

Introduction to IoT

Dr. M. Kalpana Devi

Professor

Outline

• IoT definition

• Characteristics of IoT

• Physical Design of IoT

• Logical Design of IoT

• IoT Protocols

• IoT Levels & Deployment Templates

Definition of IoT

A dynamic global network infrastructure with self-configuring
capabilities based on standard and interoperable communication
protocols where physical and virtual "things" have identities, physical
attributes, and virtual personalities and use intelligent interfaces, and
are seamlessly integrated into the information network, often
communicate data associated with users and their environments.

Characteristics of IoT

• Dynamic & Self-Adapting

• Self-Configuring

• Interoperable Communication Protocols

• Unique Identity

• Integrated into Information Network

Physical Design of IoT

• The "Things" in IoT usually refers to IoT devices which have unique

identities and can perform remote sensing, actuating and monitoring
capabilities.

• IoT devices can:
• Exchange data with other connected devices and applications (directly or

indirectly), or

• Collect data from other devices and process the data locally or

• Send the data to centralized servers or cloud-based application back-ends for
processing the data, or

• Perform some tasks locally and other tasks within the IoT infrastructure,
based on temporal and space constraints

Generic block diagram of an IoT Device

• An IoT device may consist of

several interfaces for connections
to other devices, both wired and
wireless.
• I/O interfaces for sensors

• Interfaces for Internet
connectivity

• Memory and storage interfaces

• Audio/video interfaces.

IoT Protocols

• Link Layer
• 802.3 – Ethernet
• 802.11 – WiFi
• 802.16 – WiMax
• 802.15.4 – LR-WPAN

• 2G/3G/4G

• Network/Internet Layer
• IPv4
• IPv6

• 6LoWPAN

• Transport Layer
• TCP

• UDP

• Application Layer
• HTTP
• CoAP
• WebSocket
• MQTT
• XMPP
• DDS

• AMQP

Logical Design of IoT

• Logical design of an IoT system refers

to an abstract representation of the
entities and processes without going
into the low-level specifics of the
implementation.

• An IoT system comprises of a

number of functional blocks that
provide the system the capabilities
for identification, sensing, actuation,
communication, and management.

Request-Response communication model

• Request-Response is a

communication model in
which the client sends
requests to the server and
the server responds to the
requests.

• When the server receives

a request, it decides how
to respond, fetches the
data, retrieves resource
representations, prepares
the response, and then
sends the response to the
client.

Publish-Subscribe communication model

• Publish-Subscribe is a

communication model that
involves publishers, brokers and
consumers.

• Publishers are the source of data.
Publishers send the data to the
topics which are managed by the
broker. Publishers are not aware of
the consumers.

• Consumers subscribe to the topics
which are managed by the broker.

• When the broker receives data for
a topic from the publisher, it sends
the data to all the subscribed
consumers.

Push-Pull communication model

• Push-Pull is a communication

model in which the data
producers push the data to
queues and the consumers pull
the data from the queues.
Producers do not need to be
aware of the consumers.

• Queues help in decoupling the
messaging between the
producers and consumers.

• Queues also act as a buffer which
helps in situations when there is
a mismatch between the rate at
which the producers push data
and the rate rate at which the
consumers pull data.

Exclusive Pair communication model

• Exclusive Pair is a bidirectional,

fully duplex communication
model that uses a persistent
connection between the client
and server.

• Once the connection is setup it
remains open until the client
sends a request to close the
connection.

• Client and server can send
messages to each other after
connection setup.

REST-based Communication APIs

• Representational State

Transfer (REST) is a set of
architectural principles by
which you can design web
services and web APIs that
focus on a system’s resources
and how resource states are
addressed and transferred.

• REST APIs follow the request-
response communication
model.

• The REST architectural
constraints apply to the
components, connectors, and
data elements, within a
distributed hypermedia
system.

WebSocket-based Communication APIs

• WebSocket APIs allow bi-

directional, full duplex
communication between
clients and servers.

• WebSocket APIs follow
the exclusive pair
communication model

Exclusive Pair communication model

• Exclusive Pair is a

bidirectional, fully duplex
communication model that
uses a persistent connection
between the client and
server.

• Once the connection is setup
it remains open until the
client sends a request to
close the connection.

• Client and server can send
messages to each other after
connection setup.

