o BFS needs lots of time if the solution is far away from the root node.

Example:

In the below tree structure, we have shown the traversing of the tree using BFS algorithm from the root

node S to goal node K. BFS search algorithm traverse in layers, so it will follow the path which is shown

by the dotted arrow, and the traversed path will be:

1. S---> A--->B---->C--->D---->G--->H--->E---->F---->I---->K

Time Complexity: Time Complexity of BFS algorithm can be obtained by the number of nodes

traversed in BFS until the shallowest Node. Where the d= depth of shallowest solution and b is a node

at every state.

T (b) = 1+b2+b3+.......+ bd= O (bd)

Space Complexity: Space complexity of BFS algorithm is given by the Memory size of frontier

which is O(bd).

Completeness: BFS is complete, which means if the shallowest goal node is at some finite depth,

then BFS will find a solution.

Optimality: BFS is optimal if path cost is a non-decreasing function of the depth of the node.

2. Depth-first Search:

o Depth-first search isa recursive algorithm for traversing a tree or graph data structure.

o It is called the depth-first search because it starts from the root node and follows each path to

its greatest depth node before moving to the next path.

o DFS uses a stack data structure for its implementation.

o The process of the DFS algorithm is similar to the BFS algorithm.

Note: Backtracking is an algorithm technique for finding all possible solutions using recursion.

Advantage:

o DFS requires very less memory as it only needs to store a stack of the nodes on the path from

root node to the current node.

o It takes less time to reach to the goal node than BFS algorithm (if it traverses in the right path).

Disadvantage:

o There is the possibility that many states keep re-occurring, and there is no guarantee of finding

the solution.

o DFS algorithm goes for deep down searching and sometime it may go to the infinite loop.

Example:

In the below search tree, we have shown the flow of depth-first search, and it will follow the order as:

Root node--->Left node ----> right node.

It will start searching from root node S, and traverse A, then B, then D and E, after traversing E, it will

backtrack the tree as E has no other successor and still goal node is not found. After backtracking it will

traverse node C and then G, and here it will terminate as it found goal node.

Completeness: DFS search algorithm is complete within finite state space as it will expand every

node within a limited search tree.

Time Complexity: Time complexity of DFS will be equivalent to the node traversed by the

algorithm. It is given by:

T(n)= 1+ n2+ n3 +.........+ nm=O(nm)

Where, m= maximum depth of any node and this can be much larger than d (Shallowest solution

depth)

Space Complexity: DFS algorithm needs to store only single path from the root node, hence space

complexity of DFS is equivalent to the size of the fringe set, which is O(bm).

Optimal: DFS search algorithm is non-optimal, as it may generate a large number of steps or high

cost to reach to the goal node.

3. Depth-Limited Search Algorithm:

A depth-limited search algorithm is similar to depth-first search with a predetermined limit. Depth-

limited search can solve the drawback of the infinite path in the Depth-first search. In this algorithm,

the node at the depth limit will treat as it has no successor nodes further.

Depth-limited search can be terminated with two Conditions of failure:

o Standard failure value: It indicates that problem does not have any solution.

o Cutoff failure value: It defines no solution for the problem within a given depth limit.

Advantages:

Depth-limited search is Memory efficient.

Disadvantages:

o Depth-limited search also has a disadvantage of incompleteness.

o It may not be optimal if the problem has more than one solution.

Example:

Completeness: DLS search algorithm is complete if the solution is above the depth-limit.

Time Complexity: Time complexity of DLS algorithm is O(bℓ).

Space Complexity: Space complexity of DLS algorithm is O(b×ℓ).

Optimal: Depth-limited search can be viewed as a special case of DFS, and it is also not optimal even

if ℓ>d.

4. Uniform-cost Search Algorithm:

Uniform-cost search is a searching algorithm used for traversing a weighted tree or graph. This

algorithm comes into play when a different cost is available for each edge. The primary goal of the

uniform-cost search is to find a path to the goal node which has the lowest cumulative cost. Uniform-

cost search expands nodes according to their path costs form the root node. It can be used to solve any

graph/tree where the optimal cost is in demand. A uniform-cost search algorithm is implemented by

the priority queue. It gives maximum priority to the lowest cumulative cost. Uniform cost search is

equivalent to BFS algorithm if the path cost of all edges is the same.

Advantages:

o Uniform cost search is optimal because at every state the path with the least cost is chosen.

Disadvantages:

o It does not care about the number of steps involve in searching and only concerned about path

cost. Due to which this algorithm may be stuck in an infinite loop.

Example:

Completeness:

Uniform-cost search is complete, such as if there is a solution, UCS will find it.

Time Complexity:

Let C* is Cost of the optimal solution, and ε is each step to get closer to the goal node. Then the

number of steps is = C*/ε+1. Here we have taken +1, as we start from state 0 and end to C*/ε.

Hence, the worst-case time complexity of Uniform-cost search isO(b1 + [C*/ε])/.

Space Complexity:

The same logic is for space complexity so, the worst-case space complexity of Uniform-cost search

is O(b1 + [C*/ε]).

Optimal:

Uniform-cost search is always optimal as it only selects a path with the lowest path cost.

5. Iterative deepeningdepth-first Search:

The iterative deepening algorithm is a combination of DFS and BFS algorithms. This search algorithm

finds out the best depth limit and does it by gradually increasing the limit until a goal is found.

This algorithm performs depth-first search up to a certain "depth limit", and it keeps increasing the

depth limit after each iteration until the goal node is found.

This Search algorithm combines the benefits of Breadth-first search's fast search and depth-first search's

memory efficiency.

The iterative search algorithm is useful uninformed search when search space is large, and depth of goal

node is unknown.

Advantages:

o Itcombines the benefits of BFS and DFS search algorithm in terms of fast search and memory

efficiency.

Disadvantages:

o The main drawback of IDDFS is that it repeats all the work of the previous phase.

Example:

Following tree structure is showing the iterative deepening depth-first search. IDDFS algorithm performs

various iterations until it does not find the goal node. The iteration performed by the algorithm is given

as:

1'stIteration----->A

2'ndIteration---->A,B,C

3'rdIteration------>A,B,D,E,C,F,G

4'thIteration------>A,B,D,H,I,E,C,F,K,G

In the fourth iteration, the algorithm will find the goal node.

Completeness:

This algorithm is complete is ifthe branching factor is finite.

Time Complexity:

Let's suppose b is the branching factor and depth is d then the worst-case time complexity is O(bd).

Space Complexity:

The space complexity of IDDFS will be O(bd).

