

UNIT-3

 Data structures

Introduction
➢ A data structure is a storage that is used to store and organize data.

➢ A data structure is not only used for organizing the data. It is also used for

processing and retrieving data.

➢ Some examples of Data Structures are arrays, Linked List, Stack, Queue, etc.
➢ Data Structures are widely used in almost every aspect of Computer Science

i.e. Operating System, Compiler Design, Artifical intelligence, Graphics and
many more.

Types of Data Structures

There are two types of data structures:

o Primitive data structure

o Non-primitive data structure

Primitive Data structure

The primitive data structures are primitive data types. The int, char, float, double,
and pointer are the primitive data structures that can hold a single value.

Non-Primitive Data structure

The non-primitive data structure is divided into two types:

o Linear data structure

o Non-linear data structure

Linear Data Structure

➢ The arrangement of data in a sequential manner is known as a linear data

structure.

➢ The data structures used for this purpose are Arrays, Linked list, Stacks, and

Queues.

➢ In these data structures, one element is connected to only one another

element in a linear form.

Non-Linear Data Structure

➢ When one element is connected to the 'n' number of elements known as a
non-linear data structure.

➢ The best example is trees and graphs. In this case, the elements are
arranged in a random manner.

UNIT-3

Advantages of Data structures

The following are the advantages of a data structure:

o Efficiency: If the choice of a data structure for implementing a particular

ADT is proper, it makes the program very efficient in terms of time and

space.

o Reusability: he data structures provide reusability means that multiple client

programs can use the data structure.

o Abstraction: The data structure specified by an ADT also provides the level

of abstraction. The client cannot see the internal working of the data

structure, so it does not have to worry about the implementation part. The

client can only see the interface.

Linked list
Linked list is an ordered collection of homogeneous data elements called

nodes where the linear order is maintained by means of links (or) pointers

Linked list is a data structure which is collection of nodes that contains of

two parts

1. Data part

2. Link to next node

Structure of Node: -

 Node

Store actual content stores the address of next node

Types of Linked list

The following are the types of linked list:

o Single Linked list

o Doubly Linked list

o Circular Linked list

o Doubly Circular Linked list

DATA LINK

https://www.javatpoint.com/ds-types-of-linked-list#Singly
https://www.javatpoint.com/ds-types-of-linked-list#Doubly
https://www.javatpoint.com/ds-types-of-linked-list#Circular
https://www.javatpoint.com/ds-types-of-linked-list#Doubly-Circular

UNIT-3

Single Linked list

The single linked list is a data structure that contains two parts, i.e., one is the data

part, and the other one is the address part, which contains the address of the next
or the successor node. The address part in a node is also known as a pointer.

Suppose we have three nodes, and the addresses of these three nodes are 100, 200
and 300 respectively. The representation of three nodes as a linked list is shown in
the below figure:

We can observe in the above figure that there are three different nodes having
address 100, 200 and 300 respectively. The first node contains the address of the

next node, i.e., 200, the second node contains the address of the last node, i.e.,
300, and the third node contains the NULL value in its address part as it does not
point to any node. The pointer that holds the address of the initial node is known as
a head pointer.

The linked list, which is shown in the above diagram, is known as a singly linked list

as it contains only a single link. In this list, only forward traversal is possible; we
cannot traverse in the backward direction as it has only one link in the list.

Representation of the node in a singly linked list

1. struct node

2. {

3. int data;

4. struct node *next;

5. }

In the above representation, we have defined a user-defined structure named
a node containing two members, the first one is data of integer type, and the other
one is the pointer (next) of the node type.

Doubly linked list

As the name suggests, the doubly linked list contains two pointers. We can define
the doubly linked list as a linear data structure with three parts: the data part and
the other two address part.

UNIT-3

(or)

 In other words, a doubly linked list is a list that has three parts in a single node,
includes one data part, a pointer to its previous node, and a pointer to the next

node.

Suppose we have three nodes, and the address of these nodes are 100, 200 and
300, respectively. The representation of these nodes in a doubly-linked list is shown
below:

As we can observe in the above figure, the node in a doubly-linked list has two
address parts; one part stores the address of the next while the other part of the
node stores the previous node's address. The initial node in the doubly linked list

has the NULL value in the address part, which provides the address of the previous

node.

Representation of the node in a doubly linked list

1. struct node

2. {

3. int data;

4. struct node *next;

5. struct node *prev;

6. }

In the above representation, we have defined a user-defined structure named a

node with three members, one is data of integer type, and the other two are the
pointers, i.e., next and prev of the node type. The next pointer variable holds the
address of the next node, and the prev pointer holds the address of the previous

node. The type of both the pointers, i.e., next and prev is struct node as both the

pointers are storing the address of the node of the struct node

Circular linked list

A circular linked list is a variation of a singly linked list. The only difference between

the singly linked list and a circular linked list is that the last node does not point

to any node in a singly linked list, so its link part contains a NULL value. On the
other hand, the circular linked list is a list in which the last node connects to the first
node, so the link part of the last node holds the first node's address. The circular

UNIT-3

linked list has no starting and ending node. We can traverse in any direction, i.e.,
either backward or forward. The diagrammatic representation of the circular linked
list is shown below:

Representation of the node in Circular linked list

1. struct node

2. {

3. int data;

4. struct node *next;

5. }

A circular linked list is a sequence of elements in which each node has a link to the

next node, and the last node is having a link to the first node. The representation of
the circular linked list will be similar to the singly linked list, as shown below:

Doubly Circular linked list

The doubly circular linked list has the features of both the circular linked
list and doubly linked list.

