
Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 1

Fundamentals of Object Oriented Programming &Java Evolution

1) Introduction

2) Object Oriented Paradigm

3) Basic Concepts of Object Oriented Programming

4) Benefits of OOPs

5) Applications of OOP

6) Java History

7) Java Features

8) How Java Differs from C and C++

9) Java Environment

10) Constants

11) Data Types

12) Variables

13) Type Conversion and Casting

14) Automatic Type Promotion in Expression

15) Arrays

16) Operators and Expressions

17) Control Statements

1. INTRODUCTION

Programming languages can be classified into 3 primary types

1) Unstructured Programming Languages:

 - has sequentially flow of control

 - code is repeated throughout the program

2) Structured Programming Languages:

 - Has non-sequentially flow of control.

 - Use of functions allows for re-use of code.

3) Object Oriented Programming:

- Combines Data& Action Together.

Let's understand these 3 types with an example.Suppose you want to create a

Banking Software with functions like

➢ Deposit

➢ Withdraw

➢ Show Balance

Unstructured Programming Languages

➢ The earliest of all programming language were unstructured

programming language.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 2

➢ A very elementary code of banking application in unstructured

Programming language will have two variables of one account

number and another for account balance

For any further deposit or withdrawal operation – you will code repeat the

same lines again and again.

Structured Programming

➢ With the arrival of Structured programming repeated lines on the code

were put into structures such as functions or methods.

➢ Whenever needed, a simple call to the function is made.

Object-Oriented Programming

➢ In fact, having data and performing certain operation on that data is very

basic characteristic in any software program.

➢ Experts in Software Programming thought of combining the Data and

Operations.

➢ Therefore, the birth of Object Oriented Programming which is commonly

called OOPS.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 3

2. OBJECT ORIENTED PARADIGM

▪ The major objective of object-oriented approach is to eliminate some of

the flaws encountered in the procedural approach.

▪ OOP treats data as a critical element in the program development and

does not allow it to flow freely around the system.

▪ It ties data more closely to the to the functions that operate on it and

protects it from unintentional modification by other functions.

▪ OOP allows us to decompose a problem into a number of entities called

Objects and then build data and functions (known as methods in Java)

around these entities.

▪ The combination of the data and the methods make up an object

The data of an object can be accessed only by the methods associated with that

object. However, methods of one object can access the methods of other

objects. Some of the features of object-oriented paradigm are:

1) Emphasis is on data rather than procedure.

2) Programs are divided into what are known as Objects.

3) Data Structures are designed such that they characterize the objects.

4) Methods that operate on the data of an object are tied together in the

data structure.

5) Data is hidden and cannot be accessed by external functions.

6) Objects may communicate with each other through methods.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 4

7) New data and methods can be easily added wherever necessary.

8) Follow bottom-up approach in program design.

3. BASIC CONCEPTS OF OBJECT ORIENTED

PROGRAMMING

▪ Object Oriented Programming is a programming concept that works on

the principle that objects are the most important part of your program.

▪ It allows users create the objects that they want and then create

methods to handle those objects.

▪ Manipulating these objects to get results is the goal of Object Oriented

Programming. Object Oriented Programming popularly known as OOP,

is used in a modern programming language like Java

1) Object

Any Real world entity that has state and behavior is called Object.

(0r) Objects have states and behaviors. Example: A dog has states - color,

name, breed as well as behaviors – wagging the tail, barking, eating. Other

Examples of Objects are Apple, Orange, Table, Fan etc..In Java, An Object is

an instance of a Class.

2) Class

Collection of similar objects is called class. For Example Apple, Orange,

Mango objects are grouped into a class called “Fruits” where as apple, table,

fan objects cannot be grouped as a class because they are not similar objects.

It is only an logical component and not the physical entity. Other example, if

you had a class called “Expensive Cars” it could have objects like Mercedes,

BMW, Toyota, etc. Its properties (data) can be price or speed of these cars.

While the methods may be performed with these cars are driving, reverse,

braking etc.In Java, Class defines data and methods that manipulate the

data.

 3) Inheritance

Inheritance is an OOPS concept in which one object acquires the

properties and behaviors of the parent object. It’s creating a parent-child

relationship between two classes. It offers robust and natural mechanism for

organizing and structure of any software.

4) Polymorphism

Polymorphism refers to the ability of a variable, object or function to take on

multiple forms. Or it refers as “one interface and many forms “ (or) For

example, in English, the verb “run” has a different meaning if you use it with

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 5

“a laptop,” and “a foot race”. Here, we understand the meaning of “run” based

on the other words used along with it. The same also applied to

Polymorphism.

5) Abstraction

Abstraction is a process of hiding the implementation details from the user,

only the functionality will be provided to the user For example, while driving

a car, you do not have to be concerned with its internal working. Here you

just need to concern about parts like steering wheel, Gears, accelerator, etc.

Abstraction can be achieved using Abstract Class and Abstract Method in

Java.

6) Encapsulation

Encapsulation is a principle of wrapping data (variables) and code together

as a single unit. In this OOPS concept, the variables of a class are always

hidden from other classes. It can only be accessed using the methods of their

current class. For example - in school, a student cannot exist without a class.

4) BENEFITS OF OOPs

OOP offers several benefits to both the program designer and the user. The

principal advantages are:

• OOP offers easy to understand and a clear modular structure for programs.

• Objects created for Object-Oriented Programs can be reused in other

programs. Thus it saves significant development cost.

• Large programs are difficult to write, but if the development and designing

team follow OOPS concept then they can better design with minimum

flaws.

• It also enhances program modularity because every object exists

independently.

▪ Through inheritance, we can eliminate redundant code and extend the use

of existing classes.

▪ We can build programs from the standard working modules that

communicate with one another, rather than having to start writing the code

from scratch. This leads to saving of development time and higher

productivity.

▪ The principle of data hiding helps the programmer to build secure programs

that cannot be invaded by code in other parts of the program.

▪ It is possible to have multiple objects to coexist without any interference.

▪ It is possible to map objects in the problem domain to those objects in the

program.

▪ It is easy to partition the work in a project based on objects.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 6

▪ The data- centered design approach enables us to capture more details of a

model in an implementable form.

▪ Object-oriented systems can be easily upgraded from small to large

systems.

▪ Message passing techniques for communication between objects make the

interface descriptions with external systems much simpler.

▪ Software complexity can be easily managed.

5) Applications of OOP

OOP is one of the programming buzzword today. There appears to be a great deal of

excitement and interest among software engineers in using OOP. Applications of

OOP are beginning to gain has been in the area of user interface design such as

windows. There are hundreds of windowing systems developed using OOP

techniques.

Real business system are often much more complex and contain many more objects

with complicated attributes and methods. OOP is useful in this type of applications

because it can simply a complex problem. The promising areas for application of

OOP includes:

1) Real-time systems

2) Simulation and modeling

3) Object-oriented databases

4) Hypertext, hypermedia and expertext.

5) AI and expert systems

6) Neural networks and parallel programming

7) Decision support and office automation systems.

8) CIM/CAD/CAD system

It is believed that the richness of OOP environment will enable the software

industry to improve not only the quality of software systems but also its

productivity. Object-oriented technology is certainly changing the wy software

engineers think,analyse,design and implement systems today.

6. Java History

In 1990, sun Microsystems has conceived a project to develop software for

consumer electronic devices like TVS and VCRs that could be controlled by a

remote. This project was called Stealth Project but later its name was changed to

Green project.

In January of 1991, Bill Joy, James Gosling, Mike Sheradin , Patrick

Naughton, and several others met in Colorado to discuss this project. Mike

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 7

sheradin was to focus on business development, Patrick naughton was to begin

work on graphic system, and James Gosling was to identify the proper

programming language for the project. Gosling thought c and c++ could be used to

develop the project. But the problem he faced with them is that they were system

dependent languages and hence could not be used on various processors, which the

electronic devices might use. So he started developing a new language, which was

completely system independent. This language was initially called Oak. Since this

name was registered by some other company, later it was changed to Java.

