
Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 1 
 

UNIT II 
INHERITANCE AND PACKAGES 

1. Introduction 

2. Defining a Class 

3. Adding Variables 

4. Adding Methods 

5. Creating Objects 

6. Accessing Class Members 

7. Constructors 

8. Method Overloading 

9. Static Members 

10. Inheritance 

11. Overriding Methods 

12. Final Variables, Methods and Classes 

13. Abstract Methods and Classes 

14. Visibility Control 

15. Packages 

15.1 Introduction 

15.2 Java API Package 

15.3 Using System Package 

15.4 Naming Conventions 

15.5 Creating Packages 

15.6 Accessing Package 

 

 

1. Introduction 

 Java is a true object-oriented language and therefore the underlying structure of all java programs is 

classes.  

 Anything we wish to represent in a java program must be encapsulated in a class that defines the state 

and behaviour of the basic program components known as objects. 

 Classes provide a convenient method for packing together a group of logically related data items and 

functions that work on them.  

 In Java, the data items are called fields and the functions are called methods. 

 

2. Defining a Class 

 A class is a user-defined data type with a template that serves to define its properties.  

 Once the class type has been defined, we can create “variables” of that type using declarations that are 

similar to the basic type declarations. 

 In Java, these variables are termed as instances of classes, which are the actual objects. 

 Class Defines Data and Methods that manipulate the Data.  

 The basic form of a class definition is 

 

class ClassName [extends SuperClassName] 

{ 

 [fields declaration] 

 [methods declaration] 

} 

 classname and superclassname are any valid java identifiers. The keyword extends indicates that the 

properties of the superclassname class are extended to the classname class. 

 

3. Fields Declaration 

 Data is encapsulated in a class by placing data fields inside the body of the class definition.  



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 2 
 

 These variables are called instance variables because they are created whenever an object of the class 

is instantiated.  

 We can declare the instance variables exactly the same way as we declare local variables  

 

   Class Rectangle 

   { 

    int length; 

    int width; 

   } 

 

 The class Rectangle contains two integer type instance variables.It is allowed them in one line as 

     int length, width; 

 Remember these variables are only declared and therefore no storage space has been created in the 

memory. Instance variables are also known as member variables. 

 

4. Methods Declaration 

 A class with only data fields( and without methods that operate on that data) has no life.  

 The objects created by such a class cannot respond to any messages.  

 We must therefore add methods that are necessary for manipulating the data contained in the class. 

 Methods are declared inside the body of the class but immediately after the declaration of instance 

variables.  

 The General form of a method declaration is  

    type methodName(parameter-list) 

    { 

     Method-body; 

    } 

 Method declarations have four basic parts 

 The name of the method( methodname) 

 The type of the value the method returns(type) 

 A list of parameters(parameter-list) 

 The body of the method 

 The type specifies the type of value the method would return. This could be a simple data type such as int 

as well as any class type. It could even be void type, if the method does not return any value.  

 The methodname is a valid identifier. 

  The parameter list is always enclosed in parantheses. This list contains variable names and types of 

all the values we want to give to the method as input. The variables in the list are separated by commas. 

when no input data are required , the declaration must retain the empty parantheses. 

 The body actually describes the operations to be performed on the data. 

 

     Class Rectangle 

     { 

      int length,width; 

      void getData(int x, int y) // method with void type 

      { 

       length =x; 

       width =y; 

      } 

      int rectArea()  // method with return type 

      { 

       int area = length *width; 

       return area; 

      } 

     } 

 

5. Creating Objects 

 Instance of  a class is called a n Object.  



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 3 
 

 Creating an object is also referred to as instantiating an object. 

 Objects in Java are created using the new operator. 

 The new operator creates an object of the specified class and returns a reference to that object. 

Rectangle rect1; // declare the object 

rect1 = new Rectangle() // instantiate the object 

 

 

 The first statement declares a variable to hold the object reference and  

 The second one actually assigns the object reference to the variable. 

 The variable rect1  is now an object of the Rectangle class 

 

 

    
 Both statements can be combined into one as  

   Rectangle rect1 = new Rectangle() 

 It is important to understand that each object has its own copy of the instance variables of its class. 

 Means that any changes to the variables of one object have no effect on the variables of another. 

6. Accessing Class Members 

 Fields and Methods inside the class are called Members of class. 

 The Class members can be Accesses using objectName, dot operator and class member(may be variable or 

method). 

