UNIT-1

Introduction

History of Computer:
» This word is taken from the Latin language. The computer word can be slipped into 2 parts.
One is comp and another is puter.
» Comp means automatic, puter means calculation. Computer is nothing but an

automatic calculation (or) electronic device.

» Abbreviation of computer:

C—- Common
O— Operating or oriental
M- Machine

P- Particularly

U- Used for

T- Technical or trade
E- Education

R- Research

Computer Definition: -

Computer is an electronic device, which is used to process and to store the large amount
of data. A computer can also perform arithmetic and logical operations at a high speedaccording
to user instructions; it does not process any intelligence of its own. That means, it does not have
any thinking (or) giving (or) decision taking of its own. That means, it does not have any thinking

(or) giving (or) decision taking of its own.

A computer system accepts data and instructions as input and process that data according

to the given user instructions to provide results as output.

Input Process Output

Basic Organization of Computer:-

The computer mainly consists of the following components. They are:
e Inputdevice
e Output device

e Central Processing Unit (CPU)

Figure 1.1: Basic Organization of a Computer System

Central Processing Unit

cPU — Output

Input >

Arithmetic/Logical Unit

J
=
=

Memory Unit Storage

[}

Input device:-

» The input devices allow the user to input (or) store data and instructions to the
computer.
» There are varieties of input devices. They are Keyboard, Mouse, Joy

Stick, Track ball, Digitalcameras and so on.

Central Processing Unit: -

(@]

CPU stands for central processing unit. It is the most important component of a
computer.
It is the brain of the computer and all processing take place in the CPU.

It typically consists of three parts. They are:

» ALU (Arithmetic & logical unit)
= Control Unit
= Memory Unit

ALU(Arithmetic Logical unit): -

» ALU stands for Arithmetic & logical unit. It performs all arithmetic
operations like Add,Sub, Mul, div etc., and logical operations like >, <,
<=, >=,.

» Whereas the logical operations are used to compare two numbers and

generate eithertrue or false values.

Control Unit: -
» It controls all the operations of the CPU and peripheral devices.
> It controls the flow of data between the CPU and Input-Output devices.
» The CU decides which instructions will be executed & operations
performed. It takes care of the step — by — step processing of all operations

are performed in the computers

Memory Unit
» The storage area of the computer is called as memory. The memory can

be divided in totwo types.
v Primary memory
v Secondary memory

Primary Memory:

» This memory is used for temporary storage. The contents of memory
will be availableas long as the power is in ‘on’ state.
» This memory allows the CPU to store and retrieve data quickly.
ROM:-

» ROM stands for Read Only Memory.

» It is used to start up the computer system.

» Primary storage space is very expensive & limited capacity and also
known as*“Volatile memory”.

» The contents stored in the ROM are used for reading purpose only.
RAM:-

» RAM stands for Random Access memory.
» It is used to do some intermediate manipulations.
» RAM is a temporary memory.

Secondary (Storage) Memory:-

» This memory allows storing the data permanently.
> Secondary storage is also known as “Secondary memory” or

“Auxiliary memory”. Itbasically overcomes all the drawbacks of primary

storage area.
» The contents will be available permanently either power is ‘on’ or ‘off” state.
» The mostly used secondary devices are floppy disks, Hard disk,
CD’s, DVD’s, magneticTape etc.,

QOutput Devices:-

» The output device is used to present the data (or) information from the
memory.

» Since the computer all data & results in binary form that’s why the
result cannot be directlygiven to the user.

» This device converts the binary information to human understandable
language.Ex: Monitor, Printers, Speakers etc.

Variables:

» A Variable is an entity (or) identifier whose value can be changed during
programexecution and is known to the program by a name.

» A Variable definition associates a memory (or) storage location to the
Variable name. Itcan hold only one value at a time during the program
execution.

» Variable names are identifiers used to name Variables.

» They are symbolic namesassigned to the memory locations.

RULES IN VARIABLES:

e A Variable name consists of letters, digits and underscore.
e Variable name must begin with an alphabet or under _score character.
e The maximum number of characters used in forming a Variable must
not exceed 31characters.
e Variable name does not allow any special characters even blank spaces also.
e Any keywords can not use as variable names.
e C is case sensitive for instance variable names such as rate, Rate

and RATE aretreated as different.

Valid Variable name:-

Ex:- sum, sno, fact

Invalid Variable names:-

Eg:- 9_empno, data_of_ join, float, $ symbols

Variable declaration syntax:-
Data type Var_namel, Var name2,

Variable Initialization

,var nameN;

Syntax:- Data type Var name=constant value;

Eg:- int sno=33;

float fees=6500;

Constants:-

» Constants are Literals in C are a sequence of characters (like digits, letters

and othercharacters) that represent constant values to be stored in variables.

» Constants in C refer to fixed values that do not change during the

execution of aprogram.

C supports several types of constants. They are..

CONSTANTS

-

v

A 4
NUMERIC CONSTANTS

A 4

CHARACTER CONSTANTS

Integer Constant

™ Ex: 123.-345.50.

Real Constants

Ex:- 0.078,-0.456

Character constants E

A

x:-'5’, “fligh’

String Constants

A 4

Ex:-“hello”,”2002”

» Literals are constants to which symbolic names are associated for the purpose of
readability and easy of handling. C provides the following three ways of defining

Constants:

1. # (Hash) define preprocessor directive
2. Enumerated data types
3. Const Keyword
» The Variables in C can be created and initialized with a constant value at the point
ofits definition.

Eg: - float Pi=3.142;

» Defines a Variable name Pi and is assigned with floating point numeric constant value
3.142. Itis known as that the constant value that not changes.

» In the above case the Variable Pi is considered as constant whose value does not
change through out the life at the program. The qualifier used in C to define such
Variable is the Const qualifier.

» The syntax of defining Variables with the Const Qualifier is

Syntax:- Const datatype variable=value

Data types:

Every variable in C has a data type.
Data types specify the size and type of values that can be stored.
The variety of data types available allows the programmer to select required type to theneeds
of the application.
C language can have 3 types of data types like....
» Built- in data types

YV YVVY

» Derived data types
» User — defined data types

Data Types
g i !

Built — in Data User-defined Data Derived Data
Types i

int float Structures Arrays

char Unions Pointers

void Enumerated Functions

long types

> double g
signed
unsigned

Built-in -data Types

Operators and Expressions

» C Operators are special characters (or) symbols which instruct the compiler to

perform Operations on some Operands. Operation instructions are specified by

Operators, which Operands can be Variables, expressions are literal values.

» Some operators Operate on a single Operand they are indicated before Operands

and theyare called prefix Operators. Others indicated after the Operand is called

post-fix Operators.

» Most Operators are embedded between the two Operands and they are called

binary ‘+’ Operators. An expression a+b uses the binary ‘+’ Operators. C has even

Operator that takes three Operands called ternary Operator.

» Operators are used in programs to manipulate data and variables. C operators can

be classified as several types like...

Arithmetic Operators

Relational Operators

Logical Operators

Assignment Operators

Increment and decrement Operators
Conditional Operator

Bitwise Operators

Special Operators

Arithmetic Operators: -

> The Arithmetic Operators are used to perform Arithmetic Operations on numeric

values. They have both unary and binary categories.

> These operators are used to construct mathematical expressions as in algebra. C

provides the basic arithmetic operators this can be operate on any built-in

numeric data types and we cannot use these operators on Boolean types.

Relational Operators:-

Relational opeartors are also called as comparition operator .Compare between the

two operends.

QOperator Meaning
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to

1= Not equal to
Ex: - x>y, X<y, X>=y, X<y, X==Y,

LOGICAL OPEARTOES:-

» Logical operators combine two (or) more relational expressions is termed as a

“logical expression (or) compound relational expression”.

» Any expression that evaluates to zero denotes a false logical condition and that
evaluationto non-zero value denotes a true logical condition. Logical operators are

useful in combining one or more conditions (relations).

Operator Meaning
&& Logical AND
Il Logical OR
! Logical NOT
Logical AND (&&):-

If the both conditions are True then the result is True .Otherwise then the
result is False.

Syntax: - (operand_1 && operand_2)

p 0 P&&Q
T T T
T F F
F T F
F F F

Logical OR (I]): -

If the both conditions are True then the results is True and any one condition is

True then the result is also True. Otherwise the results is False.

Syntax: - (operand_1 || operand_2)

p 0 PlQ
T T T
T F T
F T T
F F F

Logical NOT (!): -

Syntax: -/ (Operand_1 && operand_2)

p 'p
T F
F T

Assignment Operator (=):-

e Assignment operators are used to assign the value of an expression to a variable we

__9

haveseen the usual assignment operator like

“=" 1s an assignment operator, which is used to assign right part of the expression
(or)value in to left side of the variable. It has the following.

e Assignment operators are used to assign the value of an expression to a variable we

ce__9%

haveseen the usual assignment operator like

9

is an assignment operator, which is used to assign right part of the expression

(or)value in to left side of the variable. It has the following.
Syntax:-
Variable = expression (or) value;

e The left hand side has to be a variable and the right hand side has to be a valid

expression.

Ex:-a=5;

C language has a set of short hand assignment operators and its form like...

Syntax:-
variable operator=expression;

Increment And Decrement Operators:-

INCREMENT OPERATOR:
This is used to increase the value one by one. It has two types:
* Post-fix Increment operator

* pre-fix Increment operator

POST-FIX INCREMENT OPERATOR:

“++” symbol is used to represent Post-fix Increment operator. This symbol is

used after the operand.
In this operator, value is first assign to a variable and then incremented the value.

EX:- int a=10,b;

b=at+;
O/P: a=l11
b=10
In the above example first the value of “a” is assign to the variable “b”, then

increment the value, so the value of b variable is “10”.

PRE-FIX INCREMENT OPERATOR:

++” symbol is used to represent Pre-Fix operator, this symbol is used after the

operand. In this operator value is incremented first and then assigned to a variable.

EX:- 1int a=10,b;

b=++a;

O/P: a=l11;
b=11;

In the above example first the increment is done then the value of “a” variable is assigned to

the variable “b”, so the value of “b” variable is_“11”.

DECREMENT OPERATOR:

(3 2

symbol is used to decrease the value by one. It has two types:
1.post-fix decrement operator
2.pre-fix decrement operator

POST_FIX DECREMENT OPEATOR:

13 2

symbol is used to represent post-fix decrement operator, this symbol is used after the

operand. In this operator, value is first assigned to a variable and then decrement the value.

EX: int a,b;
a=10;
b=a--;
In the above example first the value of “a” is assign to the variable ” b”, then

decrement the value. So the value of “b” variable is “10”.

PRE-FIX DECREMENT OPERATOR:

“--” Symbol is used to represent the pre-fix decrement operator. This symbol is used after the

operand. In this operator, value is decremented first and then decremented value is used in

expression.
EX: int a,b;
a=10;
b=--a;

In the above example first the value of “a” is decrement then assign to the variable “b”. So

the value of b variable is “9”.

Conditional Operator:-

An alternative method to use if-else Construct is the conditional Operator statement. It
isalso called the ternary Operator, which Operates on three Operands.
The character pair (? And :) is a ternary operator available in C. this operator used
toconstruct conditional expressions.
False
o

Syntax:-expl ? exp2 : exp3;

|

True

Here the expl is evaluated first, if it is true then the value of exp2 is the result; other

wise theexp3 is the result.

EX: - int a=50, b=60;

Z= (a+b)? a : b;

Bit wise Of?_eﬁiatnh&:
Bitwlse opeyators are. wsed O pef'-f’okm bit - level

OP“'“E‘O'\/&' Bit Lorse ope*ratmrs
opevators Meoning oF opeto¥ :L|Tac
e/ | 7 |
& Ritwoise AND
1
: Bitwoige OR
E B?'twi;sa XOR
~ A T T
SN MR Braise Aeft Shife
i Brewoi 6€ 'F&\caht <hift
RBitwise ANDLZ—) Opcfatof: . . dn
The outpat Of bitwise AND YR 7
; i > Qa e~varnd
bitg Of TP opamnd/g 1o Tf eithexr bit of @ P .
din bit 18 evatuoke
‘A ZexOy the vesult of corves por ca
2090 L -
’CXarﬂP(p,-. ' . _ R T fogs T
Bit opevation of & and 4
} g =1000
g =0100
1600
| Z ol 00

o000 =o (Indecmal)

Ul =
n ove given belows

L

Bitwise OR({) opevator: e gl
The output of bitcolic pp i one if atleast b
Corves ponding bit of two opeandf 18 e
example: ciieereope L e e
Bitwise ©OR apemt?br) © bttween 1. & and ¢
loo0 '
I ol00
100 =12 (n decimal)
AL Un,

Bitwise XoR -(exclusige oR):

The vesult of- bitwibe XOR
bitg of to0 opevandg owe opposite. Tt 1S
- denotad bcd (/\)-

operator s 1 if the

Covresponding
exomple:
Bitworse exclus

ve-0R oPe;gUﬁm__ beh,aam gand gy

00O
oloo

A
1l o0 =12

Bitwise COmP(in’w,n{’ OPemtD*((M)
RBitwibde ComPlimenL— Oloe/zfa’cor

ot oPemrd)~ deﬂﬂ’@da

TS Okunaf(_d.oPgmto(
| 40 0 and otoOl-

’ (works on oY

example :
Bitwi AL Compliment @Pem@m of & 15
8 = 00O

~g =0l = F (n decimal)

9

Bit !
Wwise Q%M’ waf{- Opem{pzr (>>)

R
‘caht Shift ope vator Shifts all bitg tdiavdg g ht-
cpecified bitg

\ocd Cextain mnumber Of

examPu

8= loDO

8)>9_ = 00I0

‘Pk OPe,ml‘:D(@é) =

heft Shi
Left chift oPe{ae:or Chifte all bitg -\;a,oafd/s e ft
b‘ﬂ o Cestain agumbes of SPe&Pled bt s The lott
! Lh-
POS\E\J\M that have been N codd bc{ e i
OP(:mtoz(oxve filed with 7o’
exomple:
Sh’r{lhr\% the vumbes U by a bitj .05y 19 2L X
1y = 0000 M0 itp= 0000 11O
s ¥ v 2 s A\ AT
I A ~Tal T ililo]
JwEps = 0010 ueet| 0] 0/ 0] 1] 1] o] |
= QG
' maVEL L

e pr—— ot M e e

I S e

N %0 =7
W“’-OOII' O ",
=56

C—tokens
C tokens one the barsic building Llocks in C language.

which .ane constucted +vgethen o watte a C Program.

Tokens :i— An Tndividuol smallest unit of a Progyam is
alled * Tokens' By using the -tokens moking.
the (PYDQ;OA;N veny earily.

5 & o) 0976
Th ‘e’ Tokens e clniled tnto "8 Tupes. They

o Keywo'id

o Tdentifie¥s |
e Constants |
* 5t9ng s }
e Special symbols |

e Oponatoys

% Keywodids 1= Keywoids one Resesved (or) Pre—defined Coy),f;
Lived wids in a C- Comps len.

| 2 01Ce we whed the keywdrd which cannot change duﬁhﬂngé
C the excubcution of the PIOgOM.

_9 Al Keywords must be waiten in lowen caje .

"7 Smce Keywdids ane setferred names Lo Compiles , -they
| Can't be wred an variable name.

= In 'C’ —Here e ‘z, Keyuwdidy .

5—9 Ei..j—-__: a.(LtD/ bYeak) CAM/ dO/ '72097/ 7Hf/ 7ﬂ@h£ Y] .f/oaf, M;/eezc
B | N

* idﬂ"\t;’ﬁl.exs : =

e given @ name colled Tdentifiens. Names 9iven to

7clen(::°-/lvj ~vasables, -puncffons and onnays one examples
£ identifiers.

€9: 7n£’ n=jlo:

heve % a name given o integen type Vadiahle in
obove stakement.

e Ruler 41 Tentibievs —
“The —%/&Juﬂnﬁ aoe the Ruler THentidier .
> Fownt chanacter showld be an alphabet oY unden&die.

> TdenkiLieny doer not includes backspace.
S TF cannot allow —the dupliate value.
_.;

Length of identifiers s 3l chanacters.

J

vosuablos .

. TE A wed v Stde andatotype value.

vostiables ane changeable , we can chavge the value

ol vaniable duning the Program execution .

TYpes ol vosuable ¢

% Locad vastioble
¥ Global voyohle
¥ stotic vostiokle

] Mﬁ. °
Tt cannot tokes the Kejwdich as the vasiiakle na

Vostiobled © The name of memdy locotion A Colled :

Each Puogriam elements n Q C—Pﬂoﬂmm\\

|
|

5
* Comsfants 1= Constants ane Lived value . That cannot
be changed duwring Puwogvam execution .
Tt I Similan P a vaniaple buk 6 Commot be modilied
by the Dwdvam once defined.
Theve ane —wo Hypey of Gomstants tn C.
Constant S‘
L L
Numen; ¢ chosacter
Comstant omstant
[7 | -
NN = W
Tntegen Ploating stving Single
- : Comytank chasacten
Cowxtan Pornt Gonatont Gt

* Exampley ;-

Infegen @ 250, 25, 1ol efec. \
- Lloati ‘)
;))D?:\;Lg c 2 5“; Q3'C75/ loys.oo ete. %

Sbving + U SITAMS ", “McA" | efbc

‘!