Why the name Java ? James Gosling and his team members were consuming

a lot of coffee while developing this language. They felt that they were able to

develop a better language because of the good quality coffee they consumed. So the

coffee had its own role in developing this language and good quality was exported to

the entire world from a place called “Java Island”. Hence they fixed the name of the

place for the language as Java. And the symbol for Java Language is Coffee cup

and saucer.

Java is related to c++, which is direct decendent of C. Much of the

characteristics of java is inherited from c and c++. From c, Java derives its syntax.

Many of java’s object oriented features were influenced by c++.

Year Development

1990 Sun Microsystems decided to develop special software that could

be used to manipulate consumer electronic devices. A team of Sun

Microsystems programmers headed by James Gosling was formed

to undertake this task.

1991 After exploring the possibility of using the most popular object-

oriented language C++, the team announced a new language

named “Oak”

1992 The team demonstrated the application of their new language to

control a list of home appliances using a hand-held device with a

tiny touch – sensitive screen

1993 With the advent of Internet and Web, the team came up with the

idea of developing Applets that could run on all computers

connected to the Internet

1994 The team developed a web browser called “HotJava” to locate and

run applet programs on Internet

1995 Oak was renamed “Java” , due to some legal issues

1996 Java Established itself not only as a leader for internet

programming but also as a general purpose, Object-Oriented

programming language

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 8

7. Java Features

Features of a language are nothing but the set of services or facilities provided

by the language vendors to the industry programmers. Some

important features of java are;

a) Simple

b) Platform Independent

c) Architectural Neutral

d) Portable

e) Multi Threading

f) Distributed

g) Networked

h) Robust

i) Dynamic

j) Secured

k) Interpreted & High Performance

l) Object Oriented

a). Simple

According to sun, Java language is Simple because

• Most of the concepts are drew from c++ thus making Java Learning Simple

i.e Because java inherits the C++ syntax and many of the Object-Oriented

features of C++, most programmers have trouble learning java.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 9

• It is free from pointer due to this execution time of application is

improve. [whenever we write a Java program without pointers then

internally it is converted into the equivalent pointer program].

• It have Rich set of API (application protocol interface).

• It have Garbage Collector which is always used to collect un-

Referenced (unused) Memory location for improving performance of a

Java program.

• It contains user friendly syntax for developing any applications.

b) Platform Independent

• A Language or technology is said to be platform independent if and only if

which can run on all available operating systems with respect to its

development and compilation. (Platform represents O.S).

c) Architectural Neutral

Architecture represents processor. A Language or Technology is said to be

Architectural neutral which can run on any available processors in the real

world without considering there architecture and vendor (providers) irrespect

to its development and compilation. The languages like C, CPP are treated as

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 10

architectural dependent.

d) Portable

• If any language supports platform independent and architectural neutral

feature known as portable.

• The languages like C, CPP, Pascal are treated as non-portable language

where as Java is a portable language, According to SUN microsystem.

• Java Programs can be easily moved from one computer system to another,

anywhere and anytime.

• Changes and Upgrades in Operating Systems, Processors and System

resources will not force any changes in Java Programs

• This is the reason why Java has become a popular language for

programming on Internet which interconnects different kinds of systems

worldwide.

e) Multithreaded

Multithreaded means handling multiple tasks simultaneously. This means

that we need not wait for the application to finish one task before beginning

another. This feature greatly improves the interactive performance of

graphical applications. When any Language execute multiple thread at a time

that language is known as multithreaded Language. Java supports

multithreaded programs.

f) Distributed

Using this language we can create distributed application. RMI and EJB are

used for creating distributed applications. In distributed application multiple

client system are depends on multiple server systems so that even problem

occurred in one server will never be reflected on any client system.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 11

Note: In this architecture same application is distributed in multiple

server system.

g) Networked

It is mainly design for web based applications, J2EE is used for developing

network based applications.

h) Robust

Simply means of Robust is strong. It is robust or strong Programming

Language because of its capability to handle Run-time Error, automatic

garbage collection, lack of pointer concept, Exception Handling. All these

points makes It robust Language. To better understand how java is robust,

consider two of the main reasons for program failure

Memory management can be difficult, tedious task in traditional

programming environments. For Example, in C/C++, the programmer

must manually allocate and free all dynamic memory. This sometimes leads

to problems, because programmers will either forget to free memory that has

been previously allocated or, worse, try to free some memory that another

part of their code is still using. Java virtually eliminates these problems by

managing memory allocation and deallocation for you.(deallocation is

completely automatic, because java provides garbage collection for unused

objects).

2. Exceptional Conditions in traditional environments often arises in

situations such as division by zero or file not found and they must be managed

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 12

with clumsy and hard-to-read constructs. Java helps in this area by providing

object-oriented exception handling.

I) Dynamic

It support Dynamic memory allocation due to this memory wastage is reduce

and improve performance of application. The process of allocating the

memory space to the input of the program at a run-time is known as dynamic

memory allocation, To programming to allocate memory space by dynamically

we use an operator called 'new'. 'new' operator is known as dynamic memory

allocation operator.

J) Secure

Java is more secured language compare to other language. Security becomes

an important issue for a language that is used for programming on Internet.

Threat of viruses and abuse of resources is everywhere. Security in Java is

achieved by running Java programs inside the Java Virtual machine i.e not

allowing it to access to other parts of the computer.

K) Interpreted & High performance

The Just-In-Time (JIT) compiler is a component of the Java™ Runtime

Environment that improves the performance of Java applications at run time.

The JIT compiler is enabled by default, and is activated when a Java method

is called. The JIT compiler compiles the bytecodes of that method into native

machine code, compiling it "just in time" to run. When a method has been

compiled, the JVM calls the compiled code of that method directly instead of

interpreting it.

L) Object Oriented

Object means a real word entity such as pen, chair, table etc. Object-

Oriented Programming is a methodology or paradigm to design a program

using classes and objects. It simplifies the software development and

maintenance by providing some concepts:

• Object

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 13

• Class

• Inheritance

• Polymorphism

• Abstraction

• Encapsulation

8. How Java Differs from C and C++

Although Java was modeled after C and C++ languages, it differs

from C and C++ in many ways. Java does not incorporate a number of

features available in C and C++. For the benefit of C and C++

programmers, we point out here a few major differences between C/C++

and Java language.

Java also adds some new features, while C++ is a superset of C, Java is neither a

superset nor a subset of C or C++.

Java and C

Java is not lot like C but the major difference between Java and C is that Java is an

object-oriented language and has a mechanism to define classes and objects. In an

effort to build a simple and safe language, the Java team did not include some of the

C features in Java.

C Programming Java Programming

It does include the unique statement

keywords sizeof, and typedef.

It does not include the C unique statement

keywords sizeof, and typedef.

It contain the data type struct and It does not contain the data type struct and

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 14

C Programming Java Programming

union. union.

It define the type modifiers

keywords auto, extern, register,

signed, and unsigned.

It does not define the type modifiers

keywords auto, extern, register, signed, and

unsigned.

It supports an explicit pointer type. It does not support an explicit pointer type.

It has a preprocessor and therefore

we can use # define, # include, and #

ifdef statements.

It does not have a preprocessor and therefore

we cannot use # define, # include, and # ifdef

statements.

It requires that the functions with

no arguments, with the void

keyword

It requires that the functions with no

arguments must be declared with empty

parenthesis, not with the void keyword

C has no operators such as

instanceof and >>>.

Java adds new operators such as instanceof

and >>>.

C adds have a break and continue

statements.

Java adds labeled break and continue

statements.

C has no object-oriented

programming features.

Java adds many features required for object-

oriented programming.