IoT Levels & Deployment Templates

An IoT system comprises of the following components:

• Device: An IoT device allows identification, remote sensing, actuating
and remote monitoring capabilities. You learned about various
examples of IoT devices in section

• Resource: Resources are software components on the IoT device for
accessing, processing, and storing sensor information, or controlling
actuators connected to the device. Resources also include the
software components that enable network access for the device.

• Controller Service: Controller service is a native service that runs on
the device and interacts with the web services. Controller service sends
data from the device to the web service and receives commands from
the application (via web services) for controlling the device.

IoT Levels & Deployment Templates

• Database: Database can be either local or in the cloud and stores the data

generated by the IoT device.

• Web Service: Web services serve as a link between the IoT device,
application, database and analysis components. Web service can be
either implemented using HTTP and REST principles (REST service) or using
WebSocket protocol (WebSocket service).

• Analysis Component: The Analysis Component is responsible for analyzing
the IoT data and generate results in a form which are easy for the user to
understand.

• Application: IoT applications provide an interface that the users can use
to control and monitor various aspects of the IoT system. Applications also
allow users to view the system status and view the processed data.

IoT Level-1

• A level-1 IoT system has a

single node/device that
performs sensing and/or
actuation, stores data,
performs analysis and hosts
the application

• Level-1 IoT systems are
suitable for modeling low-
cost and low-complexity
solutions where the data
involved is not big and the
analysis requirements are not
computationally intensive.

IoT Level-2

• A level-2 IoT system has a single

node that performs sensing
and/or actuation and local
analysis.

• Data is stored in the cloud and
application is usually cloud-
based.

• Level-2 IoT systems are suitable
for solutions where the data
involved is big, however, the
primary analysis requirement is
not computationally intensive and
can be done locally itself.

IoT Level-3

• A level-3 IoT system has a

single node. Data is stored and
analyzed in the cloud and
application is cloud- based.

• Level-3 IoT systems are
suitable for solutions where
the data involved is big and the
analysis requirements are
computationally intensive.

IoT Level-4

• A level-4 IoT system has multiple

nodes that perform local analysis.
Data is stored in the cloud and
application is cloud-based.

• Level-4 contains local and cloud-
based observer nodes which can
subscribe to and receive information
collected in the cloud from IoT
devices.

• Level-4 IoT systems are suitable for
solutions where multiple nodes are
required, the data involved is big
and the analysis requirements are
computationally intensive.

IoT Level-5

• A level-5 IoT system has multiple end

nodes and one coordinator node.

• The end nodes that perform sensing
and/or actuation.

• Coordinator node collects data from
the end nodes and sends to the cloud.

• Data is stored and analyzed in the
cloud and application is cloud-based.

• Level-5 IoT systems are suitable for
solutions based on wireless sensor
networks, in which the data involved is
big and the analysis requirements are
computationally intensive.

IoT Level-6

• A level-6 IoT system has multiple

independent end nodes that
perform sensing and/or actuation
and send data to the cloud.

• Data is stored in the cloud and
application is cloud-based.

• The analytics component analyzes
the data and stores the results in
the cloud database.

• The results are visualized with the
cloud-based application.

• The centralized controller is aware
of the status of all the end nodes
and sends control commands to
the nodes.

Domain Specific IoTs

Outline

• Introduction

• Home Automation

• Cities

• Environment

• Energy

• Retail

• Logistics

• Agriculture

• Industry

• Health & Lifestyle

Introduction – Applications of IoT

Home Automation

Home Automation (2/2)

• Smart Lighting
• Control lighting by remotely (mobile or web applications)

• Smart Appliances
• Provide status information to the users remotely

• Intrusion Detection
• Use security cameras and sensors (PIR sensors and door sensors)
• Detect intrusions and raise alerts
• The alerts form: an SMS or an email sent to the user

• Smoke/Gas Detectors
• Use optical detection, ionization, or air sampling techniques to detect the smoke
• Gas detectors can detect harmful gases

• Carbon monoxide (CO)
• Liquid petroleum gas (LPG)

• Raise alerts to the user or local fire safety department

Cities (1/2)

Cities (2/2)

• Smart Parking
• Detect the number of empty parking slots
• Send the information over the internet and accessed by smartphones

• Smart Roads
• Provide information on driving conditions, traffic congestions, accidents
• Alert for poor driving conditions

• Structural Health Monitoring
• Monitor the vibration levels in the structures (bridges and buildings)
• Advance warning for imminent failure of the structure

