
Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

INSTRUCTION SET AND PROGRAMMING WITH 8086

 Instruction Formats -Addressing Modes-Instruction Set, Assembler Directives-Macros, Programs

Involving Logical, Branch Instructions – Sorting and Evaluating Arithmetic Expressions – String

Manipulations-Simple ALPs.

Assembler Instruction Format

The general format of an assembler instruction is

Label : Mnemonic Operand, Operand ; Comments

Label:

 A label is an identifier that is assigned to the address of the first byte of instruction in

which it appears.

 An instruction may or may not have label, it provide a symbolic name which is used in

branch instruction to branch to the instruction.

Mnemonic:

 Mnemonic must present in all instruction. It defines the type of operation such as

ADD,SUB MUL etc.

Operand:

 It may or may not present, depends on the type of instruction.

 One operand may appear. If we use two operands used, then we need to use a comma to

separate it.

 If we use two operand, destination operand must appear first and source operand must

appear second.

Comments:

 After semicolon we can use whatever we want to write.

 It is optional.

ADDRESSING MODES :

The different ways in which a source operand is denoted in an instruction are known as the

addressing modes. There are 8 different addressing modes in 8086 programming. They are

 1. Immediate addressing mode

 2. Register addressing mode

 3. Direct addressing mode

 4. Register indirect addressing mode

 5. Based addressing mode

 6. Indexed addressing mode.

 7. Based indexed addressing mode

 8. Based, Indexed with displacement.

Immediate addressing mode: The addressing mode in which the data operand is a part

of the instruction itself is called Immediate addressing mode.

For Ex: MOV CX, 4847 H

 ADD AX, 2456 H

 MOV AL, FFH

 Register addressing mode : Register addressing mode means, a register is the source of

an operand for an instruction.

For Ex : MOV AX, BX copies the contents of the 16-bit BX register into the 16-bit AX

register.

 EX : ADD CX,DX

 Direct addressing mode: The addressing mode in which the effective address of the

memory location at which the data operand is stored is given in the instruction.i.e the

effective address is just a 16-bit number is written directly in the instruction.

For Ex: MOV BX, [1354H]

 MOV BL,[0400H]

 . The square brackets around the 1354 H denotes the contents of the memory location.

When executed, this instruction will copy the contents of the memory location into BX

register. This addressing mode is called direct because the displacement of the operand

from the segment base is specified directly in the instruction.

 Register indirect addressing mode: Register indirect addressing allows data to be

addressed at any memory location through an offset address held in any of the following

registers: BP, BX, DI and SI.

 Ex: MOV AX, [BX]. Suppose the register BX contains 4675H ,the contents of the

4675 H are moved to AX.

 ADD CX,{BX}

 Based addressing mode: The offset address of the operand is given by the sum of

contents of the BX or BP registers and an 8-bit or 16-bit displacement.

 Ex: MOV DX, [BX+04]

 ADD CL,[BX+08]

 Indexed Addressing mode: The operands offset address is found by adding the

contents of SI or DI register and 8-bit or 16-bit displacements.

 Ex: MOV BX,[SI+06]

 ADD AL,[DI+08]

 Based -index addressing mode: The offset address of the operand is computed by

summing the base register to the contents of an Index register.

Ex: ADD CX,[BX+SI]

 MOV AX,[BX+DI]

 Based Indexed with displacement mode: The operands offset is computed by adding

the base register contents, an Index registers contents and 8 or 16-bit displacement.

Ex : MOV AX,[BX+DI+08]

 ADD CX,[BX+SI+16]

INSTRUCTION SET OF 8086

Operand types:

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

SREG: DS, ES, SS, and only as second operand: CS.

The 8086 microprocessor supports 6 types of Instructions. They are

1. Data transfer instructions

2. Arithmetic instructions

3. Bit manipulation instructions

4. String instructions

5. Program Execution Transfer instructions (Branch & loop Instructions)

6. Processor control instructions

1. Data Transfer instructions :These instructions are used to transfer the data from source operand to

destination operand. All the store, move, load, exchange ,input and output instructions belong to to this

group.

General purpose byte or word transfer instructions:

MOV : Copy byte or word from specified source to specified destination

PUSH : Push the specified word to top of the stack

POP : Pop the word from top of the stack to the specified location

PUSHA : Push all registers to the stack

POPA : Pop the words from stack to all registers

XCHG : Exchange the contents of the specified source and destination operands one of which may be a

register or memory location.

XLAT : Translate a byte in AL using a table in memory

Simple input and output port transfer instructions

1. IN : Reads a byte or word from specified port to the accumulator

2. OUT : Sends out a byte or word from accumulator to a specified port

Special address transfer instructions

1. LEA : Load effective address of operand into specified register

2. LDS : Load DS register and other specified register from memory

3. LES : Load ES register and other specified register from memory.

Flag transfer registers

1. LAHF : Load AH with the low byte of the flag register

2. SAHF : Store AH register to low byte of flag register

3. PUSHF : Copy flag register to top of the stack

4. POPF : Copy word at top of the stack to flag register

2. Arithmetic instructions : These instructions are used to perform various mathematical operations

like addition, subtraction, multiplication and division etc….