Single .) TERE P R

Chosackey A A 1

-

* 5(:an35 .

Yuototion s

14

Sequence of chcﬁlacfars‘ enclede 4wt chuble
A Known aa sbings.

e P e R S e R T S e
‘ - et RV N NN daa e)

= T p. » To) B i
AR - o e 5 o s e)
P Gy LR 3 > - SoFF
Lo

* Special symbols :-=

® -~

In 'C’ genovmlly, the Special Symbsls have Some Speciol

Mearing. Spme of the special Symbels Haot ane wied it
C prwgram . —rug are :

sy GL5E 3,317 aegt
¥* Openators z-

Opeiatoy i o ngbo[by wing operator to opwate
with operends W Called Openator.

€9: 5+3 = g

e heve 5,3, 8% wie ope¥ands and + , = aN€ Op@,a«toﬁm

the above Statement .

The hllowing ane the different typer of opontors incC.

o Asithmetic cpesiofors — €9, — , %, £, I
* Logical opeators ~gg: &g ! i
- t i .

) /

e Relationod openoto s

ov) "591<)>,<:)>:)::,£:
CompPonison operators
° ASrignment openators - £9 L =
e Incvement 2 —DCCCmei’lf__gg g bl .
openotors ' ’
e Bitwise opuators _gg - -l

° Speciald oputators - ¢g . el §5 € 3
o 74

L® Conditionad openotors - gq

* Condite [2 e 2

b TR Conversion
‘E 7 ype
{

Tyrpre conversion s The P*’OC@S of CU”V?"HJn\C] one ator
;-—}ype o another dato-type: “The -type cornversion 18 OnLH
 perpormed —fo Those ok types Lohere conversion is possible.
Type conversion 7S performed by o compiler. O'rn -ype
conversion e destinakion dodow -type con't be Sencller <Hhon
—+he source dota dype.
Types of type conversion; ;
~There are & Kinds of type conversion. ‘;
fu fmp(.t'cfi- 'ﬁ‘jpe coNVers on i
. Explcit +ype Conversion ‘

 Qrplcit Type Conversion.

_.(zf) "'mPLP‘CJoi- %‘HPQ COOVQ"S?O(\ /.«—f"he VCLDD[Q D{. one 'L?PC«]“‘S “
autornatically comverted to Hhe volue of cnothes -type-
Ex: # Poclude<stdio.h>

foOt mou'o €) ’

1

¢ fok x=to/

Char y -:(Ot'/' oul-puk: |

X = X4y, gz LT
floakz = x +1.0; Z = (b8. DOO OO

) M l
PO’!ntFC"X: V;d/Z—: 74'F/Y/‘u);
ve turn O

' — » 2§ T . > - / =~C 1 vy !
: L;:p!; cit Type conversiots.

T e;ePLr“c{'b ty pe conversion e mar\(,uﬂhab convexkt \/ahm&o_p_
one doka ype ' -fo anothes t4pe- |

Ex:. ¢ include< stdio.h>
Ik ool)

% _QELDOJLE* =l«6;

‘nt b=Cintda;

pente ("a= 7.\ " Q) g
Peinte ("h = 72d\n ", b)) -
yedin O,

’ -] <

,l Type Codtrng !

:'J 's e process of converH"ng o vaxioble

Type casting
f£ryom one daka tgpe o an®they dakakype.
“Types of Type Costing:

There owe +woo types of type castfng

. roplicl b Type Costing

- Epr'cf‘f— Ty pe ccuhar‘tg

,.. Srapliel’t Type Couting !-
a sroalley data type 10 & langes

convers i on of

|
fhe
| obta type is Kpowon O3 Croplieit type coastng.

f
{
,"
|
|
|
,‘

Ex ;-
£ (nclude < 8tdro.h >
fnclude <conio.h>

vord rmoun ¢)

§fnb a=i5,b-a;
Flood di'v

div. /b,
Pr;’nl“; (”“H’)C. resull 1S '/.f”, div by

ge#ah (>,

g

| /»m[;x-fxlfr,fé "“j{“‘" ('cr.t!f'r\\:;) !
~the conversfon of lagger data tYpe 4o o srmallers dakor|

|

!

;'! '{({pe fs knowon as explicit -L—gpe, Cot.&{'i'ng.
|

Ex:
(nclude < 8tdfo.h>

+#- fnclude ¢ conio.h>
void mouden ¢)

{ double N= A&.S/
fntres = (ink) N,

printp ("The volue is ves 7d ves);
qetch C5;

g

ﬁ#D&ﬁhffJ’on of Dﬂalape |

AnU dole wlue wWhfch Can pBw,Se,r\Q:S n a Voougkls
5 colled dolalz

Polabgpes cote clocsified Tko thoee RS

Daﬁbbdpes

b b L

guilt N uses de fined dosiie Al
doll e dola trpes Dol brpes \‘
bl Ly sbuwdiows E— |

—>In < bk . unfons
b@“ long. Int L pointes's \
el — Funcbions '$1
hOmO\CiZZ)/ l oS ,///}
< <ms%m N {
vl |
Lloak
s Hooking < ool

I = S TSEE——
- -~

’ Buit n D_ﬁx%gz;_:-— o e

But ™n dalol means M%aa@% to CQW&\OFQ g

ode by softwoote. WA
X Ewd’td N o pe %5 o colled @S Wa‘lﬁo’w& DYy wne

!; bpe. (%) Basic MEW @) pddittive. dalatgpe (=] @Jmudaqﬁro\a?e_
Bt Aa%\ﬁfe bosteally dvided b0 3 bypes.

T *
® lﬂl@ezr -

| ® chosodsxs L

I ©) -?[eqf\fna \’)Olov&

* Tnlgee - oy

,l r\\ s OF whole vwmbess ’rﬁose numbess e |
/MMW ?ﬂ = ‘ofﬁ«kﬁ@ bU US?!’I@ MLU VOOE%&S 1 nt v |
f}’n c. we have 3 \ﬁpes of Fﬂbﬁeif dola to cordsol the |

f\/oﬁu'b\)f; 919-1’86 of f’n}zﬁﬁj S Numbess.

bl

=)

* Shoat It

% Tt

% \orq nt

5=—> Shoet k- - s dolatgpe Jequisies one oz of
m;umoifl@ ond W con St numbess 31018?)’1@ oo
—2g to +27. shoak T con be divided b 2 poes.
' Sfarw& Shood Trd

> onsf‘qmﬁ oo Tk

ook tnk

e aev

SELLE e e e

[sz shoad Ink -
SiaY\Q(& SV\OS\&‘ Iov’\k' Cox Sh)f)U?, R)S?E\/@ Oh(& ngjo Qﬂ' e

Vole s

LNSIc od sheott Int: :
W Sk Wb can be Stoowd onJLO rosthie

s, O .
. il e © U(\S]a(\/zé t can Stoswe orxﬂd -pos?b'\/e, NUMloes's
o to 2ss

= nt -

This é\c&aha\x, Soquises _{qﬂ%@ of mumoSyy and T
on Stose numlesis 910!5‘\?6 Bom —32,768 to 324767 Xt 3

R = ons‘\’amﬂ Tt an Sb&g or\lo Pos‘?b'i\/@ Nnunbess O :

D 653S3S.

> leng Tk - e
T A bope veqides ' bfes of memoxy ond @ n
W7y &3, 67 . £ Tt &

foste — 25107, 82, bl to T
NS .t an S on&d posiive umbens om o to

y 291, 967,295

,-//

e m\ﬁpe % wsed to stoswe s‘\’ra\g chosiockzy in

cronods woiade. . oot doolgpe can enclosed uditn ‘st’rah@g_

chosactey Con bE stosed T - | bqtﬂ
s Ao&@\@;@ Conn e 9@1951¢.Sen}ﬂﬁ with @ W’@v\m@

\

e

e e Uns

i e
~~—
<

Stose o posttive values Bom © to 2s
also Aj’v?‘c\oA mt o S -

o SR —on o W & B,

- <> S&m& chaor [—Je and +\e)
P \Jﬂ%\av‘uzé chodr E‘\‘\9€]

mgmosuo witk 6 &a‘({g petecision «
These numiksis oo Wn}ﬂ kﬂ \’S‘f@ a V‘“ﬂ"w"ﬁ(‘&
° Loy 3Le-38 to 3-LEX3IE

= Double - p | | :
Douole dala, %Pe occupies 8 bjtés of mmoa,d Wrth

(Lp &aﬂs PJ%C?S? on . '
v These. numberss oste. Dm{)&asmw k@ Usfh(? o mﬁmﬁ J

" Sodde”-

¢ The Dowde éoﬁaﬁpe Carl 5'@/5& B 7€ — 208 1o 1-1et3R

to etend e poeaSions.

e e——

I |
% e .;MPPBS\&{ " lor‘@ Soublo. &O&)%Pz i S'LQ?\,JDLD S "}_(_)__’ _“_és
:Of’ Mmooy, and Tt Can Siove numbess 3‘0”@ & foom |

| 2.0e—FT32 to 3-lerlqzo.

ExomL 3.
%10. 7 Con be stwwed TN o Vosuade USW@ E‘Oﬁ*&ﬁbkﬁ{%

30, 793S8S I Con he S*OSL,QA \(\ 0 \osuable. US?f@ ﬁ(}*g_ug

" dobo_tepe.

DL TLe355U8I8 Con be Shsed T o vosual, using
! Ofﬁ Aouwldle &o&xﬁ?e |
,ﬁ uses1 dofined A«\a\?oe
Uy defined dofolpe ‘susegfomabwcuaa@
Bom e uses mimamwdc 2‘

U9 o /%W can e classiBed o = %ﬁ)@s t

@Aﬁoc_h% |

@ unfons.

d Sﬁ)dﬁ'mg -
A oo of 0;1@ (o) Mese \osuables of Aiffesnt
Ao&cx\aveb czaam@ecs n oo siele rome () vt & clld |

*%Qdkm o) 91%”9(@ Iots of fY?.Qmoo(d g%:um 1

oo -
5;51‘,08[S\%x_\w —Namg.
|

i —————
e —————————
———
——

| Ex.-
I —

e —————————
i e — ——

] 4DG}Q\€FE> Membor 1
<oo&a\6(>e> munMbel 2.7

\
\

<DQ\-Q\taP€,> membes N7,

Al

i T
Tk Sno; f
choo nome(20];

it mosks ;
choon 0ddowess [SD] P

L

uNions

A union 15 Q& USRI o\lﬁhﬁ;& Mﬁ‘ﬁ}}z vhich ma(]' hold
arioess P &?ﬁ’eﬁw 5565 and
% Unton wees A §nd_a wuzn’)oatd locakkn to hold mesge
o\ OVe vesuable. .

v Oonfo\ Can be dofined e de«msad) onfon "
X VoS can be 9LacL\u9m& less memuw space. -

Sd\f\}ooc.' - unjon unBr.—name 4%%‘@%7 nMembes n

<{v:o§a’caP€> Membet | 2 j
<%Y&¥KFQ> YYiermbes 2

\

’ oA A e T R R R == = T s—
: f Destved A)XZ&@\D@ e
| douved &cu\”ox\a\?@ Con ba NossiPed o

]

HI A WO@ ts O\aZSbJ{) o kﬁ?’:&m@

e (e
I 60

1 f ;g, e /’/’ S =
a

[s [35-7307 us*/ 50
\;3& s ;
M o] (13 (23 (3] &I (5]
| 099 -

| remE o 2adec vedues
a

,,’/

pointess!-

Pointzs S s o \VoStable which dan

of anothexs i
| NS VA YD
| G L 'T p— ‘ O 8 e /’? —\O O\SS\@\
4 \JoIW

3 lapes.

hod oddsess

Nt *p =30 oddowess f veouable

%5 o Sl

Funchons: - foncbion
fc@mr’eg o o wel defined tosks.

5?@%&5 thot

|

llcan ve Stooed uWith N e Common name with AR
b!%euy& oddiess Ry tels conbineos mzmoeﬁ Wocalion.
|

———— T

_— — SN
S

\
-
-

.

-
wsule o PESpp
| VX8 main)

|1
- Qe
Lloat b,

cho ¢ -,
dourde &
a-=10"
b= 9_{)0\50;

[L
C= H y

d = 0. 20232 32\,

i ndude <ado-h>

e e ——— ——

- "”“"’“’*@‘;@ﬂ"&&wm”"’ -
/J
Gnckon fncion (a1 b) ; &w@mws

—— boAU of e loop
Eon (\o,s)——mckno& A%a“’mnts'

Res UL -Tn- O‘Oj&‘a]% '

PP (M]Aﬁi;\c‘:s‘f 24", ad;

(

‘\)(‘\:\;,'& = C\ \n ?\Do\{“ =%.F ”/ b) 3

7

=ink £ '\ Srasades = . <" ¢) s
P& C W Soude. = 7ap", d) -

%

i

[Rbltings fncttons

i
!

|
!
i

Lotk e Characte v '/o’

Stxtma is Colection (ov) Qrovp 6f (oM Sequence
Of Chovracters Ls Calloel Str{na.

A S“:\"{r\ (a { S O ‘

Sequence of Chorvacters termima ted

S'wn'tax'_ .

ChQV" ﬁamecj.
83:-— +p

Shar @b-py :t'CoLLe?e”
\T\dex’—% o i =5 & &
String — [c[o[t]i]e]F]e]No]

Adare ss—

" | i R
€ con Yepresent QA String of maximom =

Chorac ter s = placce EncLud.fnak\C; or ‘S . ,
54:&1:-;? homcLLer\ca functlons s~ B

Le Str lenc
- Skr QPV('}
3 - Skr cak) | o
4- St Cmpc) ‘ ',
5 St LpYr C)
G+ Str lwvrc) .
- 8tr rev C) | .

Serlency o - _ : | i
Sirlency s a dunction yeturns the »Lenqth o€

Ca\‘l\)en St\'t"!ﬂ» Wt vebrng tEhe Lnb@caczy- —
S‘dnl:ax:
Str 'Lcr,nCQSt\r&\% MY

R |
ggti’&? S'V . (P\’O(amn’\,’ :

okt = Strlen(pro%mm'] z

L@ﬂ%&\ LA S Y RRT L0 L2 b

i e e, B

M inctode < stdio-h”
. wnwctode Zconto-n>
.' 3+ incluae £ S(;ﬁr\a-h?
| vord main () :

e gl
ooy d Straz SITAMS &
Nt St\rl@n%\:h;

Strlength = Strlenlstn);. TR

Printf (e v.d”, str Lccmj Eh);

§
ovtpouts: &
R StCpycr: g TR
Strepy ey ¢ fumction s Used O ‘qucd one gy,
takes oo C’J"(Juf\’\QhEs LEKFZ

2 another Stj’inca . TE

Soorce anal de S8rnokon - , ;
T -~ Sol
Lk Copys the Source Stkm? values thep

e SHnattorn Sttt r\(a 5
S‘dh‘booc; < e F @l
SBCpy (bestinat
naction — thg " Yo s
P"Ogmm . Yl N St\fuj\? y' Source Sb‘”93§

$ 3

L

SEempe s funcetton s
St"t“?s‘ Tt tokes

T Bown Strings

H-nctual e <sStaAoh>

+H woelude <Str‘€n<3~h>
vold snadne 9
Chor 4 String 1 = “Ohitkeor”’;

Chorxr ¥ Stﬁr«a& = "C\n’it(':oor";
Nt =vetorns :

et = Strlanp LStr‘in? L Sbing2d;
PYinbf(Cza™, retom);

5

Ovtpue=0o

s

strup\fc')‘.
Stropro CS usSed o Coyerts
tnto Oppercase valves.
SVhtOJQ:
Stmprmzc“strtna");
Pmcamm:
Fnclode <eskeEAfo-h>

H inclode <Conio-h >
veildmoin C O

g

the

vSed t Compare two
two Q\f?um@nﬁs K;K‘Q S‘?"'{ﬁﬂl 7St“cn‘332

hbove Saome wvalves e wolill | vetorn
eoﬁ . 3) 4
Sfdntooo; |
e = (String s Stringa)s
PYO%m\m: ' ’ '

lowercase

Str Len?t C)'
Premtf (¢ 2cl™) Str apr);
3
Gueput: CHITTOOR
) Stklw_‘{;;s function ©s vsed o (Orverts .thQ
OPPercase strtma +to \ower Case stvtnﬂ.
San‘\:qxz) | . i

Stv Leor O =Ls—tv£nﬁ e a

S R S NI IS

g

81": «S‘lTAmg _
Chaon) = C "S'TAmS”)
StVLMJk()'

’——)choq SCT) = b i) ,

F| Strrey o . ERLE S ceverse.. the -
His functon ts OS
TVer value or String.
\S%n\:o\x"
Strrayey = C"s«utna”)
Pi"Oﬂer' !
=t NC\ocle <Staiorns :

= Inclode < S‘Eru\? V\,} |
VOLdN\O\LﬁQ)) ‘- | |)

Nt rey 3

hoy ¢ Stﬁ"ha '="G0P£",

PR C"/ct“, Yev) s
“Hetah ¢y
5

C)UEPUt\: iPoq

- “x - - LAy R

A NS 2~
Standard ~functi

Standard. functions

by ‘¢’ oand pot
L Beoen pye -~ defired "j

g -LhQ E

ns -

ave -func !i(o . %
tntd Stau WCloy ro '(.\,

Wborarie s- e i
a C’)._ .
Ex 1= printfc) , Scanf) |
hat we need o do to vse them s g
wha » -
T {lles.
tnctode the appropriate header

ax::&mc\od@ <stdio'h >, Fimelode < Conio:Ny.