• Surveillance
• Use the large number of distributed and internet connected video surveillance cameras
• Aggregate the video in cloud-based scalable storage solutions

• Emergency Response
• Used for critical infrastructure monitoring
• Detect adverse events

Environment (1/2)

Environment (2/2)
• Weather Monitoring

• Collect data from several sensors (temperature, humidity, pressure, etc.)
• Send the data to cloud-based applications and storage back-ends

• Air Pollution Monitoring
• Monitor emission of harmful gases (CO2, CO, NO, NO2, etc.)
• Factories and automobiles use gaseous and meteorological sensors
• Integration with a single-chip microcontroller, several air pollution sensors, GPRS-modem, and a GPS module

• Noise Pollution Monitoring
• Use a number of noise monitoring stations
• Generate noise maps from data collected

• Forest Fire Detection
• Use a number of monitoring nodes deployed at different locations in a forests

• Use temperature, humidity, light levels, etc.

• Provide early warning of potential forest fire
• Estimates the scale and intensity

• River Floods Detection
• Monitoring the water level (using ultrasonic sensors) and flow rate (using the flow velocity sensors)
• Raise alerts when rapid increase in water level and flow rate is detected

Energy (1/2)

Energy (2/2)

• Smart Grids
• Collect data regarding electricity generation, consumption, storage (conversion

of energy into other forms), distribution, equipment health data

• Control the consumption of electricity

• Remotely switch off supply

• Renewable Energy Systems
• Measure the electrical variables

• Measure how much the power is fed into the grid

• Prognostics
• Predict performance of machines or energy systems

• By collect and analyze the data from sensors

Retail (1/2)

Retail (2/2)

• Inventory Management
• Monitoring the inventory by the RFID readers

• Tracking the products

• Smart Payments
• Use the NFC

• Customers store the credit card information in their NFC-enabled

• Smart Vending Machines
• Allow remote monitoring of inventory levels

• Elastic pricing of products

• Contact-less payment using NFC

• Send the data to the cloud for predictive maintenance
• The information of inventory levels

• The information of the nearest machine in case a product goes out of stock in a machine

Logistics (1/2)

Logistics (2/2)

• Route Generation & Scheduling
• Generate end-to-end routes using combination of route patterns
• Provide route generation queries
• Can be scale up to serve a large transportation network

• Fleet Tracking
• Track the locations of the vehicles in real-time
• Generate alerts for deviations in planned routes

• Shipment monitoring
• Monitoring the conditions inside containers
• Using sensors (temperature, pressure, humidity)
• Detecting food spoilage

• Remote Vehicle Diagnostics
• Detect faults in the vehicle
• Warn of impending faults
• IoT collects the data on vehicle (speed, engine RPM, coolant temperature)
• Generate alerts and suggest remedial actions

Agriculture (1/2)

Agriculture (2/2)

• Smart Irrigation
• Use sensors to determine the amount of moisture in the soil

• Release the flow of water
• Using predefined moisture levels

• Water Scheduling

• Green House Control
• Automatically control the climatological conditions inside a green house

• Using several sensors to monitor

• Using actuation devices to control

• Valves for releasing water and switches for controlling fans

• Maintenance of agricultural production

Industry (1/2)

Industry (2/2)

• Machine Diagnosis
• Sensors in machine monitor the operating conditions

• For example: temperature & vibration levels

• Collecting and analyzing massive scale machine sensor data
• For reliability analysis and fault prediction in machines

• Indoor Air Quality Monitoring
• Use various gas sensors

• To monitor the harmful and toxic gases (CO, NO, NO2, etc.)

• Measure the environmental parameters to determine the indoor air quality
• Temperature, humidity, gaseous pollutants, aerosol

Health & Lifestyle

• Health & Fitness Monitoring
• Collect the health-care data

• Using some sensors: body temperature, heart rate, movement (with accelerometers), etc.

• Various forms : belts and wrist-bands

• Wearable electronic
• Assists the daily activities

• Smart watch

• Smart shoes

• Smart wristbands

IoT & M2M

Outline

• M2M

• Differences and Similarities between M2M and IoT

• SDN and NFV for IoT

Machine-to-Machine (M2M)

• Machine-to-Machine (M2M) refers to networking of machines (or

devices) for the purpose of remote monitoring and control and data
exchange.