Addition instructions

1.ADD : Add specified byte to byte or word to word

2.ADC : Add with carry

3.INC : Increment specified byte or specified word by 1

4.AAA : ASCII adjust after addition

5.DAA : Decimal (BCD) adjust after addition

Subtraction instructions

1. SUB : Subtract byte from byte or word from word

2. SBB : Subtract with borrow

3. DEC : Decrement specified byte or word by 1

4. NEG : Negate or invert each bit of a specified byte or word and add 1(2’s complement)

5. CMP : Compare two specified byte or two specified words

6. AAS : ASCII adjust after subtraction

7. DAS : Decimal adjust after subtraction

Multiplication instructions

1. MUL : Multiply unsigned byte by byte or unsigned word or word.

2. IMUL : Multiply signed bye by byte or signed word by word

3. AAM : ASCII adjust after multiplication

Division instructions

1. DIV : Divide unsigned word by byte or unsigned double word by word

2. IDIV : Divide signed word by byte or signed double word by word

3. AAD : ASCII adjust after division

4. CBW : Fill upper byte of word with copies of sign bit of lower byte

5. CWD : Fill upper word of double word with sign bit of lower word.

3. Bit Manipulation instructions : These instructions include logical , shift and rotate instructions in

which a bit of the data is involved. Logical

instructions

1. NOT :Invert each bit of a byte or word.

2. AND : ANDing each bit in a byte or word with the corresponding bit in another byte

or word.

3. OR : ORing each bit in a byte or word with the corresponding bit in another

 byte or word.

3. XOR : Exclusive OR each bit in a byte or word with the corresponding bit in another

byte or word.

4. TEST :AND operands to update flags, but don’t change operands.

Shift instructions

1. SHL/SAL : Shift bits of a word or byte left, put zero(S) in LSBs.

2. SHR : Shift bits of a word or byte right, put zero(S) in MSBs.

3. SAR : Shift bits of a word or byte right, copy old MSB into new MSB.

Rotate instructions

1. ROL : Rotate bits of byte or word left, MSB to LSB and to Carry Flag [CF]

2. ROR : Rotate bits of byte or word right, LSB to MSB and to Carry Flag [CF]

3. RCR :Rotate bits of byte or word right, LSB TO CF and CF to MSB

4. RCL :Rotate bits of byte or word left, MSB TO CF and CF to LSB

4. String instructions

A string is a series of bytes or a series of words in sequential memory locations. A string often consists of

ASCII character codes.

1. REP : An instruction prefix. Repeat following instruction until CX=0

2. REPE/REPZ : Repeat following instruction until CX=0 or zero flag ZF=1

3. REPNE/REPNZ : Repeat following instruction until CX=0 or zero flag ZF=1

4. MOVS/MOVSB/MOVSW: Move byte or word from one string to another

5. COMS/COMPSB/COMPSW: Compare two string bytes or two string words

6. LODS/LODSB/LODSW: Load string byte in to AL or string word into AX

5.Program Execution Transfer instructions

These instructions are similar to branching or looping instructions. These instructions include conditional

& unconditional jump or loop instructions.

Unconditional transfer instructions

1. CALL : Call a procedure, save return address on stack

2. RET : Return from procedure to the main program.

3. JMP : Goto specified address to get next instruction

Conditional transfer instructions

1. JA/JNBE : Jump if above / jump if not below or equal

2. JAE/JNB : Jump if above /jump if not below

3. JBE/JNA : Jump if below or equal/ Jump if not above

4. JC : jump if carry flag CF=1

5. JE/JZ : jump if equal/jump if zero flag ZF=1

6. JG/JNLE : Jump if greater/ jump if not less than or equal

7. JGE/JNL : jump if greater than or equal/ jump if not less than

8. JL/JNGE : jump if less than/ jump if not greater than or equal

9. JLE/JNG : jump if less than or equal/ jump if not greater than

10. JNC : jump if no carry (CF=0)

11. JNE/JNZ : jump if not equal/ jump if not zero(ZF=0)

12. JNO : jump if no overflow(OF=0)

13. JNP/JPO : jump if not parity/ jump if parity odd(PF=0)

14. JNS : jump if not sign(SF=0)

15. JO : jump if overflow flag(OF=1)

16. JP/JPE : jump if parity/jump if parity even(PF=1)

17. JS : jump if sign(SF=1)

6.Iteration control instructions

These instructions are used to execute a series of instructions for certain number of times.