Optimal:

IDDFS algorithm is optimal if path cost is a non- decreasing function of the depth of the node.

6. Bidirectional Search Algorithm:

Bidirectional search algorithm runs two simultaneous searches, one form initial state called as

forward-search and other from goal node called as backward-search, to find the goal node.

 Bidirectional search replaces one single search graph with two small subgraphs in which one

starts the search from an initial vertex and other starts from goal vertex.

The search stops when these two graphs intersect each other.

Bidirectional search can use search techniques such as BFS, DFS, DLS, etc.

Advantages:

o Bidirectional search is fast.

o Bidirectional search requires less memory

Disadvantages:

o Implementation of the bidirectional search tree is difficult.

o In bidirectional search, one should know the goal state in advance.

Example:

In the below search tree, bidirectional search algorithm is applied.

 This algorithm divides one graph/tree into two sub-graphs. It starts traversing from node 1 in the

forward direction and starts from goal node 16 in the backward direction.

The algorithm terminates at node 9 where two searches meet.

Completeness: Bidirectional Search is complete if we use BFS in both searches.

Time Complexity: Time complexity of bidirectional search using BFS is O(bd).

Space Complexity: Space complexity of bidirectional search is O(bd).

Optimal: Bidirectional search is Optimal.

Informed Search Algorithms

Informed search algorithm contains an array of knowledge such as how far we are from the goal, path

cost, how to reach to goal node, etc. This knowledge help agents to explore less to the search space

and find more efficiently the goal node.

The informed search algorithm is more useful for large search space. Informed search algorithm uses

the idea of heuristic, so it is also called Heuristic search.

Heuristics function: Heuristic is a function which is used in Informed Search, and it finds the most

promising path.

It takes the current state of the agent as its input and produces the estimation of how close agent is

from the goal.

The heuristic method, however, might not always give the best solution, but it guaranteed to find a

good solution in reasonable time.

 Heuristic function estimates how close a state is to the goal. It is represented by h(n), and it calculates

the cost of an optimal path between the pair of states. The value of the heuristic function is always

positive.

Admissibility of the heuristic function is given as:

1. h(n) <= h*(n)

Here h(n) is heuristic cost, and h*(n) is the estimated cost. Hence heuristic cost should be less

than or equal to the estimated cost.

Pure Heuristic Search:

Pure heuristic search is the simplest form of heuristic search algorithms. It expands nodes based on their

heuristic value h(n).

It maintains two lists, OPEN and CLOSED list. In the CLOSED list, it places those nodes which have already

expanded and in the OPEN list, it places nodes which have yet not been expanded.

On each iteration, each node n with the lowest heuristic value is expanded and generates all its

successors and n is placed to the closed list. The algorithm continues unit a goal state is found.

In the informed search we will discuss two main algorithms which are given below:

https://www.javatpoint.com/ai-informed-search-algorithms
https://www.javatpoint.com/ai-informed-search-algorithms

Best First Search Algorithm(Greedy search)

A* Search Algorithm

1.) Best-first Search Algorithm (Greedy Search):

Greedy best-first search algorithm always selects the path which appears best at that moment. It is the

combination of depth-first search and breadth-first search algorithms.

It uses the heuristic function and search. Best-first search allows us to take the advantages of both

algorithms. With the help of best-first search, at each step, we can choose the most promising node. In

the best first search algorithm, we expand the node which is closest to the goal node and the closest

cost is estimated by heuristic function,

1. f(n)= g(n).

Were, h(n)= estimated cost from node n to the goal.

The greedy best first algorithm is implemented by the priority queue.

Best first search algorithm:

o Step 1: Place the starting node into the OPEN list.

o Step 2: If the OPEN list is empty, Stop and return failure.

o Step 3: Remove the node n, from the OPEN list which has the lowest value of h(n), and places

it in the CLOSED list.

o Step 4: Expand the node n, and generate the successors of node n.

o Step 5: Check each successor of node n, and find whether any node is a goal node or not. If

any successor node is goal node, then return success and terminate the search, else proceed to

Step 6.

o Step 6: For each successor node, algorithm checks for evaluation function f(n), and then check

if the node has been in either OPEN or CLOSED list. If the node has not been in both list, then

add it to the OPEN list.

o Step 7: Return to Step 2.

Advantages:

o Best first search can switch between BFS and DFS by gaining the advantages of both the

algorithms.

o This algorithm is more efficient than BFS and DFS algorithms.

Disadvantages:

o It can behave as an unguided depth-first search in the worst case scenario.

o It can get stuck in a loop as DFS.

o This algorithm is not optimal.

Example:

Consider the below search problem, and we will traverse it using greedy best-first search. At each

iteration, each node is expanded using evaluation function f(n)=h(n) , which is given in the below table.

In this search example, we are using two lists which are OPEN and CLOSED Lists. Following are the

iteration for traversing the above example.

Expand the nodes of S and put in the CLOSED list

Initialization: Open [A, B], Closed [S]

Iteration 1: Open [A], Closed [S, B]

Iteration2: Open[E,F,A],Closed[S,B]

 : Open [E, A], Closed [S, B, F]

Iteration3: Open[I,G,E,A],Closed[S,B,F]

 : Open [I, E, A], Closed [S, B, F, G]

Hence the final solution path will be: S----> B----->F----> G

Time Complexity: The worst case time complexity of Greedy best first search is O(bm).

Space Complexity: The worst case space complexity of Greedy best first search is O(bm). Where, m

is the maximum depth of the search space.

Complete: Greedy best-first search is also incomplete, even if the given state space is finite.

Optimal: Greedy best first search algorithm is not optimal.

2.) A* Search Algorithm:

A* search is the most commonly known form of best-first search. It uses heuristic function h(n), and cost

to reach the node n from the start state g(n).

 It has combined features of UCS and greedy best-first search, by which it solve the problem efficiently.

A* search algorithm finds the shortest path through the search space using the heuristic function.

This search algorithm expands less search tree and provides optimal result faster. A* algorithm is similar

to UCS except that it uses g(n)+h(n) instead of g(n).

In A* search algorithm, we use search heuristic as well as the cost to reach the node. Hence we can

combine both costs as following, and this sum is called as a fitness number.

At each point in the search space, only those node is expanded which have the lowest value of f(n),
and the algorithm terminates when the goal node is found.

Algorithm of A* search:

Step1: Place the starting node in the OPEN list.

Step 2: Check if the OPEN list is empty or not, if the list is empty then return failure and stops.