Objectname.variablename = value; 

Objectname.methodname(parameter-list) 

 Here objectname is the name of the object, variablename is the name of the instance variable inside the 

object that we wish to access. 

 methodname is the   method that we wish to call, and  

 parameter-list is comma separated list of “actual values” that must match in type and number with the 

parameter list of the methodname declaraed in the class. 

 

 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 4 
 

 
Output 

Area1 = 150 

Area2 = 240 

 

 The first approach is to access the instance variables using the dot operator and compute the area. i.e 

 int areal = rect1.lenght*rectl.width: 

 The second approach is to call the method rectArea declared inside the class. That is,  

 int areal = rectl.rectArea():    // Calling the method 

 

7. Constructors 

 Java supports a special type of method called a constructor, that enables an object o initialize itself when 

created. 

 Constructors are used to initialize instance variables. 

 

Constructor Method 

Constructor’s are used to initialize 

instance variables 

Methods are used to do general purpose 

calculation 

Constructor Name and Class name should 

be same 

Constructor name and Class name may or 

may not same 

Constructor should have neither return 

type or void 

Method should have either return type or 

void 

Constructors are invoked at the time of 

object creation 

Methods are invoked after object is 

created. 

 

     
   output 

  Area1 = 150 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 5 
 

8. Methods Overloading 

 In Java it is possible to define two or more methods within the same class that share the same name, as long as their parameter 

declarations are different.   

 (or) writing two or more methods within Same class with difference in type and/or number of arguments. 

 When this is the case, the methods are said to be overloaded, and the process is referred to as method overloading.  

 Method overloading is one of the ways that Java supports polymorphism.  

 When an overloaded method is invoked, Java uses the type and/or number of arguments as its guide to determine which 

version of the overloaded method to actually call.  

 Thus, overloaded methods must differ in the type and/or number of their parameters. 

Class Addition 

{ 

 int add(int x, int y) 

 { 

  int z = x+y; 

  Return z; 

  } 

 int add(int x, int y,int z) 

 { 

  int  a = x+y+z; 

  Return a; 

  } 

double  add(double x, double y) 

 { 

  double z = x+y; 

  Return z; 

  } 

 } 

 Class MethodOverloading 

 { 

  public static void main(String args[]) 

  { 

   Addition obj1 = new Addition(); 

   int add2 = obj1.add(2,3); 

   int add3 = obj1.add(3,4,5); 

   double add2d = obj1.add(2.4,3.5); 

   System.out.println(“Addition of 2 integer values: ”+add2); 

   System.out.println(“Addition of 3 integer values :”+add3); 

   System.out.println(“Addition of 2 double values :”+add2d); 

  } 

 } 

 OUTPUT: 

 Addition of 2 integer values: 5 

 Addition of 3 integer values : 12 

 Addition of 2 double values:5.9 

 

add is the only interface through which we are getting 3 types of output i.e addition of 2 

integer values, addition of 3 integer values and addition of 2 double values. 

 When we call a method in an object, java matches up the method name first and then the number 

and type of parameters to decide which one of the definitions to execute. This process is known as 

polymorphism 

 

 

 

 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 6 
 

9. Static Members 

 Instance Method Vs Static Method 

 

 

 

 

 

 

 

 

 Instance Method can access the instance methods and instance variables directly 

 Instance method can access static variables and static methods directly 

 Static methods can access the static variables and static methods directly 

 Static methods cant access instance methods and instance variables directly. They must use reference to 

object. 

 And static method cant use this keyword as there is no instance for this to refer to. 

 

10. Inheritance 

 Reusability is an important concept of OOP paradigm. 

 It is always nice if we could reuse something that already exists rather than creating the same all 

over again. 

 Java supports this concept. 

 Java classes can be reused in several ways. This is basically done by creating new classes, reusing 

the properties of existing ones. 

 The mechanism of deriving a new class from an old class such that the new class acquires 

all the properties of the old class is called Inheritance. 

 The old class is known as Parent, base or Super class and the new class that is derived is known as 

child, derived or subclass. 

 The Inheritance allows subclasses to inherit all the variables and methods of their parent classes. 

 Defining a Subclass 

 A Subclass is defined as follows 

Class subclassname extends superclassname 

{ 

Variables declaration 

Methods declaration 

} 

 The keyword extends signifies that the properties of the superclassname are extended 

subclassname.  