1. LOOP :Loop through a sequence of instructions until CX=0

2. LOOPE/LOOPZ : Loop through a sequence of instructions while ZF=1 and CX = 0

3. LOOPNE/LOOPNZ : Loop through a sequence of instructions while ZF=0 and CX =0

4. JCXZ : jump to specified address if CX=0

7. Interrupt instructions

1. INT : Interrupt program execution, call service procedure

2. INTO : Interrupt program execution if OF=1

3. IRET : Return from interrupt service procedure to main program

1. BOUND : Check if effective address within specified array bounds

8.Processor control instructions

Flag set/clear instructions

1. STC : Set carry flag CF to 1

2. CLC : Clear carry flag CF to 0

3. CMC : Complement the state of the carry flag CF

4. STD : Set direction flag DF to 1 (decrement string pointers)

5. CLD : Clear direction flag DF to 0

6. STI : Set interrupt enable flag to 1(enable INTR input)

7. CLI : Clear interrupt enable Flag to 0 (disable INTR input)

10. External Hardware synchronization instructions

1. HLT : Halt (do nothing) until interrupt or reset

2. WAIT : Wait (Do nothing) until signal on the test pin is low

3. ESC : Escape to external coprocessor such as 8087 or 8089

4. LOCK : An instruction prefix. Prevents another processor from taking the bus while the adjacent
instruction executes.

ASSEMBLER DIRECTIVES :

 Assembler directives are the directions to the assembler which indicate how an operand or

section of the program is to be processed. These are also called pseudo operations which are not

executable by the microprocessor. The various directives are explained below.

1. ASSUME : The ASSUME directive is used to inform the assembler the name of the logical segment it

should use for a specified segment.

Ex: ASSUME DS: DATA tells the assembler that for any program instruction which refers to the data

segment ,it should use the logical segment called DATA.

2.DB -Define byte. It is used to declare a byte variable or set aside one or more storage locations of type

byte in memory.

For example, CURRENT_VALUE DB 36H tells the assembler to reserve 1 byte of memory for a variable

named CURRENT_ VALUE and to put the value 36 H in that memory location when the program is

loaded into RAM .

3. DW -Define word. It tells the assembler to define a variable of type word or to reserve storage

locations of type word in memory.

4. DD(define double word) :This directive is used to declare a variable of type double word or restore

memory locations which can be accessed as type double word.

5.DQ (define quadword) :This directive is used to tell the assembler to declare a variable 4 words in

length or to reserve 4 words of storage in memory .

6.DT (define ten bytes):It is used to inform the assembler to define a variable which is 10 bytes in length

or to reserve 10 bytes of storage in memory.

7. EQU –Equate It is used to give a name to some value or symbol. Every time the assembler finds the

given name in the program, it will replace the name with the value or symbol we have equated with that

name

8.ORG -Originate : The ORG statement changes the starting offset address of the data.

It allows to set the location counter to a desired value at any point in the program.For example the

statement ORG 3000H tells the assembler to set the location counter to 3000H.

9 .PROC- Procedure: It is used to identify the start of a procedure. Or subroutine.

10. END- End program .This directive indicates the assembler that this is the end of the program

module.The assembler ignores any statements after an END directive.

11. ENDP- End procedure: It indicates the end of the procedure (subroutine) to the assembler.

12.ENDS-End Segment: This directive is used with the name of the segment to indicate the end of that

logical segment.

Ex: CODE SEGMENT : Start of logical segment containing code

 CODE ENDS : End of the segment named CODE.

13. EVEN: • Align on even memory address. The EVEN directive tells the assembler to increment the

location counter to the next even address if it is not already at an even address.

• The 8086 can read a word from memory in one bus cycle if word is at even address, two bus cycles, if

word is at Odd address. A NOP instruction is inserted in the location incremented over.

Differences between Procedures and Macros

What is macro

A macro is a series of instructions that have a name that the programmer can use
anywhere in the program . In addition, a macro begins with the macro directive and
ends with the% endmacro directive.

The syntax of Macro is as follows.

% macro macro_name

<Macro body>

% end macro

The macro_name helps to identify the macro and the number_of_params relates to the
number parameters. It is also possible to call the macro using the macro name with the
required parameters. If it is necessary to execute the same instruction set several times,
the programmer can therefore write these instructions into a macro and use this in his
program..

What is procedure

Procedures are useful in making a large program easier to read, maintain, and change.
Typically, a procedure consists of three main sections. First, the procedure name, which
helps identify the procedure. Second, the instructions within the body describing the
task to be performed. Finally, the return statement, which denotes the return statement.

The syntax of Macro is as follows.

proc_name:

Procedural bod

https://euresisjournal.org/what-is-the-difference-between-program-and-process/#Program

RET

Dr.K.Gopi,
Department of ECE.

UNIT-5

SYLLABUS

INTERFACING DEVICES:

 8255 PPI- Block Diagram, Various Modes of Operation, Interface D/A and A/D

interfacing, Keyboard Interfacing, 8259 Interrupt controller,8279 Keyboard and

display controller, seven segment display,8251 serial communication protocol.