Step 3: Select the node from the OPEN list which has the smallest value of evaluation function (g+h), if

node n is goal node then return success and stop, otherwise

Step 4: Expand node n and generate all of its successors, and put n into the closed list. For each

successor n', check whether n' is already in the OPEN or CLOSED list, if not then compute evaluation

function for n' and place into Open list.

Step 5: Else if node n' is already in OPEN and CLOSED, then it should be attached to the back pointer

which reflects the lowest g(n') value.

Step 6: Return to Step 2.

Advantages:

o A* search algorithm is the best algorithm than other search algorithms.

o A* search algorithm is optimal and complete.

o This algorithm can solve very complex problems.

Disadvantages:

o It does not always produce the shortest path as it mostly based on heuristics and approximation.

o A* search algorithm has some complexity issues.

o The main drawback of A* is memory requirement as it keeps all generated nodes in the memory,

so it is not practical for various large-scale problems.

Example:

In this example, we will traverse the given graph using the A* algorithm. The heuristic value of all

states is given in the below table so we will calculate the f(n) of each state using the formula f(n)= g(n)

+ h(n), where g(n) is the cost to reach any node from start state.

Here we will use OPEN and CLOSED list.

Solution:

Initialization: {(S, 5)}

Iteration1: {(S--> A, 4), (S-->G, 10)}

Iteration2: {(S--> A-->C, 4), (S--> A-->B, 7), (S-->G, 10)}

Iteration3: {(S--> A-->C--->G, 6), (S--> A-->C--->D, 11), (S--> A-->B, 7), (S-->G, 10)}

Iteration 4 will give the final result, as S--->A--->C--->G it provides the optimal path with cost 6.

Points to remember:

o A* algorithm returns the path which occurred first, and it does not search for all remaining

paths.

o The efficiency of A* algorithm depends on the quality of heuristic.

o A* algorithm expands all nodes which satisfy the condition f(n)<="" li="">

Complete: A* algorithm is complete as long as:

o Branching factor is finite.

o Cost at every action is fixed.

Optimal: A* search algorithm is optimal if it follows below two conditions:

o Admissible: the first condition requires for optimality is that h(n) should be an admissible

heuristic for A* tree search. An admissible heuristic is optimistic in nature.

o Consistency: Second required condition is consistency for only A* graph-search.

If the heuristic function is admissible, then A* tree search will always find the least cost path.

Time Complexity: The time complexity of A* search algorithm depends on heuristic function, and

the number of nodes expanded is exponential to the depth of solution d. So the time complexity is

O(b^d), where b is the branching factor.

Space Complexity: The space complexity of A* search algorithm is O(b^d)

 Unit _4

First-Order Logic in Artificial intelligence

In the topic of Propositional logic, we have seen that how to represent statements using
propositional logic. But unfortunately, in propositional logic, we can only represent the
facts, which are either true or false. PL is not sufficient to represent the complex sentences
or natural language statements. The propositional logic has very limited expressive power.
Consider the following sentence, which we cannot represent using PL logic.

o "Some humans are intelligent", or
o "Sachin likes cricket."

To represent the above statements, PL logic is not sufficient, so we required some more
powerful logic, such as first-order logic.

First-Order logic:

o First-order logic is another way of knowledge representation in artificial
intelligence. It is an extension to propositional logic.

o FOL is sufficiently expressive to represent the natural language statements in a
concise way.

o First-order logic is also known as Predicate logic or First-order predicate logic.
First-order logic is a powerful language that develops information about the objects
in a more easy way and can also express the relationship between those objects.

o First-order logic (like natural language) does not only assume that the world
contains facts like propositional logic but also assumes the following things in the
world:

o Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus,
......

o Relations: It can be unary relation such as: red, round, is adjacent, or n-
any relation such as: the sister of, brother of, has color, comes between

o Function: Father of, best friend, third inning of, end of,
o As a natural language, first-order logic also has two main parts:

 Syntax

a. Semantics

Syntax of First-Order logic:

The syntax of FOL determines which collection of symbols is a logical expression in first-
order logic. The basic syntactic elements of first-order logic are symbols. We write
statements in short-hand notation in FOL.

Basic Elements of First-order logic:

Following are the basic elements of FOL syntax:

Constant 1, 2, A, John, Mumbai, cat,....

Variables x, y, z, a, b,....

Predicates Brother, Father, >,....

Function sqrt, LeftLegOf,

Connectives ∧, ∨, ¬, ⇒, ⇔

Equality ==

Quantifier ∀, ∃

Atomic sentences:

o Atomic sentences are the most basic sentences of first-order logic. These sentences
are formed from a predicate symbol followed by a parenthesis with a sequence of
terms.

o We can represent atomic sentences as Predicate (term1, term2,, term n).

Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).
 Chinky is a cat: => cat (Chinky).

Complex Sentences:

o Complex sentences are made by combining atomic sentences using connectives.

First-order logic statements can be divided into two parts:

o Subject: Subject is the main part of the statement.
o Predicate: A predicate can be defined as a relation, which binds two atoms together

in a statement.

Consider the statement: "x is an integer.", it consists of two parts, the first part x is the
subject of the statement and second part "is an integer," is known as a predicate.

Quantifiers in First-order logic:

o A quantifier is a language element which generates quantification, and
quantification specifies the quantity of specimen in the universe of discourse.

o These are the symbols that permit to determine or identify the range and scope of
the variable in the logical expression. There are two types of quantifier:

a. Universal Quantifier, (for all, everyone, everything)
b. Existential quantifier, (for some, at least one).

Universal Quantifier:

Universal quantifier is a symbol of logical representation, which specifies that the
statement within its range is true for everything or every instance of a particular thing.

The Universal quantifier is represented by a symbol ∀, which resembles an inverted A.

Note: In universal quantifier we use implication "→".

If x is a variable, then ∀x is read as:

o For all x
o For each x
o For every x.

Example:

All man drink coffee.

Let a variable x which refers to a cat so all x can be represented in UOD as below:

∀x man(x) → drink (x, coffee).

It will be read as: There are all x where x is a man who drink coffee.

Existential Quantifier:

Existential quantifiers are the type of quantifiers, which express that the statement within
its scope is true for at least one instance of something.

It is denoted by the logical operator ∃, which resembles as inverted E. When it is used with
a predicate variable then it is called as an existential quantifier.

Note: In Existential quantifier we always use AND or Conjunction symbol (∧).

If x is a variable, then existential quantifier will be ∃x or ∃(x). And it will be read as:

o There exists a 'x.'
o For some 'x.'
o For at least one 'x.'