 The subclass will now contain its own variables and methods as well those superclass. 

 This kind of situation occurs when we want to add some more properties to an existing class 

without actually modifying it. 

 Subclass Constructor 

 A subclass constructor is used to construct the instance variables of both the subclass and 

the superclass. 

Class or Static Variables Instance Variables 

Class Variables are declared with keyword 

static 

Instance Variables are declared without 

static keyword 

Static Variables are common to all instances 

of a class. These variables are shared 

between the objects of a class 

Instance variables are not shared between 

the objects of a class .Each instance will 

have their own copy of instance variables 

As Static variables are common to all 

objects of a class, changes made to these 

variables through one object will reflect in 

another 

As Each object will have its own copy of 

instance variables, changes made to these 

variables through one object will not reflect 

in another object. 

Instance variables are created on heap 

memory. 

Class variables are stored on method area. 

Static variables can be accessed using either 

class name or object reference 

Instance variable can be accessed only 

through object reference  



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 7 
 

 The subclass constructor uses the keyword super to invoke the constructor method of the 

superclass. 

 The keyword super is used subject to the following conditions 

o Super may only be used within a subclass constructor method 

o The call to superclass constructor must appear as the first statement within the 

subclass constructor 

o The parameter in the super call must match the order and type of the instance 

variable declared in the superclass. 

 Inheritance may take different types 

1. Single inheritance 

2. Multilevel Inheritance 

3. Hierarchical Inheritance 

4. Hybrid Inheritance 

5. Multiple Inheritance 

These forms of inheritance are shown as 

 

1. Single Inheritance 

The process of deriving one class from one base class is called single inheritance. 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 8 
 

 
Output : 

Area1 = 168 

Volume1 = 1680 

2. Multilevel inheritance 

Process of deriving a class from another derived class is called multilevel inheritance 

/* PROGRAM TO ILLUSTRATE THE CONCEPT OF MULTILEVEL INHERITANCE */ 
class Employee 
{ 
 int eno; 
 double bsal; 
 Employee(int e,double b) 
 { 
  eno=e; 
  bsal=b; 
 } 
 double Hra() 
 { 
  return (bsal*0.08); 
 } 
 double Da() 
 { 
  return (bsal*0.11); 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 9 
 

 } 
 double Pf() 
 { 
  return (bsal*0.07); 
 } 
 void display() 
 { 
  System.out.println("Emp number="+eno); 
  System.out.println("Basic salary="+bsal); 
 } 
} 
class Gsalary extends Employee 
{ 
 Gsalary(int e,double b) 
 { 
  super(e,b); 
 } 
 double gSalary() 
 { 
  return (bsal+Hra()+Da()); 
 } 
} 
class Nsalary extends Gsalary 
{ 
 Nsalary(int e,double b) 
 { 
  super(e,b); 
 } 
 double nSalary() 
 { 
  return (gSalary()-Pf()); 
 } 
}  
 
public class Multilevel 
{ 
 public static void main(String args[]) 
 { 
 double hra,da,pf,gs,ns; 
 Nsalary n1=new Nsalary(10,2000); 
 hra=n1.Hra(); 
 da=n1.Da(); 
 pf=n1.Pf(); 
 gs=n1.gSalary(); 
 ns=n1.nSalary(); 
 n1.display(); 
 System.out.println("Hra="+hra); 
 System.out.println("Da="+da); 
 System.out.println("Pf="+pf); 
 System.out.println("Gross salary="+gs); 
 System.out.println("Net salary="+ns); 
 } 
}  
 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 10 
 

OUTPUT 
 
Z:\java>javac Multilevel.java 
Z:\java>java Multilevel 
Emp number=10 
Basic salary=2000.0 
Hra=160.0 
Da=220.0 
Pf=140.0 
Gross salary=2380.0 
Net salary=2240.0 

3. Hierachical Inheritance 

Process of deriving one or more subclasses from one super class is calledhierarchical inheritance 

/* PROGRAM TO ILLUSTRATE THE CONCEPT OF HIERARCHICAL INHERITANCE */ 
class Rectangle 
{ 

 double length,breadth; 

 Rectangle(double l,double b) 
 { 

  length=l; 
  breadth=b; 

 } 
 double areaRect() 

 { 

  return length*breadth;  
 } 

} 
class Triangle extends Rectangle 

{ 
 Triangle(double l,double b) 