Tt Contkainea n the beodler files are the
P"O'*:tdpes of the Starndard functtons. The ‘FQY\Q(:{’Q,.,
QAefimitions (the bodly of the ~functtons) hos been :

t

Comp‘:lkb\ and pot Inte a Stardard C "‘R'O'”QY‘QJ UShIQ)\
Wl ke

P rintf 2 |
Ly Printf C print formatted) in C

Ly lt wrikes otk a Cstvtnca to Standord Oul:pUL_
L Prtntf() Hfunctron

Linke b'd C()mp"l_er cLurEh? QompC\Qh‘Oﬁ.

ts 0OseQ +o Prcnt the «chonrqc

tey

gucnca, floo k&, \nte%v, OcCtal and he xadecimal VQLUQ)SN
Onko the OLLDLUE . Seveen

Use 2 -

7Zd - value .of an in er . vartable

7.C - Vvalve s¢ an Chavrocter Varfak Lo

7F - Valve ot an €loa t Varialsle

/.8 — Value of a Stﬂr\% Varials Lo
SCanfz- -

Ly & s vsed to take 'NPot from the UsSersg
Ly C functron to

feaa Cr\pob from the

Skandarg
Cr\pul: Nt L Q:hCouthrih? @) oohc{:ttsyzoce or
Nzwiline

Ls SCanf #w\Q&Cor\ take s the format Strcm
Varlables

9 an g
i th thety address asg

Pavarme te
L= SCang reools

Aa ta QCCOFOLCnﬁ B 5e) tﬁe
Format SPY ecifier :

-

yV N

TA Y 2Ll RIS TR NRR St S U R Aei—ee N Lol R e R0 3 e e L BN R

= - hhg.. e el L, - ‘

Tt t1okes +the Pro?ram 4o holal the OUEpy (-

Screen Hor Some time ontcl(the vser posses Q Re?
“From the lcct_ybomd W exfb the comnSole FCreer

Ls, Feech > ~function doesn't toke Arg polameters.

Ls, ?¢&CH-C) reocls o d‘é’r\ab_ chasacter from the

KleoowLoL
putss- _

L A ¢ (.i’bma._y fuwinction that cwritey o
CS"t”T"L? +o Stdout or $tandaid ou:&,oou& ‘

Ly Oe clatation ts (nt pubd
(Const char #str)
Ls Helps to oLfJPLa% o string an
Cutput olevice :
[y Peterng ov nop - negotrve value °tF |
JQcC@:&[uL r CF o S ccesstul; Tt woctl retewn Nal-
%%rvrza;uay c <exft a %Aﬂcéﬁbn

+hie cose, Means that the
nol e beon o

a Stondarel

a RZ[:UJ’P‘L o > £n
Finc Econ teirmina tes hormat(y oL

, raotn C)

;.ﬁj_-)‘{:h(z windows§ OPCraﬁny 53&6@/}*’;
 Clrscr -

I

Ly The clicer en ¢ €S a built in ﬁmca‘on that
¥ the Screen of the Conso Le
| £S wSed Afor CLLCU’LF? e o
éﬁm&pub dukfn? the ¢xecCutton of the C P Fram.

Ls ThiS Fune Eon Fs olefdnecl €n
Enclu ol e

the Ccondo-h
the ScontoR”

he acler fcle . ©W€ neecl 1O
Ffﬂz ~for USZ"\? the Clrscr tn C programs.
| J‘%n‘ba)tf-—

QClrscr);

Control Structure
Simple Sequential programs, Conditional Statements (if, if-else, switch statements),Loops(for,while,do-while)

Break and Continue statements

1. Explain about Control Structures (or) Control Statements in C?
CONTROL STATEMENT:
o The C program is a set of statements which are normally executed sequentially. However,
we have a number of situations we may have to change the order of execution of
statements based on the certain conditions (or) repeat a group of statements until certain

specified conditions are met.
o This involves a kind of decision making then the computer to execute certain statements.
o Control Structures are mainly can be classified as 2 types
1. Branching statements (Conditional statements)
2. Looping statements (Iterative statements)

3. Jump statements

Control Statements

A 4

CONDITIONAL STATEMENTS LOOPING STATEMENTS JUMP ST;TEMENTS
—IF Statement (Simple if) — FOR LOOP ., BREAK
—IF ELSE Statement — WHILE LOOP —» CONTINUE
—»IF ELSE IF Statement —»DO-WHILE LOOP
—»NESTED Statement
—>»SWITCH Statement

CONDITIONAL STATEMENT or BRANCHING STATEMENTS:-

e When a program breaks the sequential flow and jumps to another part of the code its called*“Branching

statement”.

e When the branching is based on a particular condition it’s know as “Conditional Branching”.If

branching takes place without any decision it’s know as “Unconditional Branching”.

e C language possesses such decision making capabilities are know as “Control (or) Decision

making Statements”. They are...
o If statements

o Switch statement

IF STATEMENT(Simple if) :-

» Simple if is one of the decision-making statement but it is “one- way decision making
statement "

Syntax:-
if (Test_Expression)
{

Statements;

Statement — X

» The Test_Expression should always be enclosed in parentheses.

» If Test_Expression is true then the statements are executed otherwise control will passes to the

next statement i.e (statement —x) followed by

FLOW CHART:

l Entry/start

true
Test_exp

True block statement;

Statement -x <

EXAMPLE 1:

#include<stdio.h>
#include<conio.h>
Void main()
{
int age;
clrscr();
printf(“enter the person age™);
scanf(“%d”,&age);
if(age>=18)
{
printf(“Eligible for vote”);

}
getch();

} }

If-else statement:-

» It is an extension of the “Simple if statement but it is a two — way decision making

statement.

» The if-else statement will execute a single or group of statements when the test expression is

Example 2:

// Program to display a number
#include <stdio.h>
#include<conio.h>

int main()

int n;

printf(“enter a number”);
scanf(“%d”,&n);
if(n>0)
{

printf(“the number is:%d”,n);

return O;

true. It performs else block statements when the test expression fails.

Syntax:
if(Test_Expression)
{
True block of statements;
}
else
{

Statement- X;

e If the Test_Expression is true (non-zero) the if part is executed and control passes to the next statement

following the if construct.

e Otherwise the else part is executed and control ispassed to the next statement (statement —x).

FLOW CHART:
True False

v v

If Body I | Else Body l

[Statement Just Below IfJ

1

Example Program:

void main()
{
int m1,m2,m3,total;
float avg;
clrscr();
print(“enter any 3 subjects marks”);
scanf(“%d%d%d”,&m1,&m2,&m3);
total=m1+m2+m3;
avg=total/3;
if(m1>=35 &&m2>==35&&m3>=35)
printf(“result is pass”);
else
print(“result is fail”);
print(“total marks is %d”, total);
printf(“average marks is %f”, avg);

getch();

Else — If ladder (or) If-else-if Statement:-

» Multi way decisions arrive when there are multiple conditions and different actions to be

taken under each condition.

» It can be return by using if-else construct as follows.

Syntax : if..else.. ladder statement

if (expression1) 4€=———————=First check this expression

{
// statement(s)
}
else if (expressionzﬂ—__(h“k this expression only if above expression
{ is false

// statement(s)

}
else if (expression fmm————=theck this expression only if above expression is
{ false

// statement(s)

}

else
Execute these statements only if all the above

{
// statement(s) / expression checks are false.
}

FLOW CHAT:

If..else if.. Ladder flow chart

True
(expressionl)
Statement(s)1
(expression2 True
Statement(s)2

True

(expression3

Statement(s)3

Statement(s)4

Rest of the code

e The conditions are evaluated from the top of the ladder to downwards. As soon as true condition

is found, that associated statements executed and the control is transfer to the statement-x.

® When all conditions becomes false, then final else containing default statement will be executed.

EXAMPLE PROGRAM:

int main()
{
inta, b, c;
printf("Enter the numbers a, b and c: ");
scanf("%d %d %d", &a, &b, &c);
if(a>b && a>c¢)
{
printf("%d is the largest number.", a);

}
else if (b> a && b>c)

{

printf("%d is the largest number.", b);

}

else

{

printf("%d is the largest number.", c¢);

}

return O;

}
NESTED IF-ELSE-STATEMENTS:-

> With in If statements we will define more than one If statements called “Nested If — else

Statement”
Syntax:-
if(Test_condition -1)
{
if(Test_condition -2)
Statement block-1;
else
Statement block-2;
}
else

statements block-3;
e If the Test_condition -1 is false, then the statement block- 3 will be executed. Otherwise it
continues to perform the second condition.

e [If the Test _condition —2 is true, then the statement block- 1 will be evaluated otherwise

statement block — 2 will be evaluated and control is transferred to the statement —x.

EXAMPLE :

void main()
{
int n;
printf(“enter a number”)
scanf(“%d”,&n);
if(n>0)
{
If(n%2==0)
Printf(“even number”);
else

printf(“odd number”);

else

printf(“number is not suitable”);

}

SWITCH STATEMENT:-

/
°

e

¢

X/
L %4

L)

The switch statements provide clear way to dispatch to different parts of a code based on
the value of single variable or expression.

It is multi-way decision making construct that allows choosing of a statement or group of
statements among several alternatives.

The control flow in the switch statement executes the specified statements when the
constant values are matched with the expression.

The switch statement is mainly used to replace multiple if-else sequences which are hard

and maintain.

FLOW CHAT:

Switch(ex)
’* Block-1 >
4* Block 2 —

4* Default block of stmt | ——)

Statement-x

Syntax:-

Switch(Expression)

{

Case value-1:
Block-1 of Statements;
break;

case value-2:
Block—2 of Statements;
break;

default:
Default block of Statements;
break;

Statement—x;

¢ The expression following the switch keyword is an integer valued expression. The value ofthe
expression decides the sequence of statements to be executed.
Each statements of sequence begins with the keyword case followed by a constant integer orcharacter
(value-1, value-2,....) control is transferred to the block of statements(block-1,block2,......) following
the case label whose constant is equal to the value of the expression in theswitch statement.
» The default part is an optional case, it will be executed if the value of the expression does not
match with any of the case values.

» The keywords break at the end of each block signal the end of a particular case and exit from

the switch statement.

Notes:
« If we do not use the BREAK statement, all statements after the matching label are also
executed.

o The default clause inside the SWITCH statement is optional.

EXAMPLE :-
#include <stdio.h>
int main()

{

int week;

printf("Enter week number(1-7):

scanf("%d", &week);
switch(week)
{
case 1:
printf("Monday");
break;
case 2:
printf("Tuesday");
break;
case 3:
printf("Wednesday");
break;
case 4:
printf("Thursday");
break;
case 5:
printf("Friday");
break;
case 6:
printf("Saturday");
break;
case 7:
printf("Sunday");
break;
default:
printf("invalid number.");

}

return O;

}

2.Explain About Looping Statements?
» The process of repeatedly executing a block of statements is known as “looping”.
» A program consists of 2 segments
O Body of the loop
o Control statement
» The control statement tests certain conditions and then dissects the repeated execution ofthe
statements contained in the body of loop.
» Depending on the position of the control statements in loop can be classified as
= Entry —controlled loop
= Exit— controlled loop
» Clanguage provides for 3 constructs for performing loop operations. They are
o For loop
O While loop
O Do-while loop

For loop Statement:-

» The for loop is another “entry — control loop” that provides a more concise loop control
structure.
» The for loop is useful while executing statements a fixed number of times. The control flow

of the for loop is

Syntax:

for (initialization ; test condition; increment /decrement)

{
Statement -1;

Statement — n;

}
Statement — x;
» The for statement is compact way to express a loop. All the three parts of the loop are in close
proximity with the for statement.
» The initialization part is executed first but only once. Next the test condition is executed. If
the test evaluates to false, then the next statement after the for-loop is executed (means the

statement — X is executed).

» If the test expression evaluates to true, then after executing the body of the loop, the increment
and decrement part is executed.
» The test evaluated again and the whole process is repeated as long as the test expression

evaluates to true.

Nested for loop (Nesting of for loops):-

» Nesting of loops means one for loop statement with in another for loop statement is
allowed in C language.
Syntax:-

for(initialization; test_condition; increment/decrement)

{

for(initialization; test_condition; increment/decrement)

Statement — X;

The loops should be properly indented so as to enable the reader to easily
determine whichthose statements are contained with in each for loop statement.

SYNTAX -2 ;

Outer_loop
{

Inner_loop

{

// inner loop statements.

// outer loop statements.

}
EXAMPLE :

include <stdio.h>

int main()

{
int n; // variable declaration
printf("Enter the value of n :");.
for(inti=1i<=nji++) // outer loop

{
for(int j=1;j<=10;j++) // inner loop
{
printf("%d\t",(i*})); // printing the value.
}

printf("\n");
}
WHILE LOOP:-

» The simplest o all looping statements in C is the “while loop statement” and while is an entry-

controlled loop statement.

» The while loop is used when the number of iterations to be performed are not
known in advance. The Control flow in while loop is start from the expression
and execute thespecified statement with in the loop as long as it remains true.

Syntax of while loop is..
Syntax:

Initialization;
While (Test_condition)

{
Statement - 1;

Statement- n;
Increment/decrement
statement;

}
Statement- X;

» The Test_condition is evaluated and if the condition is true, then the body of loop
is executedand the Test_condition is once again evaluated and if it’s true, the
body of loop is executed once again.

» The process of repeated execution of the body continues until the Test_condition
finally becomes false and control is transferred out of the loop means statement

—X 18 executed.

EXAMPLE:

void main()

{
inti;
1=1;
while(i>0)

{
Printf(“display numbers”,i);
1++;

}
Do — while loop Statement:-

» The while loop construct makes a test condition before the loop is executed. On some
occasions it might be necessary to execute the body of the loop before the test condition is
performed. Such situations can be handled with the help of “do while statement”.

» Some times it is desirable to execute the body of a loop at least once even if the test condition
evaluates to false during the first iteration. In effects, this requires testing of termination
expression at the end of the loop rather than the beginning as in the while loop.

» So the do-while loop is called a bottom expression loop. The loop is executed repeatedly as

long as the test condition remains true.

Syntax :
Initialization;
do
{
Statement - 1;
Statement — n;
Increment / decrement statement;
}

while (Test_condition);

» Inthe above syntax the body of the loop evaluated first. At the end of the loop the

Test_condition is evaluated. If it’s true to evaluated the body of loop once again.

» This process continues as long as when the condition become false the loop will be terminated
and the control goes to the after the “do — while statement” means statement — xis executed.

» Since the condition evaluated at the bottom of the loop, the do — while construct provides an

exit — control loop and body of loop is always executed at least once..

FLOWCHART

!oo

statement

A

True

false

Explain about Break and Continue statements with an example?

Jumps in loops:-

> Some times when executing a loop it becomes desirable to skip a part of the
loop (or) to leave the loop as soon as certain conditions occur.
» C permits a jump from one statement to another statement to the end or beginning
of a loopas well as a jump out of a loop.
» In C language jumping statements 2 types
o Break statement
o Continue

Break statement:-

» We have already seen the use of the break in the switch statement. The break
statement can also be used within loops (like for, while, do while).

> A break statement constructs terminates the execution of loop and the control is
transferred to the statement immediately following the loop (means control passes
out sideof the loop).

» The term break refers to the act of breaking out of a block of code. The control
flow in for, while and do-while loop statements will be terminated by a break

statement.

Syntax:

for(expressionl;expression2;expression3)

if(<condition>)

{
break

}

Statement — x;

» When the loops are nested the break would only exit from the loop containing it. It means

“each break statement exit only a single loop”.

Continue statement:-

Continue statement 1s used to skip the current transaction and executed the next iteration

1s called as a CONTINUE statement.

» During the loop operations, it may be necessary to skip a part of the body of the
loop under certain conditions and the execution continues with the next loop
operation.

» C supports another statement “continue statement”. It causes the loop to be
continued with the next iteration after skipping any statements in between the
continue statement falls the compiler.

» The continue statement skips the remainder of the current iteration and initiate
the executionof the next iteration. If this statement encountered in a loop, the rest
of the statements in the loop are skipped and the control passes to the condition

which is evaluated. If the condition is true, the control enters in to the loop again.

Syntax:

for(expressionl; expression2;expression3)

{
if(<condition>)
continue;
}
Statement — x;
EXAMPLE :

#include <stdio.h>

int main()

{
int i, n;
printf("Print odd numbers till: ");
scanf("%d", &n);

for(i=1; i<=n; i++)

{
if(1%2=0)
{
printf("%d\n", 1);
}
}
return 0;

Arrays
Arrays are used to store multiple values in a single variable, instead of
declaring separate variables for each value.

To create an array, define the data type (like int, string...etc) and specify
the name of the array followed by square brackets [].

There is two types of arrays Single dimensional array and
Multidimensional array

Single dimensional array

One-Dimensional Array is a group of elements having the same data
type which are stored in a linear arrangement under a single variable
name.