Java and C++

Java is a true object-oriented language while C++ is basically C with object-oriented

extension. That is what exactly the increment operator ++ indicates. C++ has

maintained backward compatibility with C. Is is, therefore, possible to write an old

style C program and run it successfully under C++. Java appears to be similar to

C++ when we consider only the “extensions” part of C++. However, some object -

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 15

oriented features of C++ make the C++ code extremely difficult to follow and

maintain.

Listed below are some major C++ features that were intentionally omitted from

Java or significantly modified.

C++ Programming Java Programming

It support operator overloading. It does not support operator overloading.

It support has template classes. It does not have template classes as in

C++.

It supports multiple inheritances of

classes.

It does not support multiple inheritances

of classes. This is accomplished using a

new feature called “Interface”.

It supports global variables. It does not support global variables.

Every variable and method is declared

within classes and forms part of that

class.

It supports pointers. It does not use pointers.

It does not support destructor function

with a finalize() function.

It has replaced the destructor function

with a finalize() function.

There are header files in Java. There are no header files in Java.

9. Java Environment

Java Environment include a Large number of

Development tools and

Hundreds of Classes and Methods.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 16

1) The Development Tools are part of the system known as Java Development

Kit(JDK)

2) And the classes and methods are part of Java Standard Library(JSL) also

known as Application Programming Interface.

1) Java Development Kit

The Java Development Kit comes with a collection of tools that are used for

developing and running java programs. They include

• appletviewer (for viewing java applets

• javac (java compiler)

• java (java interpreter)

• javap (java dissembler)

• javah (for c header files)

• javadoc(for creating html documents)

• jdb (java debugger)

Tool Description

appletviewer Enables us to run java applets

java Java Interpreter, runs application

javac Java compiler, which translates java source code into byte code

javadoc Creates HTML_format documentation from java source code files

javah Produces header files for use with native methods

javap Java dissembler, which enables us to convert bytecode files into a program

description

jdb Java debugger, which helps us to find errors in our program

2) API

The Java Standard Library (or API) includes hundreds of classes and methods

grouped into several functional packages . Most commonly used packages are:

• Language Support Package : A collection of classes and methods required

for implementing basic features of java.

• Utilities Package : A Collection of classes to provide utility functions

such as date and time functions.

• Input/output package: A collection of classes required for input/output

manipulation.

• Networking Package: A collection of classes for communicating with other

computers via internet.

• AWT Package: The Abstract Window Tool Kit Package contains classes

that implements platform-independent graphical user interface.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 17

• Applet Package: This includes a set of classes that allows us to create

Java Applets.

Process of building and running Java application programs

10. CONSTANTS

• Entities that do not change their values in a program are called constants or

literals.

• Java literals are classified into 5 types:

1. Integer Literals

2. Floating Point Literals

3. Character Literals

4. Boolean Literals

5. String Literals

1. Integer Literals

• A Whole number is called an integer. Eg: 25,27 etc… are integers

• Java supports 3 types of integer literals decimal, octal, hexadecimal.

• 25,27 are example of decimal integer literals.

• Octal integer literals start with 0 and are followed by octal digits 0 to 7. Eg:

0, 037, 032374 are octal integer literals

• Hexadecimal integer literals start with OX and are followed by hexadecimals

digits 0 to 9, A to F. Eg: 0*29, 0*2AB9 are hexadecimal integers literals.

2. Floating Point Literals

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 18

• Numbers with decimal point and fractional values are called floating point

literals.

• They can be expressed in either standard or scientific notation

• Standard notation consists of a whole number component followed by a

decimal point followed by a fractional component.

• Scientific Notation uses a standard notation, floating point numbers plus a

suffix that specifies a power of 10 by which the number is to be multiplied.

(OR)

• A Floating point number followed by letter E(or e) and a signed integer. Eg:

6.237E-35 stands for 6.237×10^-35.

• Floating point literals in java defaults to double precision.

3. Boolean Literals

• In java, Boolean literals take two values false or true.

• These two values are not related to any numeric value as in C or C++.

• The Boolean value true is not equal to 1 and false is not equal to 0.

4. Character Literals

• Single characters in java are called character literals

• In java characters belong to 16-bit character set called Unicode.

• Java characters literals are written within a pair of single quote. EG: ‘a’, ‘z’

represent character literals.

• Further in certain occasions, a character like single quote(‘) itself is to be

written as character literal.

• To represent such characters, java provides a set of character literals called

escape sequence.

 Escape Sequence Characters

Escape Sequence Description

\ddd Octal character represented in add

\uxxx Hexadecimal unicode character

\’ Single quote

\” Double quote

\\ Back slash

\r Carriage return

\n New line

\f Form feed

\t Tab

\b Backspace

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 19

i.e there is also a mechanism for directly entering the value of a character in

octal or hexadecimal. For octal notation, use the backslash followed by the 3

digit number. Eg: ‘\144’ is the letter ‘a’.

• For Hexadecimal you enter a backslah is (\u) then exactly four hexadecimals

digits . Eg: ‘\40061’ is the ISO-latin-1 ‘a’

5. String Literals

• A Sequence of characters written within a pair of double quote is called

String Literal. Eg: “ This is String”

• String Literals are to be started and ended in one line only.

11. Data Types

Every variable in java has a Data type. Data types specify the size and type of

values that can be stored. Data types in java under various categories are shown

below.

A) Primitive data types

Primitive data types are those whose variables allows us to store only one

value but they never allows us to store multiple values of same type. This is a

data type whose variable can hold maximum one value at a time.

Example

int a; // valid

a=10; // valid

a=10,20,30; // invalid

Here "a" store only one value at a time because it is primitive type variable.

B) Non Primitive Data Types or Derived

Derived data types are those which are developed by programmers by making

use of appropriate features of the language. User defined data types related

variables allows us to store multiple values either of same type or different

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 20

type or both. This is a data type whose variable can hold more than one value

of dissimilar type, in java it is achieved using class concept.

Note: In java derived or user defined data type combined name as reference

data type.

Example

Student s = new Student();

Java defines Eight Primitive types of data.They are:

Byte

Short

Int

Long

Char

Float

Double

Boolean

The primitive types are also commonly referred to as simple types.These

eight primitive types put in flow groups. They are;

1. Integer types

2. Floating point types

3. Character type

4. Boolean type

1. Integer Types

• This group includes byte, short, int and long, which are for whole-valued

signed numbers.

• The width of each type is defined by Java language and do not depend on the

machine in which the program is executed.

• The width and ranges of these integer types vary widely as shown in the

below table.

Name Width Range

Long 64 -9,223,372,036,854,775,808 TO

9,223,372,036,854,775,807

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 21

Int 32 -2.147,483,648 to 2.147,483,647

Short 16 -32,768 to 32,767

Byte 8 -128 to 127

Byte

• The smallest integer type is byte

• This is a signed 8-bit type that has a range from -128 to 127

• Byte variables are declared by use of the byte keyword

• Eg: byte a,b;

Note: Languages such as a c and c++ allow the size of an integer to vary based

on execution environment. However java is different because of java’s

portability, requirement all data types have a strictly defined range. For

example an int is always 32 bits, regardless of particular platform

Short

• Short is a signed 16 bit type

• It has a range from -32,768 to 32,767

• It is probably the least used java types

• The short type integers are declared by the keyword short

• Eg: short s, t;

Int

• The most commonly used integer type is int.

• It is a signed 32-bit type that has a Range from -2.147,483,648 to

2.147,483,647

• Although we might think that using a byte or short would be more efficient

than using an int in situations in which the larger range of an int is not

needed this may not be the case

The reason is that when byte and short values are used in an

expression they are promoted to int when the expression is evaluated.

• Therefore, int is often the best choice when an integer is needed

Long:

• Long is a signed 64-bit type and is useful for those occasions where an Int

type is not large enough to hold the desired values.