 { 

  super(l,b); 
 } 

 double areaTri() 
 { 

  return (0.5*areaRect()); 
 } 

} 

class Volume extends Rectangle 
{ 

 double height; 
 Volume(double l,double b,double h) 

 { 
  super(l,b); 

  height=h; 

 } 
 double volumeRect() 

 { 
  return (areaRect()*height); 

 } 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 11 
 

} 

 
 class Hierarchical 

{ 

 public static void main(String args[]) 
 { 

  double a,b,c; 
  Triangle obj1=new Triangle(1.2,2.3); 

  Volume obj2=new Volume(1.2,2.3,3.4); 
  a=obj1.areaRect(); 

  b=obj1.areaTri(); 

  c=obj2.volumeRect(); 
  System.out.println("Area of Rectangle="+a); 

  System.out.println("Area of Triangle="+b); 

  System.out.println("Volume of Rectangle="+c); 

 } 
} 

 
OUTPUT 
 
Z:\java>javac Hierarchical.java 
Z:\java>java Hierarchical 
Area of Rectangle=2.76 
Area of Triangle=1.38 
Volume of Rectangle=9.383999999999999 

 
4. Hybrid Inheritance 

Combination of above any inheritance is called hybrid inheritance 

5. Multiple inheritance 

Process of deriving a subclass from one or more superclasses is called multiple inheritance. Java 

does not directly implement multiple inheritance. however, this concept is implemented using a 

secondary inheritance path in the form of interfaces. 

Class A 

{ 

} 

Class B 

{ 

} 

Class C extends A,B// java does not allow this  

{ 

} 

11. Overriding Methods 

 A method defined in a super class is inherited by its subclass and is used by the objects created by the 

subclass. 

 There may be occasions when we want an object to respond to the same method but have different 

behavior when that method is called means we should override the method defined in the superclass. 

 This is possible by defining a method in the subclass that has the same name, same arguments and 

same return type as a method  in the superclass. 

 Then, when that methods is called, the method defined in the subclass is invoked and executed instead 

of the one in the superclass. This is known as overriding 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 12 
 

 A method in subclass, whose name , parameter list and return type are same as that of the 

method in superclass is called overrided methods.  

 

 /*PROGRAM TO ILLUSTRATE THE CONCEPT  OVERRIDING  */ 

Class Square 
{ 
 int a; 
 Square(int side) 
 { 
  a = side; 
 } 
 
 void area() 
 { 
  int aSquare; 
  aSquare = a*a; 
  System.out.println("Area of the Square is : " + aSquare); 
 } 
} 
 
class Cube extends Square 
{ 
 Cube(int s) 
 { 
  super(s); 
 } 
  
 void area() 
 { 
  int aCube; 
  aCube = a*a*a; 
  System.out.println("Area of the Cube is : " + aCube); 
 }  
} 
 
class Overriding 
{ 
 public static void main(String args[]) 
 { 
  Cube CubeObj = new Cube(4); 
  CubeObj.area(); 
 } 
} 
 
OUTPUT 
Z:\java pgms>javac Overriding.java 
Z:\java pgms>java Overriding 
Area of the Cube is : 64 

12. Final Variables, Methods and Classes 

 Final keyword can be applied to variables, methods and classes 

 Final keyword before variable makes it constant 

 Final keyword before a method prevents overriding 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 13 
 

 final keyword before a class prevents inheritance 

 

final variable : makes constant 

 

to convert a variable as a constant, just use final keyword before variable  

for eg:  

  final int i =10 

  int j =20; 

  i++; //error 

  j++; 

because the value of constant cannot be changed during the execution of the program.the main 

difference between variable and constant is that variable value can be changed during the execution of 

the program where as the constant value cannot be changed during the execution of the program. 

 

final method : prevents overriding 

 

if we wish to prevent the subclasses from overriding the methods of the superclass, we can declare 

them as final using the keyword final as a modifier 

class A 

{ 

 final int m1() 

 { 

 } 

} 

Class B extends A 

{ 

 int m1()  // error, trying to override a final method 

 { 

 } 

} 

Making a method final ensures that the functionality defined in this method will never be altered in 

any way. 

 

 final class : prevents inheritance 

 sometimes we may like to prevent a class being further subclasses for security reasons. A class that 

cannot be subclasses is called a final class. Any attempt to inherit final classes will cause an error and 

the compiler will not allow it. 

final class A 

{ 

} 

class B extend A //error, cannot inherit a because it is a final class 

{ 

} 

13 Abstract Methods and Classes 

 An Abstract method is a method without method body or a method without implementation. 