(8255- Programmable Peripheral Interface)

Def: The 8255 is a general purpose programmable I/O device designed to transfer the data from

I/O to Microprocessor or Microprocessor to I/O devices. It can be used with almost any

microprocessor (8 bit, 16 bit or 32 bit).It consists of 24 I/O lines which can be configured as per

the requirement

Features of 8255:

1. It has 24 I/O lines with which it communicates with I/O devices.

2. The 24 I/O lines of 8255 are arranges in three ports, i.e., PORT A, PORT B, and PORT

C.

3. Port A contains 8-bit I/O (PA0-PA7), Port B 8 I/O lines are represented as (PB0-PB7),

Port C can be split into two parts, i.e. PORT C lower (PC0-PC3) and PORT C upper

(PC7-PC4). It is also 8 bit port.

4. These three ports are further divided into two groups, i.e. Group A includes PORT A and

Upper PORT C. Group B includes PORT B and Lower PORT C.

5. All these ports can be programmed as Input or Output using Control word register

(CWR) of 8255.

6. Peripheral devices: Printers, keyboards, displays, floppy disk controllers, CRT

controllers, machine tools, D-to-A and A-to-D converters, etc are connected to the

microprocessor through he 8255A Port Pins.

7. It is also called as Parallel Communication Interface.

8. It can be operated in two basic modes:

i. Bit Set/ResetM ode

ii. I/O Mode

9. I/O mode is further divided into 3 modes:

i. Simple I/O mode (Mode 0)

ii. Strobed I/O mode (Mode l)

iii. Bidirectional Data Transfer mode (Mode 2)

Dr.K.Gopi,
Department of ECE.

Architecture of 8255 Programmable Peripheral Interface

The 8255 consists of Four sections namely

l. Data Bus Buffer

2. Read/Write Control Logic

3. Group A Control

4. Group B Control

l. Data Bus Buffer

This is a Bi-Directional Data Bus used to interface the internal data bus of 8255A to the

System Data Bus of 8086. Using IN or OUT instructions, CPU can read or write the data from/to

the Data Bus Buffer. It can also be used to transfer control words and status information between

C PU and 8255,A..

Dr.K.Gopi,
Department of ECE.

2. Read/Write Control Logic

Group A Control and Group B Control

To execute peripheral data transfer, three 8 -bit ports are provided in 8255,{ i.e. ports A,

B and C . For the purpose of programming 8255A these ports are grouped as follows

Operating Modes :

l. Bit Set/Reset (BSR) mode

2. I/O Mode

Dr.K.Gopi,
Department of ECE.

Bit set/Reset Mode:

• The Bit Set/Reset (BSR) mode is applicable to port C only.

• Each line of port C (PC0 - PC7) can be set/reset by suitably loading the control word

register as shown in Figure 4.

• BSR mode and I/O mode are independent and selection of BSR mode does not affect

the operation of other ports in I/O mode.

• D7 bit is always 0 for BSR mode.

• Bits D6, D5 and D4 are don't care bits.

• Bits D3, D2 and D1 are used to select the pin of Port C.

• Bit D0 is used to set/reset the selected pin of Port C.

• Selection of port C pin is determined as follows: B3 B2 B1 Bit/pin of port C set.

I/O Mode :

The I/O mode is divided in to three modes Mode 0, Mode I and Mode 2 given below.

1. Mode 0 - Basic I/O Mode

2. Mode I - Strobed I/O Mode

3. Mode2 - Bi-Directional Data Transfer Mode

Dr.K.Gopi,
Department of ECE.

• Mode 0 –In this mode all the three ports (port A, B, C) can work as simple input

function or simple output function.

• Mode 1 – Handshake I/O mode or strobbed I/O mode. In this mode either port A or

port B can work as simple input port or simple output port, and port C bits are used

for handshake signals before actual data transmission.

Example: A CPU wants to transfer data to a printer. In this case since speed of processor is

very fast as compared to relatively slow printer, so before actual data transfer it will send

handshake signals to the printer for synchronization of the speed of the CPU and the

peripherals.

Dr.K.Gopi,
Department of ECE.

PIN DIAGRAM OF 8255 (Programmable Peripheral interface)

Dr.K.Gopi,
Department of ECE.

INTEL 8259 (Programmable Interrupt controller)

Introduction:

• The dictionary meaning of ‘Interrupt’ is to break the sequence of operation.

• While CPU (Processor) is executing a program when interrupt occurs it breaks the

normal sequence of execution and diverts its execution to some other program called as

Interrupt service routine (ISR) or Sub program.

• After execution of sub program the control is transferred to Once again to main program

which was being executed at the time of interrupt.

The Intel 8259 is a Programmable Interrupt Controller (PIC) designed for the Intel

8085 and Intel 8086 microprocessors.

Defnition: PIC is a device which is used to increase the interrupt handling capacity

of the microprocessor.

Features:

1. The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority

interrupts for the CPU.

2. It is cascadable for up to 64 vectored priority interrupts without additional circuitry.

3. It is packaged in a 28-pin DIP, requires a single 5V supply.

4. The 8259 combines multiple interrupt input sources into a single interrupt output to the host

microprocessor, extending the interrupt levels available in a system beyond the one or two

levels found on the processor chip.

5. It accepts requests from the peripheral equipment, determines which of the incoming

requests is of the highest importance (priority), checks whether the incoming request has a

higher priority value than the level currently being serviced, and issues an interrupt to the

CPU based on this determination .

6. It minimize the software and real-time overhead in handling multiple interrupt priorities

Dr.K.Gopi,
Department of ECE.

Block diagram of 8259 (Programmable Interrupt controller)

Data bus buffer: It is a bidirectional data bus that interfaces 8259 bus to Microprocessor

system data bus. Control word, status information pass through the data bus buffer during

read or writes operation.

Read/ Write control logic: This block is responsible to accept the control words from

the Microprocessor. This block also allows the status of the 8259 to be transferred on to

the data bus.

 CS (CHIP SELECT): A LOW on this input enables the 8259A. No reading or writing of

the chip will occur unless the device is selected.

 WR (WRITE): A LOW on this input enables the CPU to write control words (ICWs and

OCWs) to the 8259A.

 RD (READ) : A LOW on this input enables the 8259A to send the status of the Interrupt

Request Register (IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or

the Interrupt level onto the Data Bus.

 A0: This input signal is used in conjunction with WR and RD signals to write commands

into the various command registers, as well as reading the various status registers of the

chip. This line can be tied directly to one of the address lines.

• The CASCADE BUFFER/COMPARATOR: This function block stores and compares

the IDs of all 8259A‟s used in the system. The associated three I/O pins (CAS0-2) are

outputs when the 8259A is used as a master and are inputs when the 8259A is used as a

slave. As a master, the 8259A sends the ID of the interrupting slave device onto the

CAS0 – 2 lines. The slave thus selected will send its preprogrammed subroutine address

onto the Data Bus during the next one or two consecutive INTA pulses.

Dr.K.Gopi,
Department of ECE.

• Control Logic:

INT: This pin goes high whenever a valid interrupt request is occurred. It is used to interrupt the

Microprocessor(CPU) and is connected to the interrupt input of the Microprocessor(CPU).

INTA: The processor acknowledges with the Interrupt acknowledge signal when it accepts the

interrupt.

INTERRUPT REQUEST REGISTER (IRR) AND IN-SERVICE REGISTER (ISR)

• The IRR is used to store all the interrupt levels which are requesting service; and the

ISR is used to store all the interrupt levels which are being serviced.

• PRIORITY RESOLVER: This logic block determines the priorities of the bits set in the

IRR. The highest priority is selected and strobed into the corresponding bit of the ISR

during INTA pulse.

• INTERRUPT MASK REGISTER (IMR): The IMR stores the bits which mask the

interrupt lines to be masked. The IMR operates on the IRR. Masking of a higher priority

input will not affect the interrupt request lines of lower quality.

In the above diagram if we see the interface connections between 8086 and 8259. The 8259 can

support 8 interrupts with the help of IR0 to IR7. The interrupts coming from the interfacing

devices are stored in the interrupt request register and the priority resolver will decide whether

fixed priority or Rotating priority is selected, and sends the interrupt signal(INT) to the

microprocessor to inform that external devices wants the service. Now the 8086 will send an

Acknowledgement signal which helps to serve the subroutine, once the interrupt is serviced once

again the microprocessor will execute its own task.

Dr.K.Gopi,
Department of ECE.

The steps are explained here as follows:

Interrupt sequence:

1) One or more of the INTERRUPT REQUEST lines (IR0-IR7) are raised high, setting the,

corresponding IRR bit(s).

2) The priority resolver checks three registers : The IRR for interrupt requests, the IMR for

masking bits, and the ISR for the interrupt request being served. It resolves the priority and sets

the INT high when it is appropriate to do so.

3) In response to the INTR signal, 8086 completes current instruction cycle and executes

interrupt acknowledge cycle, thus giving an INTA pulse.

4) Upon receiving an INTA from the 8086, the highest priority ISR bit is set and the

corresponding IRR bit is reset. Then 8259A places the opcode for CALL instruction on the data

bus.

5) The interrupt acknowledge cycles allow the 8259 to release preprogrammed subroutine

address onto, the data bus and the subprogram starts execution.

7) This completes the interrupt cycle. In the AEOI (Automatic End of Interrupt) mode the ISR

bit is reset at the end of the second INTA pulse.

Initialization Command words:

Dr.K.Gopi,
Department of ECE.

Dr.K.Gopi,
Department of ECE.

8279-Keyboard and Display controller
Definition: The INTEL 8279 programmable keyboard/display controller is designed specially

for interfacing Keyboard and Display to 8085/8086 microprocessor based systems.

Introduction:

• 8279 programmable keyboard/display controller simultaneously drives the display of a

system and interfaces a Keyboard with the CPU.

• The keyboard display interface first scans the keyboard and identifies if any key has been

pressed. It then sends their relative code of the pressed key to the CPU and vice-a-versa.

It also transmits the data received from the CPU, to the display device. Both the functions

are performed by the controller without involving the CPU.

• The Keyboard is interfaced either in the Interrupt or the polled mode.

Features of 8279:

• The keyboard section can interface an array of a maximum of 64keys with the CPU.

• The keyboard entries are debounced and stored in an 8 byte FIFO RAM, that is further

accessed by the CPU to read the keycodes.

• The 8279 normally provides a maximum of sixteen 7 segment display interface with the

CPU.

• If a FIFO contains a valid key entry the CPU is interrupted or polled mode to read the

entry.

• Simultaneous keyboard and display operations

• Scanned keyboard mode.

• 8-character keyboard FIFO.

• Right or left entry 16-byte display RAM.

• Used for Interaction between keyboard and different microprocessor.

8279 Interfacing with 8086 Microprocessor

Dr.K.Gopi,
Department of ECE.

Pin description of 8279:

Data Bus Lines, DB0 - DB7:

These are 8 bidirectional data bus lines used to transfer the data to/from the CPU.

CLK:

The clock input is used to generate internal timings required by the microprocessor.

RESET:

As the name suggests a high on this line is used to Reset the the Intel 8279. when it is enabled the
command registers are cleared and 8279 enters in to initial state.

CS Chip Select:

When this pin is set to low, it allows read/write operations, else this pin should be set to high.

A0:

This pin indicates the transfer of command information. When it is low, it indicates the transfer of data.

RD, WR:

This Read/Write pin enables the data buffer to send/receive data over the data bus.

IRQ:

This interrupt output line goes high when there is data in the FIFO RAM. The interrupt line goes low

with each FIFO RAM read operation. However, if the FIFO RAM further contains any key-code entry to
be read by the CPU, this pin again goes high to generate an interrupt to the CPU.

Vss, Vcc:

These are the ground and power supply lines of the microprocessor.

SL0 − SL3:

These are the scan lines used to scan the keyboard matrix and display the digits. These lines can be

programmed as encoded or decoded, using the mode control register.

RL0 − RL7

These are the Return Lines which are connected to one terminal of keys, while the other terminal of the

keys is connected to the decoded scan lines.

SHIFT:

The Shift input line status is stored along with every key code in FIFO in the scanned keyboard mode.

CNTL/STB - CONTROL/STROBED I/P Mode:

In the keyboard mode, this line is used as a control input and stored in FIFO on a key closure. The line

enters the data into FIFO RAM, in the strobed input mode.

BD:
It stands for blank display. It is used to blank the display during digit switching.

OUTA0 – OUTA3 and OUTB0 – OUTB3:

Dr.K.Gopi,
Department of ECE.

 These are the output ports for 16x8 internal display refresh registers. The data from these
lines is synchronized with the scan lines to scan the display.

Introduction to seven segment display

Introduction:

• Microprocessor is a device used for Multipurpose, it means it can be used for performing
Arithmetic and Logical operations and also used for turning on or off the devices.

• Whenever the information is processed by the Microprocessors, the result obtained by the

processor has to be displayed to the user through the output devices(LED, Monitor screen, LCD
etc).

• For displaying only numbers, letters and hexadecimal letters, simple 7 segment displays are used.

• The 7 segment type is the least expensive, most commonly used and easiest to interface.

• 7 segment LED display is very popular and it can display digits from 0 to 9 and quite a few
characters like A, b, C, ., H, E, e, F, n, o,t,u,y, etc.

Seven segment display structure:

• Seven segment displays internally consist of 8 LEDs. In these LEDs, 7 LEDs are used to indicate

the digits 0 to 9 and Letters and single LED is used for indicating decimal point.

• Generally seven segments are two types, one is common cathode and the other is common anode.

• Seven-segment displays are widely used in digital clocks, electronic meters, basic calculators, and

other electronic devices that display numerical information.

Common cathode display:

• In common cathode the cathode of all Led’s are connected to common pin and the anodes are left

free.

• In the common cathode display, all the cathode connections of the LED segments are joined

together to logic “0” or ground. The individual segments are illuminated by application of a

“HIGH”, or logic “1”.

Dr.K.Gopi,
Department of ECE.

Common Anode Display:

• In common anode the anodes of Led’s are connected to common pin and the cathodes are left

free.

• In the common anode display, all the anode connections of the LED segments are joined together

to logic “1”. The individual segments are illuminated by applying a ground, logic “0” or “LOW”

signal via a suitable current limiting resistor to the Cathode of the particular segment (a-g)

• In Common Anode display, anodes of the all LEDs are connected to Vcc, cathodes are connected

to microprocessor port pins via 8255.

• In Common Cathode display, cathodes of the all LEDs are connected to Gnd, anodes are

connected to microprocessor port pins via 8255.