To insert values in single dimensional array
Int myNumbers[] = {25, 50, 75, 100};

25 50 75 | 100

Access the Elements of an Array
To access an array element, refer to its index number.

Array indexes start with 0: [0] is the first element. [1] is the second
element, etc.

This statement accesses the value of the first element [0] in myNumbers:

Example
#include <stdio.h>
Int main()
{
Int numbers[5] = {10, 20, 30, 40, 50};
For(int i=0; i<5; i++)
{
Printf(“numbers[%d] = %d\n”, |, numbers[i]);
}
Return O;
}
Output
Numbers[0] = 10
Numbers[1] = 20
Numbers[2] = 30
Numbers[3] = 40
Numbers[4] = 50

Multidimensional Arrays
A multi-dimensional array is an array with more than one level or
dimension. For example, a 2D array, or two-dimensional array, is an array
of arrays, meaning it is a matrix of rows and columns (think of a table)

Arrays can have any number of dimensions.

Two-Dimensional Arrays
A 2D array is also known as a matrix (a table of rows and columns).

To create a 2D array of integers, take a look at the following example:

Int matrix[2][3] ={{1, 4, 2}, {3, 6, 8} };

The first dimension represents the number of rows [2], while the second
dimension represents the number of columns [3]. The values are placed
in row-order, and can be visualized like this:

COLUMN O COLUMN 1 COLUMN 2
ROW 0 1 - 2
ROW 1 3 6 8

Access the Elements of a 2D Array

To access an element of a two-dimensional array, you
must specify the index number of both the row and
column.

This statement accesses the value of the element in
the first row (0) and third column (2) of
the matrix array.

Example
Int matrix[2][3] = { {1, 4, 2}, {3, 6, 8} };
Matrix[0][0] = 9;
Printf("%d"”, matrix[0][0]); // Now outputs 9 instead of 1

Loop Through a 2D Array

To loop through a multi-dimensional array, you need one loop for each of
the array’s dimensions.

The following example outputs all elements in the matrix array:
Example

#include<stdio.h>

#include<conio.h>

Main()

{

Int a[3][3],b[3][3],c[3][3];
Int 1,j;
Printf(“element for a matrix is:”);

For(i=0;i<=2;i++)

For(j=0;j<=2;j++)
{
Scanf(“%d”,&alil[j]);
}
}

Printf(“element for b matrix is:”);
For(i=0;i<=2;i++)
{

For(j=0;j<=2;j++)

{

Scanf(“%d”,&bli][j]);

}

Printf(“matrix addition is”);
For(i=0;i<2;i++)
{
For(j=0;j<=2;j++)
{
Clil[1=alil[j1+b 10T

}
For(i=0;i<=2;i++)
{
For(j=0;j<=2;j++)
{
Printf(“%d\t” c[i][j]);
}
Printf(“\n”);

Output:
Element for a matrix is:1

2

O 00 N o v b~ W

Element for b matrix is:1

O 00 N o U

Matrix addition is
2 4 6
8 10 12
14 16 18

FEATURES OF POINTERS:

1)Pointers save memory space.

2)Execution time with pointers is faster because data are manipulated with the
address, that is, direct access to memory location.

3)Memory is accessed efficiently with the pointers. The pointer assigns and
releases the memory as well. Hence it can be said the Memory of pointers is
dynamically allocated.

4)Pointers are used with data structures. They are useful for representing two-
dimensional and multi-dimensional arrays.

5)An array, of any type, can be accessed with the help of pointers, without
considering its subscript range.

6)Pointers are used for file handling.
7)Pointers are used to allocate memory dynamically.

8)In C++, a pointer declared to a base class could access the object of a derived
class. However, a pointer to a derived class cannot access the object of a base
class.

9)A pointer is a variable that stores the memory address of another variable as
its value.

POINTERS:

1.Pointer is a variblethat stores a memory address.

2.pointers are used to store the address of other variables or memory items.
3.pointers are very useful for another type of parameter passing.

4.pointers are essential for dynamic memory allocation.

5.pointer variable points to a data type (like int) of the same type, and is created
with the * operator

SYNTAX:
Datatype variable name;

Datatype *variable name;

Example

int myAge =43;

int* ptr = &myAge;

printf("%d\n", myAge);

printf("%p\n", &myAge);

printf("%p\n",*my Age);

ARITHMETIC OPERATIONS WITH POINTERS:

Arithmetic operations in c is used
to calculate math operations they are as follows

1) addition (+):
This operator is used to add two variables

2)substraction (-)

This operator is udes to find difference between two variables
3)multiplication (*)

This operator is used to multiply two variables
4)division (/)

This operator is used to find remainder
5)modulo (%)

This operator is used to find quotent
Example program of arithmetic operations with pointers
#include<studio.h >
#include<conio.h>
Void main()

{
Int a=25,b=10,*p,*j;

p=&a;

j=&b;

Printf("\n addition a+b=%d",*p+%j);
Printf("\n substraction a-b=%d",*p-*j);
Printf("\n multiplicarin a*b=%d",p*j);
Printf("\n division a/lb=%d",*p/*j);
Printf("\n mod a%b=%d",*p%*j);

}

OUT PUT:

addition:35

substraction:15

Multiplication:250

division:2

modulo:5

ARRAYS WITH POINTERS:

In C, a pointer array is a homogeneous
collection of indexed pointer variables that are references to a memory location.
Itis generally used in C Programming when we want to point at multiple memory
locations of a similar data type in our C program. We can access the data by
dereferencing the pointer pointing to it

SYNTAX:

Datatype variablename[size]:{array elements};
Example

int a[4] = {25, 50, 75, 100};

inti;

for (i=0;i<4;i++)
{
printf("%d\n", a[il);
}
OUTPUT:
25
50
75
100

Instead of printing the value of each array element, let's print the memory
address of each array element.

Example:

int a[4] = {25, 50, 75, 100};

inti;

for (i=0;i<4;i++){
printf("%p\n", &ali]);

}

OUTPUT:

0x7ffe70f9d8f0

0x7ffe70fod8f4

0x7ffe70fod8f8

Ox7ffe70f9d8fc

Two Dimensional Array of pointers in C:

A Two Dimensional array of pointers is an array that has variables of
pointer type. This means that the variables stored in the 2D array are such that
each variable points to a particular address of some other element.

SYNTAX:

datatype *variable name[size][size];
EXAMPLE:

int *arr[5][5];

pointer array of 5 rows and 5 columns.

The element of the 2D array is been initialized by assigning the address of some
other element.

In the example, we have assigned the address of integer variable ‘n’ in the index
(0, 0) of the 2D array of pointers.

intn;
arr[0][0] = &n;

position (0, 0)

Below is the implementation of the 2D array of pointers.

Example:

#include <stdio.h>

int main()
{
intarr1[5][5]={{0,1,2, 3,4},
{2,3,4,5,6},
{4,5,6,7,8},
{5,4,3,2,6},
{2,5,4,3,1}};

int* arr2[5][5];

}

for (inti=0;i<5; i++)
{
for (intj=0;j < 5; j++)

{
arr2[i](j] = &arr1[il[j);

}

printf("The values are\n");
for (inti=0;i<5; i++)
{
for (intj=0;j < 5; j++)
{
printf("%d ", *arr2[il[j]);

}
printf("\n");

return O;

Output:

The values are

01234

23456

45678

54326

25431
ARRAYS OF POINTERS:

In C, a pointer array is a homogeneous collection of indexed pointer variables
that are references to a memory location. It is generally used in C Programming
when we want to point at multiple memory locations of a similar data type in our
C program. We can access the data by dereferencing the pointer pointing to it.

Syntax:

pointer_type *array_name [array_size];

Here,

pointer_type: Type of data the pointer is pointing to.
array_name: Name of the array of pointers.
array_size: Size of the array of pointers.

Note: Itis important to keep in mind the operator precedence and associativity
in the array of pointers declarations of different type as a single change will
mean the whole different thing. For example, enclosing *array_name in the
parenthesis will mean that array_name is a pointer to an array.

Example:

#include <stdio.h>

int main()

{
intvar1 =10;
int var2 = 20;
int var3 = 30;

int* ptr_arr[3] = { &var1, &var2, &var3 };
for (inti=0;i<3;i++)
{
printf("Value of var%d: %d\tAddress: %p\n", i + 1, *ptr_arr([i], ptr_arr[i]);

}

return O;
}
Output
Value of var1: 10 Address: 0x7fff1ac82484
Value of var2: 20 Address: 0x7fff1ac82488
Value of var3: 30 Address: 0x7ffflac8248c
Explanation:

As shown in the above example, each element of the array is a pointer pointing
to an integer. We can access the value of these integers by first selecting the
array element and then dereferencing it to get the value.

Array of Pointers to Character

One of the main applications of the array of pointers is to store multiple strings
as an array of pointers to characters. Here, each pointer in the array is a
character pointer that points to the first character of the string.

Syntax:

char *array_name [array_size];

After that, we can assign a string of any length to these pointers.
Example:

char* arr[5] ={"gfg", "geek", "Geek", "Geeks", "GeeksforGeeks" }

This method of storing strings has the advantage of the traditional array of
strings. Consider the following two examples:

Example :
#include <stdio.h>

int main()

char str[3][10] = { "Geek", "Geeks", "Geekfor" };
printf("String array Elements are:\n");
for (inti=0;i<3;i++)
{
printf("%s\n", str[i]);
}
return O;
}
Output
String array Elements are:
Geek
Geeks
Geekfor

In the above program, we have declared the 3 rows and 10 columns of our array
of strings. But because of predefining the size of the array of strings the space
consumption of the program increases if the memory is not utilized properly or
left unused. Now let’s try to store the same strings in an array of pointers.

POINTERS TO POINTERS

A pointer to store the address of another pointer. Such
pointer is known as a double pointer (pointer to pointer). The first pointer is used
to store the address of a variable whereas the second pointer is used to store
the address of the first pointer.

SYNTAX
int **p;
Consider the following example.

#include<stdio.h>

void main ()
{
inta=10;
int *p;
int **pp;
p = &a;
PP = &p;
printf("address of a: %x\n",p);
printf("address of p: %x\n",pp);
printf("value stored at p: %d\n",*p);
printf("value stored at pp: %d\n",**pp);
}
Output
address of a: d26a8734
address of p: d26a8738
value stored at p: 10

value stored at pp: 10

UNIT-2

Functions & Structures

Introduction:

>

A function is a subprogram segment that carries out some specific well-defined tasks.
Every C program consists of one or more functions. And all of those functions must
be called as main function.

A function is a subprogram that Modular Programming or, Black box analogy,
Procedural Programming statements that can be processed independently.

A function can be invoked by calling with its name the communication between collar
(calling function) and Calle(called function) takes place through parameters.

The function can be designed, developed and implemented independently by different
programmers.

The independent functions can be grouped to form a software library.

Functions are independent because variable names and labels defined with in its body
or local to it.

The use of functions offers flexibility in the design, development and implementation
of the programmer to solve complex problems.

Syntax: -

void myFunction() {
// code to be executed

}

Function definition and Declaration: -

Definition: -

>
>

>

>

Function itself is refer to as function definition.

First line of a function definition as called as “function declaratory or declaration” and
followed by the “function body”.

With in function declaration to use same function name, no of arguments, arguments
type and return types etc.

This type of declaration’s cannot allow other “function declarations”.

Syntax: -

Return type function name (arguments list)

{

Statement];

Statement2;

Statement N;

}

Declaration: -

» A function declaration tells the compiler about a function name and how to call the
function. The actual body of the function can be defined separately.

Syntax: -
A function declaration has the following parts —

return type function name (parameter list);
Ex: -

» For the above defined function max (), the function declaration is as follows —
int max(int numl, int num?2);

» Parameter names are not important in function declaration only their type is required,
so the following is also a valid declaration —

int max (int, int);

» Function declaration is required when you define a function in one source file and you
call that function in another file. In such case, you should declare the function at the
top of the file calling the function.

Return statement: -

» The return statement in a function need not be at the end of the function.
» It can occur any where in the function body and as soon as it’s encountered execution
control will be return to the caller(calling function).

Syntax: -

return_type function_name (parameterslist)

Types of functions: -
In C language functions can be classified as 2 types. They are

1. Built-in functions(library)
2. User defined functions

Built-in functions: -

» These functions are developed by the other software professionals and that’s having
some

» pre-defined meaning. According to our purpose we are calling our programs.

» In C language those functions are comes with the C library. These functions are also
called pre-defined functions.

» Examples: - sqrt (), pow(), round(), strlen(), strcpy() etc.

User defined functions:-

» C formats the use of user-defined functions apart from the library functions. These
functions are developed by the programmers according to our own purpose.

» This functions are used to when a set of instructions as kept as a block. When never we
need the instructions we will call the user-defined functions from the main function or
program.

Syntax:-
Return_type function _name (list of arguments or parameters)
{
Statement];
Statement2;
Statement N;

Return statement;

}

Retuyrn S‘ru'}:ew{éﬁf -
The veluyn ototervient t used 4o owtuan Ho™ |

. |

a Ffunclion - g funchon e e yoy ot sreduan |

o value. A veturn statement gretumn S O value
to the calltng funckon and amtgu to the

Vantable tn the Left stde of the calling function -

9f a ﬂDUY\Qh‘cm docs Mot setun o \alde }:Ir\e Yé’f‘uﬂ”
HYpe tn the Rnckon gegenhion and Aeclorotin
9 specified ax vord

‘The finctan can oetan mdy one value ot
a Atme. The funckon declared as votd may ot
kot & orekaan Statement Lhat specife ©
volwe - gtmee a vord —Ruckom hea 1no stetwnd
value g4 wmeamx Mo stetunn statement with A

votd —fanckon .
a, m&‘\{: genenal Fo of yetum stedewent U
ke
Yetum (expness ten) o) yeroyn YSrunn _velue:

r e [y o E;l" WOMY\ Oj
ATOLE - vetuan (o))

. Retuning contwl Fom Hfanckion thod does ot
neturn yadue
Yetarn
9 (IQe!—umfer conbol Povu Favcbkiom thot Yetauan
vedue

| Yeturn <value>_

“‘)”ypes of @ ' Funchons. fn O 'i..fm(cym_w'r»;\;rxrd

by the usey of alneady tncluded en ¢ conptles,

Ahene: o —kido types of —fawnckons . e
’P“m%mwm\n&. :

P

oY) Pre —defrne Juncicons
9. Vaer defined —Founctons:

| %Eun.d—t_‘fmf——«l
L —//‘/\
| \ [,mery Funchon F_Uﬁ_md&kr\ed_,\

Proint (), & confo) eke
I Butl -¢n Junclions '~

Butt on FanchHms tm ¢, of ten sefeaed

Lanckios cuse predefned funckons Hhalk Qe
PV qRe standond mey Fonchronn oo

built -tn funchHouw ™ C Progrommad +o

| latton , memory allocatron ete.

Vepending on whethen oo funcvon 1 defined |

4 - Built -t funcion - (er) Stopdand 1 brary fonckions

Jo oo Aoy Junchiow o Stawndand [Blstany

!

kgndle_ torls Sudi o ymathe vuakiced Calcw(a(v%i
anpwd ond outpud operakun ;S—Hin? MOnypu <

|
|
|

- Pnedéﬂ‘ngd 'cvec:'.éc._.i bLf @5&4

- declanathion tnaide. . » S
‘ !’\ﬁ(lole_/\ Files | Reduced me())i?(\f‘j 1!
| ' O

— hody tartde ol fle; o proge

- EBq:- '

|

ok of the ¢ Standond L‘thcux\j. These. ﬁm&-h‘mg

e ——————

e —
SF e

These Anchony one de fined tn ?*ke L\ﬁo\d@\ -Ctle—‘
twhen You tnclude Jhe headen file, Jhese funcliou

ane avadlakle foy WShe

Afrax e xanaple v -
Mhe PYinfC) v standand [tb’YOd_\i fune teon

Jo cend fovrarokted ouwdpuk Ho -lhe Scyeen X
The funchion W dedined U atdto - h” headex L5le .
There ane othen mumeyouws Lthyony Lo nkdony

defined wnder v sidto-h" , such ar scanfC)
SPtufcr, qebchanc) etc: one you tnclude
" Stdo b’ tn Youy Progran , all theie Janctrons

e gvalable Hv ue .
Bull-tn Kinckons! |
_1‘ Mathevwiokced Ffunchond:. The wiodh *h OLQL{ NE S

Voniows woadhewmokrco) fanctions - en ¢ Thene

Cq'— Stac€), Cose) ekt \
z;u_ 3P fFeaent Makkemh‘Co.\ Lanckons weed o
C Oone)
g% - Stnc) ,C05C), 39 vEC) Powes (x ,4), loabk

9. Gnput /oukpuk Sunchong -
(Therse Prpulk [oukput funckou ane Wsed

1o sead fnpur fom the user or waite
ek put o the Scveen . |
By 1= Papikd L Sconf €y, gersc) -

3 String mamP‘”&Hm Function S . -
There St ?Yl% WAONY \mﬁ(\{im\ fan Q\-x‘qr\/s Qe

|

eat stilency , HHPPYCy ¢ Blrcak).
b TTime function: These fime funchions cna whHed 1o
L omektive kFhe cuvvent ftwme gy perfuxym trme - 5

L Yeloted calcudodion g -
Ex'~ Hmec) , Jocolitme c) : ghyfHnrecH

T T]

{ . ;
C peed Yo wwonipul ole 8{~¢\YL9& i ¢ !
l
|

’D-Ub'?-& de (i ned 4oanckeom g o
| The se -funcliony o cyealed h\l ‘yﬁ)%»‘m,m\,c,\
i&ttfﬂd\ﬂa +o ‘then t)\(‘qu‘\z\e‘f\l\t’nl. The se funclions, |
1 o Mot Prade Fned oy Bburlbk Tt the Progra Yy
| lavguage bhud ane tanatten by the o growme,
1 o wodulanize code ; twpnove code o,r{m?'/nh'r,q
and make Yhe PIYO™ taone unden akasdodle .