 An Abstract method is written when the same method has to perform different tasks depending on 

the object calling it. 

Example: 

class A   // Automatically Becomes Abstract Class 

{ 

 void m1();  // Abstract Method 

 void m2()  // Concrete Method 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 14 
 

 { 

  System.out.println(“method 2”); 

 } 

} 

 A Class that contains one or more Abstract Methods is called Abstract Class. 

 An Abstract class is a class that contains 0 or more Abstract Methods. 

 Abstract class can contain instance variables and concrete methods in addition to abstract methods. 

 Since, abstract class contains incomplete methods, it is not possible to estimate the total memory 

required to create the object. 

 So, JVM can not create objects to an abstract class. 

 We should create sub classes and all the abstract methods should be implemented in the sub classes. 

 Then, it is possible to create objects to the sub classes since they are complete classes. 

Let us make a program where the abstract class MyClass has one abstract method which has got 

various implementation in sub classes. 

 

 

 

 

 

 

Abstract class MyClass 

{ 

  abstract void calculate(double x); 

} 

Class Sub1 extends MyClass 

{ 

  void  calculate(double x) 

  { 

   System.out.println(“Square =”+(x*x)); 

  } 

} 

Class Sub3 extends MyClass 

{ 

  void calculate(double x) 

  { 

   System.out.println(“Square Root =”+Math.sqrt(x)); 

  } 

} 

Class Different 

{ 

  public static void main(String args[]) 

  { 

   Sub1  obj1 = new Sub1(); 

   Sub2  obj2 = new Sub2(); 

   Sub3  obj3 = new Sub3(); 

   obj1.calculate(3); 

   obj2.calculate(4); 

   obj3.calculate(5); 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 15 
 

  } 

 

} 

C:\> javac Different.java 

C:\> java Different 

Square =9.0 

Square root =2.0 

Cube =125.0 

 

 

 

 

 

 

 

 

 

 

Write a program in which abstract class Car contains an instance variable, one concrete method and 

two abstract methods . 

Abstract class Car 

 { 

  int regno; 

  Car(int r) 

  { 

   regno =r; 

  } 

  void openTank() 

  { 

   System.out.println(“Fill the Tank”); 

  } 

  abstract   void steering(); 

  abstract  void braking( ); 

} 

class Maruti extends Car 

{ 

  Maruti(int regno) 

  { 

   super(regno); 

  } 

  void steering() 

  { 

   System.out.println(“This car has ordinary Steering”); 

  } 

  void braking() 

  { 

   System.out.println(“These are hydraulic brakes”); 

  } 

} 

class  Santro  extends Car 

{ 

  Santro(int regno) 

  { 

   super(regno); 

  } 

  void steering() 

  { 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 16 
 

   System.out.println(“This car has Power Steering”); 

  } 

  void braking() 

  { 

   System.out.println(“These have gas brakes”); 

  } 

} 

class UseCar 

{ 

  public static void main(String args[]) 

  { 

   Maruti m = new Maruti(1001); 

   Santro s = new Santro(5005); 

   Car ref; 

   ref  = m; 

   ref.openTank(); 

   ref.steering(); 

   ref.braking(); 

   ref = s; 

   ref.openTalk(); 

   ref.steering(); 

   ref.braking(); 

  } 

} 

 

Output: 

 

Fill the tank 

This car has ordinary Steering 

 These are hydraulic brakes 

Fill the tank 

This car has Power Steering 

These have gas brakes 

   

It is perfectly possible to access all the members of the subclasses by using sub class objects. But , we prefer to 

use super class reference to access the sub class features because, the reference variable can access only those 

features of the sub classes which have been already declared in super class. If we write individual method in 

the subclass, the super class reference cannot access that method. This is to enforce discipline in the 

programmers not to add any of their own features in the sub classes other than whatever is given in super 

class. For example, a programmer has added the following method in Maruti class 

 void wings() 

 { 

   System.out.println(“ I can fly”); 

 } 

 

 

 

 

 

 

 

 

 

 

 



Object Oriented Programming Through Java UNIT -II 
 

R.Padmaja,Asst.Professor,MCA Department, SITAMS Page 17 
 

 

 