The above figure shows the representation of the doubly circular linked list in which
the last node is attached to the first node and thus creates a circle. It is a doubly
linked list also because each node holds the address of the previous node also. The

UNIT-3

main difference between the doubly linked list and doubly circular linked list is that
the doubly circular linked list does not contain the NULL value in the previous field of
the node. As the doubly circular linked contains three parts, i.e., two address parts
and one data part so its representation is similar to the doubly linked list.

Representation of the node in Doubly Circular linked list

1. struct node

2. {

3. int data;

4. struct node *next;

5. struct node *prev;

6. }

What is a Stack?

A Stack is a linear data structure that follows the LIFO (Last-In-First-

Out) principle. Stack has one end, whereas the Queue has two ends (front and

rear). It contains only one pointer top pointer pointing to the topmost element

of the stack. Whenever an element is added in the stack, it is added on the top of

the stack, and the element can be deleted only from the stack. In other words,

a stack can be defined as a container in which insertion and deletion can

be done from the one end known as the top of the stack.

Working of Stack

Stack works on the LIFO pattern. As we can observe in the below figure there are

five memory blocks in the stack; therefore, the size of the stack is 5.

Suppose we want to store the elements in a stack and let's assume that stack is

empty. We have taken the stack of size 5 as shown below in which we are

pushing the elements one by one until the stack becomes full.

UNIT-3

Since our stack is full as the size of the stack is 5. In the above cases, we can

observe that it goes from the top to the bottom when we were entering the new

element in the stack. The stack gets filled up from the bottom to the top.

When we perform the delete operation on the stack, there is only one way for

entry and exit as the other end is closed. It follows the LIFO pattern, which

means that the value entered first will be removed last. In the above case, the

value 5 is entered first, so it will be removed only after the deletion of all the

other elements.

Standard Stack Operations

The following are some common operations implemented on the stack:

o push(): When we insert an element in a stack then the operation is known

as a push. If the stack is full then the overflow condition occurs.

o pop(): When we delete an element from the stack, the operation is known

as a pop. If the stack is empty means that no element exists in the stack,

this state is known as an underflow state.

o isEmpty(): It determines whether the stack is empty or not.

o isFull(): It determines whether the stack is full or not.'

o peek(): It returns the element at the given position.

o count(): It returns the total number of elements available in a stack.

o change(): It changes the element at the given position.

o display(): It prints all the elements available in the stack.

UNIT-3

PUSH operation

The steps involved in the PUSH operation is given below:

o Before inserting an element in a stack, we check whether the stack is full.

o If we try to insert the element in a stack, and the stack is full, then

the overflow condition occurs.

o When we initialize a stack, we set the value of top as -1 to check that the

stack is empty.

o When the new element is pushed in a stack, first, the value of the top gets

incremented, i.e., top=top+1, and the element will be placed at the new

position of the top.

o The elements will be inserted until we reach the max size of the stack.

POP operation

The steps involved in the POP operation is given below:

o Before deleting the element from the stack, we check whether the stack is

empty.

o If we try to delete the element from the empty stack, then

the underflow condition occurs.

UNIT-3

o If the stack is not empty, we first access the element which is pointed by

the top

o Once the pop operation is performed, the top is decremented by 1,

i.e., top=top-1.

Array implementation of Stack

In array implementation, the stack is formed by using the array. All the

operations regarding the stack are performed using arrays. Lets see how each

operation can be implemented on the stack using array data structure.

Adding an element onto the stack (push operation)

Adding an element into the top of the stack is referred to as push operation. Push

operation involves following two steps.

1. Increment the variable Top so that it can now refere to the next memory

location.

2. Add element at the position of incremented top. This is referred to as

adding new element at the top of the stack.

Stack is overflown when we try to insert an element into a completely filled stack

therefore, our main function must always avoid stack overflow condition.

Algorithm:

1. begin

2. if top = n then stack full

3. top = top + 1

4. stack (top) : = item;

5. end

Time Complexity : o(1)

UNIT-3

implementation of push algorithm in C language

1. void push (int val,int n) //n is size of the stack

2. {

3. if (top == n)

4. printf("\n Overflow");

5. else

6. {

7. top = top +1;

8. stack[top] = val;

9. }

10. }

Deletion of an element from a stack (Pop operation)

Deletion of an element from the top of the stack is called pop operation. The

value of the variable top will be incremented by 1 whenever an item is deleted

from the stack. The top most element of the stack is stored in an another variable

and then the top is decremented by 1. the operation returns the deleted value

that was stored in another variable as the result.

The underflow condition occurs when we try to delete an element from an already

empty stack.

Algorithm :

1. begin

2. if top = 0 then stack empty;

3. item := stack(top);

4. top = top - 1;

5. end;

Time Complexity : o(1)

Implementation of POP algorithm using C language

1. int pop ()

2. {

3. if(top == -1)

UNIT-3

4. {

5. printf("Underflow");

6. return 0;

7. }

8. else

9. {

10. return stack[top - -];

11. }

➢ }

Here, We have implemented stacks using arrays in C.