Machine-to-Machine (M2M)

• An M2M area network comprises of machines (or M2M nodes) which

have embedded hardware modules for sensing, actuation and
communication.

• Various communication protocols can be used for M2M local area
networks such as ZigBee, Bluetooh, ModBus, M-Bus, Wirless M-Bus,
Power Line Communication (PLC), 6LoWPAN, IEEE 802.15.4, etc.

• The communication network provides connectivity to remote M2M area
networks.

• The communication network can use either wired or wireless networks
(IP- based).

• While the M2M area networks use either proprietary or non-IP based
communication protocols, the communication network uses IP-based
networks.

M2M gateway

• Since non-IP based protocols are used within M2M area networks,

the M2M nodes within one network cannot communicate with nodes
in an external network.

• To enable the communication between remote M2M area networks,
M2M gateways are used.

Difference between IoT and M2M

• Communication Protocols

• M2M and IoT can differ in how the communication between the machines
or devices happens.

• M2M uses either proprietary or non-IP based communication protocols for
communication within the M2M area networks.

• Machines in M2M vs Things in IoT
• The "Things" in IoT refers to physical objects that have unique identifiers

and can sense and communicate with their external environment (and user
applications) or their internal physical states.

• M2M systems, in contrast to IoT, typically have homogeneous machine
types within an M2M area network.

Difference between IoT and M2M

• Hardware vs Software Emphasis

• While the emphasis of M2M is more on hardware with embedded modules, the
emphasis of IoT is more on software.

• Data Collection & Analysis
• M2M data is collected in point solutions and often in on-premises storage

infrastructure.
• In contrast to M2M, the data in IoT is collected in the cloud (can be public, private or

hybrid cloud).

• Applications
• M2M data is collected in point solutions and can be accessed by on-premises

applications such as diagnosis applications, service management applications, and
on- premisis enterprise applications.

• IoT data is collected in the cloud and can be accessed by cloud applications such as
analytics applications, enterprise applications, remote diagnosis and management
applications, etc.

Communication in IoT vs M2M

SDN

• Software-Defined Networking

(SDN) is a networking
architecture that separates the
control plane from the data
plane and centralizes the
network controller.

• Software-based SDN controllers
maintain a unified view of the
network and make confi
guration, management and
provisioning simpler.

• The underlying infrastructure in
SDN uses simple packet
forwarding hardware as
opposed to specialized
hardware in conventional
networks.

Key elements of SDN

• Centralized Network Controller

• With decoupled control and data planes and centralized network controller,
the network administrators can rapidly configure the network.

• Programmable Open APIs
• SDN architecture supports programmable open APIs for interface between the

SDN application and control layers (Northbound interface).

• Standard Communication Interface (OpenFlow)
• SDN architecture uses a standard communication interface between the

control and infrastructure layers (Southbound interface).
• OpenFlow, which is defined by the Open Networking Foundation (ONF) is the

broadly accepted SDN protocol for the Southbound interface.

NFV

• Network Function

Virtualization (NFV) is a
technology that leverages
virtualization to consolidate
the heterogeneous network
devices onto industry
standard high volume
servers, switches and
storage.

• NFV is complementary to
SDN as NFV can provide the
infrastructure on which SDN
can run.

Key elements of NFV

• Virtualized Network Function (VNF):

• VNF is a software implementation of a network function which is capable of
running over the NFV Infrastructure (NFVI).

• NFV Infrastructure (NFVI):
• NFVI includes compute, network and storage resources that are virtualized.

• NFV Management and Orchestration:
• NFV Management and Orchestration focuses on all virtualization-specific

management tasks and covers the orchestration and life-cycle management
of physical and/or software resources that support the infrastructure
virtualization, and the life-cycle management of VNFs.

NFV Use Case

• NFV can be used to virtualize the Home Gateway. The NFV infrastructure in the cloud hosts a

virtualized Home Gateway. The virtualized gateway provides private IP addresses to the
devices in the home. The virtualized gateway also connects to network services such as VoIP
and IPTV.

IoT System Management with

NETCONF-YANG

Outline

• Need for IoT Systems Management

• SNMP

• Network Operator Requirements

• NETCONF

• YANG

• IoT Systems Management with NETCONF-YANG

Need for IoT Systems Management

• Automating Configuration

• Monitoring Operational & Statistical Data

• Improved Reliability

• System Wide Configurations

• Multiple System Configurations

• Retrieving & Reusing Configurations

Simple Network Management Protocol (SNMP)

• SNMP is a well-known and widely used

network management protocol that allows
monitoring and configuring network devices
such as routers, switches, servers, printers, etc.