S\in{-ﬁt fv usen defened fanckhion en € -
verunhypre function - name (?w\m wekea,)

g
Stakevwenk -\ 5
; Statevmend -2

Fon exanple. =GP oNe you wand 1o ¢ yeate o

” Puncrron R add Two auwben fhen you Cyeate a
1 PuncHon otth nome sumc) thv H(Pe of funchom
| 9 called uses Jdefined functron .

i Deﬁ‘nlnﬁ o function: ‘Dc-F:‘nr‘nf] of Hfanct?A
7 "°*A7'Lj hbut gtve booly of Sunction -hat e i
| write logic tnside funchin bo d g

i gyntox'-

e 'IQ‘\’uTY\,-lqpa Lonc ton - Y\amc(PaAoww)

Ly

F | —Funckion looday
|\ Function De clarections -
| A Sunction declasahin s the process of tells
B 1. omprie abowt o Auncton vawe. The actual
' boa“f 0; '{he AMCH'CM Caﬂu d(fl‘ﬂ(()[AC,’({)eiaR/(,’.
E .
E vetum _hype fun cton . name (panvnete);

-

Lls’
| 3 ”

a,LZT;zj; B | [
chen e call an '7%('75{"0’4 Cov b | yuc,g {o \

—funciion /o'ody and execute enttae Qod(".'f?;y le(

any Functron just cositte name of Funcbkom on

of any parametn & %%U'Yﬁd Fhen DeAs \

Pmme/(-&~ ' |

Sl{nfm(o :
Sfunchom-name 0)

Example of UPFonckon: -

How usea _dedined Tavdoon wxles =
= tnclude <stdio- h>

votd funcbionNowe)
7 e

.7;
(v\ ymaitnc)

3

-

Sanckion Name) —
Ny s e

- -

¥

| S#h.yﬁm - *\\‘

amel
—Eim);on /\fame, Pau[melley?

¢ a1 s

’-—/\ m:p @Mama/\fumloeq C'h+ V‘“'“L’e’*’l)ﬂ_
pe:puqn |
 \abue Gwﬂ‘ m’f 'hamfa, humfoeu] 4 Huvnloeb] b
| j% gedugn demp

j

i
f

m“"‘?e' "3‘*1& Jp«wo J/Vl&ﬁoo,ﬁf . Jpoie J&ea Mm nlo
the. v{,ﬂm i m c op.am?,w?& N

K C-’AML? lfaﬁua, e
% C‘.@(,ULL? Peﬁeqemee@

G Scanned with OKEN Scanner

NO
il _\“"“——-—s..x< M()Cp.l
N\
: 33) _ Refeyence

| Coll ‘%j/ \/ﬂ.ue, 8

* T call by value, melleol , the, ualue, of Me,
A _acdual ._Paq,e\m&.,]qeq?: uR c:p‘aeﬂ vilo the, Joqumed

,Po%maspeq,?. W con zay Hal M, value. 2] Jﬁ\e\) \faqldue

| % e upn Me, danedion call wn Jbe call JDZ’ vallue,

amellal

G Y cauﬂ? Vel welled sve, canpof wrodlidy, the,

\lelwig, af, the. .actuol Poq,ame:veu, Jc?, the, iotlwml
Poqamé'eq.

i

G Scanned with OKEN Scanner

¥ “éj, WW

|
:

N

| o Wenmoyy e e
\lalye, o Jhe acﬁjzmj "PGLMMJQL?(Z kiniee *ii&d
fDGLJ,EJMe.:/eL;?v 12 Colol‘eo{ thlo the, |

rf,oqng -fZJ&LSI;WMe.JpeL;’_

n;e« acd ol
s oLﬂ* Fovamede 1o Mo avowmend whil

&ol 1h fhe Jomedizn call Mez/:as? Yool
Pakmmevﬁeu[e the aalj,umemf .,wllu'c% 12 redk 1 Hhey

June Jion .eje#%f.:&bw.

eds b soleaglan) B ‘
Yy, A0 Jnoteys anel e, Greept o] call
\[aﬂue, n e . JLULDL Qleamrd,e, .?)‘\/ey)__ 'oeJ}OEU, ¥ VL’I/

. H-theluels < slolio. 5
~H-inelude, £ conio. h>

‘JOIJ 'YOLO Clnf)()

e by,

X= Xtto;

Puwnlf = ?(: /o’:’ 7(),'

j

fh"' mm;n)

1

“’\TQ = ’OJ-
VO,OO COLDJ’
Prm*f (% a=ud ”’ OO)'

?,a’ct') C DJ'
de{uqn 0;
] Chd oul 2

e)(:— I§‘)"0/ -—QL':’O

G Scanned with OKEN Scanner

ﬂ

%‘* ‘gobo tad” i colledl ard wwdlin the tgoko” fu, i
e anadified o atio] awhich 1% 2o,

\"* qn Mo, liman” ‘L.uno;ﬂlzu/) , raq!,wffL Uy = 7.0“ %),

v Pa"mk Hoe. medidioed Vedwe of X,

¥ Then ,:uuinH-’ L o=‘/.cl”’) o) [le;n’? Ko odlé’/""’f’ﬁ valu
o) et awhich e o

.
i C@M ij/ P&{,w{mca

T call L:f U]eieqetfne— , J}B,e, _aJqupp _@i Jﬂe\)
\lewialelz i PappeoL o the, danedion eall o He.
ocliol FQ‘B’M?J% | ¥ i,
B ”':Bv \MJ)U& .@t -ﬂvef -—QLCJV«UJZQJ _fﬂ%q_mme:ﬁeqk Caln vba,
mJﬁﬂa‘eML lzj/ c"!qawgf’?/{%gg -&oq}mﬂﬁ JPay @lVYlereq/?
fince the, ﬁ,o.a,qe?s? _Q)# the. _Qkaﬂu_m,p Poq,awe\,ﬂee/ 12
.Paomol. | Ty E

e T sl Lle-.’)eu’ehae) Me umewwy albeodivon @
Rivm",ﬂau[Jout Lt J[,oui;maﬂ. F_aq,amejeqs? einc] ocdval
_Poq,@mejeu[s?. all e, @peqﬂjibm an Jhe. Junedion aze
Pe‘ﬁ'{ra’lw’&i on He valve, :?Joq&o[al the. ,@cﬂojqeeo,ei,
the oelval poaredeq. avd W andibied Valse,
‘%ﬂﬂ? d)a%ecl,m} He pame. .addges.

(3 scanned with OKEN Scanner

N —" |
U The, ‘f,aﬂouuw &Kam/afe, -Lou/ the. call -L%

Ko Jegence.

H thelsele < obio. b
H thelude < comio. by

\orel SLUQF Cinf *:fn;*)f

inl main ¢ >

Mf se,y})'

X=10;

Y =50,

q{n}fC" be]eo £, Rulp X= '/-CJ :‘/'0’:7‘:)
P qe. Ralp | f

Sweyp C 4% 2yD;
P&Jﬂqﬂl"f> C"ﬁ&}eq Lu)e:f) Y= ‘/.pJ j: ‘/.Cpfl/j))'
%zjcfn 9

qcﬁuqn 2

]

\fm\wl SM)QF C ol ¥, ot ‘kk)
nf Jemp = *a;
¥a =% lD)'
X lo = '}em/o)‘

]

@)up {tlu,zﬂ -
B&Loqeo SMJQF ®=]0 y,rt% ,@Heq RVIP = R0 y):ro

G Scanned with OKEN Scanner

)

%k -J 'JL'QJ \faﬁueﬂ @i. o ,@le) :7 oge feﬁ Jo 10 anl 2,

] L)(,Ls?[;ec,ﬂu/af(n}/
!% PUHW‘H) L be{oqeu PO X = /c’ ®=Y. X;?ﬁ) Pﬁllm theee

i ll’)lilﬂ/k volves,

* sy L B0 i calle) anhih supe e
 Aaluer o v _ancL Y '

Jk Pﬁum}f (" olfeg eevop ¥= /aﬂj vl y,g) me’g~
dhe Uolues ehdeg He coltpo,

='< Be.!aw wf’ -t (‘f_: 94

i C’Wfﬁ"t W/D x Bo 7, ';~ 6.

i

G Scanned with OKEN Scanner

(Kecwision =

“Recinsion s de Proess of alling a fncton tsels
%CPEaéedly until a Panbicwlont condition A meb. A Hunction that
Calls tself dinectly or :-ndivecélg b alled o %ecunsive Hunction

and such Kind of funckion ilts one called Tecuwmive calls.
SYn -
netuwrn type -{t),mcéfon__mme (arg3)

?
Stotenant -1 P

—

wzundl'an;_namc(

Ex= voud main ()
5
Print £ (% weleome /)
vord main() +
5
“the above example void main () wsell i alled main ¢)

0gain and again. the example Wil produce on output.

op: welcome
weleme
welgme

'
'.
+Example paogram -
Fracksiial of a given number by uping gecunsion .

H include (stdio-h>

void main¢)

L

int 1, fack=1, numben :
Clrsevey:

Printf (“enten n value:") ;

Saant (* 1.4 ”,Zn);
+o (i=1 ic=n; i++)
1

fact - fact %7

y

Pkl (*factaial ol 1-d 157 7-d”, numberts fact)>
9et chty: olp
) ol

y = euf’(ﬂ n VpJUL -5
120

acdvandoges ;—

2 Recunsive solution b shiker and Simpley Han . hoN- ieaasiv

2 de U claven and tasien to we.
ds advantogey ; -

> £ Some Prdgoammerns and FeodeyS, ucunsSion A Q
Iiffecurt- @neept .

= Recwaion fmpémenlzd uz,'mg susbem Stack.

It b Jifficdt o find bugs while wing glebal
Vasiables .

' o RKi§Nuoants
Features of Sbg,\c_hut’d MCA

Shuclure - [Dafinitions)

7 Ao Shuchee s o Colleckion of one S move
(\m.&\c\fe,s o Adferent-: cabatypes; 'amF’f-d ‘ogethen
wnder a Binqle masre. i e

= ij uS\ra Stuckures e can make o P

of vaxiables, ovoyns, pomrters et

Featuryes e

™ To Copy elementt Of one oxvay 4o another

QXY of same do&ﬂ:’cypg elements are Copted

OnE by one. L g not possible to Copy all
the elements o ime. Wheveas

elements o different Aakedty pes 4o
sStruckure. vosuolble o f iks type
uSi b e ke L € O Perako y.

anothen

—7 N@Hﬂa of sbuckuses ;g podSble ¢ pne
Con cxeoke Sorudve (githin te st e -

SRS this feakure Ore can handle Complea
dokotgpes:

7 It is oo possivle (fg) to pass shruckwe
elermen® to a Lunddon .

— ON% can casS individual Struckure. elements
oY entive styucume oy ~alue or addvess

1 {
"R Y

-
-

: 40873

=2 T4 6 also POS S ble Ao cwxeotre SAvuChude
PQ\MQ\’$‘ ! - Ll

L e Can. yeode; o. (:csm‘\ewﬁpom'ﬂra Lo
Bryuckane elemenks’ gy Abls (4 'tc'zq}mve:s

') yi I
C’_-—-‘I ope.xo&.ov] e Y
] ! v"'
/ ¢ i v '

D
—

cruclore @ea be dedmed an e N Viants

e&mm\-‘% Q__!\t\ ol zalon 66 Syuckuyve re

S;\du_k RQebyuue L'_k\\{xz

X
ANt wastalnle \ y

<-\'-Lf°- UC@QQ\:,\ex;
R
Q?‘(xu&\vw Aklasa M
~e on o&\om.\o Qo woiln - Qoo se

leeypoord + Meve Swud -ty Rewen o bﬁ‘ T

dedosolen W endoaed W Rn a0 podv ok cmhj

Qe
con eNgse Seuntive. '

boaten ‘\u\‘xm\ ek mé"tﬂxu&q

W\oe \mw\\‘«,\e,\‘\loeubv)\el ond So en. Troae oM

wosdaloe

de vambewa of e puctuse

Suthuxe we TOn oyeoke \:mdq@e,\ QA

S Aeﬁ«'\«a
PSS Lalsest
ek Shwutl e N Ny
e \\\\\?LMA Vg =St Vestalde, ’
i : A of wuekure
M'_kwe]

\A

ﬂ/\\\f\ ~ Qm:\b:—\ '&Qb &ed@sd‘\% \\Q»:&Q\D 2 b‘- O»-r\\u‘ é - \ “Pe- ‘

t“\r “\\\QL\\’&

e dedosalion Sl e thrackare el MR A Pty

Aceant sMecoke OORMSY ¢ e mmm\ SMocoMen toleen
-?\Otﬂh M\\AJ\ oo \)@Go\:;\lz A SR dedoe &

|

/ Stek Leslen

1

el ook (3]
W
: feat e ;
ip:
Mruet oot Ha
W “he obewe Evompe S Sl«u&me’ of tpe Loy,
Anee TEMSRWA \cole(3e] of thay
T 5

. Cxroked «\k © Contittp 3

(
L Ave. TMER ,{’C‘Dﬁ/‘ of b ype and \)D'kicre
e ceave,

Apl Rpadn vesievA wende A ef S

ehvuet Leskt bERY)
\Qo&t&k\ﬁ HQ\ ot -\«\VQ Ebg\&‘ Qﬁc\

e Wre Cxeake A
fov oot Q6] MRyt

WA Ye.smé/\ Aokl 36 \’\RA Lo Ben

agver
)

B

ond N\ \o\\tﬁ/\ Y ‘G\ooks TE“\@&%M et 'Q~\\

e Noyee Wembeysy oF thatkuve o T

Q& AAe é &

o Svdex S W WG\ @ pucane ApreardA 1%
- (S AN .

Ce xbal 0 Weliae A e c\\vtd\“tk Abekerent YA uMRed

A\
el ek W U sacwga “‘ <oY 19\&\5&,)',

e =L Yy e on BEYA o Stvuchave one ~Maded Ao

csdede B

Qyuck _asdale cookey oy Bet ook
e pedd L) Sign A WRd e S®EA Ao hrunhaye

we =N \wck\\\ assiqo R R R N

V\QN\‘(\EY A

Qt

by ok = &dvimcu“;
Yol ofA = STO,

bl p=dte T weee)

£ -&% m\'\ﬁﬁ & Shckaye) —
N R S

—G*‘ - k““\sdvi & W‘T’w o Q\\SP \.\ Nee ot Q{-Ll‘re t\im\:a\,
—) (b\\ \\\‘\c\\ L))ok e(:e,\uk@(\

;‘Q‘\'t\thkéo_ = oAl hy = .

Sechade £ comins N

wan(O

Svuck bock !