Example:

Some boys are intelligent.

∃x: boys(x) ∧ intelligent(x)

It will be read as: There are some x where x is a boy who is intelligent.

Points to remember:

o The main connective for universal quantifier ∀ is implication →.
o The main connective for existential quantifier ∃ is and ∧.

Properties of Quantifiers:

o In universal quantifier, ∀x∀y is similar to ∀y∀x.
o In Existential quantifier, ∃x∃y is similar to ∃y∃x.
o ∃x∀y is not similar to ∀y∃x.

Some Examples of FOL using quantifier:

1. All birds fly.
In this question the predicate is "fly(bird)."
And since there are all birds who fly so it will be represented as follows.
 ∀x bird(x) →ϐly(x).

2. Every man respects his parent.
In this question, the predicate is "respect(x, y)," where x=man, and y= parent.
Since there is every man so will use ∀, and it will be represented as follows:
 ∀x man(x) → respects (x, parent).

3. Some boys play cricket.
In this question, the predicate is "play(x, y)," where x= boys, and y= game. Since there are
some boys so we will use ∃, and it will be represented as:
 ∃x boys(x) → play(x, cricket).

4. Not all students like both Mathematics and Science.
In this question, the predicate is "like(x, y)," where x= student, and y= subject.
Since there are not all students, so we will use ∀ with negation, so following
representation for this:
 ¬∀ (x) [student(x) → like(x, Mathematics) ∧ like(x, Science)].

5. Only one student failed in Mathematics.
In this question, the predicate is "failed(x, y)," where x= student, and y= subject.
Since there is only one student who failed in Mathematics, so we will use following
representation for this:
 ∃(x) [student(x) → failed (x, Mathematics) ∧∀ (y) [¬(x==y) ∧ student(y) →
 ¬failed (x, Mathematics)].

Free and Bound Variables:

The quantifiers interact with variables which appear in a suitable way. There are two types
of variables in First-order logic which are given below:

Free Variable: A variable is said to be a free variable in a formula if it occurs outside the
scope of the quantifier.

 Example: ∀x ∃(y)[P (x, y, z)], where z is a free variable.

Bound Variable: A variable is said to be a bound variable in a formula if it occurs within
the scope of the quantifier

 Example: ∀x [A (x) B(y)], here x and y are the bound variables.

Knowledge Engineering in First-order logic

What is knowledge-engineering?

The process of constructing a knowledge-base in first-order logic is called as knowledge-
engineering. In knowledge-engineering, someone who investigates a particular domain,
learns important concept of that domain, and generates a formal representation of the
objects, is known as knowledge engineer.

In this topic, we will understand the Knowledge engineering process in an electronic circuit
domain, which is already familiar. This approach is mainly suitable for creating special-
purpose knowledge base.

The knowledge-engineering process:

Following are some main steps of the knowledge-engineering process. Using these steps,
we will develop a knowledge base which will allow us to reason about digital circuit (One-
bit full adder) which is given below

1. Identify the task:

The first step of the process is to identify the task, and for the digital circuit, there are
various reasoning tasks.

At the first level or highest level, we will examine the functionality of the circuit:

o Does the circuit add properly?
o What will be the output of gate A2, if all the inputs are high?

At the second level, we will examine the circuit structure details such as:

o Which gate is connected to the first input terminal?
o Does the circuit have feedback loops?

2. Assemble the relevant knowledge:

In the second step, we will assemble the relevant knowledge which is required for digital
circuits. So for digital circuits, we have the following required knowledge:

o Logic circuits are made up of wires and gates.
o Signal flows through wires to the input terminal of the gate, and each gate produces

the corresponding output which flows further.

o In this logic circuit, there are four types of gates used: AND, OR, XOR, and NOT.
o All these gates have one output terminal and two input terminals (except NOT gate,

it has one input terminal).

3. Decide on vocabulary:

The next step of the process is to select functions, predicate, and constants to represent the
circuits, terminals, signals, and gates.

Firstly we will distinguish the gates from each other and from other objects. Each gate is
represented as an object which is named by a constant, such as, Gate(X1). The
functionality of each gate is determined by its type, which is taken as constants such
as AND, OR, XOR, or NOT. Circuits will be identified by a predicate: Circuit (C1).

For the terminal, we will use predicate: Terminal(x).

For gate input, we will use the function In(1, X1) for denoting the first input terminal of the
gate, and for output terminal we will use Out (1, X1).

The function Arity(c, i, j) is used to denote that circuit c has i input, j output.

The connectivity between gates can be represented by predicate Connect(Out(1, X1),
In(1, X1)).

We use a unary predicate On (t), which is true if the signal at a terminal is on.

4. Encode general knowledge about the domain:

To encode the general knowledge about the logic circuit, we need some following rules:

o If two terminals are connected then they have the same input signal, it can be
represented as:

1. ∀ t1, t2 Terminal (t1) ∧ Terminal (t2) ∧ Connect (t1, t2) → Signal (t1) = Signal (2).
o Signal at every terminal will have either value 0 or 1, it will be represented as:

1. ∀ t Terminal (t) →Signal (t) = 1 ∨Signal (t) = 0.
o Connect predicates are commutative:

1. ∀ t1, t2 Connect(t1, t2) → Connect (t2, t1).
o Representation of types of gates:

1. ∀ g Gate(g) ∧ r = Type(g) → r = OR ∨r = AND ∨r = XOR ∨r = NOT.
o Output of AND gate will be zero if and only if any of its input is zero

∀ g Gate(g) ∧ Type(g) = AND →Signal (Out(1, g))= 0 ⇔ ∃n Signal (In(n, g))= 0.
o Output of OR gate is 1 if and only if any of its input

1. ∀ g Gate(g) ∧ Type(g) = OR → Signal (Out(1, g))= 1 ⇔ ∃n Signal (In(n, g))= 1
o Output of XOR gate is 1 if and only if its inputs are different:

1. ∀ g Gate(g) ∧ Type(g) = XOR → Signal (Out(1, g)) = 1 ⇔ Signal (In(1, g)) ≠ Signal (In(2, g)).

o Output of NOT gate is invert of its input:

1. ∀ g Gate(g) ∧ Type(g) = NOT → Signal (In(1, g)) ≠ Signal (Out(1, g)).
o All the gates in the above circuit have two inputs and one output (except NOT gate).

1. ∀ g Gate(g) ∧ Type(g) = NOT → Arity(g, 1, 1)
2. ∀ g Gate(g) ∧ r =Type(g) ∧ (r= AND ∨r= OR ∨r= XOR) → Arity (g, 2, 1).

o All gates are logic circuits:

1. ∀ g Gate(g) → Circuit (g).