Depending upon the decimal digit to be displayed, the particular set of LEDs to be lighten up. For

instance, to display the numerical digit 0, we will need to light up six of the LED segments corresponding

Dr.K.Gopi,
Department of ECE.

to a, b, c, d, e and f. Thus the various digits from 0 through 9 can be displayed using a 7-segment display

as shown.

Common cathode table for displaying digits starting from 0,1,2…….9.

Dr.K.Gopi,
Department of ECE.

Block diagram of interfacing Seven Segment Display with 8086 using 8255

• Port A line of the 8255 is buffered and connected to the segments of the seven segment displays,

as shown in the table1 .

• Port lines PC2, PC1 and PC0 are connected to the inputs of a 74LS145 decoder driver, the

outputs of which are connected to the common cathode of the six, Seven-segment displays. The

port line combination and corresponding digits enabled are listed in table 2.

Dr.K.Gopi,
Department of ECE.

To display a word on a display unit Di (i= 0 to 5), the seven segment code of the character to be

displayed on the unit is to be output through port A, while the display unit is selected by the

combination of PC2 to PC0 bits of port C.

Parallel Communication

In parallel communication the data bits are simultaneously transmitted using

multiple communication links between sender and receiver. Here, various links are

used and each bit of data is transmitted separately over all the communication link.

• The figure below shows the transmission of 8 byte data using parallel

communication technique:

Here, as we can see that for the transmission of 8-bit of data, 8 separate

communication links are utilized. This leads to a faster communication between

the sender and receiver. But for connecting multiple lines between sender and

receiver multiple connecting units are to be present between a pair of sender and

receiver.

Disadvantage: parallel communication is not suitable for long distance

transmission, because connecting multiple lines to large distances is very difficult

and expensive.

Serial Communication

In serial communication the data bits are transmitted serially over a common

communication link one after the other. Basically it does not allow simultaneous

transmission of data because only a single channel is utilized. Thereby allowing

sequential transfer rather than simultaneous transfer.

Dr.K.Gopi,
Department of ECE.

• The figure below shows the serial data transmission

It is highly suitable for long distance signal transmission as only a single

wire or bus is used. So, it can be connected between two points that are

separated at a large distance with respect to each other.

Disadvantage: But as only a single data bit is transmitted thus the

transmission of data is a quiet time taking process.

Comparision chart of Serial Vs Parallel communication

Basis of comparision Serial

communication

Parallel communication

Number of communication

link used

Single Multiple

Number of transmitted

bit/clock cycle

only one bit. n number of links will

carry n bits.

Data transmission speed Slow Comparatively fast

Suitable for Long distance Short distance

Cost Low High

System Up-gradation Easy Quite difficult

Transmission modes

Dr.K.Gopi,
Department of ECE.

Need for synchronization

Whenever an electronic device transmits digital information to another electronic device. There

must certain link establish between the two devices, that is the receiving device must have some

way of knowing where each data unit begins and where it ends.

• So there are two types of synchronization

1. Synchronous

2. Asynchronous

 In digital electronics, both Synchronous and Asynchronous Transmission are the type of

serial data transmission in which data is transmitted between sender and receiver.

Synchronous transmission

Synchronous simply means that the communications happen in real time, with all parties

engaged simultaneously. Here the data is sent in the form of blocks.

Characteristics of synchronous communication:

• There are no spaces (gaps) in between characters being sent.

• Timing is provided between devices sender and receiver.

• Special ’syn’ characters goes before the data being sent, this includes the timing

functions.

• It is more efficient and more reliable to transmit large amount of data.

• Examples of synchronous transmissions:

– Chatrooms

– Video conferencing

– Telephonic conversations

Asynchronous transmission

In Asynchronous Transmission, data is sent in form of byte or character. In this transmission

start bits and stop bits are added with data. It does not require synchronization.For asynchronous

transmission start bit is used to identify the beginning of transmission and stop bit to identify the

end of transmission.

Characteristics of Asynchronous Transmission

Dr.K.Gopi,
Department of ECE.

• Each byte is added with start and stop bits, this is called framing.

• There may be gaps or spaces in between characters.

Examples of Asynchronous Transmission

 Emails

 Radios

 Televisions

Difference between synchronous and asynchronous

Points of comparison Synchronous transmission Asynchronous transmission

Definition Transmits data in the form of blocks Transmits one byte at a

time

Speed of transmission Quick slow

cost Expensive Less cost

Time interval constant Random

Gaps between data Does not exist Gaps are introduced

 examples Teleconference, videoconference,

chatrooms

Emails, letters etc

Dr.K.Gopi,
Department of ECE.

UNIVERSAL SYNCHRONOUS & ASYNCHRONUS TRANSMITTER AND

RECEIVER (USART) - 8251 IC

 It is sometimes called the programmable Communications Interface (PCI). It

is an IC which converts the parallel data to serial data and serial data to parallel

data. It supports both synchronous and Asynchronous data transmission.

Synchronous operation uses a clock and data line while there is no separate clock

accompanying the data for Asynchronous transmission.