• The range of a long is Quite large

• This makes it useful when big, whole numbers are needed

2. Floating Point Types

• This group includes float and double which represent numbers with

fractional precision.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 22

•

• There are two kinds of floating point types, float and double, which represent

single and double precision numbers, respectively.

• Their width and ranges are shown below.

Name Width in bits Approximate range

Double 64 4.9e-324 to 1.8e+308

‘//[Float 32 1.4e-045 to 3.4e+038

Float

• The type float specifies a single precision value that uses 32 bits of storage.

• Single precision is faster on some processors and takes half as much space as

double precision, but will become imprecise when the values are either very

large or very small.

• Variables of type float are useful when you need a fractional component but

don’t require a large degree of precision.

float lowtemp, hightemp

Double

• Double precision, as denoted by the double keyword, uses 64 bits to store a

value.

• When you need to maintain accuracy over many iterative calculations, or

manipulating large valued numbers, double is the best choice.

double pi, r, a

Note: Single precision called “float” this is a binary format that occupies 32

bits(4 bytes) and its significant has a precision of 24 bits(about 7 decimal digits).

 Double precision called “double”. This is a binary format that occupies 4 bits (8

bytes) and its significant has a precision of 53 bits about 16 decimal digits.

Note: By default, all floating point numbers are treated as double.

Note: The range of data types is defined by Java Language and does not depend

on the computer on which the data are generated.

3.Characters

• In Java, the data type used to

• store characters in char.

• Char in java is not the same as char in C or C++.

• C/C++ char is a 8-bit type whereas java char is a 16-bit type.

Why Java take 2 byte of memory for store character ?

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 23

Java support more than 18 international languages so java take 2 byte for

characters, because for 18 international language 1 byte of memory is not

sufficient for storing all characters and symbols present in 18 languages.

Java supports Unicode but c support ascii code. In ascii code only English

language are present, so for storing all English latter and symbols 1 byte is

sufficient. Unicode character set is one which contains all the characters

which are available in 18 international languages and it contains 65536

characters

5. BooleanTypes

• Java has a primitive type called Booleans, for logical values.

• It can have only one of two possible values true or false.

12. Variables

A Variable is an identifier that denotes a storage location used to store a data

value. (or) Variables are the names of storage locations. Unlike constants that

remain unchanged during the execution of a program, a variable may take different

values at different tmes during the execution of the program.

Variable names may consists of alphabets, digits, the underscore and dollar

characters, subject to the following conditions.

1. They must not begin with a digit

2. Uppercase and Lowercase are distinct. This means that the variable Total is

not the same as total or TOTAL.

3. It should not be a keyword

4. White space is not allowed

5. Variable names can be any length

Declaration of Variables

A variable must be declared before it is used in the program. The general form of

declaration of a variable is

Type variable1, variable2, …., variable

Variables are separated by commas. A declaration statement must end with a

semicolon. Some valid declarations are

int count;

float x,y

Giving values to variables

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 24

A variable must be given a value after it has been declared but before it is used in

an expression.this can be achieved in two ways.

1. By using an Assignment statement

2. By using a read statement

1. Assignment statement

A simple method of giving value to a variable is through the assignment

statement as follows

 variableName = value

For Example

 initialValue = 1;

 finalValue = 100;

2. Read Statement

We may also give values to variables interactively through the keyboard using

the readLine().

Scope of the Variable

• The scope refers to the validity across the java program.

• The scope of a variable is limited to the block defined within the braces { and

}

• It means a variable cannot be accessed outside the scope (or) The scope or a

particular variable is the range within a program’s source code in which that

variable is recognized by the compiler.

• When scope rules are violated, errors will be generated during the

compilation step.

Example:

class Scope

{

 Public static void main(String args[])

 {

 int x;

 x=10;

 if(x==10)

 { // start new scope

 int y=20; //know only to this block

 System.out.println(“x and y” +x+” “+y);

 x=y+2;

 }

 // y=100// error ! y not known here

 // x is still known here

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 25

 System.out.println(“x is “+x);

 }

}

• If we remove the comment symbol on the line y=100, a compile time error will

occur because y is not visible outside of its block.

13. Type Conversion and Casting

Assigning a value of one type to a variable of another type is known as Type

Casting.

Example :

int x = 10;

byte y = (byte)x;

In Java, type casting is classified into two types,

• Widening Casting(Implicit) : Process of Converting lower data type into higher

Data type

• Narrowing Casting(Explicitly done) : Process of converting Higher Data type

into Lower Data Type

Widening or Automatic type converion

Automatic Type casting take place when,

• the two types are compatible

• the target type is larger than the source type

Example :

public class Test

{

 public static void main(String[] args)

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 26

 {

 int i = 100;

 long l = i; //no explicit type casting required

 float f = l; //no explicit type casting required

 System.out.println("Int value "+i);

 System.out.println("Long value "+l);

 System.out.println("Float value "+f);

 }

}

Int value 100

Long value 100

Float value 100.0

Narrowing or Explicit type conversion

When you are assigning a larger type value to a variable of smaller type, then you

need to perform explicit type casting.

Example :

public class Test

{

 public static void main(String[] args)

 {

 double d = 100.04;

 long l = (long)d; //explicit type casting required

 int i = (int)l; //explicit type casting required

 System.out.println("Double value "+d);

 System.out.println("Long value "+l);

 System.out.println("Int value "+i);

 }

}

Double value 100.04

Long value 100

Int value 100

14. Automatic Type Promotion Expression

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 27

Java permits mixing of constants and variables of different types in an

expression, but during evaluation it adheres to very strict rules of type conversion.

We know that the computer, considers one operator at a time, involving two

operands. If the operands are of different types, the ‘lower’ type is automatically

converted to the ‘higher’ type before the operation proceeds .the result is of the

higher type.

 If byte, short and int variables are used in an a expression, the result is

always promoted to int, to avoid overflow. If a single long is used in the expression ,

the whole expression is promoted to long. If a expression contains a float operand,

the entire expression is promoted to float. If any operand id double, result is double.

The final result of an expression is converted to the type of the variable on the left

of the assignment sign before assigning the value to it. However, the following

changes are introduced during the final assignment.

• float to int causes truncation of the fractional part

• double to float causes rounding of digits

• long to int causes dropping the excess higher order bits.

15. -Arrays

An Array is a group of continuous or related data items that share a common

name. For instance, we can define an array name salary to represent a set of

salaries of a group of employees. A particular value is indicated by writing a

number called index number or subscript in brackets after the array name.

 For Example ,

 salary[10]

represents the salary of the 10th employee. While the complete set of values is

referred to as an array, the individual values are called elements.

 The ability to use a single name to represent a collection of items and to

refer to an item by specifying the item number enables us to develop concise and

efficient programs.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 28

One – Dimensional Arrays

A list of items can be given one variable name using only one subscript and such a

variable is called a single-subscripted variable or a one-dimensional array.

Declaring Array Variables

Arrays in java may be declared in two foms

Note − The style type[] arrayname is preferred. The style type arrayname[]

comes from the C/C++ language and was adopted in Java to accommodate C/C++

programmers.

Example

The following code snippets are examples of this syntax −

double[] myList; // preferred way.

or

double myList[]; // works but not preferred way.

Creating Arrays

You can create an array by using the new operator with the following syntax −

Syntax

arrayname = new type[arraySize];

The above statement does two things −

• It creates an array using new type[arraySize].

• It assigns the reference of the newly created array to the variable

arrayname.

Declaring an array variable, creating an array, and assigning the reference of the

array to the variable can be combined in one statement, as shown below −

type[] arrayname = new type[arraySize];

Alternatively you can create arrays as follows −

type[] arrayname = {value0, value1, ..., valuek};

The array elements are accessed through the index. Array indices are 0-based;

that is, they start from 0 to arrayname.length-1.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 29

Example

Following statement declares an array variable, myList, creates an array of 10

elements of double type and assigns its reference to myList −

double[] myList = new double[10];

Following picture represents array myList. Here, myList holds ten double values

and the indices are from 0 to 9.