5. Encode a description of the problem instance:

Now we encode problem of circuit C1, firstly we categorize the circuit and its gate
components. This step is easy if ontology about the problem is already thought.

 This step involves the writing simple atomics sentences of instances of concepts, which is
known as ontology.

For the given circuit C1, we can encode the problem instance in atomic sentences as below:

Since in the circuit there are two XOR, two AND, and one OR gate so atomic sentences for
these gates will be:

1. For XOR gate: Type(x1)= XOR, Type(X2) = XOR
2. For AND gate: Type(A1) = AND, Type(A2)= AND
3. For OR gate: Type (O1) = OR.

And then represent the connections between all the gates.

Note: Ontology defines a particular theory of the nature of existence.

6. Pose queries to the inference procedure and get answers:

In this step, we will find all the possible set of values of all the terminal for the adder circuit.
The first query will be:

What should be the combination of input which would generate the first output of circuit
C1, as 0 and a second output to be 1?

1. ∃ i1, i2, i3 Signal (In(1, C1))=i1 ∧ Signal (In(2, C1))=i2 ∧ Signal (In(3, C1))= i3
2. ∧ Signal (Out(1, C1)) =0 ∧ Signal (Out(2, C1))=1

7. Debug the knowledge base:

Now we will debug the knowledge base, and this is the last step of the complete process. In
this step, we will try to debug the issues of knowledge base.

In the knowledge base, we may have omitted assertions like 1 ≠ 0.

Inference in First-Order Logic

Inference in First-Order Logic is used to deduce new facts or sentences from existing
sentences. Before understanding the FOL inference rule, let's understand some basic
terminologies used in FOL.

Substitution:

Substitution is a fundamental operation performed on terms and formulas. It occurs in all
inference systems in first-order logic. The substitution is complex in the presence of
quantifiers in FOL. If we write F[a/x], so it refers to substitute a constant "a" in place of
variable "x".

Note: First-order logic is capable of expressing facts about some or all objects in the universe.

Equality:Difference between JDK, JRE, and JVM

First-Order logic does not only use predicate and terms for making atomic sentences but
also uses another way, which is equality in FOL. For this, we can use equality
symbols which specify that the two terms refer to the same object.

Example: Brother (John) = Smith.

As in the above example, the object referred by the Brother (John) is similar to the object
referred by Smith. The equality symbol can also be used with negation to represent that
two terms are not the same objects.

Example: ￢(x=y) which is equivalent to x ≠y.

FOL inference rules for quantifier:

As propositional logic we also have inference rules in first-order logic, so following are
some basic inference rules in FOL:

o Universal Generalization
o Universal Instantiation
o Existential Instantiation
o Existential introduction

1. Universal Generalization:

o Universal generalization is a valid inference rule which states that if premise P(c) is
true for any arbitrary element c in the universe of discourse, then we can have a
conclusion as ∀ x P(x).

o It can be represented as: .
o This rule can be used if we want to show that every element has a similar property.
o In this rule, x must not appear as a free variable.

Example: Let's represent, P(c): "A byte contains 8 bits", so for ∀ x P(x) "All bytes
contain 8 bits.", it will also be true.

2. Universal Instantiation:

o Universal instantiation is also called as universal elimination or UI is a valid
inference rule. It can be applied multiple times to add new sentences.

o The new KB is logically equivalent to the previous KB.
o As per UI, we can infer any sentence obtained by substituting a ground term for

the variable.
o The UI rule state that we can infer any sentence P(c) by substituting a ground term c

(a constant within domain x) from ∀ x P(x) for any object in the universe of
discourse.

o It can be represented as: .

Example:1.

IF "Every person like ice-cream"=> ∀x P(x) so we can infer that
"John likes ice-cream" => P(c)

Example: 2.

Let's take a famous example,

"All kings who are greedy are Evil." So let our knowledge base contains this detail as in the
form of FOL:

∀x king(x) ∧ greedy (x) → Evil (x),

So from this information, we can infer any of the following statements using Universal
Instantiation:

o King(John) ∧ Greedy (John) → Evil (John),
o King(Richard) ∧ Greedy (Richard) → Evil (Richard),
o King(Father(John)) ∧ Greedy (Father(John)) → Evil (Father(John)),

3. Existential Instantiation:

o Existential instantiation is also called as Existential Elimination, which is a valid
inference rule in first-order logic.

o It can be applied only once to replace the existential sentence.
o The new KB is not logically equivalent to old KB, but it will be satisfiable if old KB

was satisfiable.
o This rule states that one can infer P(c) from the formula given in the form of ∃x P(x)

for a new constant symbol c.
o The restriction with this rule is that c used in the rule must be a new term for which

P(c) is true.

o It can be represented as:

Example:

From the given sentence: ∃x Crown(x) ∧ OnHead(x, John),

So we can infer: Crown(K) ∧ OnHead(K, John), as long as K does not appear in the
knowledge base.

o The above used K is a constant symbol, which is called Skolem constant.
o The Existential instantiation is a special case of Skolemization process.

4. Existential introduction

o An existential introduction is also known as an existential generalization, which is a
valid inference rule in first-order logic.

o This rule states that if there is some element c in the universe of discourse which
has a property P, then we can infer that there exists something in the universe
which has the property P.

o It can be represented as:
o Example: Let's say that,

"Priyanka got good marks in English."
"Therefore, someone got good marks in English."

Generalized Modus Ponens Rule:

For the inference process in FOL, we have a single inference rule which is called
Generalized Modus Ponens. It is lifted version of Modus ponens.

Generalized Modus Ponens can be summarized as, " P implies Q and P is asserted to be true,
therefore Q must be True."

According to Modus Ponens, for atomic sentences pi, pi', q. Where there is a substitution θ
such that SUBST (θ, pi',) = SUBST(θ, pi), it can be represented as:

Example:

We will use this rule for Kings are evil, so we will find some x such that x is king, and
x is greedy so we can infer that x is evil.