#include<stdio.h>

#include<stdlib.h>

#define Size 4

int Top=-1, inp_array[Size];

void Push();

void Pop();
void show();
int main()

{

 int choice;

 while(1)

 {

 printf("\nOperations performed by Stack");

 printf("\n1.Push the element\n2.Pop the

element\n3.Show\n4.End");

 printf("\n\nEnter the choice:");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1: Push();

 break;

 case 2: Pop();

 break;

 case 3: show();

 break;

 case 4: exit(0);

 default: printf("\nInvalid choice!!");

 }

 }

https://www.journaldev.com/30808/arrays-in-c

UNIT-3

}

void Push()

{

 int x;

 if(Top==Size-1)

 {

 printf("\nOverflow!!");

 }

 else

 {

 printf("\nEnter element to be inserted to the stack:");

 scanf("%d",&x);

 Top=Top+1;

 inp_array[Top]=x;

 }

}

void Pop()

{

 if(Top==-1)

 {

 printf("\nUnderflow!!");

 }

 else

 {

 printf("\nPopped element: %d",inp_array[Top]);

 Top=Top-1;

 }

}

void show()

{

 if(Top==-1)

 {

 printf("\nUnderflow!!");

 }

 else

 {

 printf("\nElements present in the stack: \n");

 for(int i=Top;i>=0;--i)

 printf("%d\n",inp_array[i]);

 }

}

Output:

Operations performed by Stack

1.Push the element

2.Pop the element

UNIT-3

3.Show

4.End

 Enter the choice:1

 Enter element to be inserted to the stack:10

 Operations performed by Stack

1.Push the element

2.Pop the element

3.Show

4.End

 Enter the choice:3

 Elements present in the stack:

10

 Operations performed by Stack

1.Push the element

2.Pop the element

3.Show

4.End

 Enter the choice:2

Popped element: 10

 Operations performed by Stack

1.Push the element

2.Pop the element

3.Show

4.End

 Enter the choice:3

Underflow!!

Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack. Linked list
allocates the memory dynamically. However, time complexity in both the scenario is
same for all the operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained non-contiguously in
the memory. Each node contains a pointer to its immediate successor node in the
stack. Stack is said to be overflown if the space left in the memory heap is not

enough to create a node.

UNIT-3

The top most node in the stack always contains null in its address field. Lets discuss

the way in which, each operation is performed in linked list implementation of stack.

Pause

Unmute

Loaded: 51.61%

Fullscreen

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to
a stack in linked list implementation is different from that of an array

implementation. In order to push an element onto the stack, the following steps are
involved.

1. Create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start node of the list.

This includes assigning value to the data part of the node and assign null to

the address part of the node.

3. If there are some nodes in the list already, then we have to add the new

element in the beginning of the list (to not violate the property of the stack).

For this purpose, assign the address of the starting element to the address

field of the new node and make the new node, the starting node of the list.

UNIT-3

Time Complexity : o(1)

C implementation :

1. void push ()

2. {

3. int val;

4. struct node *ptr =(struct node*)malloc(sizeof(struct node));

5. if(ptr == NULL)

6. {

7. printf("not able to push the element");

8. }

9. else

10. {

11. printf("Enter the value");

12. scanf("%d",&val);

UNIT-3

13. if(head==NULL)

14. {

15. ptr->val = val;

16. ptr -> next = NULL;

17. head=ptr;

18. }

19. else

20. {

21. ptr->val = val;

22. ptr->next = head;

23. head=ptr;

24.

25. }

26. printf("Item pushed");

27.

28. }

29. }

Deleting a node from the stack (POP
operation)

Deleting a node from the top of stack is referred to as pop operation.

Deleting a node from the linked list implementation of stack is different from
that in the array implementation. In order to pop an element from the stack,
we need to follow the following steps :

30. Check for the underflow condition: The underflow condition occurs

when we try to pop from an already empty stack. The stack will be

empty if the head pointer of the list points to null.

31. Adjust the head pointer accordingly: In stack, the elements are

popped only from one end, therefore, the value stored in the head

pointer must be deleted and the node must be freed. The next node of

the head node now becomes the head node.

Time Complexity : o(n)

C implementation

32. void pop()

33. {

UNIT-3

34. int item;

35. struct node *ptr;

36. if (head == NULL)

37. {

38. printf("Underflow");

39. }

40. else

41. {

42. item = head->val;

43. ptr = head;

44. head = head->next;

45. free(ptr);

46. printf("Item popped");

47.

48. }

49. }

Queue

1. A queue can be defined as an ordered list which enables insert operations to be
performed at one end called REAR and delete operations to be performed at another
end called FRONT.

2. Queue is referred to be as First In First Out list.

3. For example, people waiting in line for a rail ticket form a queue.

UNIT-3

Applications of Queue

Due to the fact that queue performs actions on first in first out basis which is quite

fair for the ordering of actions. There are various applications of queues discussed as
below.

1. Queues are widely used as waiting lists for a single shared resource like

printer, disk, CPU.

2. Queues are used in asynchronous transfer of data (where data is not being

transferred at the same rate between two processes) for eg. pipes, file IO,

sockets.

3. Queues are used as buffers in most of the applications like MP3 media player,

CD player, etc.

4. Queue are used to maintain the play list in media players in order to add and

remove the songs from the play-list.