Two-Dimensional Array

Two-dimensional Array is used to store two dimensional data. Two dimensional

array’s are used to store table of data, which contains rows and columns. . The Two

Dimensional Array in Java programming language is nothing but an Array

of Arrays. If the data is linear we can use the One Dimensional Array but to work

with multi-level data we have to use Multi-Dimensional Array.

Creating an Two-Dimensional array

Data_Type[][] Array_Name = new int[Row_Size][Column_Size];

Initialization of Two Dimensional Array in Java

We can initialize the Two Dimensional Array in multiple ways

First Approach

Declaring and Creating an Array

int[][] Student_Marks = new int[2][3];

Initializing Array elements in more traditional way

Student_Marks[0][0] = 15; // Initializing Array elements at position [0][0]

Student_Marks[1][1] = 45; // Initializing Array elements at position [1][1]

second Approach

int[][] Employees = { {10, 20, 30}, {15, 25, 35}, {22, 44, 66}, {33, 55, 77} };

Here, We did not mention the row size and column size but the compiler is intelligent enough to

calculate the size by checking the number of elements inside the row and column

https://www.tutorialgateway.org/java-array/

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 30

third Approach

Above 3 ways are good to store small number of elements into the array, What if we want to store 100

rows or 50 column values. It will be a nightmare to add all of them using any of the above mentioned

approaches. To resolve this, we can use the Nested For Loop in Java concept here:

int rows, columns;

int[][] Employees = new int[100][50];

for (rows = 0; rows < 100 ; rows++) {

 for (columns = 0; columns < 50; columns++) {

 Employees[rows][columns] = rows + columns;

 }

}

16. Operators and Expressions

In Java Operators are symbols that are used to perform some operations on the operands.They are

used to manipulate primitive Data types.Combination of operands and operators are known

as expression.Java provides a rich set of operators to manipulate the variables.There are three types

of operators in Java.

1. Unary operators

2. Binary operators

3. Ternary operators

1. UNARY OPERATOR:

In which we use one operand is called unary operator.It has two types.

1.1 Increment Unary operator

1.2 Decrement Unary operator

https://www.tutorialgateway.org/nested-for-loop-in-java/
http://www.computernotes.in/wp-content/uploads/2015/05/operator.jpg

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 31

1.1 Increment Unary operator:

This is used to increase the value by one. It has two types.

• Post-fix Increment operator

• Pre-fix Increment operator

• Post-fix Increment operator:

“++” symbol is used to represent Post-fix Increment operator. This symbol is used after

the operand.

In this operator , value is first assign to a variable and then incremented the value.

Example

class postincre

{

public static void main(String aa[])

{

int a,b;

a=10;

b=a++;

System.out.println(“b=”+b);

System.out.println(“a=”+a);

}

}

output:

In above example first the value of “a” is assign to the variable “b” .Then increment the

value.So the value of b variable is “10”.

• Pre-fix Increment operator:

“++” symbol is used to represent Pre-Fix operator.This symbol is used after the operand.

In this operator value is incremented first and then issigned to a variable.

Example

class preincre

{

public static void main(String aa[])

{

int a,b;

a=10;

b=++a;

http://www.computernotes.in/wp-content/uploads/2015/05/inc1.jpg

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 32

System.out.println(“b=”+b);

System.out.println(“a=”+a);

}

}

output:

In above example first the increment is done then the value of “a” variable is assigned to the

variable “b”.So the value of “b” variable is 11.

a. Decrement Unary operator

This is used to decrease the value by one. It has two types.

• Post-fix decrement operator

• Pre-fix decrement operator

• Post-fix decrement operator:

 “–“ symbol is used to represent post-fix decrement opearator.This symbol is used after the

operand.

In this operator , value is first assigned to a variable and then decremented the value.

Example

class postdecre

{

public static void main(String aa[])

{

int a,b;

a=10;

b=a–;

System.out.println(“b=”+b);

System.out.println(“a=”+a);

}

}

output:

http://www.computernotes.in/wp-content/uploads/2015/05/preinc.jpg

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 33

In above example first the value of “a” is assign to the variable “b” .Then decrement the

value.So the value of b variable is “10”.

• Pre-fix decrement operator:

“–“ symbol is used to represent the pre-fix decrement operator.This symbol is used after the

operand.

In this operator, value is decremented first and then decremented value is used in expression.

Example

class predecre

{

public static void main(String aa[])

{

int a,b;

a=10;

b=–a;

System.out.println(“b=”+b);

System.out.println(“a=”+a);

}

}

output:

In above example first the value of “a” is decrement then assign to the variable “b”.So the

value of b variable is “9”.

2.Binary operators :

In which we use two operand is called Binary operator. Java supports many types ofBinary

http://www.computernotes.in/wp-content/uploads/2015/05/postde.jpg
http://www.computernotes.in/wp-content/uploads/2015/05/predec.jpg

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 34

Operator.

1. Assignment Operator

2. Arithmetic Operator

3. Logical Operator

4. Comparison Operator

 1. Assignment Operator :

This Operator is used to assign the value. This symbol “=” is used to assign the value . e.g

int a=12;

2. Arithmetic Operator :

This Operator is used to perform mathematical operation on operand .Arithmetic operator are

 Operators Description Use

1. Additional operator (“+”) : Used to add the value of two operand. a+b

2. Subtract operator (“-“) :

Used to subtract the value of two

operand. a-b

3. Multiply operator (“*”) :

Used to multiply the value of two

operand. a*b

4. Division operator (“/”) :

Used to divide the value of two

operand. a/b

5. Modulus operator(“%”) :

Used returns the remainder of a

division operation. a%b

 Example :

class ArithOp

{

public static void main (String[] args)

{

 // answer is now 6

int answer = 4 + 2;

System.out.println(“Addition is =” +answer);

 // answer is now 5

answer = answer – 1;

System.out.println(“Subtraction is =” +answer);

 // answer is now 10

answer = answer * 2;

System.out.println(“Multiply is = ” +answer);

// answer is now 5

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 35

answer = answer / 2;

System.out.println(“Division is = ” +answer);

 // answer is now 1

answer = answer % 2;

System.out.println(“Reminder is = ” +answer);

}

}

output :

Logical operators:

The logical operators || (conditional-OR) , && (conditional-AND) and ! (conditional-

NOT)operates on boolean expressions. Here's how they work.

Java Logical Operators

Operator Description Example

||
conditional-OR; true if either of the boolean expression

is true

false || true is evaluated

to true

&&
conditional-AND; true if all boolean expressions

are true

false && true is evaluated to

false

! Conditional-NOT; true if exp is false !false is evaluated to true

Example 8: Logical Operators

class LogicalOperator {

 public static void main(String[] args) {

 int number1 = 1, number2 = 2, number3 = 9;

 boolean result;

http://www.computernotes.in/wp-content/uploads/2015/05/arith1.jpg

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 36

 // At least one expression needs to be true for result to be true

 result = (number1 > number2) || (number3 > number1);

 // result will be true because (number1 > number2) is true

 System.out.println(result);

 // All expression must be true from result to be true

 result = (number1 > number2) && (number3 > number1);

 // result will be false because (number3 > number1) is false

 System.out.println(result);

 }

}

When you run the program, the output will be:

true

false

3. Logical NOT Operator :

Logical NOT operator is used to reverses the logical state of its operand. If a condition is true

then Logical NOT operator will make false.If a condition is false then Logical NOT operator will

make True.

The not operator is probably the easiest to understand. It is simply the opposite of what the

condition says.

Example

class loginot

{

public static void main(String aa[])

{

boolean a=true;

if (!a)

System.out.println(“u r win”);

else

System.out.println(“u r not win”);

}

}

output:

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 37

 In above example “if not true” is asking if the variable “a” variable is not true, otherwise known as

false. If “a” variable is false, Java will display “u r win”. “a”variable is set to true, so that code will not

execute. then the else part is execute shown in output.