What is Unification?

o Unification is a process of making two different logical atomic expressions identical
by finding a substitution. Unification depends on the substitution process.

o It takes two literals as input and makes them identical using substitution.
o Let Ψ1 and Ψ2 be two atomic sentences and 𝜎 be a unifier such that, Ψ1 = Ψ2 ,

then it can be expressed as UNIFY(Ψ1, Ψ2).
o Example: Find the MGU for Unify{King(x), King(John)}

Let Ψ1 = King(x), Ψ2 = King(John),

Substitution θ = {John/x} is a unifier for these atoms and applying this substitution, and
both expressions will be identical.

o The UNIFY algorithm is used for unification, which takes two atomic sentences and
returns a unifier for those sentences (If any exist).

o Unification is a key component of all first-order inference algorithms.
o It returns fail if the expressions do not match with each other.

o The substitution variables are called Most General Unifier or MGU.

E.g. Let's say there are two different expressions, P(x, y), and P(a, f(z)).

In this example, we need to make both above statements identical to each other. For this,
we will perform the substitution.Difference between JDK, JRE, and JVM

 P(x, y)......... (i)
 P(a, f(z))......... (ii)

o Substitute x with a, and y with f(z) in the first expression, and it will be represented
as a/x and f(z)/y.

o With both the substitutions, the first expression will be identical to the second
expression and the substitution set will be: [a/x, f(z)/y].

Conditions for Unification:

Following are some basic conditions for unification:

o Predicate symbol must be same, atoms or expression with different predicate
symbol can never be unified.

o Number of Arguments in both expressions must be identical.
o Unification will fail if there are two similar variables present in the same expression.

Forward Chaining and backward chaining in AI

In artificial intelligence, forward and backward chaining is one of the important topics, but
before understanding forward and backward chaining lets first understand that from
where these two terms came.

Inference engine:

The inference engine is the component of the intelligent system in artificial intelligence,
which applies logical rules to the knowledge base to infer new information from known
facts. The first inference engine was part of the expert system. Inference engine commonly
proceeds in two modes, which are:

a. Forward chaining
b. Backward chaining

Horn Clause and Definite clause:

Horn clause and definite clause are the forms of sentences, which enables knowledge base
to use a more restricted and efficient inference algorithm. Logical inference algorithms use

forward and backward chaining approaches, which require KB in the form of the first-
order definite clause.

Features of Java - Javatpoint

Definite clause: A clause which is a disjunction of literals with exactly one positive
literal is known as a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most one positive literal is
known as horn clause. Hence all the definite clauses are horn clauses.

Example: (¬ p V ¬ q V k). It has only one positive literal k.

It is equivalent to p ∧ q → k.

A. Forward Chaining

Forward chaining is also known as a forward deduction or forward reasoning method
when using an inference engine. Forward chaining is a form of reasoning which start with
atomic sentences in the knowledge base and applies inference rules (Modus Ponens) in the
forward direction to extract more data until a goal is reached.

The Forward-chaining algorithm starts from known facts, triggers all rules whose premises
are satisfied, and add their conclusion to the known facts. This process repeats until the
problem is solved.

Properties of Forward-Chaining:

o It is a down-up approach, as it moves from bottom to top.
o It is a process of making a conclusion based on known facts or data, by starting from

the initial state and reaches the goal state.
o Forward-chaining approach is also called as data-driven as we reach to the goal

using available data.
o Forward -chaining approach is commonly used in the expert system, such as CLIPS,

business, and production rule systems.

Consider the following famous example which we will use in both approaches:

Example:

"As per the law, it is a crime for an American to sell weapons to hostile nations.
Country A, an enemy of America, has some missiles, and all the missiles were sold to
it by Robert, who is an American citizen."

Prove that "Robert is criminal."

To solve the above problem, first, we will convert all the above facts into first-order definite
clauses, and then we will use a forward-chaining algorithm to reach the goal.

Facts Conversion into FOL:

o It is a crime for an American to sell weapons to hostile nations. (Let's say p, q, and r
are variables)
American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1)

o Country A has some missiles. ?p Owns(A, p) ∧ Missile(p). It can be written in two
definite clauses by using Existential Instantiation, introducing new Constant T1.
Owns(A,T1......(2)
Missile(T1) (3)

o All of the missiles were sold to country A by Robert.

?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) (4)

o Missiles are weapons.
Missile(p) → Weapons (p) (5)

o Enemy of America is known as hostile.

Enemy(p, America) →Hostile(p) (6)

o Country A is an enemy of America.
Enemy (A, America) (7)

o Robert is American

American(Robert). (8)

Forward chaining proof:

Step-1:

In the first step we will start with the known facts and will choose the sentences which do
not have implications, such as: American(Robert), Enemy(A, America), Owns(A, T1),
and Missile(T1). All these facts will be represented as below.

Step-2:

At the second step, we will see those facts which infer from available facts and with
satisfied premises.

Rule-(1) does not satisfy premises, so it will not be added in the first iteration.

Rule-(2) and (3) are already added.

Rule-(4) satisfy with the substitution {p/T1}, so Sells (Robert, T1, A) is added, which
infers from the conjunction of Rule (2) and (3).

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is added and which infers
from Rule-(7).

Step-3:

At step-3, as we can check Rule-(1) is satisfied with the substitution {p/Robert, q/T1,
r/A}, so we can add Criminal(Robert) which infers all the available facts. And hence we
reached our goal statement.

Hence it is proved that Robert is Criminal using forward chaining approach.

B. Backward Chaining:

Backward-chaining is also known as a backward deduction or backward reasoning method
when using an inference engine. A backward chaining algorithm is a form of reasoning,
which starts with the goal and works backward, chaining through rules to find known facts
that support the goal.

Properties of backward chaining:

o It is known as a top-down approach.
o Backward-chaining is based on modus ponens inference rule.
o In backward chaining, the goal is broken into sub-goal or sub-goals to prove the

facts true.
o It is called a goal-driven approach, as a list of goals decides which rules are selected

and used.
o Backward -chaining algorithm is used in game theory, automated theorem proving

tools, inference engines, proof assistants, and various AI applications.
o The backward-chaining method mostly used a depth-first search strategy for

proof.

Example:

In backward-chaining, we will use the same above example, and will rewrite all the rules.

o American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1)
Owns(A, T1)(2)

o Missile(T1)
o ?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A)(4)
o Missile(p) → Weapons (p)(5)
o Enemy(p, America) →Hostile(p)(6)
o Enemy (A, America)(7)
o American(Robert). (8)

Backward-Chaining proof:

In Backward chaining, we will start with our goal predicate, which is Criminal(Robert),
and then infer further rules.

Step-1:

At the first step, we will take the goal fact. And from the goal fact, we will infer other facts,
and at last, we will prove those facts true. So our goal fact is "Robert is Criminal," so
following is the predicate of it.

