

Object Oriented Programming

❑ Object Oriented Programming is a programming concept that works on the principle

that objects are the most important part of your program.

❑ It allows users create the objects that they want and then create methods to handle

those objects.

❑ Manipulating these objects to get results is the goal of Object Oriented Programming.

Object Oriented Programming popularly known as OOP, is used in a modern

programming languages like Java.

Object :

Any real world entity that has state and behaviour is called as Object .(or)

Objects have state and behaviour. Example: Apple, Orange, Bat, Table, etc..

In Java, An Object is an Instance of class.

Class :

Collection of similar objects is called Class . For Example, Apple, orange, Papaya are

grouped into a class called “Fruits” where as Apple, Table, Bat cannot be grouped as

class because they are not similar groups. It is only an logical component not as

physical entity.

Inheritance :
One object acquires all properties and behaviour of the parent object.
It’s creating a parent-child relationship between two classes. It offers robust and
natural,mechanism for organizing and structure of any software.

Polymorphism :
It refers as “ one interface and many forms” (or) the ability of a variable , object or
function to take on multiple forms.
Ex:- In English, the verb “run” has a different meaning if you see it with a “laptop”,
and “a foot race”.

UNIT-1

UNIT I: Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction,
Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line
Arguments, User Input to Programs, Escape Sequences Comments, Programming Style.

Data Types, Variables, and Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types,
Type Casting, Scope of Variable Identifier, Literal Constants, Symbolic Constants, Static Variables and Methods,
Introduction to Operators, Precedence and Associativity of Operators, Assignment Operator (=), Basic
Arithmetic Operators, Increment (++) and Decrement (- -) Operators, Ternary Operator, Relational Operators,
Boolean Logical Operators, Bitwise Logical Operators.

Control Statements: Introduction, if Expression, Nested if Expressions, if–else Expressions, Switch Statement,
Iteration Statements, while Expression, do–while Loop, for Loop, Nested for Loop, Break Statement, Continue
Statement

Abstraction :
Abstraction is a process of hiding the implementation details from the user.
Ex:- while driving a car, you do not have to be concerned with its internal working.
Abstraction can be achieved using Abstract Class and Abstract Method in Java.

Encapsulation :
Encapsulation is a principle of wrapping data (Variables) and code together as a
single unit. In this OOPS concept, variables of a class are always hidden from
other classes. It can only be accessed using the methods of their current
classes.

Program Structure in Java

Elements or Tokens in Java Programs
In Java programming, elements or tokens are the smallest individual units in a program. These
tokens are the building blocks of Java code and are used to construct statements and
expressions. Here are the main types of tokens in Java

1.Keywords
2.Identifiers
3.Literals
4.seperators
5.comments
6.operators

1. Keywords

Keywords are reserved words in Java that have a predefined meaning and cannot be
used as identifiers (names for variables, classes, methods, etc.). Examples of keywords
include class, public, static, void, int, if, else, for, while, return, etc.

2. Identifiers

3. Constants or Literals

o Entities that do not change their values in a program are called Constants or Literals.

o Java Literals are classified into 5 types:

1. Integer Literals

2. Floating Point Literals

3. Character Literals

4. Boolean Literals

5. String Literals

1) Integer Literals :

➢ A whole number is called an integer. Eg: 25,27 etc…are integers

➢ Java supports 3 types of integer literals Decimal, Octal, Hexadecimal.

➢ 25, 27 are decimal integers

➢ Octal stats from 0 and followed by 0 to 7 . Eg: 0.037, 0.08656 are octal integer

➢ Hexadecimal start with OX and followed by digits 0 to 9 , A to F. Eg: 0*29, 0*2AB9

are hexadecimal integer literals .

2. Floating Point Literals :

➢ Numbers with decimal point and fractional values are called floating point

literals.

➢ They can be expressed in either standard or scientific notation.

➢ Standard notation consists of a whole number component followed by a decimal

point followed by a fractional component.

➢ A Floating point number followed by letter E (or) and a signed integer. Eg:

6.237E-35 stands for 6.237*10^-35.

➢ Floating point literals in java defaults to double precision.

3. Boolean literals :

➢ In java, Boolean literals take two values false or true.

➢ These two values are not related to any numeric value as in C or C++.

➢ The Boolean value true is not equal to 1 and false is not value is not equal to 0.

4. Character literals :

➢ Single characters in java are called character literals.

➢ In java characters belong to 16-bit character set called Unicode.