• SNMP component include
• Network Management Station (NMS)

• Managed Device

• Management Information Base (MIB)

• SNMP Agent that runs on the device

Limitations of SNMP

• SNMP is stateless in nature and each SNMP request contains all the

information to process the request. The application needs to be intelligent
to manage the device.

• SNMP is a connectionless protocol which uses UDP as the transport
protocol, making it unreliable as there was no support for
acknowledgement of requests.

• MIBs often lack writable objects without which device configuration is not
possible using SNMP.

• It is difficult to differentiate between configuration and state data in MIBs.
• Retrieving the current configuration from a device can be difficult with

SNMP.
• Earlier versions of SNMP did not have strong security features.

Network Operator Requirements

• Ease of use

• Distinction between configuration and state data

• Fetch configuration and state data separately

• Configuration of the network as a whole

• Configuration transactions across devices

• Configuration deltas

• Dump and restore configurations

• Configuration validation

• Configuration database schemas

• Comparing configurations

• Role-based access control

• Consistency of access control lists:

• Multiple configuration sets

• Support for both data-oriented and task-
oriented access control

NETCONF

• Network Configuration Protocol (NETCONF) is a session-based network management protocol.

NETCONF allows retrieving state or configuration data and manipulating configuration data on
network devices

NETCONF

• NETCONF works on SSH transport protocol.

• Transport layer provides end-to-end connectivity and ensure reliable delivery of
messages.

• NETCONF uses XML-encoded Remote Procedure Calls (RPCs) for framing request and
response messages.

• The RPC layer provides mechanism for encoding of RPC calls and notifications.

• NETCONF provides various operations to retrieve and edit configuration data from
network devices.

• The Content Layer consists of configuration and state data which is XML-encoded.

• The schema of the configuration and state data is defined in a data modeling language
called YANG.

• NETCONF provides a clear separation of the configuration and state data.

• The configuration data resides within a NETCONF configuration datastore on the server.

YANG

• YANG is a data modeling language used to model configuration and state data

manipulated by the NETCONF protocol

• YANG modules contain the definitions of the configuration data, state data, RPC calls that
can be issued and the format of the notifications.

• YANG modules defines the data exchanged between the NETCONF client and server.

• A module comprises of a number of 'leaf' nodes which are organized into a hierarchical
tree structure.

• The 'leaf' nodes are specified using the 'leaf' or 'leaf-list' constructs.

• Leaf nodes are organized using 'container' or 'list' constructs.

• A YANG module can import definitions from other modules.

• Constraints can be defined on the data nodes, e.g. allowed values.

• YANG can model both configuration data and state data using the 'config' statement.

YANG Module Example

• This YANG module is a YANG version of the
toaster MIB

• The toaster YANG module begins with the header
information followed by identity declarations
which define various bread types.

• The leaf nodes (‘toasterManufacturer’,
‘toasterModelNumber’ and oasterStatus’) are
defined in the ‘toaster’ container.

• Each leaf node definition has a type and
optionally a description and default value.

• The module has two RPC definitions (‘make-toast’
and ‘cancel-toast’).

IoT Systems Management with NETCONF-YANG

• Management System

• Management API

• Transaction Manager

• Rollback Manager

• Data Model Manager

• Configuration Validator

• Configuration Database

• Configuration API

• Data Provider API

IoT Design Methodology

Outline

• IoT Design Methodology that includes:

• Purpose & Requirements Specification

• Process Specification

• Domain Model Specification

• Information Model Specification

• Service Specifications

• IoT Level Specification

• Functional View Specification

• Operational View Specification

• Device & Component Integration

• Application Development

IoT Design Methodology - Steps

Step 1: Purpose & Requirements Specification

• The first step in IoT system design methodology is to define the
purpose and requirements of the system.

• In this step, the system purpose, behavior and requirements (such
as data collection requirements, data analysis requirements, system
management requirements, data privacy and security requirements,
user interface requirements, ...) are captured.

Step 2: Process Specification

• The second step in the IoT design methodology is to define the
process specification.

• In this step, the use cases of the IoT system are formally described
based on and derived from the purpose and requirement
specifications.