Step-2:

At the second step, we will infer other facts form goal fact which satisfies the rules. So as we
can see in Rule-1, the goal predicate Criminal (Robert) is present with substitution
{Robert/P}. So we will add all the conjunctive facts below the first level and will replace p
with Robert.

Here we can see American (Robert) is a fact, so it is proved here.

Step-3:t At step-3, we will extract further fact Missile(q) which infer from Weapon(q), as it
satisfies Rule-(5). Weapon (q) is also true with the substitution of a constant T1 at q.

Step-4:

At step-4, we can infer facts Missile(T1) and Owns(A, T1) form Sells(Robert, T1, r) which
satisfies the Rule- 4, with the substitution of A in place of r. So these two statements are
proved here.

Step-5:

At step-5, we can infer the fact Enemy(A, America) from Hostile(A) which satisfies Rule-
6. And hence all the statements are proved true using backward chaining.

Unit-5

Quantifying Uncertainty

Acting Under Uncertainty

➢ Artificial intelligence (AI) uncertainty is when there’s not enough information or

ambiguity in data or decision-making. It is a fundamental concept in AI, as real-world

data is often noisy and incomplete. AI systems must account for uncertainty to make

informed decisions.

➢ AI deals with uncertainty by using models and methods that assign probabilities to

different outcomes. Managing uncertainty is important for AI applications like self-

driving cars and medical diagnosis, where safety and accuracy are key

Sources of Uncertainty in AI

There are several sources of uncertainty in AI that can impact the reliability and effectiveness

of AI systems. Here are some common sources of uncertainty in AI:

https://intellipaat.com/blog/what-is-artificial-intelligence/

Data Uncertainty: AI models are trained on data, and the quality and accuracy of the data can

affect the performance of the model. Noisy or incomplete data can lead to uncertain predictions

or decisions made by the AI system.

Model Uncertainty: AI models are complex and can have various parameters and

hyperparameters that need to be tuned. The choice of model architecture, optimization

algorithm, and hyperparameters can significantly impact the performance of the model, leading

to uncertainty in the results.

Algorithmic Uncertainty: AI algorithms can be based on different mathematical formulations,

leading to different results for the same problem. For example, different machine learning

algorithms can produce different predictions for the same dataset.

Environmental Uncertainty: AI systems operate in dynamic environments, and changes in

the environment can affect the performance of the system. For example, an autonomous vehicle

may encounter unexpected weather conditions or road construction that can impact its ability

to navigate safely.

Human Uncertainty: AI systems often interact with humans, either as users or as part of the

decision-making process. Human behaviour and preferences can be difficult to predict, leading

to uncertainty in the use and adoption of AI systems.

Ethical Uncertainty: AI systems often raise ethical concerns, such as privacy, bias, and

transparency. These concerns can lead to uncertainty in the development and deployment of AI

systems, particularly in regulated industries.

Legal Uncertainty: AI systems must comply with laws and regulations, which can be

ambiguous or unclear. Legal challenges and disputes can arise from the use of AI systems,

leading to uncertainty in their adoption and implementation.

Uncertainty in AI Reasoning: AI systems use reasoning techniques to make decisions or

predictions. However, these reasoning techniques can be uncertain due to the complexity of the

problems they address or the limitations of the data used to train the models.

Uncertainty in AI Perception: AI systems perceive their environment through sensors and

cameras, which can be subject to noise, occlusion, or other forms of interference. This can lead

to uncertainty in the accuracy of the data used to train AI models or the effectiveness of AI

systems in real-world applications.

Uncertainty in AI Communication: AI systems communicate with humans through natural

language processing or computer vision. However, language and visual cues can be ambiguous

or misunderstood, leading to uncertainty in the effective communication between humans and

AI systems.

Types of Uncertainty in AI

Aleatoric Uncertainty: This type of uncertainty arises from the inherent randomness or

variability in data. It is often referred to as “data uncertainty.” For example, in a classification

task, aleatoric uncertainty may arise from variations in sensor measurements or noisy labels.

Epistemic Uncertainty: Epistemic uncertainty is related to the lack of knowledge or

information about a model. It represents uncertainty that can potentially be reduced with more

data or better modelling techniques. It is also known as “model uncertainty” and arises from

model limitations, such as simplifications or assumptions.

Parameter Uncertainty: This type of uncertainty is specific to probabilistic models, such as

Bayesian neural networks. It reflects uncertainty about the values of model parameters and is

characterized by probability distributions over those parameters.

Uncertainty in Decision-Making: Uncertainty in AI systems can affect the decision-making

process. For instance, in reinforcement learning, agents often need to make decisions in

environments with uncertain outcomes, leading to decision-making uncertainty.

Uncertainty in Natural Language Understanding: In natural language processing (NLP),

understanding and generating human language can be inherently uncertain due to language

ambiguity, polysemy (multiple meanings), and context-dependent interpretations.

Probability Notation

➢ Probabilistic notation refers to the symbols and conventions used to represent and

manipulate probabilities and statistical concepts.

➢ This notation is fundamental in fields such as statistics, machine learning, and artificial

intelligence

Basic Probabilistic Notations

Here are some key elements of probabilistic notation, which form the foundation for more

advanced probabilistic models in AI:

Probability Notation:

Probability Notation Description

P(A) The probability of event A occurring

P(A′) The probability of event A not occurring

P(A∩B) The probability of both A and B occurring at the same time

P(A∪B) The probability of either A or B occurring

P(A∩B′) The probability of A occurring but not B

P(A′∪B) The probability of either A not occurring or B occurring

Conditional Probability:
➢ P(A | B): The probability of event A occurring given that event B has occurred. This

is fundamental in AI for updating beliefs based on new evidence.

➢ Bayes’ Theorem: 𝑃(𝐴∣𝐵)=𝑃(𝐵)𝑃(𝐵∣𝐴)⋅𝑃(𝐴)P(A∣B)=P(B)P(B∣A)⋅P(A) , which

provides a way to update probabilities based on new data.

Joint Probability:

➢ The probability of both A and B occurring, which can also be written as P(A∩B).

This is essential for understanding the relationships between multiple variables.

Marginal Probability:

➢ The probability of event A P(A) occurring, regardless of other events. This is derived

by summing or integrating over the joint probabilities of A with all other possible

events.

Advanced Probabilistic Notations

Random Variables:
➢ X: A random variable representing a possible outcome.

https://www.geeksforgeeks.org/bayes-theorem/

➢ P(X = x): The probability that the random variable X takes the value x.

➢ P(X ≤ x): The probability that the random variable X takes a value less than or equal

to x.