5. Queues are used in operating systems for handling interrupts.

Operations on Queue

There are two fundamental operations performed on a Queue:

o Enqueue: The enqueue operation is used to insert the element at the rear

end of the queue. It returns void.

o Dequeue: The dequeue operation performs the deletion from the front-end

of the queue. It also returns the element which has been removed from the

front-end. It returns an integer value. The dequeue operation can also be

designed to void.

o Peek: This is the third operation that returns the element, which is pointed

by the front pointer in the queue but does not delete it.

o Queue overflow (isfull): When the Queue is completely full, then it shows

the overflow condition.

Queue underflow (isempty): When the Queue is empty, i.e., no elements are in
the Queue then it throws the underflow

Implementation of Queue in C

Queues in C can be implemented using Arrays, Lists, Structures, etc. Below here we have

implemented queues using Arrays in C.

Example:

https://www.journaldev.com/30808/arrays-in-c

UNIT-3

#include <stdio.h>

define SIZE 100

void enqueue();

void dequeue();

void show();

int inp_arr[SIZE];

int Rear = - 1;

int Front = - 1;

main()

{

 int ch;

 while (1)

 {

 printf("1.Enqueue Operation\n");

 printf("2.Dequeue Operation\n");

 printf("3.Display the Queue\n");

 printf("4.Exit\n");

 printf("Enter your choice of operations : ");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 enqueue();

 break;

 case 2:

 dequeue();

 break;

 case 3:

 show();

 break;

 case 4:

 exit(0);

 default:

 printf("Incorrect choice \n");

 }

 }

}

void enqueue()

{

 int x;

 if (Rear == SIZE - 1)

 printf("Overflow \n");

UNIT-3

 else

 {

 if (Front == - 1)

 Front = 0;

 printf("Element to be inserted in the Queue\n : ");

 scanf("%d", &x);

 Rear = Rear + 1;

 inp_arr[Rear] = x;

 }

}

void dequeue()

{

 if (Front == - 1 || Front > Rear) //Rear==-1

 {

 printf("Queue is empty \n");

 return ;

 }

 else

 {

 printf("Element deleted from the Queue: %d\n", inp_arr[Front]);

 Front = Front + 1;

 }

}

void show()

{

 if (Front == - 1)

 printf("Empty Queue \n");

 else

 {

 printf("Queue: \n");

 for (int i = Front; i <= Rear; i++)

 printf("%d ", inp_arr[i]);

 printf("\n");

 }

}
Output:

1.Enqueue Operation

2.Dequeue Operation

3.Display the Queue

UNIT-3

4.Exit

Enter your choice of operations : 1

Element to be inserted in the Queue: 10

1.Enqueue Operation

2.Dequeue Operation

3.Display the Queue

4.Exit

Enter your choice of operations : 1

Element to be inserted in the Queue: 20

1.Enqueue Operation

2.Dequeue Operation

3.Display the Queue

4.Exit

Enter your choice of operations : 3

Queue:

10 20

1.Enqueue Operation

2.Dequeue Operation

3.Display the Queue

4.Exit

Enter your choice of operations : 2

Element deleted from the Queue: 10

1.Enqueue Operation

2.Dequeue Operation

3.Display the Queue

4.Exit

Enter your choice of operations: 3

Queue:

20

Types of Queue

o Circular Queue

In Circular Queue, all the nodes are represented as circular. It is similar to the linear

Queue except that the last element of the queue is connected to the first element. It

is also known as Ring Buffer as all the ends are connected to another end. The
circular queue can be represented as:

UNIT-3

Operations on Circular Queue

The following are the operations that can be performed on a circular queue:

o Front: It is used to get the front element from the Queue.

o Rear: It is used to get the rear element from the Queue.

o enQueue(value): This function is used to insert the new value in the Queue.

The new element is always inserted from the rear end.

o deQueue(): This function deletes an element from the Queue. The deletion

in a Queue always takes place from the front end

o
o Algorithm to insert an element in a circular queue
o
o Step 1: IF (REAR+1)%MAX = FRONT

Write " OVERFLOW "
Goto step 4
[End OF IF]

o Step 2: IF FRONT = -1 and REAR = -1
SET FRONT = REAR = 0
ELSE IF REAR = MAX - 1 and FRONT ! = 0

UNIT-3

SET REAR = 0
ELSE
SET REAR = (REAR + 1) % MAX
[END OF IF]

o Step 3: SET QUEUE[REAR] = VAL
o Step 4: EXIT

o Priority Queue

A priority queue is another special type of Queue data structure in which each
element has some priority associated with it. Based on the priority of the element,

the elements are arranged in a priority queue. If the elements occur with the same
priority, then they are served according to the FIFO principle.

In priority Queue, the insertion takes place based on the arrival while the deletion

occurs based on the priority. The priority Queue can be shown as:

The above figure shows that the highest priority element comes first and the
elements of the same priority are arranged based on FIFO structure

Deque

The dequeue stands for Double Ended Queue. In the queue, the insertion takes

place from one end while the deletion takes place from another end. The end at

which the insertion occurs is known as the rear end whereas the end at which

the deletion occurs is known as front end.

Deque is a linear data structure in which the insertion and deletion operations

are performed from both ends. We can say that deque is a generalized version of

the queue.

Let's look at some properties of deque.

UNIT-3

o Deque can be used both as stack and queue as it allows the insertion and

deletion operations on both ends.

In deque, the insertion and deletion operation can be performed from one side.

The stack follows the LIFO rule in which both the insertion and deletion can be

performed only from one end; therefore, we conclude that deque can be

considered as a stack.