Features of 8251 USART:

1. 8251 IC is defined as USART for serial communication.

2. Programmable IC designed for synchronous /asynchronous serial data

communication.

3. Receives parallel data from CPU (processor) converts in to serial data after

conversion.

4. It also receives serial data from outside and coverts in to parallel data to the

CPU (processor) after conversion.

5. It has built-in Baud rate generator

6. It allows full duplex transmission

7. It provides error detection logic, which detects parity, overrun and framing

errors.

8. It has 28 pins; DIP package is available

Dr.K.Gopi,
Department of ECE.

The above Fig shows the block diagram of 8251A. It has five sections.

l. Read/Write Control logic

2. Data Bus Buffer

3. Transmitter Section

4. Receiver Section

5. Modem Control

 The Read/Write control logic determines the functions of the chip according to the

control word in its register and monitors the data flow. The Data Bus Buffer transfers the

control word/status information between the chip and CPU.

The Transmitter section converts the parallel word received from CPU to serial bits and

transmits over T xD line to peripherals. The Receiver section receives the serial bits from the

peripheral, converts them in to parallel word and transfers to the CPU. The Modem Control

section extends the data communication through any Modem over telephone lines

Dr.K.Gopi,
Department of ECE.

Data bus buffer: This data bus buffer is used to write the command, status or data from or to the

8251.

Read/ Write control logic: Interfaces the 8251 with the Microprocessor, determines the

function of the chip according to the control word in the control register and monitors the data

flow.

Transmit buffer –

 This block is used for parallel to serial converter that receives a parallel byte for conversion

into serial signal and further transmission onto the common channel.

 TXD: It is an output signal, if its value is one, means transmitter will transmit the data.

Transmit control –

 This block is used to control the data transmission with the help of following pins:

 TXRDY: It means transmitter is ready to transmit data character.

• TXEMPTY: An output signal which indicates that TXEMPTY pin has transmitted all the

data characters and transmitter is empty now.

• TXC: An active-low input pin which controls the data transmission rate of transmitted

data.

Dr.K.Gopi,
Department of ECE.

Receive buffer –

This block receives the serial data and converts it to parallel data.

 RXD: An input signal which receives the data.

Receive control –

This block controls the receiving data.

 RXRDY: An input signal indicates that it is ready to receive the data.

 RXC: An active-low input signal which controls the data transmission rate of received

data.

 SYNDET/BD:

 During asynchronous mode, the signal SYNDET/BRKDET will indicate the break in the

data transmission.

 During synchronous mode, the signal SYNDET/BRKDET will indicate the reception of

synchronous character.

Modem control:

• The MODEM control unit allows to interface a MODEM to 8251A and to establish data

communication through MODEM over telephone lines.

• A device converts analog signals to digital signals and vice-versa and helps the

computers to communicate over telephone lines or cable wires. The following are active-

low pins of Modem.

DSR: Data Set Ready signal, This signal when low indicates Modem is ready for

communication

DTR: Data terminal Ready signal, this signal when low indicates terminal equipment is ready

for communication.

CTS: clear to send, this signal when high indicates that DTE has data and ready to transmit the

data to Modem

RTS: Request to send, this signal when low indicates that the DCE is free and can receive the

data now for DTE.

DTE (DATA TERMINALEQUIPMENT): It includes any unit that functions either as source

or destination for binary digital data.

Dr.K.Gopi,
Department of ECE.

DCE (Data communication equipment): it includes any circuit that transmits and receive the

data in the form or analog or digital signal.

OPERATING MODE OF 8251

To communicate with 8251A.t he CPU has to inform the details about mode, baud rate, stop

bits, parity bit etc., to USART. This is done by a set of control words. The CPU must check the status

(ready) of the peripheral by reading the status register. The control words are divided in to two formats.

Mode word

The Mode word specifies the general characteristics of operation such as baud, parity, number

of stop bits.

 Mode Word

• The format can be considered as four 2-bit fields. The first 2-bit field (D1-D0) determines whether

the USART is to operate in the synchronous (00) or asynchronous mode.

• In the asychronous mode, this field determines the division factor for clock to decide the baud

rate. For example, if D1 and D0 are both ones, the RxC and TxC will be divided to generate the

baudrate(Bits per second)

Dr.K.Gopi,
Department of ECE.

• The second 2-bit field (D3-D2) determines number of data bits in one character. With this 2-bit

field we can set character length from 5-bits to 8 bits.

• The third 2-bit field, (D5-D4), controls the parity generation. The parity bit is added to the data

bits only if parity is enabled.

The last field, (D7-D6), has two meanings depending on whether operation is to be in the synchronous or

asynchronous mode. For asynchronous mode, (i.e. D1D0 ≠ 00), it controls the number of STOP bits to be

transmitted with the character. In synchronous mode, (i.e. D1D0) = 00) this field controls the

synchronizing process. It decides whether to transmit single synchronizing character or two

synchronizing characters

	What is macro