Probability Distributions:

➢ Probability Mass Function (PMF): For discrete random

variables, 𝑃(𝑋=𝑥)P(X=x)denotes the PMF.

➢ Probability Density Function (PDF): For continuous random variables, 𝑓𝑋(𝑥)fX

(x) denotes the PDF.

➢ Cumulative Distribution Function (CDF): 𝐹𝑋(𝑥)=𝑃(𝑋≤𝑥)FX(x)=P(X≤x) gives the

cumulative probability up to x.

Expectation and Variance:

➢ E[X]: The expected value or mean of the random variable X.

➢ Var(X): The variance of the random variable X, representing the spread of

its possible values.

Covariance and Correlation:

➢ Cov(X, Y): The covariance between random variables X and Y, indicating the

degree to which they change together.

➢ Corr(X, Y): The correlation coefficient between X and Y, a normalized measure of

their linear relationship.

Inference Using Full Joint Distributions

➢ Joint probability offers valuable insights into the likelihood of multiple events

happening together. This helps us in several ways:

Co-occurrence: Joint probability helps us understand how likely it is for two or more events

to happen at the same time. This is important for seeing how events are connected and the

probability of them occurring together.

Risk Evaluation: In areas like finance and insurance, joint probability helps us assess the risk

when multiple events overlap. For instance, it can estimate the chance of multiple financial

instruments facing losses simultaneously.

Quality Check: Businesses can use joint probability to gauge the reliability and quality of their

products or processes. It shows the likelihood of multiple defects or issues occurring at once,

which allows for proactive quality improvement efforts.

https://www.geeksforgeeks.org/probability-mass-function/
https://www.geeksforgeeks.org/probability-density-function/

Event Relationships: Joint probability can indicate if events are related or not. If joint

probability significantly differs from the product of individual probabilities, it suggests events

are connected, and the occurrence of one affects the likelihood of the other.

Decision Support: When businesses need to make choices involving multiple factors or

events, joint probability provides a numerical foundation for decision-making. It helps assess

how different variables together impact the desired outcome.

Resource Management: In situations with limited resources, understanding joint probability

helps optimise resource allocation. For example, in supply chain management, it can estimate

the chance of multiple supply chain disruptions happening at the same time, enabling better

risk management strategies.

Formula for Joint Probability

For Independent Events

When events A and B are independent, meaning that the occurrence of one event does not

impact the other, we use the multiplication rule:

P(A∩B) = P(A) x P(B)

Here, P(A) is the probability of occurrence of event A, P(B) is the probability of occurrence of

event B, and P(A∩B) is the joint probability of events A and B.

For Dependent Events

Events are often dependent on each other, meaning that one event’s occurrence influences the

likelihood of the other. Here, we employ a modified formula:

P(A∩B) = P(A) x P(B|A)

Here, P(A) is the probability of occurrence of event A, P(B|A) is the conditional probability of

occurrence of event B when event A has already occurred, and P(A∩B) is the joint probability

of events A and B.

Bayesian Classification:

	HISTORY OF ARTIFICIAL INTELIGENCE
	Maturation of Artificial Intelligence (1943-1952)
	The birth of Artificial Intelligence (1952-1956)
	The golden years-Early enthusiasm (1956-1974)
	Year 1972: The first intelligent humanoid robot was built in Japan which was named as WABOT-1.
	he golden years-Early enthusiasm (1956-1974)
	The first AI winter (1974-1980)
	The emergence of intelligent agents (1993-2011)
	THE STATE OF ART IN AI
	1. AI in Astronomy
	2. AI in Healthcare
	3. AI in Gaming
	4. AI in Finance
	5. AI in Data Security
	6. AI in Social Media
	7. AI in Travel & Transport
	8. AI in Automotive Industry
	9. AI in Robotics:
	10. AI in Entertainment
	11. AI in Agriculture
	12. AI in E-commerce
	13. AI in education:

	STRUCTURE OF AGENTS
	1. Simple Reflex agent:
	2. Model-based reflex agent
	3. Goal-based agents
	4. Utility-based agents
	5. Learning Agents
	Agents in Artificial Intelligence
	What is an Agent?
	Intelligent Agents:
	Rational Agent:
	Note: Rational agents in AI are very similar to intelligent agents.
	Rationality:
	Note: Rationality differs from Omniscience because an Omniscient agent knows the actual outcome of its action and act accordingly, which is not possible in reality.

	Structure of an AI Agent

	Agent Environment in AI
	NAATURE of Environment
	1. Fully observable vs Partially Observable:
	2. Deterministic vs Stochastic:
	3. Episodic vs Sequential:
	4. Single-agent vs Multi-agent
	5. Static vs Dynamic:
	6. Discrete vs Continuous:
	7. Known vs Unknown
	8. Accessible vs Inaccessible

	Unit 2
	Problem-solving agents:

	Search Algorithm Terminologies:
	Properties of Search Algorithms:
	Types of search algorithms
	Uninformed/Blind Search:

	It can be divided into five main types:
	Breadth-first search
	Uniform cost search
	Depth-first search
	Iterative deepening depth-first search
	Bidirectional Search
	Informed Search
	Uninformed Search Algorithms
	1. Breadth-first Search:
	Advantages:
	Disadvantages:
	Example:

	2. Depth-first Search:
	Note: Backtracking is an algorithm technique for finding all possible solutions using recursion.

	Advantage:
	Disadvantage:
	Example:

	3. Depth-Limited Search Algorithm:
	Depth-limited search can be terminated with two Conditions of failure:
	Advantages:
	Disadvantages:
	Example:
	4. Uniform-cost Search Algorithm:
	Advantages:
	Completeness:
	Time Complexity:
	Space Complexity:
	Optimal:
	5. Iterative deepeningdepth-first Search:
	Disadvantages:
	Example:
	Completeness:
	Optimal:

	6. Bidirectional Search Algorithm:
	Advantages:
	Disadvantages:
	Example:

	Informed Search Algorithms
	Pure Heuristic Search:

	Best First Search Algorithm(Greedy search)
	A* Search Algorithm
	1.) Best-first Search Algorithm (Greedy Search):
	Best first search algorithm:
	Advantages:
	Disadvantages:
	Example:
	2.) A* Search Algorithm:
	Algorithm of A* search:
	Advantages:
	Disadvantages:
	Example:

	Basic Probabilistic Notations
	Probability Notation:
	Conditional Probability:
	Joint Probability:
	Marginal Probability:

	Advanced Probabilistic Notations
	Random Variables:
	Probability Distributions:

