UNIT - |
NUMBER SYSTEMS & CODES

INTRODUCTION

Computers, uses 1’s and 0’s to represent the data. These 1’s and 0’s might bestored
magnetically on a disk, or as a state in a transistor or vacuum tube. To performuseful operations on
these 1’s and 0’s, the 1’s and 0’s are organized together into patterns thatmake up codes. Modern
digital systems do not represent numeric values using the decimalsystem. Instead, they typically use a
binary or two’s complement numbering system.

Tounderstand the digital system arithmetic, we must understand how digital systems
representnumbers.

The term digital is derived from the way computers perform operations, by counting digits. For
many Yyears, applications of digital electronics were related to computer systems. Today, digital
technology is applied in a wide range of areas in addition to computers.

Digital Applications such as:

= Television,
= Communication systems,
= Radar,

= Navigation and Guidance systems,

= Military systems,

= Medical instrumentation,

= Industrial process control system for counting and controlling items for packaging on a
conveyor line and consumer electronics use digital techniques.

Over the years digital technology has progressed from vacuum-tube circuits to discretetransistors
to complex integrated circuits, some of which contain millions of transistors.

We can conclude, whether an electronic product contains digital circuitry based on the following:

= Does it have an Alphanumeric (shows letters and numbers) display?

= Does it has a memory or can it store information?

= Can the device be programmed?
If any one of the above is satisfied, then we can say that the electronic product contains digital
circuitry.

DIGITAL AND ANALOG QUANTITIES:

Electronic circuits can be divided into two broad categories, digital and analog. Digital
electronics involves quantities with discrete values, and analog electronics involves quantities with
continuous values. Although we will be studying digital fundamentals in Switching theory and Logic
Design, we should also know something about analog because many applications require both; and
interfacing between analog and digital is important.

1|Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

An analog quantity is one having continuous values. A digital quantity is one having a discrete
set of values. Most things that can be measured quantitatively occur in nature is in analog form. For
example, the air temperature changes over a continuous range of values.

Example for Analog quantity:

During a given day, the temperature does not go from, say, 70° to 71 ° instantaneously; it takes
on all the infinite values in between. If we graph the temperature on a typical summer day. We would
have a smooth, continuous curve similar to the curve shown in Figure below.

Temperature
(°F)

5

100 — T T

95 -

90 —

85—

80 —

75 - ! : o !
i = [‘

70 —

I 4 SIF JERils e 1] [Y O |
1 234567 891011121 23456738
AM PM.

l » Time of day
9 10 1112

Fig: Graph of an analog quantity (temperature versus time).

Other examples of analog quantities are time, pressure, distance, and sound. Rather than
graphing the temperature on a continuous basis, suppose if we just take a temperature reading every
hour. Now we have sampled values representing the temperature at discrete points in time (every hour)
over a 24-hour period, as indicated in Figure below. We have effectively converted an analog quantity
to a form that can now be digitized by representing each sampled value by a digital code. It is
important to realize that Figure below itself is not the digital representation of the analog quantity.

Temperature
)

A
100 (— —r — e

o]
O
-l
|

75 & - 1 1 -

S R e o o B !] . 1.9
| 1 I I t | | B v‘ = | ‘ = I' ’ R
1 2 3 4 5 6 7 8 91011121 2 3 4 5 6 7 8 9 1011 12
AM DML

Tisoe of day

Fig: Sampled-value representation (quantization) of the analog quantity.

Each value represented by a dot can be digitized by representing it as a digital code that
consists of a series of 1 s and Os.

2|Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Digital Advantage:

Digital representation has certain advantages over analog representation in electronicsapplications.
Such as

= Digital data can be processed and transmitted more efficiently and reliably than, analog data.

= Generally, digital devices are easier to design using modern integrated circuits (ICs)

= Information storage is easy. For example music when converted to digital form can be stored
more compactly and reproduced with greater accuracy and clarity than is possible when it is in
analog form.

= Noise (unwanted voltage fluctuations) does not affect digital data much when compared to
analog signals.

= Devices can be made programmable with digital.

An Analog Electronic System:

A public address system, used to amplify sound is one simple example of an application of
analog electronics. The basic diagram in shown in Figure below illustrates that sound waves, which
are analog in nature, are picked up by a microphone and converted to a small analog voltage called the
audio signal. This voltage varies continuously as the volume and frequency of the sound changes and
is applied to the input of a linear amplifier. The output of the amplifier which is an increased
reproduction of input voltage goes to the speaker(s). The speaker changes the amplified audio signal
back to sound waves that have a much greater volume than the original sound waves picked up by the
microphone.

~<——- Original sound waves

Microphone Reproduced
sound waves
~ & =
- L U’ ‘\l - Linear ammplifier IU‘ "] i)
Audio signal
Spenker

SHomplified audio signal

Fig: A basic audio public address system.
A System Using Digital and Analog Methods:

The compact disk (CD) player is an example of a system in which both digital and analog
circuits are used. The simplified block diagram in shown in figure below illustrates the basic principle.
Music in digital form is stored on the compact disk. A laser diode optical system picks up the digital
data from the rotating disk and transfers it to the digital-to-analog converter (DAC).

CD drive

Eemy M N
10110011101 Digital-to-analog » Linear amplificr J
Digital data converter Analog y
reproduction /

of music andio Speaker
signal
Sound

waves

3|Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

The DAC changes the digital data into an analog signal that is an electrical reproduction of the
original music. This signal is amplified and sent to the speaker for us to enjoy. When the music was
originally recorded on the CD, a process, essentially the reverse of the one described here, using an
analog-to-digital converter (ADC) was used.

Differences between analog signal and digital signal:

Analog signal Digital signal
1. It is a continuous signal. 1. It is a discrete signal.
2. It is a continuously varying signal. 2.1t is based on 0’s and 1’s.

3. Analog signal has more influence to noise. 3. Digital signal has less influence to noise.
4. Analog signals are difficult to transmit when | 4. Digital signals are easier to transmit when

compared to digital signals. compared to analog signals.

5. Cost of analog signal transmission is |5. Cost of digital signal transmission is less
expensive. expensive.

6. Less reliable when compared to digital | 6. More reliable when compared to digital
signals. signals.

7. Analog signals do not provide continuous | 7. Digital signals provide better continuous
delivery, when compared to digital signals. delivery, when compared to analog signals.

8. Analog signal cannot be stored easily. 8. Digital signal can be stored easily.

9. More errors occur. 9. Only few errors occur.

10. Errors correction is not easy. 10. Error correction is easy.

11. Analog signals require lesser Bandwidth. 11. Digital signals require greater Bandwidth.

12. Analog signal has a slower rate of | 12. Digital signal has a faster rate of transmission
transmission when compared to digital signal. | when compared to analog signal.

Voltage level B V=]
I /\ A /\ /\ X Generates)\ 0Vl
ARV %QO\.

Workstation

Example: Example:
= Sound waves are continuous. = Most computers used such as PCs work
= Sin, cosine signals, triangular & saw using digital signal.
tooth signals. = Morse code.

A REVIEW OF THE DECIMAL SYSTEM

People have been using the decimal (base 10) numbering system for so long that theymostly
use. When one sees a number like “123”, he doesn’t think about thevalue 123; rather, he generates a
mental image of how many items this value represents. Inreality, however, the number 123 represents:

1:5:102 + 2"101 + 3-100
or 100 + 20 + 3

Each digit appearing to the left of the decimal point represents a value between zero andnine
times an increasing power of ten. Digits appearing to the right of the decimal pointrepresent a value
between zero and nine times an increasing negative power of ten. Forexample, the value 123.456
means:

1¥102 + 2%10! + 3%10° + 4¥10-1 + 5%10~2 + 6%10~2
or 100 + 20 + 3 + 0.4 + 0.05 + 0.006

4|Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Binary Formats:

Every binary number contains an infinite number of digits (or bits which is short for binary
digits). Because any number of leading zero bits may precede the binary number without changing its
value. For example, one can represent the number seven by:

111
00000111
000000000000111

Often several values are packed together into the same binary number. For convenience, a
numeric value is assign to each bit position. Each bit is numbered as follows:

1. The rightmost bit in a binary number is bit position zero.
2. Each bit to the left is given the next successive bit number.

An eight-bit binary value uses bits zero through seven X7 Xg Xs Xy X3 Xp X1 Xp
A 16-bit binary value uses bit positions zero through fifteen:
Xis Xia Xiz X2 X1z X0 Xg Xg X7 Xg X5 Xz Xz Xo X1 Xo

Bit zero is usually referred to as the low order bit. The left-most bit is typically called the high
order bit. The intermediate bits are referred by their respective bit numbers. The low order bit which is
Xois called LEAST SIGNIFICANT BIT (LSB). The high order bit or left most bit. i.e., X15 is called
MOST SIGNIFICANT BIT (MSB).

Data Organization

In mathematics a value may take an arbitrary number of bits. Digital systems, generally work
with some specific number of bits. Common collections are single bits, groups of four bits (called
nibbles), groups of eight bits (called bytes), groups of 16 bits (called words), and more. The sizes are
not arbitrary.

Bit:

= The smallest “unit” of data on a binary computer or digital system is a single bit.

= Bit, an abbreviation for Binary Digit, can hold eithera0 ora 1.

= A bit is the smallest unit of information a computer can understand. Since a single bit is
capable of representing only two different values (typically zero or one) one may get the
impression that there are a very small number of items one can represent with a single bit.
That’s not true! There are an infinite number of items one can represent with a single bit. With
a single bit, one can represent any two distinct items.

Examples include zero or one, true or false, on or off, male or female, and right or wrong.
However, one is not limited.

5|Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Nibble:

A nibble is a collection of four bits. It wouldn’t be a particularly interesting data structure except
for two items:

BCD (binary coded decimal) numbers and hexadecimal numbers. It takes four bits to represent
a single BCD or hexadecimal digit. With a nibble, one can represent up to 16 distinct values. In
the case of hexadecimal numbers, the values 0, 1, 2, 3,4, 5,6, 7,8,9, A, B,C,D, E, and F are
represented with four bits.

BCD uses ten different digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) and requires four bits.

In fact, any sixteen distinct values can be represented with a nibble, but hexadecimal and BCD
digits can be represented with a single nibble.

Computer memory must be able to store letters, numbers, and symbols. A single bit by itself
cannot be of much use. Bits are combined to represent some meaningful data.

A group of eight bits is called a byte. It can represent a character and is the smallest
addressabledatum (data item) on the most of the digital systems (e.g. 80 x 86 microprocessor).
The mostimportant data type is the byte.

Note: Byte also contains exactly 2 Nibbles.

Word:A word is a group of 16 bits. Bits in a word are numbered starting from zero on up to fifteen.

Double Word:A double word is exactly what its name implies, a pair of words. Therefore, a double
word quantity is 32 bits long as shown in Fig. below.

Note:This double word can be divided into a high order word and a low order word, or four different
bytes, or eight different nibbles.

Binary Equivalents:

1 Nibble (or nibble) =4 Bits

1 Byte = 2 nibbles =8 Bits

1 Kilobyte (KB) =2 Bytes =1024 Bytes

1 Megabyte (MB) =2?°Bytes =1024 Kilo Bytes = 1,048,576 Bytes

1 Gigabyte (GB) =2 Bytes =1024 Mega Bytes = 1,073,741,824 Bytes

6|Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

BINARY NUMBERING SYSTEM

Most modern digital systems operate using binary logic. The digital systems represent values
using two voltage levels (usually OV and +5V). With two such levels one can represent exactly two
different values. These could be any two different values, but by convention we use the values zero
and one. These two values, coincidentally, correspond to the two digits used by the binary numbering
system.

Computers use binary numbers to select memory locations. Each location is assigned a unique
number called an address. Some Pentium microprocessors, for example, have 32 address lines which
can select 2% (4,294,967,296) unique locations.

= The binary number system is another way to represent quantities. It is less complicated than the
decimal system because it has only two digits.

= The decimal system with its ten digits is a base-ten system; the binary system with its two
digits is a base-two system.

= The two binary digits (bits) are 1 and 0. The position of a 1 or 0 in a binary number indicates
its weight, or value within the number, just as the position of a decimal digit determines the
value of that digit.

= The weights in a binary number are based on powers of two.

DECIMAL
NUMBER BINARY NUMBER

0 0 0 0 0
| 0 0 0 1
2 0 0 | 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 | |
8 l 0 0 0
9 1 0 0 1
10 L 0 | 0
11 I 0 1 1
12 L 1 0 0
13 [1 0 1
14 l 1 1 0
L5 1 1 1 |

From the above Table, we observe that, four bits are required to count from zero to 15. In
general, with ‘n’ bits you can count up to a number equal to 2" - 1.

Largest decimal number =2"-1
For example, with five bits (n = 5) you can count from 0 to 31.i.e.,2°-1=32-1=31

Note: The value of a bit is determined by its position in the number.

7|Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

The Weighting Structure of Binary Numbers
A binary number is a weighted number.

. Theoright-most bit is the LSB (least significant bit)in a binary whole number and has a weight
of 2° = 1.

= The weights increase from right toleft by a power of two for each bit.

= The left-most bit is the MSB (most significant bit); its weight depends on the size of the binary
number.

= Fractional numbers can also be represented in binary by placing bits to the right of the binary
point, just as fractional decimal digits are placed to the right of the decimal point.

» The left-most bit is the MSB in a binary fractional number and has a weight of 2™ = 0.5.

= The fractional weights decrease from left to right by a negative power of two for each bit.

= The weight structure of a binary number is

S — l‘) 1 23 22 21 2{}) 2—1 2-——2 . i e i
™ Binary point

Where n is the number of bits from the binary point.

= Thus, all the bits to the left of the binary point have weights that are positive powers of two, as
previously discussed for whole numbers.

= All bits to the right of the binary point have weights that are negative powers of two, or
fractional weights.

The powers of two and their equivalent decimal weights for an 8-bit binary whole number and a 6-
bit binary fractional number are shown in Table.

POSITIVE POWERS OF TWO NEGATIVE POWERS OF TWO
{WHOLE NUMBERS) (FRACTIONAL NUMBER)

21y 2t 2°° 2 275
256 128 64 32 16 8 4 2 1 12 14 18 1/16 1132 1764
05 025 0125 00625 003125 0.015625

Note: The weight or value of a bit increases from right to left in a binary number.
OCTAL NUMBERS:

= The octal number system provides a convenient way to express binary numbers and codes. The
octal number system has a base of 8.

= However, it is used less frequently than hexadecimal in combination with computers and
microprocessors to express binary quantities for input and output purposes.

= The octal number system is composed of eight digits, which are 0, 1, 2, 3, 4, 5, 6, and 7.

= To obtain the equivalent octal number above 7, divide the number with 8 and write the
remainders obtained at each stage from bottom to top to give the equivalent octal number:
10, 11, 12, 13, 14, 15, 16, 17, 20, 21...

= Counting in octal is similar to counting in decimal, except that the digits 8 and 9 are not used.
To distinguish octal numbers from decimal numbers or hexadecimal numbers, we will use the
subscript 8 to indicate an octal number.

= For example, 15 g in octal is equivalent to 133, in decimal and D in hexadecimal. The octal

. n

number is also represented by “o0" or a "Q" following an octal number.

8|Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

HEXADECIMAL NUMBERS:

= The hexadecimal number system has sixteen characters; it is used primarily as a compact way
of displaying or writing binary numbers because it is very easy to convert between binary and

hexadecimal.

= As we are probably aware that, long binary numbers are difficult to read and write because it is
easy to drop or transpose a bit. Since computers and microprocessors understand only 1’s and
0’s, it is necessary to use these digits when we program in "machine language." Imagine
writing a sixteen bit instruction for a microprocessor system in 1’s and 0’s. It is much more

efficient to use hexadecimal or octal.

= Hexadecimal is widely used in computer and microprocessor applications because of the

compact representation of long string of binary 1’s and 0’s.

= The hexadecimal number system has a base of 16; i.e., it is composed of 16 numeric and

alphabetic characters.

= Most digital systems process binary data in groups that are multiples of four bits, making the
hexadecimal number very convenient because each hexadecimal digit represents a 4-bit binary

number.

The hexadecimal number system consists of digits 0-9 and letters A-F as shown in table below.

DECIMAL BINARY HEXADECIMAL
(4} 0000 4]
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 ot 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

= The use of letters A, B, C, D, E, and F to represent numbers may seem strange at first, but keep
in mind that any number system is only a set of sequential symbols. If we understand what
quantities these symbols represent, then the form of the symbols themselves is less important

once you get adjusted using them.

= Hexadecimal numbers are designated using the subscript 16 to avoid confusion with decimal

numbers. Sometimes you may see an "h" following a hexadecimal number.

Counting in Hexadecimal:

= To obtain the equivalent hexadecimal number above 15, divide the number with 16 and write
the remainders obtained at each stage from bottom to top to give the equivalent hexadecimal
number as follows: 10,11, 12,13,14,15, 16, 17, 18, 19, IA, IB, 1C, ID, IE, IF, 20, 21, 22, 23,

24,25,26,27,28,29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31,. . .

= With two hexadecimal digits, we can count up to FFis , which is decimal 255. To count beyond
this, three hexadecimal digits are needed. For instance, (100):s is decimal 256, (101)6 are
decimal257, and so forth. The maximum 3-digit hexadecimal number is (FFF)s or decimal

4095. The maximum 4-digit hexadecimal number is (FFFF)16 , which is decimal 65,535.

9|Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

NOTE:

With computer memories in the gigabyte (GB) range, specifying a memory address in binary is
quite, cumbersome. For example, it takes 32 bits to specify an address in a 4 GB memory. It is much
easier to express a 32-bit code using 8 hexadecimal digits. Hexadecimal is a convenient way to
represent binary numbers.

NUMBER BASE CONVERSIONS:

The humans use decimal number system while the computer uses binary number system.
Therefore, it is necessary to convert decimal number into its equivalent binary while feeding number
into the computer and to convert binary into decimal equivalent while displaying the result to the
humans. However, dealing with large quantity of binary number of many bits is inconvenient for
humans. Therefore, octal or hexadecimal numbers are used as a shorthand means of expressing large
binary numbers. But it is necessary to keep it in mind that the digital circuits and systems work strictly
in binary; we use octal and hexadecimal for the operator convenience.

CONVERSION DECIMAL NUMBER TO ANY RADIX:
Conversion of decimal number to any radix / base can be achieved in two steps:

= Conversion of integer part to any radix / base number by successive division method &
= Conversion of fractional part to any radix / base number by successive multiplication method.

Steps in successive division method to convert integer part to any radix / base number:
1. Divide the integer part of decimal number by desired base number, store quotient (Q) and
remainder (R).

2. Consider quotient as the new decimal number and repeat step 1 untill quotient becomes 1.
3. List the remainders from bottom to top (i.e. in reverse order).

Steps in successive multiplication method to convert fractional part to any radix / base number:

=

Multiply the fractional part of decimal number by desired radix / base.

Store the integer part of the product as carry and fractional part as new fractional part.

3. Repeat steps 1 and 2 untill fractional part of product becomes 0 or until you have as many
digits necessary for your application.

4. Write carries from top to bottom to get the desired radix / base number.

no

10| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Example:

Steps for converting the decimal number 12 to binary:

= Divide the decimal number by 2 producing a dividend and a remainder. This number is the
LSB (least significant bit of the desired binary number).

= Again divide the dividend obtained above by 2. This produces another dividend and remainder.
The remainder is the next digit of the binary number.

= Continue this process of division until the dividend becomes 0. The remainder obtained in the
final division is the MSB (most significant bit of the binary number).

2 12 Remainders

, | 6- 0—>1LsB 7 N
3.

> 0
1._

> 1
0. 1—>MSB

Stop when the whole number quotient is 0

Repeated Multiplication by 2:

Note:

To obtain the binary number for a given decimal
number,
Steps:

1. Divide the decimal number by 2 until the quotient is 0.

2. And then , Start writing the Remainders form the
bottom to top to obtain the Binary number.

As we have seen, decimal whole numbers can be converted to binary by repeated division by 2.

Decimal fractions can be converted to binary by repeated multiplication by 2.

For example, to convert the decimal fraction 0.3125 to binary, begin by multiplying 0.3125 by
2 and then multiplying each resulting fractional part of the product by 2 until the fractional product is
zero or until the desired number of decimal places is reached. The carry digits, or carries, generated by
the multiplications produce the binary number. The first carry produced is the MSB, and the last carry
is the LSB. This procedure is illustrated as follows:

1
0.3125 X 2 — 0.625 0 4/[’
1

0.625 X 2 =1.25
0.25 X2 =050 0

0.50 X2 = 1.00 1

MSB 3l & LSB

Carry 0101

ﬁl

Continue to the desired number of decimal places j
or stop when the fractional part is all zeros.

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

11| Page

Decimal-to-Octal Conversion:

Converting a decimal number to an octal number is obtained by repeated division-by- 8
methods, which is similar to the method used in the conversion of decimal numbers to binary or to
hexadecimal.

The decimal number 359 to octal is converted as follows.
Each successive division by 8 yields a remainder that becomes a digit in the equivalent octal number.

The first remainder generated is the least significant digit (LSD).

Remainder

359
—— =44 875 20875 X8 =7

S

— =55 —>05X8= 4

I

5

—=0.625 —>0.625 X 8= §

8 = |
Stop when w hole number 547 Octal number
quoticnt is zero MED j ’L i

Decimal-to-Hexadecimal Conversion:

= Repeated division of a decimal number by 16 will produce the equivalent hexadecimal number,
formed by the remainders of the divisions.

= The first remainder produced is the least significant digit (LSD).

= Each successive division by 16 yields a remainder that becomes a digit in the equivalent
hexadecimal number. This procedure is similar to repeated division by 2 for decimal-to-binary
conversion.

= When a quotient has a fractional part, the fractional part is multiplied by the divisor to get the
remainder.

EXAMPLE 2-28
Convert the decimal number 650 to hexadecimal by repeated division by 16.

Solution Hexadecimal

rematnder

650

?;40.625 20625 X16=10= A

40

E=2.5—>0.5X16=8= 8

2-—0125—->()129><1(—2— 2

16 : d25) —J/ \
Stop when whole number 2 8 A lexadecimal number
quotient is zero.
l MSD “T /LLSD

12| Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

CONVERSION OF ANY RADIX /BASE TO DECIMAL NUMBER:
N=An X" + AL Xr™ 4+ AXr + AX I+ A Xrt+ ApXr2+ L +A-mXr™
Where N = Number in decimal,

A = Digit,

r = Radix / Base of a number system,

n = The number of digits in the integer portion of the number &

m = The number of digits in the fractional portion of the number
Binary-to-Decimal Conversion

The decimal value of any binary number can be found by adding the weights of all bits that are 1 and
discarding the weights of all bits that are 0.

Note: Add the weights of all 1’s in a binary number to get the decimal value.

I EXAMPLE
Convert the binary whole number 1101101 {o decimal.

Solution Determine the weight of each bit that is a 1, and then find the sum of the weights to
wet the decimal number.

Weight: 2°2° 24 27 22 21 2
Binarynumber: 1 1 0 1 1 0 1
1101101 = 2° + 2° + 2> + 22 + 2°
—64 +32+8+4+1 =109
EXAMPLE
Converl the fractional binary number 0.1011 to decimal.
Solution Determine the weight of each bit that is a 1, and then sum the weights to get the

decimal fraction.
Weight: 2= padl pasiioad
Binary number: O. 1 0 1 1
0.1011 =2' + 23 + 2*
= 0.5 + 0.125 + 0.0625 = 0.6875

Octal-to-Decimal Conversion:

Since the octal number system has a base of eight, each successive digit position is an
increasing power of eight, beginning in the right-most column with 8°. The evaluation of an octal
number in terms of its decimal equivalent is obtained by multiplying each digit by its weight and
summing the products, as explained below for 2374 ¢

Weight: 88 8'g"
Octal number: 2 3 7 4
2374, = (2% 8) + (3 X&) +(7X8)+ (4 x8Y
=(2%X512) + (3X64)+ (TXR) +(4X1)
= 1024 + 192 + 56 + 4 =1276

13| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Hexadecimal-to-Decimal Conversion:

= One way to find the decimal equivalent of a hexadecimal number is to first convert the

hexadecimal number to binary and then convert from binary to decimal.
EXAMPLE

Convert the following hexadecimal numbers to decimal:

(@ 1C, (b) AB5¢

Solution Remember, convert the hexadecimal number to binary first, then to decimal.

@ 1 C
L
00011100 = 27 + 23+ 22 =16 + 8 + 4 = 28,

b)) A 8 5
ook 4
101010000101 = 2" +2° + 27 + 22 +2° = 2048 + 512 + 128 + 4 + 1 = 2693,,

= Another way to convert a hexadecimal number to its decimal equivalent is to multiply
the decimal value of each hexadecimal digit by its weight and then take the sum of
these products. The weights of a hexadecimal number are increasing powers of 16
(fromright to left). Fora 4-digit hexadecimal number, the weights are

16° 162 16t 16°
4096 256 16 1

EXAMPLE

Convert the following hexadecimal numbers to decimal:

(a) E5 (b) B2F8,¢

Solution Recall from Table . that letters A through I represent decimal numbers 10 through
15, respectively.
@ E5=EXI6)+(6x1)=04x16)+ (5x1) =224 + 5 = 229,

(b) B2F8,, = (B X 4096) + (2 X 256) + (F X 16) + (8 X 1)
(11 X 4096) + (2 X 256) + (15 % 16) + (8 X% 1)
45,056 + 512 + 240 + 8 = 45816,

Binary-to-Octal Conversion:

Conversion of a binary number to an octal number is the reverse of the octal-to-binary conversion.

The procedure is as follows:

= Start with the right-most group of three bits and, moving from right to left, convert each 3-bit
group to the equivalent octal digit.

= |f the number of bits available for the left-most group is less than 3; add either one or two zeros
to make a complete group of 3-bits. These leading zeros do not affect the value of the binary

number.
EXAMPLE
Converl each of the following binary numbers to octal:
(a) 110101 (b) 101111001 (c) 100110011010 (d) 11010000100
Solution (a) 110101 (b) 101111001

11 i1 1
6 5 =65 5 7 1=5714

(© 100110011010 @ 011010000100
N L4l d
4 6 3 2=4632 3 2 0 4=32044

14 |Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Octal-to-Binary Conversion:

Each octal digit can be represented by a 3-bit binary number (8 = 2 , where 3 represents the number
of bits used to encode’, so it is very easy to convert from octal to binary. Each octal digit is represented
by three bits as shown below.

OCTAL DIGIT 0 1 2 3 4 5 6 7
BINARY 000 001 010 011 100 101 110 111
To convert an octal number to a binary number, simply replace each octal digit with the appropriate
three bits.

EXAMPLE 2-31
Convert each of the following octal numbers to binary:

(a) 134 (h) 25, (¢) 1405 (d) 75264

Solution (a) 1 3
4 &

001011 010

(b)
i 0011

Note: Octal is a convenient way to represent binary numbers, but it is not as commonly used as
Hexadecimal.

Binary-to-Hexadecimal Conversion:
Converting a binary number to hexadecimal is a straightforward procedure. Simply break the binary

number into 4-bit groups, starting at the right-most bit and replaces each 4-bit group with the
equivalent hexadecimal symbol.

Convert the [ollowing binary numbers to hexadecimal:

(a) 1160101001010111 (h) 111111000101101001

on (a) 1100101001010111 (b) 00111111000101101001
L [l LA i
C A 5 71 =CA%7, 3 F 1 6 9 =3F169,

Two zeros have been added in part (b) to complete a 4-bit group at the left.

15| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Hexadecimal-to-Binary Conversion:

To convert a hexadecimal number to a binary number, reverse the process and replace
hexadecimal symbol with the appropriate four bits.

Determine the binary numbers for the following hexadecimal numbers:

(@) 10Ad4,, (b) CF8E,, (c) 9742,

@1 0 A 4 (®»CTF 8 E (9 7 4 2
= L 2k N
1000010100100 1100111110001110 100101 1101000010

In part (a), the MSB is understood (o have three zeros preceding it, thus forming a 4-
bit group.

each

It is clear that it is much easier to deal with a hexadecimal number than with the equivalent
binary number. Since conversion is so easy, the hexadecimal system is widely used for representing

binary numbers in programming, printouts, and displays.
Note: Conversion between hexadecimal and binary is direct and easy.

Hex to Octal and Octal to Hex Conversion

These conversions are done through the binary conversion. Recall that, a group of 4-bitsrepresent a

hexadecimal digit and a group of 3-bits represent an octal digit.
Hex to Octal Conversion

1. Convert the given hexadecimal number into binary.
2. Starting from right make groups of 3-bits and designate each group an octal digit.