 Relational operator:

This operator is used to compare the two values ,so this operator is also known as“comparison

operator.”

Conditional symbols and their meanings for comparison operator are below.

Operator Condition Description Example

== is equal to

Checks if the values of two

operands are equal or not, if yes

then condition becomes true.

(a == b) is

not true.

!=

is not equal

to

Checks if the values of two

operands are equal or not, if

values are not equal then

condition becomes true.

(a != b) is

true.

>

is greater

than

Checks if the value of left

operand is greater than the value

of right operand, if yes then

condition becomes true.

(a > b) is

not true.

< is less than

Checks if the value of left

operand is less than the value of

right operand, if yes then

condition becomes true.

(a < b) is

true.

Example:

class relat

{

public static void main(String aa[])

http://www.computernotes.in/wp-content/uploads/2015/05/loginot.jpg

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 38

{

int a=10;

int b=5;

if (a>b) // “>” relational operator

system.out.println(“a is greater”);

else if (a==b) //”==” relational operator

System.out.println(“a is equal to b”);

else

System.out.println(“enter 1 to 10 number”);

}

}

 output:

Ternary operator:

In Ternary operator use three operands. It is also called conditional assignment

statement because the value assigned to a variable depends upon a logical expression.

syntax is :

variable=(test expression) ? Expression 1 : Expression 2

Example:

c=(a>b)?a:b;

c= (a>b) ? a : b ;

Test Condition Expression1 Expression2

Example of Ternary operator:

class terna

{

public static void main(String aa[])

{

int a,b,result;

a=10;

b=20;

result=(a>b)?a:b;

System.out.println(“result=”+c);

http://www.computernotes.in/wp-content/uploads/2015/05/rela.jpg

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 39

}

}

output:

Bitwise Operators

Java provides 4 bitwise and 3 bit shift operators to perform bit operations.

• | Bitwise OR

• & Bitwise AND

• ~ Bitwise Complement

• ^ Bitwise XOR

• << Left Shift

• >> Right Shift

• >>> Unsigned Right Shift

Bitwise and bit shift operators are used on integral types (byte, short, int and long) to perform

bit-level operations.

Java Bitwise and Bit Shift Operators

Operator Description

| Bitwise OR

& Bitwise AND

~ Bitwise Complement

^ Bitwise XOR

https://www.programiz.com/java-programming/bitwise-operators#or
https://www.programiz.com/java-programming/bitwise-operators#and
https://www.programiz.com/java-programming/bitwise-operators#complement
https://www.programiz.com/java-programming/bitwise-operators#xor
https://www.programiz.com/java-programming/bitwise-operators#left-shift
https://www.programiz.com/java-programming/bitwise-operators#right-shift
https://www.programiz.com/java-programming/bitwise-operators#unsigned-right-shift
https://www.programiz.com/java-programming/bitwise-operators#or
https://www.programiz.com/java-programming/bitwise-operators#and
https://www.programiz.com/java-programming/bitwise-operators#complement
https://www.programiz.com/java-programming/bitwise-operators#xor
http://www.computernotes.in/wp-content/uploads/2015/05/terna1.jpg

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 40

<< Left Shift

>> Right Shift

>>> Unsigned Right Shift

Bitwise OR

Bitwise OR is a binary operator (operates on two operands). It's denoted by |.

The | operator compares corresponding bits of two operands. If either of the bits is 1, it gives 1. If not,

it gives 0. For example,

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise OR Operation of 12 and 25

 00001100

| 00011001

 00011101 = 29 (In decimal)

Example 1: Bitwise OR

class BitwiseOR {

 public static void main(String[] args) {

 int number1 = 12, number2 = 25, result;

 result = number1 | number2;

 System.out.println(result);

 }

}

When you run the program, the output will be:

29

Bitwise AND

Bitwise AND is a binary operator (operates on two operands). It's denoted by &.

The & operator compares corresponding bits of two operands. If both bits are 1, it gives 1. If either of

the bits is not 1, it gives 0. For example,

https://www.programiz.com/java-programming/bitwise-operators#left-shift
https://www.programiz.com/java-programming/bitwise-operators#right-shift
https://www.programiz.com/java-programming/bitwise-operators#unsigned-right-shift

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 41

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bit Operation of 12 and 25

 00001100

& 00011001

 00001000 = 8 (In decimal)

Example 2: Bitwise AND

class BitwiseAND {

 public static void main(String[] args) {

 int number1 = 12, number2 = 25, result;

 result = number1 & number2;

 System.out.println(result);

 }

}

When you run the program, the output will be:

8

Bitwise Complement

Bitwise complement is an unary operator (works on only one operand). It is denoted by ~.

The ~ operator inverts the bit pattern. It makes every 0 to 1, and every 1 to 0.

35 = 00100011 (In Binary)

Bitwise complement Operation of 35

~ 00100011

 11011100 = 220 (In decimal)

Example 3: Bitwise Complement

class Complement {

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 42

 public static void main(String[] args) {

 int number = 35, result;

 result = ~number;

 System.out.println(result);

 }

}

When you run the program, the output will be:

-36

Why are we getting output -36 instead of 220?

It's because the compiler is showing 2's complement of that number; negative notation of the binary

number.

For any integer n, 2's complement of n will be -(n+1).

 Decimal Binary 2's complement

--------- --------- ---------------------------------------

0 00000000 -(11111111+1) = -00000000 = -0(decimal)

1 00000001 -(11111110+1) = -11111111 = -256(decimal)

12 00001100 -(11110011+1) = -11110100 = -244(decimal)

220 11011100 -(00100011+1) = -00100100 = -36(decimal)

Note: Overflow is ignored while computing 2's complement.

The bitwise complement of 35 is 220 (in decimal). The 2's complement of 220 is -36. Hence, the output

is -36 instead of 220.

Bitwise XOR

Bitwise XOR is a binary operator (operates on two operands). It's denoted by ^.

The ^ operator compares corresponding bits of two operands. If corresponding bits are different, it

gives 1. If corresponding bits are same, it gives 0. For example,

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise XOR Operation of 12 and 25

 00001100

| 00011001

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 43

 00010101 = 21 (In decimal)

Example 4: Bitwise XOR

class Xor {

The bitwise complement of 35 is 220 (in decimal). The 2's complement of 220 is -36. Hence, the output

is -36 instead of 220.

Bitwise XOR

Bitwise XOR is a binary operator (operates on two operands). It's denoted by ^.

The ^ operator compares corresponding bits of two operands. If corresponding bits are different, it

gives 1. If corresponding bits are same, it gives 0. For example,

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bitwise XOR Operation of 12 and 25

 00001100

| 00011001

 00010101 = 21 (In decimal)

Example 4: Bitwise XOR

class Xor {

public static void main(String[] args) {

 int number1 = 12, number2 = 25, result;

 result = number1 ^ number2;

 System.out.println(result);

 }

}

When you run the program, the output will be:

21

Signed Left Shift

The left shift operator << shifts a bit pattern to the left by certain number of specified bits, and zero

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 44

bits are shifted into the low-order positions.

212 (In binary: 11010100)

212 << 1 evaluates to 424 (In binary: 110101000)

212 << 0 evaluates to 212 (In binary: 11010100)

212 << 4 evaluates to 3392 (In binary: 110101000000)

Example 5: Signed Left Shift

class LeftShift {

 public static void main(String[] args) {

 int number = 212, result;

 System.out.println(number << 1);

 System.out.println(number << 0);

 System.out.println(number << 4);

 }

}

When you run the program, the output will be:

424

212

3392

Signed Right Shift

The right shift operator >> shifts a bit pattern to the right by certain number of specified bits.