}
clon boecke (26)}

Sl 7t
eat poce |

g

Jcent beoten ‘a\b‘}

Qlrtey iy

F‘;hkf‘ Q“\\\ vice ot whutkuye \ercan b Mk

/

pete N e Rook 2opa |, Sveel (b Lok))
Qothpagen)) s

P:“\—F K“‘ \ ““\E/\ " r,é\\"x‘\he&
Vaou- Q\‘\h pdee na soeof Llet price)'),

\”—“\‘“\'{’ i BACNR CEN SRR U(asect U,b\));

)
Cuhput! —

{ e of N NNTS Q—\em\&/\

Reek 130D
mﬁn g
pacet %
Yokl g_\\e(\ 130

‘g’*b\cm};cﬂf‘_

Sn e obew poeEe etuckane ookt WA

I ot Yhwee reende 1 Nosdeloe Aot Lok (Be) Ik
coe Welia o objex

Fefice
WC&';(\ § Rt pdee- TﬂSFQ&\iveX\.\
e St lure NS mﬂ‘ epre 60 '\‘ b\w&nv Hraly

. _ 5 A
o=@ &\W\m\gc\ Ste S0 A Bey - ond “h
d bC ol recoN A

ot

zen

?ESFC_Q__RH . -—(‘\e &Q\(DS‘ nN=
X o ol reem ke ¥ s b2 A
T>€

W ANIEN Y NN SO T C S s v 08
S R ¥ A S TS

i—:‘:’i— 5 Q“\)“ el v."(‘a“ﬁ'(\m '\'L‘ AQ@(Q, a ,&"(_‘-\-(L\.q\-e_ and
WA e bex \Jceixc\k\ﬁ,\ :
a0) T e

slruth betk)
chax f):o\c t'lb:\ y
oo \)?.k\te ')
Y

shutt beely bt = g\“t-\»(“ P doo g LRS ,QO'\S/
eyt) :

. A\ A\ i
ok (\ Roge Neree ey \ el \aon\:),

Y:\&
gt U A el poopa v W\ e A)

(5““\'6 {\\\l\ Recke Q‘T'\‘QQ * sk “, Lkl (P“CQ ’)}

Sheed oth WA veesnlbey
poga S
e e

Be = { Veaa T 0 St

ok | - e fokerort pktuek Roole |

) Cdefloe et bt =nd

Qe = slee ()D\OCKQG.N\ e Swutlave bookl 1A
\)M\\n\c A NN \zaQQ\QESO’;\ oS ot

el w Q\‘D‘Qbe - e el L4 on Q\r;\ec\ v Yo

- P EE

?F . ‘fo\/\ U L\l \[\,\\.\.i/\ enN Q\b(\e d wn \\"Q 'Q\“\‘
A\ AVAS (e w

30 SUNS SO NN (P PRV Qenked
wch\iv‘i-\\) N % o nhy

oce A

\
WO n(\ .
adivtduoed Qe\dp e N v \
“— Qv

K

l

|

To por» St menbers ko fondors

%’111 }uzllo, mw) ‘\Cf\l,{'?m}S

Derived %dcﬂv ’l‘*dfeb wio dormed Ao frndamedal

Ao Jogpe - Skouakger 08 e
é:&»_ shouadwed N have mo.ﬂa —QW dito Bapes

orown O shudwge mombers ?)-mwped o a §\ 0

- Qi Cl C‘b‘b:‘ e- _
i jkivjlw]a f;?x;m Can ke Q%LL?\/Q/L‘{ wied while

He , showdaoye (an ke roed b
ﬁﬁjﬁ qéiiﬂ%ﬂ’b ,‘-(ﬁ\f?) Con ke done L ‘Hd]éo, .
~rfua e
. mmﬁ 1

|
po rrembers of he skowdkder MMOW
e enbip skoudkge ok an Cnaunwn,['*
ddrem. of Hhe skowduge. ok W

&)mﬂx‘ﬂ%()ﬁ wo don't wank ko Wﬁ@ Qx&‘l’q@l
e o e Loadion . e unat ko P2 (MU
i o ow emben of Ho stoudyge - we Can e

«H«Q, dq_l_’_c _::)_QIQ_Qm{D‘?L bo aCced? Ha ?f\d?v?éu,li

[

/.

G Scanned with OKEN Scanner

rombor ofF He Stowubge 613 Pasd Hen jo o]
| fandon -
’ Shoauk shudod

)

ik owli no ; : 3
Chan name CLO:E ’ } Moo @ OL) _Lhui_;c(m
J
Hoal hfwrk—b 3
b
Rolawrn stauthsge fom o fuadion +—

Kol O \/a;i‘a}éla fon London suh a ko o,
FNekwn O« we- &2 alro opebin medliple Vosdables n «H,@J
$Hm & O SHRL quo_ vextade -

A Shudkuse Qan ke ‘ﬂg&w]ﬂgcl from 0 Q‘I;:.L’PUY] |
wﬁ\r\% do 9fekwn ‘@‘d“@‘”ld . Skowdores Can Ui [ose

Anko " flindiond Qithos B srefesonce ar \? vedue -

KRQXLL:‘]’(\ ’%PQ ﬂq'cmb"onr\ama (daﬁ:«,{;vdp()_ MCIJ’Y\MMQ_ L 3}.
Raw shudade by spresence < " |
fﬂws?mfo ~the P;Laqarvﬂhf a» o velue will male a Cbpd
of the Skgu/difuJIQ oo bl W?ﬁ?ﬂa T o He Lndon -
Tresie we hove o studlie wWith @ Mﬁ& no - oF
' the
o rrembers . Maldd & COPj - alk
mtl and Pabgﬁj ko the Lodin a Lok of

ik
ime ar\c’ Corpwmes & ,Qc}b oP QOw«aZ

G Scanned with OKEN Scanner

P

Qab-wﬂqon y —

o a,]m % o Collokion oF sl dote bzrp'eé wo
Ww H@Oj even O (ykw&w[@, ?/5 Q daiu Fat«ﬁe DN

?m’vﬁou?) !Wﬁ‘iqﬂ . » ed ks ke el
° Skguulmuﬂz - A

opfe ey |
TR be b
y 1 Can e 2 \
’ &\; Qriji mZQ 4t shwdge e B Poped
fhaav)
o He £ouddon - A
. Shudwge @n be. gjelugne

dmbjﬂ Jeoe O(.‘J]cl ’
ﬁwe canJL:e Pa_zych{ wo Jiadion eith f[jj
‘%Qfesm& B& e -) L
g e o Stage Gon oo be poned

~fndion -
Lxomple

galude <stdio-h>
- Wda < Corlo -h~

4 a» o pajpmeter ko the

R fundktn L@rnj

5}:9(,41.& JL"UCE/\/&'

G Scanned with OKEN Scanner

i
l
1
|

1
C[r\wl neme [0}

\ O-a(l)

4

\oId dfbplaz (shouuk studeats)
W ek) |

gkq«,w& shudont 3t
pank? Cedor rame
Sart-C e, 43,- Nane) 5
p«u&?("@@ﬂaﬁe)3
SCOﬂP'C\\/C.\ ‘A3, CLS&QB)
Dtaglay (5
7k 0
j

oid d%plwl (skoecd Shoude®)
] .)
prinkE C b plazm o');

pritf C'rane #3575 3ame);
PrinkF-(\\aﬁe /d " &aﬁ}@]

3

(¥ scanned with OKEN Scanner

Array of Structures

Structure is a collection of variables of different data types, and an array
is a collection of variables of the same data type. Combining these
concepts gives us a Array of Structures, which allows for a collection of
structures.

Declaration of array of structure

struct student st[5];

Accessing Structure Fields in Array
We can access individual members of a structure variable

Syntax
array_name[index].member_name
Example

#include<stdio.h>
#include <string.h>
/* Declaration of structure */
struct student
{
int rollno;
char name[10];
e
int main()
{
inti;
/* Declaration of array of structure */
struct student st[5];
printf("Enter Records of 5 students");
for(i=0;i<5;i++)
{
printf("\nEnter Rollno:");
scanf("%d",&st[i].rollno);
printf("\nEnter Name:");
scanf("%s",&st[i].name);
}
printf("\nStudent Information List:");
for(i=0;i<5;i++)
{
printf("\nRollno:%d, Name:%s",st[i].rollno,st[i].name);

}

return O;

}

Output

Enter Records of 5 students
Enter Rollno:1
Enter Name:Sonoo
Enter Rollno:2
Enter Name:Ratan
Enter Rollno:3
Enter Name:Vimal
Enter Rollno:4
Enter Name:James
Enter Rollno:5
Enter Name:Sarfraz

Student Information List:
Rollno:1, Name:Sonoo
Rollno:2, Name:Ratan
Rollno:3, Name:Vimal
Rollno:4, Name:James
Rollno:5, Name:Sarfraz

Data structures

Introduction
» A data structure is a storage that is used to store and organize data.
» A data structure is not only used for organizing the data. It is also used for
processing and retrieving data.

> Some examples of Data Structures are arrays, Linked List, Stack, Queue, etc.

» Data Structures are widely used in almost every aspect of Computer Science
i.e. Operating System, Compiler Design, Artifical intelligence, Graphics and
many more.

Types of Data Structures

There are two types of data structures:

o Primitive data structure

o Non-primitive data structure
Primitive Data structure

The primitive data structures are primitive data types. The int, char, float, double,
and pointer are the primitive data structures that can hold a single value.

Non-Primitive Data structure

The non-primitive data structure is divided into two types:

o Linear data structure

o Non-linear data structure
Linear Data Structure

» The arrangement of data in a sequential manner is known as a linear data
structure.

» The data structures used for this purpose are Arrays, Linked list, Stacks, and
Queues.

> In these data structures, one element is connected to only one another
element in a linear form.

Non-Linear Data Structure

» When one element is connected to the 'n' number of elements known as a
non-linear data structure.

» The best example is trees and graphs. In this case, the elements are
arranged in a random manner.

Advantages of Data structures

The following are the advantages of a data structure:

o Efficiency: If the choice of a data structure for implementing a particular
ADT is proper, it makes the program very efficient in terms of time and
space.

o Reusability: he data structures provide reusability means that multiple client
programs can use the data structure.

o Abstraction: The data structure specified by an ADT also provides the level
of abstraction. The client cannot see the internal working of the data
structure, so it does not have to worry about the implementation part. The

client can only see the interface.

Linked list

Linked list is an ordered collection of homogeneous data elements called
nodes where the linear order is maintained by means of links (or) pointers

Linked list is a data structure which is collection of nodes that contains of
two parts

1. Data part
2. Link to next node
Structure of Node: -

Node

DATA LINK

Store actual content stores the address of next node

Types of Linked list

The following are the types of linked list:

o Single Linked list

o Doubly Linked list

o Circular Linked list

o Doubly Circular Linked list

https://www.javatpoint.com/ds-types-of-linked-list#Singly
https://www.javatpoint.com/ds-types-of-linked-list#Doubly
https://www.javatpoint.com/ds-types-of-linked-list#Circular
https://www.javatpoint.com/ds-types-of-linked-list#Doubly-Circular

Single Linked list

The single linked list is a data structure that contains two parts, i.e., one is the data
part, and the other one is the address part, which contains the address of the next
or the successor node. The address part in a node is also known as a pointer.

Suppose we have three nodes, and the addresses of these three nodes are 100, 200
and 300 respectively. The representation of three nodes as a linked list is shown in
the below figure:

| 1 | 200 pumg 2 | 300 pupmg 3 | NuLL|
[_* 100 200 300
head

We can observe in the above figure that there are three different nodes having
address 100, 200 and 300 respectively. The first node contains the address of the
next node, i.e., 200, the second node contains the address of the last node, i.e.,
300, and the third node contains the NULL value in its address part as it does not
point to any node. The pointer that holds the address of the initial node is known as
a head pointer.

The linked list, which is shown in the above diagram, is known as a singly linked list
as it contains only a single link. In this list, only forward traversal is possible; we
cannot traverse in the backward direction as it has only one link in the list.

Representation of the node in a singly linked list

1. struct node

2. {

3. int data;

4 struct node *next;
5

.

In the above representation, we have defined a user-defined structure named
a node containing two members, the first one is data of integer type, and the other
one is the pointer (next) of the node type.

Doubly linked list

As the name suggests, the doubly linked list contains two pointers. We can define
the doubly linked list as a linear data structure with three parts: the data part and
the other two address part.

UNIT-3

(or)

In other words, a doubly linked list is a list that has three parts in a single node,
includes one data part, a pointer to its previous node, and a pointer to the next
node.

Suppose we have three nodes, and the address of these nodes are 100, 200 and
300, respectively. The representation of these nodes in a doubly-linked list is shown
below:

ol |+ 200 DR 100 | 2 | 00 DR 200 | 3 Iwuw
100 200 300

head

As we can observe in the above figure, the node in a doubly-linked list has two
address parts; one part stores the address of the next while the other part of the
node stores the previous node’'s address. The initial node in the doubly linked list
has the NULL value in the address part, which provides the address of the previous
node.

Representation of the node in a doubly linked list

. struct node

- Ao

int data;

1

2

3

4. struct node *next;
5. struct node *prev;
6

.

In the above representation, we have defined a user-defined structure named a
node with three members, one is data of integer type, and the other two are the
pointers, i.e., next and prev of the node type. The next pointer variable holds the
address of the next node, and the prev pointer holds the address of the previous
node. The type of both the pointers, i.e., next and prev is struct node as both the
pointers are storing the address of the node of the struct node

Circular linked list

A circular linked list is a variation of a singly linked list. The only difference between
the singly linked list and a circular linked list is that the last node does not point
to any node in a singly linked list, so its link part contains a NULL value. On the
other hand, the circular linked list is a list in which the last node connects to the first
node, so the link part of the last node holds the first node's address. The circular

UNIT-3

linked list has no starting and ending node. We can traverse in any direction, i.e.,
either backward or forward. The diagrammatic representation of the circular linked
list is shown below:

Representation of the node in Circular linked list

1. struct node

2. {

3. int data;

4 struct node *next;
5

-

A circular linked list is a sequence of elements in which each node has a link to the
next node, and the last node is having a link to the first node. The representation of
the circular linked list will be similar to the singly linked list, as shown below:

IE]— KN — KR

200 300

head

Doubly Circular linked list

The doubly circular linked list has the features of both the circular linked
list and doubly linked list.

>
— -m_n 300 pummd 200 | 3 | 100 a2
300

100

head

The above figure shows the representation of the doubly circular linked list in which
the last node is attached to the first node and thus creates a circle. It is a doubly
linked list also because each node holds the address of the previous node also. The

UNIT-3

main difference between the doubly linked list and doubly circular linked list is that
the doubly circular linked list does not contain the NULL value in the previous field of
the node. As the doubly circular linked contains three parts, i.e., two address parts
and one data part so its representation is similar to the doubly linked list.

Representation of the node in Doubly Circular linked list

. struct node

- Ao

int data;

struct node *prev;

1

2

3

4. struct node *next;
5

6. }

What is a Stack?

A Stack is a linear data structure that follows the LIFO (Last-In-First-

Out) principle. Stack has one end, whereas the Queue has two ends (front and
rear). It contains only one pointer top pointer pointing to the topmost element
of the stack. Whenever an element is added in the stack, it is added on the top of
the stack, and the element can be deleted only from the stack. In other words,

a stack can be defined as a container in which insertion and deletion can
be done from the one end known as the top of the stack.

Working of Stack

Stack works on the LIFO pattern. As we can observe in the below figure there are

five memory blocks in the stack; therefore, the size of the stack is 5.

Suppose we want to store the elements in a stack and let's assume that stack is
empty. We have taken the stack of size 5 as shown below in which we are

pushing the elements one by one until the stack becomes full.

Push1 —» Push 2 —» Push 3 —»

Push 5 —»

Push 4 —»

= N W&
=| M| W) & G

Since our stack is full as the size of the stack is 5. In the above cases, we can
observe that it goes from the top to the bottom when we were entering the new

element in the stack. The stack gets filled up from the bottom to the top.

When we perform the delete operation on the stack, there is only one way for
entry and exit as the other end is closed. It follows the LIFO pattern, which
means that the value entered first will be removed last. In the above case, the
value 5 is entered first, so it will be removed only after the deletion of all the

other elements.

Standard Stack Operations

The following are some common operations implemented on the stack:

o push(): When we insert an element in a stack then the operation is known

as a push. If the stack is full then the overflow condition occurs.

o pop(): When we delete an element from the stack, the operation is known
as a pop. If the stack is empty means that no element exists in the stack,

this state is known as an underflow state.
o isEmpty(): It determines whether the stack is empty or not.
o isFull(): It determines whether the stack is full or not.'
o peek(): It returns the element at the given position.
o count(): It returns the total number of elements available in a stack.
o change(): It changes the element at the given position.

o display(): It prints all the elements available in the stack.

PUSH operation
The steps involved in the PUSH operation is given below:

o Before inserting an element in a stack, we check whether the stack is full.

o If we try to insert the element in a stack, and the stack is full, then
the overflow condition occurs.

o When we initialize a stack, we set the value of top as -1 to check that the
stack is empty.

o When the new element is pushed in a stack, first, the value of the top gets
incremented, i.e., top=top+1, and the element will be placed at the new

position of the top.

o The elements will be inserted until we reach the max size of the stack.

<> <> L Fuen s NN

top=-1 — top=0 — top=1 ey
-~ =" -~ Y -~ sk
30
20 20
10 10 10
empty

~ Tutop=3

40
30
20
10

Stack is full

POP operation
The steps involved in the POP operation is given below:

o Before deleting the element from the stack, we check whether the stack is
empty.

o If we try to delete the element from the empty stack, then
the underflow condition occurs.

o If the stack is not empty, we first access the element which is pointed by
the top
o Once the pop operation is performed, the top is decremented by 1,

i.e., top=top-1.

Array implementation of Stack

In array implementation, the stack is formed by using the array. All the
operations regarding the stack are performed using arrays. Lets see how each

operation can be implemented on the stack using array data structure.

Adding an element onto the stack (push operation)

Adding an element into the top of the stack is referred to as push operation. Push

operation involves following two steps.

1. Increment the variable Top so that it can now refere to the next memory

location.

2. Add element at the position of incremented top. This is referred to as

adding new element at the top of the stack.

Stack is overflown when we try to insert an element into a completely filled stack

therefore, our main function must always avoid stack overflow condition.
Algorithm:

1. begin

2. if top = n then stack full
3. top=top+1

4. stack (top) : = item;

5. end

Time Complexity : o(1)

implementation of push algorithm in C language

void push (int val,int n) //n is size of the stack
{

if (top ==n)

printf("\n Overflow");

1.

2.

3

4

5. else
6 {

7 top = top +1;

8 stack[top] = val;
9

¥
10.}

Deletion of an element from a stack (Pop operation)

Deletion of an element from the top of the stack is called pop operation. The
value of the variable top will be incremented by 1 whenever an item is deleted
from the stack. The top most element of the stack is stored in an another variable
and then the top is decremented by 1. the operation returns the deleted value

that was stored in another variable as the result.