Step 3: Domain Model Specification

• The third step in the IoT design methodology is to define the Domain Model.
• The domain model describes the main concepts, entities and objects in the

domain of IoT system to be designed.
• Domain model defines the attributes of the objects and relationships between

objects.
• Domain model provides an abstract representation of the concepts, objects and

entities in the IoT domain, independent of any specific technology or platform.
• With the domain model, the IoT system designers can get an understanding of

the IoT domain for which the system is to be designed.

Step 4: Information Model Specification

• The fourth step in the IoT design methodology is to define the Information
Model.

• Information Model defines the structure of all the information in the IoT
system, for example, attributes of Virtual Entities, relations, etc.

• Information model does not describe the specifics of how the information is
represented or stored.

• To define the information model, we first list the Virtual Entities defined in the
Domain Model. Information model adds more details to the Virtual Entities by
defining their attributes and relations.

Step 5: Service Specifications

• The fifth step in the IoT design methodology is to define the service
specifications.

• Service specifications define the services in the IoT system, service
types, service inputs/output, service endpoints, service schedules,
service preconditions and service effects.

Step 6: IoT Level Specification

• The sixth step in the IoT design methodology is to define the IoT level
for the system. In Chapter-1, we defined five IoT deployment levels.

Step 7: Functional View Specification

• The seventh step in the IoT design methodology is to define the
Functional View.

• The Functional View (FV) defines the functions of the IoT systems
grouped into various Functional Groups (FGs).

• Each Functional Group either provides functionalities for interacting
with instances of concepts defined in the Domain Model or
provides information related to these concepts.

Step 8: Operational View Specification

• The eighth step in the IoT design methodology is to define the
Operational View Specifications.

• In this step, various options pertaining to the IoT system
deployment and operation are defined, such as, service hosting
options, storage options, device options, application hosting
options, etc

Step 9: Device & Component Integration

• The ninth step in the IoT design methodology is the integration of the
devices and components.

Step 10: Application Development

• The final step in the IoT design methodology is to develop the IoT
application.

Home Automation Case Study

Step:1 - Purpose & Requirements

• Applying this to our example of a smart home automation system, the
purpose and requirements for the system may be described as follows:
• Purpose : A home automation system that allows controlling of the lights in a home

remotely using a web application.
• Behavior : The home automation system should have auto and manual modes. In

auto mode, the system measures the light level in the room and switches on the
light when it gets dark. In manual mode, the system provides the option of manually
and remotely switching on/off the light.

• System Management Requirement : The system should provide remote monitoring
and control functions.

• Data Analysis Requirement : The system should perform local analysis of the data.
• Application Deployment Requirement : The application should be deployed locally

on the device, but should be accessible remotely.
• Security Requirement : The system should have basic user authentication capability.

Step:2 - Process Specification

Step 3: Domain Model Specification

Step 4: Information Model Specification

Step 5: Service Specifications

Step 5: Service Specifications

Step 6: IoT Level Specification

Step 7: Functional View Specification

Step 8: Operational View Specification

Step 9: Device & Component Integration

Step 10: Application Development

• Auto
• Controls the light appliance automatically based on the lighting

conditions in the room

• Light
• When Auto mode is off, it is used for manually controlling the

light appliance.

• When Auto mode is on, it reflects the current state of the light
appliance.

Implementation: RESTful Web Services

REST services implemented with Django REST Framework

1. Map services to models. Model
fields store the states (on/off,
auto/manual)

2. Write Model serializers. Serializers allow
complex data (such as model instances) to be
converted to native Python datatypes that can
then be easily rendered into JSON, XML or
other content types.

Serializers – serializers.py
from myapp.models import Mode, State
from rest_framework import serializers

class ModeSerializer(serializers.HyperlinkedModelSerializer):

class Meta:
model = Mode
fields = ('url', 'name')

class StateSerializer(serializers.HyperlinkedModelSerializer):

class Meta:
model = State
fields = ('url', 'name')

Models – models.py
from django.db import models

class Mode(models.Model):
name = models.CharField(max_length=50)

class State(models.Model):
name = models.CharField(max_length=50)

Implementation: RESTful Web Services

3. Write ViewSets for the Models which
combine the logic for a set of related views in
a single class.

4. Write URL patterns for the services.
Since ViewSets are used instead of views, we
can automatically generate the URL conf by
simply registering the viewsets with a router
class.
Routers automatically determining how the
URLs for an application should be mapped to
the logic that deals with handling incoming
requests.