212 (In binary: 11010100)

212 >> 1 evaluates to 106 (In binary: 01101010)

212 >> 0 evaluates to 212 (In binary: 11010100)

212 >> 8 evaluates to 0 (In binary: 00000000)

If the number is a 2's complement signed number, the sign bit is shifted into the high-order positions.

Example 6: Signed Right Shift

class RightShift {

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 45

 public static void main(String[] args) {

 int number = 212, result;

 System.out.println(number >> 1);

 System.out.println(number >> 0);

 System.out.println(number >> 8);

 }

}

When you run the program, the output will be:

public class Test {

 public static void main(String args[]) {

 int a = 60; /* 60 = 0011 1100 */

 int b = 13; /* 13 = 0000 1101 */

 int c = 0;

 c = a & b; /* 12 = 0000 1100 */

 System.out.println("a & b = " + c);

 c = a | b; /* 61 = 0011 1101 */

 System.out.println("a | b = " + c);

 c = a ^ b; /* 49 = 0011 0001 */

 System.out.println("a ^ b = " + c);

 c = ~a; /*-61 = 1100 0011 */

 System.out.println("~a = " + c);

 c = a << 2; /* 240 = 1111 0000 */

 System.out.println("a << 2 = " + c);

 c = a >> 2; /* 15 = 1111 */

 System.out.println("a >> 2 = " + c);

 c = a >>> 2; /* 15 = 0000 1111 */

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 46

 System.out.println("a >>> 2 = " + c);

 }

}

This will produce the following result −

Output

a & b = 12

a | b = 61

a ^ b = 49

~a = -61

a << 2 = 240

a >> 2 = 15

a >>> 2 = 15

17. Control Statements

Causes the flow of execution to advance and branch based on changes to the state of a program.

In Java, control statements can be divided into the following three categories:

• Selection Statements

• Iteration Statements

• Jump Statements

Selection Statements

Selection statements allow you to control the flow of program execution on the basis of the outcome of

an expression or state of a variable known during runtime.

Selection statements can be divided into the following categories:

• The if and if-else statements

• The if-else statements

• The if-else-if statements

• The switch statements

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 47

The if statements

The first contained statement (that can be a block) of an if statement only executes when the specified

condition is true. If the condition is false and there is not else keyword then the first

contained statement will be skipped and execution continues with the rest of the program. The

condition is an expression that returns a boolean value. General form of simple if statement is

if<expression>

{

Statement-block;

}

• The statement-block may be single statement or a group of statements .

• If the expression is true, the statement block will be executed, otherwise the statement block

will be skipped to the statement-x.

• Example: Print even numbers from 1 to 10

class Even

{

 public static void main(string args[])

 {

 for(int i=1;i<=10;i++)

 {

 If(i%2 ==0)

 System.out.println(i+”is a even number”);

 }

 }

 }

Output:

o is even number

4 is even number

6 is even number

8 is even number

 10 is even number

if else statement:-

• if else statement is an extension of the simple if statement. The general form is

if(expression)

{

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 48

True-block statements

}

Else

{

False-block statements

}

• if the test expression is true, then the true-block statements immediately following the if

statement are executed. Otherwise, the false-block statements are executed .

• In either case, Either true-block or false-block will be executed, not both.

• In both the cases, the control is transferred subsequently to the statement-x Diagram

Class IfesleTest

{

 Public static void main(Stringargs[])

 {

 Int number[]={50,65,71,81};

 Int even=0,odd=0;

 For(int i=0;i<number.length;i++)

 {

 If((number[i]%2)==0)

 even+=1;

 else

 odd+=1;

 }

 s.o.p(“even nos:”+even+”odd nos:”+odd);

 }

}

o/p:

even nos:2 odd nos:3.

Nested if else statement:-

• A nested if is an if statement that is the target of another if or else.

• Nested ifs are very common in programming

• General form of Nested if looks like

• Nested if else statement is made by placing one if else in another if else statement.

• Nested if else statement helps to select one out of many chooses.

• General form of Nested if else is

if<cond1>

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 49

{

 if<cond2>

 {

 if<cond3>

 stmt 4

 else

 stmt3

 }

 else

 stmt2

}

else

stmt 1

• In the nested if else statement, the outermost if is evaluated first.

 If the condition1 is false, the statement is the outermost else is evaluated and if else ends.

 If the conditon1 is true, the control goes to execute the next inner if statement.

• If conditon2 is false, statement2 is executed otherwise conditon3 is evaluated

• If condition3 is false statement3 is executed. Otherwise statement is executed.

Class Nested ifelse

{

 public static void main(String args[])

 {

 Int a=325,b=715,c=478;

 s.o.p(“largest value is:”);

 if(a>b)

 {

 If(a>c)

 s.o.p(a);

 else

 s.o.p(c);

 }

 Else

 {

 If(c>b)

 s.o.p(c);

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 50

 else

 s.o.p(b);

 }

 }

}

Output:-

Largest value is:712

else if ladder:-

• A common programming construct that is based a sequence of nested is based upon a sequence of

nested ifs is the if else if ladder.

• General form of if else ladder

if<condition>

 stmt

else if<condition>

 stmt;

else if<condition>

 stmt;

else

stmt;

• The if statements are Executed from the top down. As soon as one of the conditions controlling

the if is true, the stmt associated with that if is Executed, and the rest of the ladder is bypassed.

• If none of the condition is true, then the final else stmt will be executed.

• The final else acts as a default condition; i.e if all other conditional tests fail, then the last else

stmt is performed.

• If there is no final else and all other condition are false.

switch statement:-

• The switch statement helps to select one out of many chooses.

• It often provides a better alternative than a large d=series of if else if statements

• General form of switch statement is

Switch(expression)

{

 Case value 1:stmt1;

 Break;

 Case value 2:stmt2;

 Break;

 .

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 51

 .

 .

 Case value N: stamt N;

 Break;

 Default:stmt;

}

• The expression must be of type byte,short,int or char.

• Each of the values specified in the case stmts must be of a type compatible with the expression.

• Each case value must be unique literal.

• Duplicate case value are not allowed.

• The switch stmt works like this

➢ The value of the expression is compared with each of the literal values in the case stmt.

➢ It a match is found, the code sequence following that case stmt is executed.

➢ If none of the constants matches the value of the expression, then the default stmt is executed.

➢ However, the default stmt is optional, if no case matches and no default is present, then no

further action is taken.

➢ The break stmt is used inside the switch to terminate a stmt sequence.

➢ When a break stmt is encountered, execution branches to the first case of code that follows the

entire switch stmt.

• A switch stmt is usually more efficient than a set of nested ifs faster than the equivalent logic

coded using a sequence of if else.

Example of switch compared to if else:-

Class Ifelse

{

 public static void main(String args[])

 {

 Int month=4;

 String season;

 If(month==12||month==1||month==2)

 Season=”winter”;

 Else if(mont==3||month==4||month==5)

 Season=”spring”;

 Else if(month==6||month==7||month==8)

 Season=”summer”;

 Else if(month=9||month==10||month=11)

 Season=”autumn”;

 Else

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 52

 Season=”Bogus month”;

 s.o.p(“April is in the”+season+””);

 }

}

o/p:-

April is in the spring

Same program using switch stmt

Class switch

{

 Public static void main(String args[])

 {

 Int mont=4;

 String season;

 Switch(month)

 {

 Case12:

 Case1:

 Case2:

 Season=”winter”;

 Break;

 Case3:

 Case4:

 Case5:

 Season=”spring”;

 Break;

 Case6:

 Case7:

 Case8:

 Season=”summer”;

 Break;

 Case9:

 Case10:

 Case11:

 Season=”autumn”;

 Break;

 Default:season=”Bogus month”;

 }

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 53

 s.o.p(“April is in the season”+season);

 }

conditional operator stmt (or) Ternary operator:-

• java includes a special ternary (three-way) operator that can replace certain types of if-then-else

stmts.

• The conditional or ternary operation has general form as

Expression1?expression2:expression3

• Here, expression1 can be any expression that to a Boolean value.