In deque, the insertion can be performed on one end, and the deletion can be

done on another end. The queue follows the FIFO rule in which the element is

inserted on one end and deleted from another end. Therefore, we conclude that

the deque can also be considered as the queue.

There are two types of Queues, Input-restricted queue, and output-

restricted queue.

1. Input-restricted queue: The input-restricted queue means that some

restrictions are applied to the insertion. In input-restricted queue, the

insertion is applied to one end while the deletion is applied from both the

UNIT-3

ends.

2. Output-restricted queue: The output-restricted queue means that some

restrictions are applied to the deletion operation. In an output-restricted

queue, the deletion can be applied only from one end, whereas the

insertion is possible from both ends.

Operations on Deque

The following are the operations applied on deque:

o Insert at front

o Delete from end

o insert at rear

o delete from rear

Other than insertion and deletion, we can also perform peek operation in deque.

Through peek operation, we can get the front and the rear element of the

dequeue.

We can perform two more operations on dequeue:

o isFull(): This function returns a true value if the stack is full; otherwise, it

returns a false value.

UNIT-3

o isEmpty(): This function returns a true value if the stack is empty;

otherwise it returns a false value.

Array representation of Queue

We can easily represent queue by using linear arrays. There are two variables i.e.

front and rear, that are implemented in the case of every queue. Front and rear

variables point to the position from where insertions and deletions are performed

in a queue. Initially, the value of front and queue is -1 which represents an empty

queue. Array representation of a queue containing 5 elements along with the

respective values of front and rear, is shown in the following figure.

The above figure shows the queue of characters forming the English

word "HELLO". Since, No deletion is performed in the queue till now, therefore

the value of front remains -1 . However, the value of rear increases by one every

time an insertion is performed in the queue. After inserting an element into the

queue shown in the above figure, the queue will look something like following.

The value of rear will become 5 while the value of front remains same.

UNIT-3

After deleting an element, the value of front will increase from -1 to 0. however,

the queue will look something like following.

Pause

Unmute

Loaded: 9.56%

Fullscreen

Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return

an overflow error.

UNIT-3

If the item is to be inserted as the first element in the list, in that case set the

value of front and rear to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one

having rear as the index.

Algorithm

o Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

o Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

o Step 3: Set QUEUE[REAR] = NUM

o Step 4:exit

Next →← Prev

Array representation of Queue

We can easily represent queue by using linear arrays. There are two variables i.e.

front and rear, that are implemented in the case of every queue. Front and rear

variables point to the position from where insertions and deletions are performed

in a queue. Initially, the value of front and queue is -1 which represents an empty

queue. Array representation of a queue containing 5 elements along with the

respective values of front and rear, is shown in the following figure.

https://www.javatpoint.com/linked-list-implementation-of-queue
https://www.javatpoint.com/ds-types-of-queues

UNIT-3

The above figure shows the queue of characters forming the English

word "HELLO". Since, No deletion is performed in the queue till now, therefore

the value of front remains -1 . However, the value of rear increases by one every

time an insertion is performed in the queue. After inserting an element into the

queue shown in the above figure, the queue will look something like following.

The value of rear will become 5 while the value of front remains same.

After deleting an element, the value of front will increase from -1 to 0. however,

the queue will look something like following.

Pause

Unmute

UNIT-3

Loaded: 25.77%

Fullscreen

Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return

an overflow error.

If the item is to be inserted as the first element in the list, in that case set the

value of front and rear to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one

having rear as the index.

Algorithm

o Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

o Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

o Step 3: Set QUEUE[REAR] = NUM

UNIT-3

o Step 4: EXIT

C Function

1. void insert (int queue[], int max, int front, int rear, int item)

2. {

3. if (rear + 1 == max)

4. {

5. printf("overflow");

6. }

7. else

8. {

9. if(front == -1 && rear == -1)

10. {

11. front = 0;

12. rear = 0;

13. }

14. else

15. {

16. rear = rear + 1;

17. }

18. queue[rear]=item;

19. }

20. }

Algorithm to delete an element from the queue

If, the value of front is -1 or value of front is greater than rear , write an

underflow message and exit.

Otherwise, keep increasing the value of front and return the item stored at the

front end of the queue at each time.

Algorithm

o Step 1: IF FRONT = -1 or FRONT > REAR

Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

UNIT-3

SET FRONT = FRONT + 1

[END OF IF]

o Step 2: EXIT

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this tutorial, the array
implementation can not be used for the large scale applications where the queues

are implemented. One of the alternative of array implementation is linked list
implementation of queue.

The storage requirement of linked representation of a queue with n elements is o(n)
while the time requirement for operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data part and
the link part. Each element of the queue points to its immediate next element in the

memory.

In the linked queue, there are two pointers maintained in the memory i.e. front
pointer and rear pointer. The front pointer contains the address of the starting
element of the queue while the rear pointer contains the address of the last element

of the queue.

Insertion and deletions are performed at rear and front end respectively. If front and
rear both are NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues. The
operations are Insertion and Deletion.

Insert operation

The insert operation append the queue by adding an element to the end of the
queue. The new element will be the last element of the queue.

UNIT-3

Firstly, allocate the memory for the new node ptr by using the following statement.

1. Ptr = (struct node *) malloc (sizeof(struct node));

There can be the two scenario of inserting this new node ptr into the linked queue.

In the first scenario, we insert element into an empty queue. In this case, the
condition front = NULL becomes true. Now, the new element will be added as the
only element of the queue and the next pointer of front and rear pointer both, will
point to NULL.