URL Patterns – urls.py
from django.conf.urls import patterns, include, url
from django.contrib import admin
from rest_framework import routers
from myapp import views
admin.autodiscover()
router = routers.DefaultRouter()
router.register(r'mode', views.ModeViewSet)
router.register(r'state', views.StateViewSet)
urlpatterns = patterns('',

url(r'^', include(router.urls)),
url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')),
url(r'^admin/', include(admin.site.urls)),
url(r'^home/', 'myapp.views.home'),

)

Models – models.py
from django.db import models

class Mode(models.Model):
name = models.CharField(max_length=50)

class State(models.Model):
name = models.CharField(max_length=50)

Views – views.py
from myapp.models import Mode, State
from rest_framework import viewsets
from myapp.serializers import ModeSerializer, StateSerializer

class ModeViewSet(viewsets.ModelViewSet):
queryset = Mode.objects.all()
serializer_class = ModeSerializer

class StateViewSet(viewsets.ModelViewSet):
queryset = State.objects.all()
serializer_class = StateSerializer

Implementation: RESTful Web Services

Screenshot of browsable
State REST API

Screenshot of browsable
Mode REST API

1. Implement the native service in
Python and run on the device

Implementation: Controller Native Service

Native service deployed locally

def runAutoMode():
ldr_reading = readldr(LDR_PIN)
if ldr_reading < threshold:

switchOnLight(LIGHT_PIN)
setCurrentState('on')

else:
switchOffLight(LIGHT_PIN)
setCurrentState('off')

def runManualMode():
state = getCurrentState()
if state=='on':

switchOnLight(LIGHT_PIN)
setCurrentState('on')

elif state=='off':
switchOffLight(LIGHT_PIN)
setCurrentState('off')

def getCurrentMode():
cur.execute('SELECT * FROM myapp_mode')
data = cur.fetchone() #(1, u'auto')
return data[1]

def getCurrentState():
cur.execute('SELECT * FROM myapp_state')
data = cur.fetchone() #(1, u'on')
return data[1]

def setCurrentState(val):
query='UPDATE myapp_state set name="'+val+'"'
cur.execute(query)

while True:
currentMode=getCurrentMode()
if currentMode=='auto':

runAutoMode()
elif currentMode=='manual':

runManualMode()
time.sleep(5)

#Controller service
import RPi.GPIO as GPIO
import time
import sqlite3 as lite
import sys

con = lite.connect('database.sqlite')
cur = con.cursor()

GPIO.setmode(GPIO.BCM)
threshold = 1000
LDR_PIN = 18
LIGHT_PIN = 25

def readldr(PIN):
reading=0
GPIO.setup(PIN, GPIO.OUT)
GPIO.output(PIN, GPIO.LOW)
time.sleep(0.1)
GPIO.setup(PIN, GPIO.IN)
while (GPIO.input(PIN)==GPIO.LOW):

reading=reading+1
return reading

def switchOnLight(PIN):
GPIO.setup(PIN, GPIO.OUT)
GPIO.output(PIN, GPIO.HIGH)

def switchOffLight(PIN):
GPIO.setup(PIN, GPIO.OUT)
GPIO.output(PIN, GPIO.LOW)

Implementation: Application

1. Implement Django Application View

Views – views.py
def home(request):

out=‘’
if 'on' in request.POST:

values = {"name": "on"}
r=requests.put('http://127.0.0.1:8000/state/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']

if 'off' in request.POST:
values = {"name": "off"}
r=requests.put('http://127.0.0.1:8000/state/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']

if 'auto' in request.POST:
values = {"name": "auto"}
r=requests.put('http://127.0.0.1:8000/mode/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']

if 'manual' in request.POST:
values = {"name": "manual"}
r=requests.put('http://127.0.0.1:8000/mode/1/', data=values, auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
out=output['name']

r=requests.get('http://127.0.0.1:8000/mode/1/', auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
currentmode=output['name']
r=requests.get('http://127.0.0.1:8000/state/1/', auth=(‘username', ‘password'))
result=r.text
output = json.loads(result)
currentstate=output['name']
return render_to_response('lights.html',{'r':out, 'currentmode':currentmode, 'currentstate':currentstate},

context_instance=RequestContext(request))