• If expression is true, then expression2 is evaluated; otherwise, expression3 is evaluated.

For example:

If(x<0)

 Flag=0;

Else

 Flag=1;

Can be written as

 Flag=(x<0)?0:1

ITERATION STMTS:-

Java’s iteration stmts are

1. for

2. while

3. do-while.

These stmts creates what we commonly call loops

A loop repeatedly executes the same set of instruction until a termination condition is met

while:-

• The while loop is java’s most fundamental loop stmt

• It repeats a stmt or block while its controlling expression is true.

• The general form of while stmt is

 While <condition>

 {

 Body of the loop

 }

• The condition can be any Boolean expression.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 54

• The body of the loop will be executed as long as the conditional expression is true

• When condition becomes false, control passes to the next line of code immediately following the loop.

• The curly braces are unnecessary if only a single stmt is being repeated.

// demonstrate the while loop

Class while

{

 Public static void main(String args[])

 {

 Int n=10;

 While(n>0)

 {

 s.o.p(“tick”+n);

 n--;

 }

 }

}

o/p:-

tick 10

tick 9

tick 8

tick 7

tick 6

tick 5

tick 4

tick 3

tick 2

tick 1

• Since the while loop evaluates its conditional expression at the top of the loop, the body of the loop

will not execute even once if the condition is false to begin with.

• The body of the while can be empty. This is because a Null stmt(one that consists only of a

semicolon)is syntactically valid in java.

For ex:-

Class nobody

{

 Public static void main()

 {

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 55

 Int I=100,j=200;

 While(++i<--j);//no body in the loop.

 s.o.p(“mid point is”+i);

}

}

o/p:-

mid point is 150

• The value of I is incremented and j value is decremented

• These value compared with one another

• If the new value of is still less than the new value of j, then loop repeats

• If I is equals to or greater than j the loop stops

Do-while:-

• If the conditional expression controlling a while loop is initially false, then the body of the loop

will not executed at all

• However, it is desirable to execute the of a loop at least once , even if condition expression is

false to begin with

• Fortunately, java supplies a loop that does just that : the do while

The do while loop always execute its body at least once, because its conditional expression is at bottom of loop

• The general form of do while is

do

{

 Body of the loop

}

While<condition>

• Example:

Class dowhile

{

 public static void main(String args[])

 {

 int n=10;

 do

 {

 s.o.p(“tick”+n);

 n--;

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 56

 }while(n>0);

o/p:-

tick 10

tick 9

tick 8

tick 7

tick 6

tick 5

tick 4

tick 3

tick 2

tick 1

• Each iteration of the do while loop first executes the body of loop and than evaluates the

conditional expression

 If these expression is true these loop repeats, otherwise the loop terminates

Condition must be Boolean expression

• the do while is useful when you process a menu slection,

• because you will usually want the body of a menu lop to execute atleast once.

For Example:

Class menu

{

 Psvm()

 {

 Char choice;

 do{

 s.o.p(“1:is”);

 s.o.p(“2:switch”);

 s.o.p(“3.do-while”);

 s.o.p(“4.for”);

 }while(choice<’1’||choice>’5’);

 Switch(choice)

 {

 Case 1:

 s.o.p(“if is branching statement”);

 break;

 Case 2:

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 57

 s.o.p(“switch is also a branching statement”);

 break;

 Case 3:

 s.o.p(“do-while is a looping statement”);

 break;

 Case 4:

 s.o.p(“for is also a looping a statement”);

 break;

 }

 }

 }

For statement

• in java i.e jdks,there are two forms of the for loop.

• The first is the traditional form the has been is use since the original version of java.

• The second is the new “for-each “form.

• General form of traditional for statement is

for(initialization:condition:iteration)

{

 Body of the loop

}

• The for loop operates as follows

• When the loop first starts ,the initialization portion of the loop is executed.

• It is important to understand that initialization expression is only executed once. Next, condition

is evaluated.This must be a Boolean expression .i.e the loop control variable against a target

value.

• If this expression is true, then the body of the loop is executed.

• If it is false, the loop terminates.

• Next, the iteration portion of the loop executed

• This is usually an expression that increments or decreaments the loop controls variable.

• This loop then ITERATES

• First evaluatin g the conditional expression,then executing the body of the loop,and then

executing the iteration expression with each pass.

• This process repeats until the controlling expression is false.

//demonstrate the loop

Class forloop

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 58

{

 Psvm(string args[])

 {

 Int n;

 For(n=10;n>0;n--)

 s.o.p(“tick”+m);

}

}

 Initialization exp is evaluated only once,then condiotino is evaluated if it is true body of the loop

executes and comes to iteration portion if it is false out executing body of the loop goes to iteration

portion.

Eg:

Class fortick

{

 Psvm()

 {

 For(int n=10;n>10;n--)

 s.o.p(“tick”+n);

 }

 }

Nested loop:-

Like all other programming languages, java allows loops to be nested.

i.e one loop may be inside another

eg:-

//loops may be nested

Class Nested

{

 P s v m()

 {

 Int I, j;

 For(i=0;i<10;i++)

 {

 For(j=I;j<10;j++)

 s.o.p(“. “);

 s.o.p();

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 59

 }

 }

}

.

.

.

.

.

. . . .

. . .

 . .

.

2. Jmp stmts:_

• Java supports 3 jump stmts

1. break

2. continue

3. return.

break stmt:-

it has 3 uses.

1. It terminates a stmnt sequence in a switch stmt.

2. If can be used to exit a loop.

3. If can be used as a “civilized” form of goto.

• When a break stmt is encountered inside a loop. The loop is terminated and program control

resumes at the next stmt following the loop.

• i.e by using break, we can force immediate termination of a loop, by passing the conditional

expression (eg:i<=10) and any Remaining code in the vody of the loop.

Eg:-

 class BreakLopp

{

 P s v m()

 {

 For(int i=0;i<100;i++)

 {

 If(i==0)break;//terminate loop it 1=10

 s.o.p(“i=”+i);

 }

 s.o.p(“loop complete”);

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 60

 }

}

o/p:-

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

loop complete.

• Break stmnt can be used with any of java’s loops (i.e while, do..while and for loops)

• When used inside a set of nested loops, the break stmt will only break out of the innermost loop.

Eg:

Class breakloop

{

 P s v m()

 {

 For(int i=0;i<3;i++)

 {

 s.o.p(“pass”+i+”:”);

 for(int i=0;j<100;j++)

 {

 If(j==10)break;

 s.o.p(j+” “);

 }

 s.o.p(“loops complete”);

 }

 }

}

o/p:-

pass 0:0 1 2 3 4 5 6 7 8 9

pass 1:0 1 2 3 4 5 6 7 8 9

pass 2:0 1 2 3 4 5 6 7 8 9

loops complete

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 61

continue:-

• sometimes, you might want to continue running the loop but stop continue running the

remainder of the code in its body for this particular iteration

the continue stmt performs such as an action.

Eg:-

Class continue.

{

 p s v m()

 {

 For(int i=0;i<10;i++)

 {

 s.o.p(“i+” “);

 if(i%2==0)continue;

 s.o.p(“”)’

 }

 }

}

Here if I is even, the loop continue without printing a newline.

o/p:-

0 1

2 3

4 5

6 7

8 9

3.2 Return:-

• Return stmt is used to explicitly return from a method

• i.e it causes program control to transfer back to the caller of the method

• return stmt can be used to cause execution to branch back to the caller at the method.

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 62

Selection

statement

Iteration

statement

Jump

statements

For Conditional

operator stmt

Switch stmt

If stmt

For each

Do-while

While continue

break

return

Simple if

Else...if ladder

Nested -if

If-else

CONTROL STATEMENT

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 63

Object Oriented Programming Through Java UNIT -I

R.Padmaja,Asst.Professor,MCA Department Page 64