The underflow condition occurs when we try to delete an element from an already

empty stack.
Algorithm :

1. begin
2. if top = 0 then stack empty;

3. item := stack(top);
4. top = top - 1;

5. end;
Time Complexity : o(1)

Implementation of POP algorithm using C language

1. int pop ()
2.{
3. if(top == -1)

4.
5. printf("Underflow");
6. return O;
7. 3}
8. else
9. {
10. return stack[top - -];
11.}
>}

Here, We have implemented stacks using arrays in C.
#include<stdio.h>

#include<stdlib.h>

##define Size 4

int Top=-1, inp array[Size];
void Push () ;

void Pop () ;

void show () ;

intmain()

{

int choice;

while (1)
{
printf ("\nOperations performed by Stack");
printf ("\nl.Push the element\n2.Pop the
element\n3.Show\n4.End") ;
printf ("\n\nEnter the choice:");
scanf ("%d", &choice) ;

switch (choice)

{

casel: Push();

break;
case 2: Pop();
break;
case 3: show();
break;

cased: exit(0);

default: printf("\nInvalid choice!!");

https://www.journaldev.com/30808/arrays-in-c

}

void Push ()
{

intx;

if (Top==Size-1)
{
printf ("\nOverflow!!");
}
else

{

printf ("\nEnter element to be inserted to the stack:");
scanf ("%d", &x) ;
Top=Top+1;
inp array[Top]=x;

}

void Pop ()
{
if (Top==-1)
{
printf ("\nUnderflow!!") ;
}
else
{
printf ("\nPopped element: %d",inp array[Topl])
Top=Top-1;
}
}

void show ()

{
if (Top==-1)
{
printf ("\nUnderflow!!") ;
}
else
{
printf ("\nElements present in the stack: \n");
for (int i=Top;i>=0;--1i)
printf ("%d\n",inp array[il);
}
}
Output:

Operations performed by Stack
1.Push the element
2.Pop the element

3.Show

4 .End

Enter the choice:1l

Enter element to be inserted to the stack:10
Operations performed by Stack
1.Push the element

2.Pop the element

3.Show

4 . End

Enter the choice:3

Elements present in the stack:
10

Operations performed by Stack
1.Push the element

2.Pop the element

3.Show

4 . End

Enter the choice:2

Popped element: 10
Operations performed by Stack
1.Push the element

2.Pop the element

3.Show

4 .End

Enter the choice:3
Underflow!!

Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack. Linked list
allocates the memory dynamically. However, time complexity in both the scenario is
same for all the operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained non-contiguously in
the memory. Each node contains a pointer to its immediate successor node in the
stack. Stack is said to be overflown if the space left in the memory heap is not
enough to create a node.

top — > NodeData X

J

Mode Data Next

J

MNode Data Next

J

Mode Data Next

Stack

The top most node in the stack always contains null in its address field. Lets discuss
the way in which, each operation is performed in linked list implementation of stack.

Pause
Unmute
Loaded: 51.61%

Fullscreen
Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to
a stack in linked list implementation is different from that of an array
implementation. In order to push an element onto the stack, the following steps are
involved.

1. Create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start node of the list.
This includes assigning value to the data part of the node and assign null to

the address part of the node.

3. If there are some nodes in the list already, then we have to add the new
element in the beginning of the list (to not violate the property of the stack).
For this purpose, assign the address of the starting element to the address

field of the new node and make the new node, the starting node of the list.

Time Complexity : o(1)

Head
node 1
value
> next
—_— Head
v
node 1
i value
I > next
nhode 0
value
— next i
New Node

C implementation :

void push ()
{

int val;

struct node *ptr =(struct node*)malloc(sizeof(struct node));

{

1.

2.

3

4

5. if(ptr == NULL)
6

7 printf("not able to push the element");
8

9

b
else
10. {
11. printf("Enter the value");

12. scanf("%d",&val);

node 2

value

next

node 2

value

next

node 3

value

next

node 3

value

next

13. if(head==NULL)

14. {

15. ptr->val = val;

16. ptr -> next = NULL;
17. head=ptr;

18. b

19. else

20. {

21. ptr->val = val;

22. ptr->next = head;
23. head=ptr;

24,

25. b

26. printf("Item pushed");
27.

28. 3}

29.}

Deleting a node from the stack (POP
operation)

Deleting a node from the top of stack is referred to as pop operation.
Deleting a node from the linked list implementation of stack is different from
that in the array implementation. In order to pop an element from the stack,
we need to follow the following steps :

30.Check for the underflow condition: The underflow condition occurs
when we try to pop from an already empty stack. The stack will be

empty if the head pointer of the list points to null.

31.Adjust the head pointer accordingly: In stack, the elements are
popped only from one end, therefore, the value stored in the head
pointer must be deleted and the node must be freed. The next node of

the head node now becomes the head node.

Time Complexity : o(n)
C implementation

32.void pop()
33.4

34. intitem;
35. struct node *ptr;
36. if (head == NULL)

37.
38. printf("Underflow");
39. 3}
40. else
41. «
42. item = head->val;
43. ptr = head;
44, head = head->next;
45, free(ptr);
46. printf("Item popped");
47.
48. }
49.}

Queue

1. A queue can be defined as an ordered list which enables insert operations to be
performed at one end called REAR and delete operations to be performed at another
end called FRONT.

2. Queue is referred to be as First In First Out list.

3. For example, people waiting in line for a rail ticket form a queue.

Enqueue
(insertion)

_—

Dequeue Front Rear

(Deletion)

Applications of Queue

Due to the fact that queue performs actions on first in first out basis which is quite
fair for the ordering of actions. There are various applications of queues discussed as

below.

. Queues are widely used as waiting lists for a single shared resource like

printer, disk, CPU.

. Queues are used in asynchronous transfer of data (where data is not being

transferred at the same rate between two processes) for eg. pipes, file 10,
sockets.

. Queues are used as buffers in most of the applications like MP3 media player,

CD player, etc.

. Queue are used to maintain the play list in media players in order to add and

remove the songs from the play-list.

. Queues are used in operating systems for handling interrupts.

Operations on Queue

There are two fundamental operations performed on a Queue:

o

Enqueue: The enqueue operation is used to insert the element at the rear
end of the queue. It returns void.

Dequeue: The dequeue operation performs the deletion from the front-end
of the queue. It also returns the element which has been removed from the
front-end. It returns an integer value. The dequeue operation can also be
designed to void.

Peek: This is the third operation that returns the element, which is pointed
by the front pointer in the queue but does not delete it.

Queue overflow (isfull): When the Queue is completely full, then it shows

the overflow condition.

Queue underflow (isempty): When the Queue is empty, i.e., no elements are in
the Queue then it throws the underflow
Implementation of Queue in C

Queues in C can be implemented using Arrays, Lists, Structures, etc. Below here we have
implemented queues using Arrays in C.
Example:

https://www.journaldev.com/30808/arrays-in-c

#include <stdio.h>
define SIZE 100
void enqueue();
void dequeue();
void show();
int inp_arr[SIZE];
int Rear = - 1;
int Front = - 1;
main()
{
int ch;
while (1)
{
printf("1.Enqueue Operation\n");
printf("2.Dequeue Operation\n");
printf("3.Display the Queue\n");
printf("4.Exit\n");

printf("Enter your choice of operations :

scanf("%d", &ch);
switch (ch)
{
case 1:
enqueue();
break;
case 2:
dequeue();
break;
case 3:
show();
break;
case 4:
exit(0);
default:
printf(*Incorrect choice \n");

¥
k
¥

void enqueue()

L
int X;
if (Rear == SIZE - 1)
printf("Overflow \n");

else

{
if (Front==-1)
Front = 0;

printf("Element to be inserted in the Queue\n : *);
scanf(*"%d", &X);
Rear = Rear + 1;
inp_arr[Rear] = Xx;
b

¥

void dequeue()
{
if (Front==-1 || Front > Rear) //Rear==-1
{
printf("Queue is empty \n");
return ;

}

else

{
printf("Element deleted from the Queue: %d\n", inp_arr[Front]);
Front = Front + 1;

}
¥

void show()

{

if (Front==-1)
printf("Empty Queue \n");

else

{
printf("Queue: \n");
for (int i = Front; i <= Rear; i++)

printf("%d ", inp_arr[i]);

printf("\n");

}

}

Output:

1.Enqueue Operation
2.Dequeue Operation
3.Display the Queue

4.Exit
Enter your choice of operations : 1
Element to be inserted in the Queue: 10

1.Enqueue Operation

2.Dequeue Operation

3.Display the Queue

4.Exit

Enter your choice of operations : 1
Element to be inserted in the Queue: 20

1.Enqueue Operation

2.Dequeue Operation

3.Display the Queue

4.Exit

Enter your choice of operations : 3
Queue:

10 20

1.Enqueue Operation

2.Dequeue Operation

3.Display the Queue

4.Exit

Enter your choice of operations : 2
Element deleted from the Queue: 10

1.Enqueue Operation

2.Dequeue Operation

3.Display the Queue

4.Exit

Enter your choice of operations: 3
Queue:

20

Types of Queue

o Circular Queue

In Circular Queue, all the nodes are represented as circular. It is similar to the linear
Queue except that the last element of the queue is connected to the first element. It
is also known as Ring Buffer as all the ends are connected to another end. The
circular queue can be represented as:

Front

Rear

Operations on Circular Queue

The following are the operations that can be performed on a circular queue:

O

o

O O O O

Front: It is used to get the front element from the Queue.
Rear: It is used to get the rear element from the Queue.

enQueue(value): This function is used to insert the new value in the Queue.

The new element is always inserted from the rear end.

deQueue(): This function deletes an element from the Queue. The deletion
in a Queue always takes place from the front end

Algorithm to insert an element in a circular queue

Step 1: IF (REAR+1)%MAX = FRONT
Write " OVERFLOW "

Goto step 4

[End OF IF]

Step 2: IF FRONT = -1 and REAR = -1
SET FRONT = REAR =0

ELSE IF REAR = MAX -1 and FRONT ! =0

SET REAR = 0

ELSE

SET REAR = (REAR + 1) % MAX
[END OF IF]

o Step 3: SET QUEUE[REAR] = VAL
o Step 4: EXIT

o Priority Queue

A priority queue is another special type of Queue data structure in which each
element has some priority associated with it. Based on the priority of the element,
the elements are arranged in a priority queue. If the elements occur with the same
priority, then they are served according to the FIFO principle.

In priority Queue, the insertion takes place based on the arrival while the deletion
occurs based on the priority. The priority Queue can be shown as:

The above figure shows that the highest priority element comes first and the
elements of the same priority are arranged based on FIFO structure

Deque

The dequeue stands for Double Ended Queue. In the queue, the insertion takes
place from one end while the deletion takes place from another end. The end at
which the insertion occurs is known as the rear end whereas the end at which

the deletion occurs is known as front end.

. s

Deque is a linear data structure in which the insertion and deletion operations
are performed from both ends. We can say that deque is a generalized version of

the queue.

Let's look at some properties of deque.

o Deque can be used both as stack and queue as it allows the insertion and

deletion operations on both ends.

In deque, the insertion and deletion operation can be performed from one side.
The stack follows the LIFO rule in which both the insertion and deletion can be
performed only from one end; therefore, we conclude that deque can be

considered as a stack.

In deque, the insertion can be performed on one end, and the deletion can be
done on another end. The queue follows the FIFO rule in which the element is
inserted on one end and deleted from another end. Therefore, we conclude that

the deque can also be considered as the queue.

v o 1 2 3 4 |

There are two types of Queues, Input-restricted queue, and output-

restricted queue.

1. Input-restricted queue: The input-restricted queue means that some
restrictions are applied to the insertion. In input-restricted queue, the

insertion is applied to one end while the deletion is applied from both the

ends.

S
=

2. Output-restricted queue: The output-restricted queue means that some
restrictions are applied to the deletion operation. In an output-restricted

queue, the deletion can be applied only from one end, whereas the

b
=

insertion is possible from both ends.

Operations on Deque
The following are the operations applied on deque:

o Insert at front
o Delete from end
o insert at rear

o delete from rear

Other than insertion and deletion, we can also perform peek operation in deque.
Through peek operation, we can get the front and the rear element of the

dequeue.
We can perform two more operations on dequeue:

o isFull(): This function returns a true value if the stack is full; otherwise, it

returns a false value.

o isEmpty(): This function returns a true value if the stack is empty;
otherwise it returns a false value.

Array representation of Queue

We can easily represent queue by using linear arrays. There are two variables i.e.
front and rear, that are implemented in the case of every queue. Front and rear
variables point to the position from where insertions and deletions are performed
in a queue. Initially, the value of front and queue is -1 which represents an empty
queue. Array representation of a queue containing 5 elements along with the
respective values of front and rear, is shown in the following figure.

H E L L O

0 1 2 3 4 L)
front rear
0 4
Queue

The above figure shows the queue of characters forming the English

word "HELLO". Since, No deletion is performed in the queue till now, therefore
the value of front remains -1 . However, the value of rear increases by one every
time an insertion is performed in the queue. After inserting an element into the
queue shown in the above figure, the queue will look something like following.

The value of rear will become 5 while the value of front remains same.

0 1 2 3 4 5
front rear
0 5

Queue after inserting an element

After deleting an element, the value of front will increase from -1 to 0. however,

the queue will look something like following.

Pause
Unmute

Loaded: 9.56%

Fullscreen
E L L O G
0 1 2 3 4 L)
front rear
1 5

Queue after deleting an element
Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return

an overflow error.

If the item is to be inserted as the first element in the list, in that case set the

value of front and rear to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one
having rear as the index.

Algorithm

o Step 1: IF REAR = MAX -1
Write OVERFLOW
Go to step
[END OF IF]

o Step 2: IF FRONT = -1 and REAR = -1
SET FRONT = REAR = 0
ELSE
SET REAR = REAR + 1
[END OF IF]

o Step 3: Set QUEUE[REAR] = NUM
o Step 4:exit

Array representation of Queue

We can easily represent queue by using linear arrays. There are two variables i.e.
front and rear, that are implemented in the case of every queue. Front and rear
variables point to the position from where insertions and deletions are performed
in a queue. Initially, the value of front and queue is -1 which represents an empty
queue. Array representation of a queue containing 5 elements along with the

respective values of front and rear, is shown in the following figure.

https://www.javatpoint.com/linked-list-implementation-of-queue
https://www.javatpoint.com/ds-types-of-queues

0 1 2 3 4 5
front rear
0 4
Queue

The above figure shows the queue of characters forming the English

word "HELLO". Since, No deletion is performed in the queue till now, therefore
the value of front remains -1 . However, the value of rear increases by one every
time an insertion is performed in the queue. After inserting an element into the
queue shown in the above figure, the queue will look something like following.

The value of rear will become 5 while the value of front remains same.

H E L L O G

0 1 2 3 4 5
front rear
0 5

Queue after inserting an element

After deleting an element, the value of front will increase from -1 to 0. however,

the queue will look something like following.

Pause

Unmute

Loaded: 25.77%

Fullscreen
E L L O G
0 1 2 3 4 5
front rear
1 5

Queue after deleting an element
Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return

an overflow error.

If the item is to be inserted as the first element in the list, in that case set the

value of front and rear to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one
having rear as the index.

Algorithm

o Step 1: IF REAR = MAX -1
Write OVERFLOW
Go to step
[END OF IF]

o Step 2: IF FRONT = -1 and REAR = -1
SET FRONT = REAR = 0
ELSE
SET REAR = REAR + 1
[END OF IF]

o Step 3: Set QUEUE[REAR] = NUM

o Step 4: EXIT

C Function
1. void insert (int queue[], int max, int front, int rear, int item)

2. {

3 if (rear + 1 == max)
4 {

5 printf("overflow");
6. >

7 else

8 {

9 if(front == -1 && rear == -1)
10. {

11. front = 0;

12. rear = 0;

13.)

14. else

15. {

16. rear = rear + 1;
17.)

18. queue[rear]=item;
19. }

20.%}

Algorithm to delete an element from the queue

If, the value of front is -1 or value of front is greater than rear , write an
underflow message and exit.

Otherwise, keep increasing the value of front and return the item stored at the

front end of the queue at each time.

Algorithm

o Step 1: IF FRONT = -1 or FRONT > REAR
Write UNDERFLOW
ELSE
SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1
[END OF IF]

o Step 2: EXIT

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this tutorial, the array
implementation can not be used for the large scale applications where the queues
are implemented. One of the alternative of array implementation is linked list
implementation of queue.

The storage requirement of linked representation of a queue with n elements is o(n)
while the time requirement for operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data part and
the link part. Each element of the queue points to its immediate next element in the
memory.

In the linked queue, there are two pointers maintained in the memory i.e. front
pointer and rear pointer. The front pointer contains the address of the starting
element of the queue while the rear pointer contains the address of the last element
of the queue.

Insertion and deletions are performed at rear and front end respectively. If front and
rear both are NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

9 — 1 7 — 4 X

front rear

Linked Queue

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues. The
operations are Insertion and Deletion.

Insert operation

The insert operation append the queue by adding an element to the end of the
queue. The new element will be the last element of the queue.

UNIT-3

Firstly, allocate the memory for the new node ptr by using the following statement.

1. Ptr = (struct node *) malloc (sizeof(struct node));
There can be the two scenario of inserting this new node ptr into the linked queue.