1. ptr -> data = item;

2. if(front == NULL)

3. {

4. front = ptr;

5. rear = ptr;

6. front -> next = NULL;

7. rear -> next = NULL;

8. }

In the second case, the queue contains more than one element. The condition front
= NULL becomes false. In this scenario, we need to update the end pointer rear so
that the next pointer of rear will point to the new node ptr. Since, this is a linked
queue, hence we also need to make the rear pointer point to the newly added
node ptr. We also need to make the next pointer of rear point to NULL.

1. rear -> next = ptr;

2. rear = ptr;

3. rear->next = NULL;

In this way, the element is inserted into the queue. The algorithm and the C

implementation is given as follows.

Algorithm

o Step 1: Allocate the space for the new node PTR

o Step 2: SET PTR -> DATA = VAL

o Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

UNIT-3

SET REAR -> NEXT = NULL

[END OF IF]

o Step 4: END

C Function
1. void insert(struct node *ptr, int item;)

2. {

3.

4.

5. ptr = (struct node *) malloc (sizeof(struct node));

6. if(ptr == NULL)

7. {

8. printf("\nOVERFLOW\n");

9. return;

10. }

11. else

12. {

13. ptr -> data = item;

14. if(front == NULL)

15. {

16. front = ptr;

17. rear = ptr;

18. front -> next = NULL;

19. rear -> next = NULL;

20. }

21. else

22. {

23. rear -> next = ptr;

24. rear = ptr;

25. rear->next = NULL;

26. }

27. }

28. }

Deletion

Deletion operation removes the element that is first inserted among all the queue
elements. Firstly, we need to check either the list is empty or not. The condition

UNIT-3

front == NULL becomes true if the list is empty, in this case , we simply write
underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For this

purpose, copy the node pointed by the front pointer into the pointer ptr. Now, shift
the front pointer, point to its next node and free the node pointed by the node ptr.
This is done by using the following statements.

1. ptr = front;

2. front = front -> next;

3. free(ptr);

The algorithm and C function is given as follows.

Algorithm

o Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

o Step 2: SET PTR = FRONT

o Step 3: SET FRONT = FRONT -> NEXT

o Step 4: FREE PTR

o Step 5: END

Unit 5

Trees

• Tree is a hierarchical data structure which stores the information naturally in the form of

hierarchy style.

• Tree is one of the most powerful and advanced data structures.

• It is a non-linear data structure compared to arrays, linked lists, stack and queue.

• It represents the nodes connected by edges.

The above figure represents structure of a tree. Tree has 2 subtrees.
A is a parent of B and C.
B is called a child of A and also parent of D, E, F.

Tree is a collection of elements called Nodes, where each node can have arbitrary
number of children.

Field Description

Root Root is a special node in a tree. The entire tree is referenced through it. It does not have a

parent.

Parent Node Parent node is an immediate predecessor of a node.

Child Node All immediate successors of a node are its children.

Siblings Nodes with the same parent are called Siblings.

Path Path is a number of successive edges from source node to destination node.

Height of Node Height of a node represents the number of edges on the longest path between that node and a

leaf.

Height of Tree Height of tree represents the height of its root node.

Depth of Node Depth of a node represents the number of edges from the tree's root node to the node.

In the above figure, D, F, H, G are leaves. B and C are siblings. Each node excluding a

root is connected by a direct edge from exactly one other node

parent → children.

• Levels of a node

• Levels of a node represents the number of connections between the node and

the root. It represents generation of a node. If the root node is at level 0, its next

node is at level 1, its grand child is at level 2 and so on. Levels of a node can be

shown as follows:

Note:

- If node has no children, it is called Leaves or External Nodes.

- Nodes which are not leaves, are called Internal Nodes. Internal nodes have at

least one child.

- A tree can be empty with no nodes or a tree consists of one node called

the Root.

• Height of a Node

Degree of

Node

Degree of a node represents a number of children of a node.

Edge Edge is a connection between one node to another. It is a line between two nodes or a node

and a leaf.

As we studied, height of a node is a number of edges on the longest path between that

node and a leaf. Each node has height.

In the above figure, A, B, C, D can have height. Leaf cannot have height as there will be

no path starting from a leaf. Node A's height is the number of edges of the path to K not

to D. And its height is 3.

Note:

- Height of a node defines the longest path from the node to a leaf.

- Path can only be downward.

• Depth of a Node

While talking about the height, it locates a node at bottom where for depth, it is located

at top which is root level and therefore we call it depth of a node.

In the above figure, Node G's depth is 2. In depth of a node, we just count how many

edges between the targeting node & the root and ignoring the directions.

Note: Depth of the root is 0.

Advantages of Tree

• Tree reflects structural relationships in the data.

• It is used to represent hierarchies.

• It provides an efficient insertion and searching operations.

• Trees are flexible. It allows to move subtrees around with minimum effort.

Binary trees
A binary tree is a tree-type non-linear data structure with a maximum of two children for
each parent. Every node in a binary tree has a left and right reference along with the
data element. The node at the top of the hierarchy of a tree is called the root node. The
nodes that hold other sub-nodes are the parent nodes.
A parent node has two child nodes: the left child and right child. Hashing, routing data
for network traffic, data compression, preparing binary heaps, and binary search trees
are some of the applications that use a binary tree.