➢ Java characters literals are written within a pair of single quote. Eg: ‘a’, ‘z’,

represent character literals.

➢ To represent such characters, java provides a set of character literals called

escape sequence.

5. String Literals :
➢ A sequence of characters written within a pair of double quote is called

String Literal.
Eg: “This is String”.

➢ String Literals are to be started and ended in one line only.

4. Separators

Separators (or delimiters) are symbols that separate elements of the code. Common
separators in Java include:

• Parentheses: ()
• Braces: {}
• Brackets: []
• Semicolon: ;
• Comma: ,
• Dot: .

5. Comments

Comments are non-executable parts of the code that are used to describe or explain the
code. They are ignored by the Java compiler. There are two types of comments in Java:

• Single-line comments: Start with //
• Multi-line comments: Enclosed between /* and */

Data Types, Variables, and Operators

Data Types

➢ Every variable in java has a data type.

➢ Data type specify the size and type of values that can be stored.

➢ Data type in java under various categories are shown as:

A. Primitive data types :

Primitive data types are whose variables allows us to store only one value but they
never allow us to store multiple values of same type. This is a data type whose
variables can hold maximum one value at a time.

Example:

int a;

a=10;//valid

a=10,20,30;//invalid
B. Non Primitive Data Types or Derived

Derived data types are those which are developed by programmers by making use
of appropriate features of the language. User defined data types related variables
allow us to store multiple values either of same type or different type or both.

Example:

Student s=new Student();

Java defines some primitive types of data. They are:

Integer types

Character types

Floating type

Boolean type

Integer Types :
This type indicates byte, short, int, long which are for whole-valued signed

numbers.
The width and ranges of these integer types vary widely as shown in below :

The width and ranges of these integer types vary widely as shown in below :

Name Width Range

Long 64 -9,223,372,036,854,775,808 TO 9,223,372,036,854,775,807

Int 32 -2.147,483,648 to 2.147,483,647

Short 16 -32,768 to 32,767

Byte 8 -128 to 127

Byte :

Short :

Int :

Long :

➢ Smallest integer type is byte.

➢ This is signed 8-bit type that has range from -128 to 127

➢ It is declared by byte keyword

➢ Short is signed as 16 bit type

➢ It has range from -32,768 to 32,767

➢ It is declared by short keyword.

➢ The most commonly used type is integer type as int.

➢ It is signed as 32 bit type and has range from -2,147,483,648 to

2,147,483,647

➢ long is signed as 64-bit type and is useful for those occasions where as int.

➢ The range of long is quite large.

➢ This makes it useful when big, whole numbers are needed.

Long Int Short Byte

Integer

Floating Point Types :

➢ This group includes float and double which represented numbers in

fractional precision.

➢ They are two types of floating point types ,float and double, which

represents single and double precision numbers

Name Width in bits Approximate range

Double 64 4.9e-324 to 1.8e+308

Float 32 1.4e-045 to 3.4e+038

3. Characters :

➢ In Java, the data type is used to store characters is char.

➢ Char in java is not same as C or C++

➢ In C/C++ char is 8 bit type whereas in java char is 16-bit type

4. Boolean Type :

➢ Java has a primitive data type called Booleans, for logical values.

➢ It can have only one of two possible values true or false.

Variables

➢ A Variable is an identifier that denote s a storage location used to store a data

value . (or) Variables are the names of storage locations.

➢ Variable names may consist of alphabets, digits, the underscore and dollar

characters.

❑ They must not begin with a digit.

❑ Uppercase and Lowercase are distinct. This means that the variable Total is

not same as total or TOTAL.

❑ It should not be a keyword.

❑ White space is not allowed.

❑ Variable names can be any length.

Declaration of Variables :

➢ A Variable must be declared before it is used in the program. The general form of

declaration of a variable is

Type variable1, variable2, variable

➢ Variables are separated by commas. A declaration statement must end with a

semicolon. Some valid declarations are:

Int count;
float x, y;

Giving values to Variables :

A Variable must be given a value after it has been declared but before it is used in an

expression. This can be in two ways:

1. By using an Assignment statement

VariableName=value

2. By using a read statement

we may also give values to variables interactively through the keyword using

the readLine().

Scope of the variable :

➢ the scope refers to validity across the java program.

➢ The scope of a variable is limited to the block defined within the braces { and

}

➢ It means a variable cannot be accessed outside the scope (Or) The scope or a

particular variable is the range within a program ‘s source code in which that

variable is recognized by the compiler.

Type Conversion and Casting

Assigning a value of one type to a variable of another type is known as Type Casting.

Example:

int x=10;

byte y=(byte)x;

In Java, type casting is classified into two types.

Widening Casting (Implicit) : Process of Converting lower data type into higher data type

byte --->short --->int --->long --- >float --- >double

----------------------------->

Widening

Narrowing Casting (Explicitly done) : Process of converting Higher Data type into
Lower Data Type

double --->float ---->long ----> int ---->short --- >byte

------------------------------>

Example: Converting int to double

class Main {

 public static void main(String[] args) {
 // create int type variable
 int num = 10;
 System.out.println("The integer value: " + num);

 // convert into double type
 double data = num;
 System.out.println("The double value: " + data);
 }
}

Output
The integer value: 10
The double value: 10.0

Example: Converting double into an int
class Main {
 public static void main(String[] args) {
 // create double type variable
 double num = 10.99;
 System.out.println("The double value: " + num);

 // convert into int type
 int data = (int)num;
 System.out.println("The integer value: " + data);
 }
}
Output
The double value: 10.99
The integer value: 10

 Instance variables

jk

OPERATORS AND EXPRESSIONS

❑ In java Operators are symbols that are used to perform some operations on the

operands.

❑ Combination of operands and operators are known as Expressions.

❑ Java provides, a rich set of operators to manipulate the variables. There are three

types of operators in java.

1. Unary operators

2. Binary operators

3. Ternary operators

1. UNARY OPERATORS:

In which we use one operand is called unary operator. It has two types:

1.1 Increment Unary operator

1.2 Decrement Unary operator

1.1 INCREMENT UNAY OPERATOR:

This is used to increase the value one by one. It has two types:

* Post-fix Increment operator

* pre-fix Increment operator

1.1.1 POST-FIX INCREMENT OPERATOR:

“++” symbol is used to represent Post-fix Increment operator. This symbol is used

after the operand.

In this operator, value is first assign to a variable and then incremented the value.

EX: int a , b;

a=10;

b=a++;

In the above example first the value of “a” is assign to the variable “b”, then I

Increment the value, so the value of b variable is “10”.

1.1.2 PRE-FIX INCREMENT OPERATOR:

“++” symbol is used to represent Pre-Fix operator, this symbol is used after

the operand. In this operator value is incremented first and then assigned to a

variable.

EX: int a,b;

a=10;

b=++a;

In the above example first the increment is done then the value of “a”

variable is assigned to the variable “b”, so the value of “b” variable is “11”.

1.2 DECREMENT UNARY OPERATOR:

“-” symbol is used to decrease the value by one. It has two types:

1.Post-fix decrement operator

2.pre-fix decrement operator

1.2.1 POST_FIX DECREMENT OPEATOR:

“-” symbol is used to represent post-fix decrement operator, this symbol is

used after the operand. In this operator, value is first assigned to a variable and then

decrement the value.

EX: int a , b;

a=10;

b=a--;

In the above example first the value of “a” is assign to the variable ” b”,

then decrement the value. So the value of “b” variable is “10”.

1.2.2 PRE-FIX DECREMENT OPERATOR:

“-” Symbol is used to represent the pre-fix decrement operator. This symbol is
used after the operand. In this operator, value is decremented first and then
decremented value is used in expression.

EX: int a,b;

a=10;

b=--a;

In the above example first the value of “a” is decrement then assign to the
variable “b”. So the value of b variable is “9”.

2. BINARY OPERATOR:

In which we use two operand is called Binary operator. Java supports many
types of Binary operators:

* Assignment operator

* Arithmetic operator

* Logical operator

* Comparison operator

2.1 ASSIGNMENT OPERATOR:

This operator is used to assign the value. This symbol “=“ is used to assign
the value .

EX: int a=12;

2.2 ARITHMETIC OPERATOR:

This operator is used to perform mathematical operand. Arithmetic operator
are:

 Operators Description Use

1. Additional
operator (“+”) :

Used to add the value
of two operand.

a+b

2. Subtract
operator (“-“) :

Used to subtract the
value of two operand.

a-b

3. Multiply
operator (“*”) :

Used to multiply the
value of two operand.

a*b

4. Division
operator (“/”) :

Used to divide the
value of two operand.

a/b

5. Modulus
operator(“%”) :

Used returns the
remainder of a division
operation.

a%b

LOGICAL OPERATOR:

The logical operator ||(conditional-OR),&&(conditional-AND),!(conditional-NOT)

operates on boolean expressions, here’s how they work:

LOGICAL NOT OPERATOR:

➢ Logical NOT operator is used to reverse the logical state of its operand. If a condition

is true then

logical NOT operator will make false. If a condition is false then Logical NOT

operator will make true.

➢ Then NOT operator is probably the easiest to understand. It is simply the opposite

of what the condition says.

EX: boolean a=true;

if(!a)

System.out.println(“u r win”);

else

System.out.println(“u r not win”);

➢ In above example “if not true” is asking if the variable “a” variable is not true,

otherwise known as false.

➢ If “a” variable is false, java will displays ”u r win” “a” variable is not true , so that

code will not execute, then the else part is execute shown in output.

RELATIONAL OPERATOR:

➢ This operator is used to compare the two values, so this operator is also known as

“comparison operator”

➢ Conditional symbols and their meanings for comparison operator are below:

TERNARY OPERATOR:

In ternary operator use three operands. It is also called Conditional assignment statement
because the value assigned to a variable depends upon a logical expression.

SYNTAX:

EX:

variable=(test expression)?Expression 1: Expression 2

c=(a>b)?a:b:

c= (a>b) ? a:b;

Test condition ? Expression1 : Expression2;
BITWISE OPERATORS:

Java provides 4 bitwise and 3 bit shift operators to perform bit

operations.

* | Bitwise OR

* & Bitwise AND

* - Bitwise Complement

* ^ Bitwise XOR

* << Left shift

* >> Right shift

* >>> Unsigned Right Shift

Bitwise and bit shift operators are used on integral types (byte, short, int and

long) to perform bit-level operations.

BITWISE OR:

Bitwise OR is a binary operator(operates on two operands). It’s denoted by |. The | operator

compares corresponding bits of two operands. If their of the bits is 1. If not, it gives 0.

EX:

12= 00001100

25= 00011001

Bitwise OR Operation of 12 and 25

00001100

00011001

00011101 =29(In decimal)

BITWISE AND :

Bitwise AND is a binary operator (operates on two operands). It’s denoted by &. The &

operator compares corresponding bits of two operands. If both bits are 1. If either of the bits is

not 1, it gives 0.

EX: 12= 00001100

25=00011001

Bit operation of 12 and 25

00001100

00011001

00001000 = 8(in decimal)

BITWISE COMPLIMENT :

Bitwise compliment is an unary operator(works on only one operand). It is denoted
by ~. The ~ operator inverts the bit pattern. It makes every 0 to 1, and every 1 to 0.

EX: 35= 00100011(in binary)

bitwise complement of 35

~ 00100011

11011100 = 220(in decimal)

BITWISE XOR :

Bitwise XOR is a binary operator(operates on two operands). It’s denoted by “^” .
The operator compares corresponding bits of two operands. If corresponding bits
are different, It gives 1. If corresponding bits are same, it gives 0.

EX: 12=00001100

25=00011001

Bitwise XOR operation of 12 and 25 is:

00001100

1 00011001

00010101 =21(in decimal)

Control Statements

Causes the flow of execution to advance and branch based on changes to the state of

program.

In Java, control statements can be divided into the following three catego

1) Selection Statements

2) Iteration Statements

3) Jump Statements

1) Selection Statements

Selection statements allow you to control the f

outcome of an expression or state of a va

can be divided into the following ca

a) The if and if-else statemen

b) The if-else statemen

c) The if-else-if statement

d) The switch

The if statements :

The first contained statement (that can be a block) of an if statement only executes when

the specified condition is true. If the condition is false and there is not else keyword then

the first contained statement will be skipped and execution continues with the rest of the

program. The condition is an expression that returns a boolean value.

General form of simple if statement is

if<expression>

{

Statement-block;

}

The statement-block may be single statement or a group of statements .

if the expression is true, the statement block will be executed, otherwise the statement

block will be skipped to the statement-x.

i e se state ent is an e tension o the si p e i state ent. The enera or is

 i the test e pression is tr e then the tr e b o state ents i ediate y o owin the i state ent are e e ted. therwise

the a se b o state entsare e e ted .

 In either ase ither tr e b o or a se b o wi be e e ted not both.

 In both the ases the ontro is trans erred s bse ent y to the state ent Dia ra

 A nested i is an i state ent that is the tar et o another i or e se.