Implementation: Application

2. Implement Django Application
Template

<div class="app-content-inner">
<fieldset>
<div class="field clearfix">
<label class="input-label icon-lamp" for="lamp-state">Auto</label>
<input id="lamp-state" class="input js-lamp-state hidden" type="checkbox">
{% if currentmode == 'auto' %}
<div class="js-lamp-state-toggle ui-toggle " data-toggle=".js-lamp-state">
{% else %}
<div class="js-lamp-state-toggle ui-toggle js-toggle-off" data-toggle=".js-lamp-state">
{% endif %}

<form id="my_form11" action="" method="post">{% csrf_token %}
<input name="auto" value="auto" type="hidden" />
<strong class="ui-toggle-off">OFF
</form>
<strong class="ui-toggle-handle brushed-metal">
<form id="my_form13" action="" method="post">{% csrf_token %}
<input name="manual" value="manual" type="hidden" />
<strong class="ui-toggle-on">ON
</form>
</div></div>
<div class="field clearfix">
<label class="input-label icon-lamp" for="tv-state">Light</label>
<input id="tv-state" class="input js-tv-state hidden" type="checkbox">
{% if currentstate == 'on' %}
<div class="js-tv-state-toggle ui-toggle " data-toggle=".js-tv-state">
{% else %}
<div class="js-tv-state-toggle ui-toggle js-toggle-off" data-toggle=".js-tv-state">
{% endif %}
{% if currentmode == 'manual' %}

<form id="my_form2" action="" method="post">{% csrf_token %}
<input name="on" value="on" type="hidden" />
<strong class="ui-toggle-off">OFF
</form>
<strong class="ui-toggle-handle brushed-metal">
<form id="my_form3" action="" method="post">{% csrf_token %}
<input name="off" value="off" type="hidden" />
<strong class="ui-toggle-on">ON
</form>

{% endif %}
{% if currentmode == 'auto' %}
{% if currentstate == 'on' %}
<strong class="ui-toggle-on"> ON
{% else %}
<strong class="ui-toggle-on"> OFF
{% endif %}{% endif %}
</div>
</div>
</fieldset></div></div></div>

Finally - Integrate the System

• Setup the device
• Deploy and run the REST and Native services
• Deploy and run the Application
• Setup the database

Django Application

REST services implemented with Django-REST framework

SQLite Database

Native service implemented in Python

OS running on Raspberry Pi

Raspberry Pi device to which sensors and actuators are connected

	Definition of IoT
	Characteristics of IoT
	Physical Design of IoT
	Generic block diagram of an IoT Device
	IoT Protocols
	Logical Design of IoT
	Request-Response communication model
	Publish-Subscribe communication model
	Push-Pull communication model
	Exclusive Pair communication model
	REST-based Communication APIs
	WebSocket-based Communication APIs
	Exclusive Pair communication model (1)
	IoT Levels & Deployment Templates
	IoT Levels & Deployment Templates (1)
	IoT Level-1
	IoT Level-2
	IoT Level-3
	IoT Level-4
	IoT Level-5
	IoT Level-6
	Machine-to-Machine (M2M)
	Machine-to-Machine (M2M) (1)
	M2M gateway
	Difference between IoT and M2M
	Difference between IoT and M2M (1)
	Communication in IoT vs M2M
	Key elements of SDN
	NFV
	Key elements of NFV
	NFV Use Case
	Need for IoT Systems Management
	Limitations of SNMP
	Network Operator Requirements
	NETCONF
	NETCONF (1)
	YANG
	YANG Module Example
	• IoT Design Methodology that includes:

	IoT Design Methodology - Steps
	Step 1: Purpose & Requirements Specification

	Step 2: Process Specification
	Step 3: Domain Model Specification
	Step 4: Information Model Specification
	Step 5: Service Specifications
	Step 6: IoT Level Specification
	Step 7: Functional View Specification
	Step 8: Operational View Specification
	Step 9: Device & Component Integration
	Step 10: Application Development
	Home Automation Case Study
	• Applying this to our example of a smart home automation system, the purpose and requirements for the system may be described as follows:

	Step:2 - Process Specification
	Step 4: Information Model Specification (1)
	Step 5: Service Specifications (1)
	Step 7: Functional View Specification (1)
	Step 9: Device & Component Integration (1)
	Implementation: RESTful Web Services
	Implementation: RESTful Web Services (1)
	Implementation: RESTful Web Services (2)
	Implementation: Controller Native Service
	Implementation: Application
	Implementation: Application (1)
	Finally - Integrate the System