In the first scenario, we insert element into an empty queue. In this case, the
condition front = NULL becomes true. Now, the new element will be added as the
only element of the queue and the next pointer of front and rear pointer both, will
point to NULL.

ptr -> data = item;
if(front == NULL)
{
front = ptr;

1.

2

3

4

5. rear = ptr;
6 front -> next = NULL;
7 rear -> next = NULL;
8

¥

In the second case, the queue contains more than one element. The condition front
= NULL becomes false. In this scenario, we need to update the end pointer rear so
that the next pointer of rear will point to the new node ptr. Since, this is a linked
queue, hence we also need to make the rear pointer point to the newly added

node ptr. We also need to make the next pointer of rear point to NULL.

1. rear -> next = ptr;
2. rear = ptr;
3. rear->next = NULL;

In this way, the element is inserted into the queue. The algorithm and the C
implementation is given as follows.

Algorithm

o Step 1: Allocate the space for the new node PTR
o Step 2: SET PTR -> DATA = VAL

o Step 3: IF FRONT = NULL
SET FRONT = REAR = PTR
SET FRONT -> NEXT = REAR -> NEXT = NULL
ELSE
SET REAR -> NEXT = PTR
SET REAR = PTR

SET REAR -> NEXT = NULL
[END OF IF]

o Step 4: END

C Function
1. void insert(struct node *ptr, int item;)

2. {

3

4

5 ptr = (struct node *) malloc (sizeof(struct node));
6. if(ptr == NULL)
7

8

9

{
printf("\nOVERFLOW\n");
return;

10. 3}
11. else
12. {
13. ptr -> data = item;
14. if(front == NULL)
15. {
16. front = ptr;
17. rear = ptr;
18. front -> next = NULL;
19, rear -> next = NULL;
20. b
21. else
22. {
23. rear -> next = ptr;
24. rear = ptr;
25. rear->next = NULL;
26. T
27. 3}
28.%
Deletion

Deletion operation removes the element that is first inserted among all the queue
elements. Firstly, we need to check either the list is empty or not. The condition

UNIT-3

front == NULL becomes true if the list is empty, in this case , we simply write
underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For this

purpose, copy the node pointed by the front pointer into the pointer ptr. Now, shift
the front pointer, point to its next node and free the node pointed by the node ptr.
This is done by using the following statements.

1. ptr = front;
2. front = front -> next;
3. free(ptr);

The algorithm and C function is given as follows.

Algorithm

o Step 1: IF FRONT = NULL
Write " Underflow "
Go to Step 5
[END OF IF]

o Step 2: SET PTR = FRONT

o Step 3: SET FRONT = FRONT -> NEXT
o Step 4: FREE PTR

o Step 5: END

Unit 5

Trees

Tree is a hierarchical data structure which stores the information naturally in the form of
hierarchy style.

Tree is one of the most powerful and advanced data structures.

It is a non-linear data structure compared to arrays, linked lists, stack and queue.

It represents the nodes connected by edges.

Subtree

Parent
Node

.......

Fig. Structure of Tree

The above figure represents structure of a tree. Tree has 2 subtrees.
A is a parent of B and C.

B is called a child of A and also parent of D, E, F.

Tree is a collection of elements called Nodes, where each node can have arbitrary
number of children.

Field

Description

Root

Root is a special node in a tree. The entire tree is referenced through it. It does not have a
parent.

Parent Node |Parent node is an immediate predecessor of a nhode.

Child Node All immediate successors of a node are its children.
Siblings Nodes with the same parent are called Siblings.
Path Path is a number of successive edges from source node to destination node.

Height of Node

leaf.

Height of Tree |Height of tree represents the height of its root node.

Depth of Node |Depth of a node represents the number of edges from the tree's root node to the node.

Height of a node represents the number of edges on the longest path between that node and a

Degree of Degree of a node represents a number of children of a node.

Node

Edge

Edge is a connection between one node to another. It is a line between two nodes or a node
and a leaf.

In the above figure, D, F, H, G are leaves. B and C are siblings. Each node excluding a
root is connected by a direct edge from exactly one other node
parent — children.

e Levels of anode
e Levels of a node represents the number of connections between the node and

the root. It represents generation of a node. If the root node is at level 0, its next
node is at level 1, its grand child is at level 2 and so on. Levels of a node can be
shown as follows:

Level 0

Level 1

Fig. Levels of Tree

Note:

- If node has no children, it is called Leaves or External Nodes.
- Nodes which are not leaves, are called Internal Nodes. Internal nodes have at
least one child.
- A tree can be empty with no nodes or a tree consists of one node called
the Root.
e Height of a Node

Fig. Height of a Node

As we studied, height of a node is a number of edges on the longest path between that
node and a leaf. Each node has height.

In the above figure, A, B, C, D can have height. Leaf cannot have height as there will be
no path starting from a leaf. Node A's height is the number of edges of the path to K not
to D. And its height is 3.

Note:

- Height of a node defines the longest path from the node to a leaf.

- Path can only be downward.

e Depth of a Node

Fig. Depth of a Node

While talking about the height, it locates a node at bottom where for depth, it is located
at top which is root level and therefore we call it depth of a node.

In the above figure, Node G's depth is 2. In depth of a node, we just count how many
edges between the targeting node & the root and ignoring the directions.

Note: Depth of the root is 0.

Advantages of Tree

Tree reflects structural relationships in the data.

It is used to represent hierarchies.

It provides an efficient insertion and searching operations.

Trees are flexible. It allows to move subtrees around with minimum effort.

Binary trees
A binary tree is a tree-type non-linear data structure with a maximum of two children for

each parent. Every node in a binary tree has a left and right reference along with the
data element. The node at the top of the hierarchy of a tree is called the root node. The
nodes that hold other sub-nodes are the parent nodes.

A parent node has two child nodes: the left child and right child. Hashing, routing data
for network traffic, data compression, preparing binary heaps, and binary search trees
are some of the applications that use a binary tree.

p—

204 ¢ jo Jybjay

leaf nodes leaf nodes

Terminologies associated with Binary Trees

Node: It represents a termination point in a tree.

Root: A tree’s topmost node.

Parent: Each node (apart from the root) in a tree that has at least one sub-node of its
own is called a parent node.

Child: A node that straightway came from a parent node when moving away from the
root is the child node.

Leaf Node: These are external nodes. They are the nodes that have no child.
Internal Node: As the name suggests, these are inner nodes with at least one child.
Depth of a Tree: The number of edges from the tree’s node to the root is.

Height of a Tree: It is the number of edges from the node to the deepest leaf. The tree
height is also considered the root height.

https://www.upgrad.com/blog/data-structures-algorithm-in-python/

Binary Tree Representations
A binary tree data structure is represented using two methods. Those methods are as
follows...

1. Array Representation

2. Linked List Representation

Consider the following binary tree...

1. Array Representation of Binary Tree

In array representation of a binary tree, we use one-dimensional array (1-D Array) to represent
a binary tree.
Consider the above example of a binary tree and it is represented as follows...

[A[B[CIDI F{GIHIT])[-[-|-[K[-]-]-]-[-T-]-]-]

To represent a binary tree of depth 'n' using array representation, we need one dimensional array
with a maximum size of 2n + 1.

2. Linked List Representation of Binary Tree

We use a double linked list to represent a binary tree. In a double linked list, every node
consists of three fields. First field for storing left child address, second for storing actual data
and third for storing right child address.

In this linked list representation, a node has the following structure...

Right Child

Left Child
Data cdress

Acddress

The above example of the binary tree represented using Linked list representation is shown as
follows...

Binary Tree Components
There are three binary tree components. Every binary tree node has these three
components associated with it. It becomes an essential concept for programmers to
understand these three binary tree components:

1. Data element

2. Pointer to left subtree

3. Pointer to right subtree

LEFT DATA RIGHT

Source
These three binary tree components represent a node. The data resides in the
middle. The left pointer points to the child node, forming the left sub-tree. The right
pointer points to the child node at its right, creating the right subtree.
Types of Binary Trees
There are various types of binary trees, and each of these binary tree types has
unique characteristics. Here are each of the binary tree types in detail:
1. Full Binary Tree

« If each node of binary tree has either two children or no child at all, is said to be a Full
Binary Tree.

o Full binary tree is also called as Strictly Binary Tree.

Fig. Full Binary Tree

o [Every node in the tree has either 0 or 2 children.

o Full binary tree is used to represent mathematical expressions.
2. Complete Binary Tree

o Ifall levels of tree are completely filled except the last level and the last level has all
keys as left as possible, is said to be a Complete Binary Tree.

e Complete binary tree is also called as Perfect Binary Tree.

https://www.studytonight.com/data-structures/introduction-to-binary-trees

Fig. Complete Binary Tree

In a complete binary tree, every internal node has exactly two children and all leaf
nodes are at same level.

For example, at Level 2, there must be 22 = 4 nodes and at Level 3 there must be 23 =
8 nodes.

3. Skewed Binary Tree

If a tree which is dominated by left child node or right child node, is said to be

a Skewed Binary Tree.

In a skewed binary tree, all nodes except one have only one child node. The remaining
node has no child.

Fig. Left Skewed Fig. Right Skewed
Binary Tree Binary Tree

In a left skewed tree, most of the nodes have the left child without corresponding right
child.

In a right skewed tree, most of the nodes have the right child without corresponding
left child.

4. Extended Binary Tree

Extended binary tree consists of replacing every null subtree of the original tree with
special nodes.

Empty circle represents internal node and filled circle represents external node.

The nodes from the original tree are internal nodes and the special nodes are external
nodes.

Every internal node in the extended binary tree has exactly two children and every
external node is a leaf. It displays the result which is a complete binary tree.

B
S e O
S P

Fig. Extended Binary Tree

4. Perfect Binary Tree

A binary tree is said to be ‘perfect’ if all the internal nodes have strictly two
children, and every external or leaf node is at the same level or same depth within a
tree. A perfect binary tree having height ‘h’ has 2h — 1 node. Here is the structure of a
perfect binary tree:
perfect binary tree:

Ao N

5. Balanced Binary Tree

A binary tree is said to be ‘balanced’ if the tree height is O(logN), where ‘N’ is the
number of nodes. In a balanced binary tree, the height of the left and the right subtrees
of each node should vary by at most one. An AVL Tree and a Red-Black Tree are some
common examples of data structure that can generate a balanced binary search tree.
Here is an example of a balanced binary tree:

6. Degenerate Binary Tree

A binary tree is said to be a degenerate binary tree or pathological binary tree if
every internal node has only a single child. Such trees are similar to a linked list
performance-wise. Here is an example of a degenerate binary tree:

Benefits of a Binary Tree

The search operation in a binary tree is faster as compared to other trees

Only two traversals are enough to provide the elements in sorted order

It is easy to pick up the maximum and minimum elements

Graph traversal also uses binary trees

Converting different postfix and prefix expressions are possible using binary trees

https://www.upgrad.com/blog/binary-tree-in-data-structure/

Differences between General Tree and Binary Tree

General Tree

e General tree has no limit of number of children.
« Evaluating any expression is hard in general trees.

Binary Tree

e A binary tree has maximum two children
« Evaluation of expression is simple in binary tree.

Application of trees

e Manipulation of arithmetic expression
e Construction of symbol table

e Analysis of Syntax

e Writing Grammar

o Creation of Expression Tree

Binary Tree Traversals

When we wanted to display a binary tree, we need to follow some order in which all the nodes of
that binary tree must be displayed. In any binary tree, displaying order of nodes depends on the

traversal method.

Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal.

There are three types of binary tree traversals.

1. In-Order Traversal
2. Pre - Order Traversal

3. Post - Order Traversal

Consider the following binary tree...

1.In - Order Traversal (leftChild - root - rightChild)

In In-Order traversal, the root node is visited between the left child and right child. In this

traversal,
e the left child node is visited first, then
e the root node is visited and later
e we go for visiting the right child node.

This in-order traversal is applicable for every root node of all subtrees in the tree. This is
performed recursively for all nodes in the tree.

In the above example of a binary tree, first we try to visit left child of root node 'A’, but A's
left child 'B' is a root node for left subtree. so we try to visit its (B's) left child 'D' and again D is a
root for subtree with nodes D, | and J. So we try to visit its left child 'I' and it is the leftmost child.
So first we visit 'l' then go for its root node 'D' and later we visit D's right child 'J'. With this we
have completed the left part of node B. Then visit 'B' and next B's right child 'F' is visited. With
this we have completed left part of node A. Then visit root node 'A’. With this we have completed
left and root parts of node A. Then we go for the right part of the node A. In right of A again there
is a subtree with root C. So go for left child of C and again it is a subtree with root G. But G does
not have left part so we visit 'G' and then visit G's right child K. With this we have completed the
left part of node C. Then visit root node 'C' and next visit C's right child 'H' which is the rightmost
child in the tree. So we stop the process.

That means here we have visited in the order of | -D-J-B-F-A -G -K - C -Husing In-Order
Traversal.

In-Order Traversal for above example of binary tree is

|-D-J-B-F-A-G-K-C-H

Algorithm

Until all nodes are traversed -

Step 1 - Recursively traverse left subtree.
Step 2 - Visit root node.

Step 3 - Recursively traverse right subtree.

2. Pre - Order Traversal (root - leftChild - rightChild)

In Pre-Order traversal, the root node is visited before the left child and right child nodes. In this
traversal,

e the root node is visited first, then
e its left child and
e later its right child.

This pre-order traversal is applicable for every root node of all subtrees in the tree.
In the above example of binary tree, first we visit root node 'A' then visit its left child 'B' which is
aroot for D and F. So we visit B's left child ‘D' and again D is a root for | and J. So we visit D's left
child 'I' which is the leftmost child. So next we go for visiting D's right child 'J'. With this we have
completed root, left and right parts of node D and root, left parts of nhode B. Next visit B's right
child 'F'. With this we have completed root and left parts of node A. So we go for A's right
child 'C" which is a root node for G and H. After visiting C, we go for its left child 'G' which is a
root for node K. So next we visit left of G, but it does not have left child so we go for G's right
child 'K'. With this, we have completed node C's root and left parts. Next visit C's right
child 'H' which is the rightmost child in the tree. So we stop the process.

That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H using Pre-Order Traversal.

Pre-Order Traversal for above example binary tree is

A-B-D-1-J-F-C-G-K-H

Algorithm

Until all nodes are traversed -

Step 1 - Visit root node.

Step 2 - Recursively traverse left subtree.
Step 3 - Recursively traverse right subtree.

3. Post - Order Traversal (leftChild - rightChild - root)

In Post-Order traversal, the root node is visited after left child and right child. In this traversal,
e left child node is visited first, then
e its right child and then
e its root node.

This is recursively performed untii the right most node is visited.

Here we have visited in the orderof |-J-D-F-B -K -G -H - C - A using Post-Order Traversal.

Post-Order Traversal for above example binary tree is

|-J-D-F-B-K-G-H-C-A

Algorithm

Until all nodes are traversed -

Step 1 - Recursively traverse left subtree.
Step 2 - Recursively traverse right subtree.
Step 3 - Visit root node.

	Data structures
	Introduction
	Types of Data Structures
	Advantages of Data structures

	Linked list
	Types of Linked list
	Single Linked list
	Doubly linked list
	Circular linked list
	Doubly Circular linked list

	What is a Stack?
	Working of Stack
	Standard Stack Operations
	PUSH operation
	POP operation

	Array implementation of Stack
	Adding an element onto the stack (push operation)
	implementation of push algorithm in C language
	Deletion of an element from a stack (Pop operation)
	Implementation of POP algorithm using C language

	Linked list implementation of stack
	Adding a node to the stack (Push operation)
	C implementation :

	Deleting a node from the stack (POP operation)
	C implementation

	Queue
	Applications of Queue
	Operations on Queue

	Queue underflow (isempty): When the Queue is empty, i.e., no elements are in the Queue then it throws the underflow
	Implementation of Queue in C
	Types of Queue
	Operations on Circular Queue

	Deque
	Operations on Deque

	Array representation of Queue
	Algorithm to insert any element in a queue
	Algorithm

	Array representation of Queue
	Algorithm to insert any element in a queue
	Algorithm
	C Function
	Algorithm to delete an element from the queue
	Algorithm

	Linked List implementation of Queue
	Operation on Linked Queue
	Insert operation
	Algorithm
	C Function
	Deletion
	Algorithm

	• Levels of a node
	• Depth of a Node
	Terminologies associated with Binary Trees
	Binary Tree Representations
	1. Array Representation of Binary Tree
	2. Linked List Representation of Binary Tree
	Binary Tree Components
	Types of Binary Trees
	1. Full Binary Tree
	2. Complete Binary Tree
	3. Skewed Binary Tree
	4. Extended Binary Tree
	4. Perfect Binary Tree
	5. Balanced Binary Tree
	6. Degenerate Binary Tree

	Benefits of a Binary Tree
	General Tree

	Binary Tree Traversals
	1. In - Order Traversal (leftChild - root - rightChild)
	I - D - J - B - F - A - G - K - C – H
	Algorithm

	2. Pre - Order Traversal (root - leftChild - rightChild)
	A - B - D - I - J - F - C - G - K – H
	Algorithm

	3. Post - Order Traversal (leftChild - rightChild - root)
	I - J - D - F - B - K - G - H - C – A
	Algorithm

	text_1hrty: UNIT-1
	text_3ooo: UNIT-2