Terminologies associated with Binary Trees
• Node: It represents a termination point in a tree.
• Root: A tree’s topmost node.
• Parent: Each node (apart from the root) in a tree that has at least one sub-node of its

own is called a parent node.
• Child: A node that straightway came from a parent node when moving away from the

root is the child node.
• Leaf Node: These are external nodes. They are the nodes that have no child.
• Internal Node: As the name suggests, these are inner nodes with at least one child.
• Depth of a Tree: The number of edges from the tree’s node to the root is.
• Height of a Tree: It is the number of edges from the node to the deepest leaf. The tree

height is also considered the root height.

https://www.upgrad.com/blog/data-structures-algorithm-in-python/

Binary Tree Representations
A binary tree data structure is represented using two methods. Those methods are as
follows...

1. Array Representation

2. Linked List Representation

Consider the following binary tree...

1. Array Representation of Binary Tree

In array representation of a binary tree, we use one-dimensional array (1-D Array) to represent
a binary tree.
Consider the above example of a binary tree and it is represented as follows...

To represent a binary tree of depth 'n' using array representation, we need one dimensional array
with a maximum size of 2n + 1.

2. Linked List Representation of Binary Tree

We use a double linked list to represent a binary tree. In a double linked list, every node
consists of three fields. First field for storing left child address, second for storing actual data
and third for storing right child address.
In this linked list representation, a node has the following structure...

The above example of the binary tree represented using Linked list representation is shown as
follows...

Binary Tree Components
There are three binary tree components. Every binary tree node has these three
components associated with it. It becomes an essential concept for programmers to
understand these three binary tree components:

1. Data element
2. Pointer to left subtree
3. Pointer to right subtree

Source
These three binary tree components represent a node. The data resides in the
middle. The left pointer points to the child node, forming the left sub-tree. The right
pointer points to the child node at its right, creating the right subtree.
Types of Binary Trees
There are various types of binary trees, and each of these binary tree types has
unique characteristics. Here are each of the binary tree types in detail:
1. Full Binary Tree

• If each node of binary tree has either two children or no child at all, is said to be a Full
Binary Tree.

• Full binary tree is also called as Strictly Binary Tree.

• Every node in the tree has either 0 or 2 children.
• Full binary tree is used to represent mathematical expressions.

2. Complete Binary Tree
• If all levels of tree are completely filled except the last level and the last level has all

keys as left as possible, is said to be a Complete Binary Tree.
• Complete binary tree is also called as Perfect Binary Tree.

https://www.studytonight.com/data-structures/introduction-to-binary-trees

• In a complete binary tree, every internal node has exactly two children and all leaf
nodes are at same level.

• For example, at Level 2, there must be 22 = 4 nodes and at Level 3 there must be 23 =
8 nodes.
3. Skewed Binary Tree

• If a tree which is dominated by left child node or right child node, is said to be
a Skewed Binary Tree.

• In a skewed binary tree, all nodes except one have only one child node. The remaining
node has no child.

• In a left skewed tree, most of the nodes have the left child without corresponding right
child.

• In a right skewed tree, most of the nodes have the right child without corresponding
left child.
4. Extended Binary Tree

• Extended binary tree consists of replacing every null subtree of the original tree with
special nodes.

• Empty circle represents internal node and filled circle represents external node.
• The nodes from the original tree are internal nodes and the special nodes are external

nodes.
• Every internal node in the extended binary tree has exactly two children and every

external node is a leaf. It displays the result which is a complete binary tree.

4. Perfect Binary Tree
A binary tree is said to be ‘perfect’ if all the internal nodes have strictly two

children, and every external or leaf node is at the same level or same depth within a
tree. A perfect binary tree having height ‘h’ has 2h – 1 node. Here is the structure of a
perfect binary tree:
perfect binary tree:

5. Balanced Binary Tree
A binary tree is said to be ‘balanced’ if the tree height is O(logN), where ‘N’ is the

number of nodes. In a balanced binary tree, the height of the left and the right subtrees
of each node should vary by at most one. An AVL Tree and a Red-Black Tree are some
common examples of data structure that can generate a balanced binary search tree.
Here is an example of a balanced binary tree:

6. Degenerate Binary Tree
A binary tree is said to be a degenerate binary tree or pathological binary tree if

every internal node has only a single child. Such trees are similar to a linked list
performance-wise. Here is an example of a degenerate binary tree:

Benefits of a Binary Tree
• The search operation in a binary tree is faster as compared to other trees
• Only two traversals are enough to provide the elements in sorted order
• It is easy to pick up the maximum and minimum elements
• Graph traversal also uses binary trees
• Converting different postfix and prefix expressions are possible using binary trees

https://www.upgrad.com/blog/binary-tree-in-data-structure/

Differences between General Tree and Binary Tree

General Tree

• General tree has no limit of number of children.

• Evaluating any expression is hard in general trees.

Binary Tree

• A binary tree has maximum two children

• Evaluation of expression is simple in binary tree.

Application of trees

• Manipulation of arithmetic expression

• Construction of symbol table

• Analysis of Syntax

• Writing Grammar

• Creation of Expression Tree

Binary Tree Traversals

When we wanted to display a binary tree, we need to follow some order in which all the nodes of

that binary tree must be displayed. In any binary tree, displaying order of nodes depends on the

traversal method.

Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal.

There are three types of binary tree traversals.

1. In - Order Traversal

2. Pre - Order Traversal

3. Post - Order Traversal

Consider the following binary tree...