 Nested i s are ery o on in pro ra in

 enera or o Nested i oo s i e

 Nested i e se state ent is ade by p a in one i e se in another i e se state ent.

 Nested i e se state ent he ps to se e t one o t o any hooses.

 enera or o Nested i e se is

if cond1

if cond

if cond

stmt

else

stmt

else

stmt

else

stmt 1

 In the nested i e se state ent the o ter ost i is e a ated irst.

 I the ondition is a se the state ent is the o ter ost e se is e a ated and i e se ends.

 I the onditon is tr e the ontro oes to e e te the ne t inner i state ent.

 I onditon is a se state ent is e e ted otherwise onditon is e a ated

 I ondition is a se state ent is e e ted. therwise state ent is e e ted.

 The swit h state ent he ps to se e t one o t o any hooses.

 It o ten pro ides a better a ternati e than a ar e d series o i e se i state ents

 enera or o swit h state ent is

 wit h(e pression)

 ase a e st t

Brea

 ase a e st t

Brea

.

.

 ase a e N st t N

Brea

De a t st t

 The e pression st be o type byte short int or har.

 a h o the a es spe i ied in the ase st ts st be o a type o patib e with the e pression.

 a h ase a e st be ni e itera .

 D p i ate ase a e are not a owed.

 The swit h st t wor s i e this

 A o on pro ra in onstr t that is based a se en e o nested is based pon a
se en e o nested i s is the i e se i adder.

 enera or o i e se adder

i ondition

st t

e se i ondition

st t

e se i ondition

st t

e se

st t

 The i state ents are e ted ro the top down. As soon as one o the onditions
 ontro in the i is tr e the st t asso iated with that i is e ted and the rest o the
 adder is bypassed.

 I none o the ondition is tr e then the ina e se st t wi be e e ted.

 The ina e se a ts as a de a t ondition i.e i a other onditiona tests ai then the ast
e se st t is per or ed.

 I there is no ina e se and a other ondition are a se.

while:-
The whi e oop is ja a’s ost nda enta oop st t

• It repeats a st t or b o whi e its ontro in e pression is tr e.

• The enera or o whi e st t is

 While <condition>

 {

 Body of the loop

 }

The condition can be any Boolean expression.

The body of the loop will be executed as long as the conditional expression is true

When condition becomes false, control passes to the next line of code immediately following the
loop.

The curly braces are unnecessary if only a single stmt is being repeated.

Do-while:-
❑ If the conditional expression controlling a while loop is initially false, then the body

of the loop will not executed at all

❑ However, it is desirable to execute the of a loop at least once even if condition

expression is false to begin with

❑ Fortunately, java supplies a loop that does just that : the do while

❑ The do while loop always execute its body at least once, because its conditional

expression is at bottom of loop

❑ The general form of do while is

do

{

Body of the loop

}

While<condition>
For statement

 General form of traditional for statement

is for(initialization; condition;

iteration)

{

Body of the loop

}

 It is important to understand that initialization expression is only executed

once. Next, condition is evaluated. This must be a Boolean expression .i.e the

loop control variable against a target value.

 If this expression is true, then the body of the loop is executed.

 If it is false, the loop terminates.

 Next, the iteration portion of the loop executed

 This is usually an expression that increments or decrements the loop

controls variable.

 This loop then ITERATES

 First evaluating the conditional expression , then executing the body of the

loop , and then executing the iteration expression with each pass.

 This process repeats until the controlling expression is false.

Nested loop:-

Like all other programming languages, java allows loops to be nested.

i.e one loop may be inside

another Eg:-

For(i=0 ; i<10 ; i++)

{

For(j=I ; j<10 ; j++)

{

statement block

}

}

Jump stmts:_
Java supports 3 jump stmts

1. break

2. continue

3. return.

Break stmt:-

It has 3 uses.

 1. It terminates a stmts sequence in a switch stmt.

 2. If can be used to exit a loop.

 . I an be sed as a “ i i ized” or o oto.

When a break stmt is encountered inside a loop. The loop is terminated and program control

resumes at the next stmt following the loop.

i.e by using break, we can force immediate termination of a loop, by passing the conditional

expression (eg: i<=10) and any Remaining code in the body of the loop.

continue:-

sometimes, you might want to continue running the loop but stop continue running the

remainder of the code in its body for this particular iteration

the continue stmt performs such as an action

 Return:-

Return stmt is used to explicitly return from a method

i.e it causes program control to transfer back to the caller of the method

return stmt can be used to cause execution to branch back to the caller at the method.