1. In - Order Traversal (leftChild - root - rightChild)

In In-Order traversal, the root node is visited between the left child and right child. In this

traversal,

• the left child node is visited first, then

• the root node is visited and later

• we go for visiting the right child node.

This in-order traversal is applicable for every root node of all subtrees in the tree. This is
performed recursively for all nodes in the tree.
 In the above example of a binary tree, first we try to visit left child of root node 'A', but A's
left child 'B' is a root node for left subtree. so we try to visit its (B's) left child 'D' and again D is a
root for subtree with nodes D, I and J. So we try to visit its left child 'I' and it is the leftmost child.
So first we visit 'I' then go for its root node 'D' and later we visit D's right child 'J'. With this we
have completed the left part of node B. Then visit 'B' and next B's right child 'F' is visited. With
this we have completed left part of node A. Then visit root node 'A'. With this we have completed
left and root parts of node A. Then we go for the right part of the node A. In right of A again there
is a subtree with root C. So go for left child of C and again it is a subtree with root G. But G does
not have left part so we visit 'G' and then visit G's right child K. With this we have completed the
left part of node C. Then visit root node 'C' and next visit C's right child 'H' which is the rightmost
child in the tree. So we stop the process.

That means here we have visited in the order of I - D - J - B - F - A - G - K - C - H using In-Order
Traversal.

In-Order Traversal for above example of binary tree is

I - D - J - B - F - A - G - K - C – H

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

2. Pre - Order Traversal (root - leftChild - rightChild)

In Pre-Order traversal, the root node is visited before the left child and right child nodes. In this
traversal,

• the root node is visited first, then

• its left child and

• later its right child.

This pre-order traversal is applicable for every root node of all subtrees in the tree.
In the above example of binary tree, first we visit root node 'A' then visit its left child 'B' which is
a root for D and F. So we visit B's left child 'D' and again D is a root for I and J. So we visit D's left
child 'I' which is the leftmost child. So next we go for visiting D's right child 'J'. With this we have
completed root, left and right parts of node D and root, left parts of node B. Next visit B's right
child 'F'. With this we have completed root and left parts of node A. So we go for A's right
child 'C' which is a root node for G and H. After visiting C, we go for its left child 'G' which is a
root for node K. So next we visit left of G, but it does not have left child so we go for G's right
child 'K'. With this, we have completed node C's root and left parts. Next visit C's right
child 'H' which is the rightmost child in the tree. So we stop the process.

That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H using Pre-Order Traversal.

Pre-Order Traversal for above example binary tree is

A - B - D - I - J - F - C - G - K – H

Algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

3. Post - Order Traversal (leftChild - rightChild - root)

In Post-Order traversal, the root node is visited after left child and right child. In this traversal,

• left child node is visited first, then

• its right child and then

• its root node.

This is recursively performed until the right most node is visited.

Here we have visited in the order of I - J - D - F - B - K - G - H - C - A using Post-Order Traversal.

Post-Order Traversal for above example binary tree is

I - J - D - F - B - K - G - H - C – A

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

	Data structures
	Introduction
	Types of Data Structures
	Advantages of Data structures

	Linked list
	Types of Linked list
	Single Linked list
	Doubly linked list
	Circular linked list
	Doubly Circular linked list

	What is a Stack?
	Working of Stack
	Standard Stack Operations
	PUSH operation
	POP operation

	Array implementation of Stack
	Adding an element onto the stack (push operation)
	implementation of push algorithm in C language
	Deletion of an element from a stack (Pop operation)
	Implementation of POP algorithm using C language

	Linked list implementation of stack
	Adding a node to the stack (Push operation)
	C implementation :

	Deleting a node from the stack (POP operation)
	C implementation

	Queue
	Applications of Queue
	Operations on Queue

	Queue underflow (isempty): When the Queue is empty, i.e., no elements are in the Queue then it throws the underflow
	Implementation of Queue in C
	Types of Queue
	Operations on Circular Queue

	Deque
	Operations on Deque

	Array representation of Queue
	Algorithm to insert any element in a queue
	Algorithm

	Array representation of Queue
	Algorithm to insert any element in a queue
	Algorithm
	C Function
	Algorithm to delete an element from the queue
	Algorithm

	Linked List implementation of Queue
	Operation on Linked Queue
	Insert operation
	Algorithm
	C Function
	Deletion
	Algorithm

	• Levels of a node
	• Depth of a Node
	Terminologies associated with Binary Trees
	Binary Tree Representations
	1. Array Representation of Binary Tree
	2. Linked List Representation of Binary Tree
	Binary Tree Components
	Types of Binary Trees
	1. Full Binary Tree
	2. Complete Binary Tree
	3. Skewed Binary Tree
	4. Extended Binary Tree
	4. Perfect Binary Tree
	5. Balanced Binary Tree
	6. Degenerate Binary Tree

	Benefits of a Binary Tree
	General Tree

	Binary Tree Traversals
	1. In - Order Traversal (leftChild - root - rightChild)
	I - D - J - B - F - A - G - K - C – H
	Algorithm

	2. Pre - Order Traversal (root - leftChild - rightChild)
	A - B - D - I - J - F - C - G - K – H
	Algorithm

	3. Post - Order Traversal (leftChild - rightChild - root)
	I - J - D - F - B - K - G - H - C – A
	Algorithm

	text_1hrty: UNIT-1
	text_3ooo: UNIT-2