Example. Convert (1A3),;, into octal.
Solution.
1. Converting hex to binary

(1 A 34 @i_,TT

2. Grouping of 3-bits

-

(1a3),, = 900 110 100 01

v 3 +
0 6 4 3
(0643)g= (643)g

so (1A3)4

Octal to Hex Conversion

1. Convert the given octal number into binary.

2. Starting from right make groups of 4-bits and designate each group as a Hexadecimaldigit.

Example. Convert (76)g into hexadecimal.
Solution. 1. Converting octal to binary

(76)g = 111,110,

2. Grouping of 4-bits
(76)g = 11 1110 — 0011 1110

(76)g = (3E) 4

16 |Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

BINARY ARITHMETIC:

Binary arithmetic is essential in all digital computers and in many other types of digital
systems. To understand digital systems, we must know the basics of binary addition,
subtraction,multiplication, and division.

Binary Addition:

The four basic rules for adding binary digits (bits) are as follows:

Augend | Addend | Carry | Sum | Result
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 0 10

The procedure of adding 2 binary numbers is same as that of 2 decimal numbers. Addition is
carried out from LSB and it proceeds to higher significant bits, adding the carry resulting from the
addition of two previous bits each time.

= 0+0=0 Sum of 0 with a carry of 0
= 0+1=1 Sum of 1 with a carry of 0
= 1+0=1 Sum of 1 with a carry of 0
= 1+1=10 Sum of 0 with a carry of 1

Note: Remember, in binary 1+1 = 10, not 2.

The first three rules result in a single bit and in the fourth rule the addition of twol’s yields a
binary two (10). When binary numbers are added, the last condition createl0 a sum of 0 in a given
column and a carry of 1 over to the next column to the left, as illustrated in the following addition of
11+ 1:

Carry Carry
1 1 <=
o | : ‘
mte AAS) O

= In the right column, 1 + 1 = 0 with a carry of 1 to the next column to the left. In the middle
column, 1 + 1 + 0 =0 with a carry of 1 to the next column to the left. In the left column,
1+0+0=1

= When there is a carry of 1, we have a situation in which three bits are being added (a bitin each
of the two numbers and a carry bit). This situation is explained as follows:

Carry bits —

1 +0+0=01 Sum of 1 with a carry of 0
1 +1+0=10 Sum of () with a carry of 1
1 +0+1=10 Sum of 0 with a carry of 1
1 +1+1=11I Sum of 1 with a carry of 1

17 |Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

EXAMPLE
Add the following binary numbers:

(@ 11+11 (b) 100+ 10

Solution

() 111 + 11

The cquivalent decimal addition is also shown for reference.

(d) 110 + 100

(@) 11 3 () 100 4 () 111 7 (d 110
+11 43 +10 42 +11 43 +100
110 6 110 6 1010 10 1010
Example Add the binary numbers:
(o) I0IC and II0I (B) OITQ and 111X
Solution.
(el 1 0 1 o
{+) 1 1 (4] I
1 o 1 1 b
T.
Carry
(€D [§] C1) - Carry
Lo} 1 1 0]
C+) 1 1 1 1
1 L) 1 o 1
T.
Carry
Binary Subtraction:
The four basic rules for subtracting bits are as follows:
Minuend | Subtrahend | Borrow | Difference | Result
0 0 0 0 00
0 1 1 1 11
1 0 1 0 10
1 1 0 0 00

0

a4

10

Binary subtraction is also carried out in a similar method to decimal subtraction. The
subtraction is carried out from LSB and proceeds to the higher significant bits. When borrow is 1, as
in the second row, this is to be subtracted from the next higher binary bit as is performed in decimal

subtraction.

Actually, the subtraction between two numbers can be performed in three ways,

1. The Direct method,
2. Ther’s complement method, and
3. The (r-1)’s complement method.

0-0 =0
1-1 =
1-0 =1
10-1 =1 0 - 1 with a borrow of 1

Note:Remember in binary 10 - 1 =1, not 9.

When subtracting numbers, we sometimes have to borrow from the next column to the left. A borrow
is required in binary only when we try to subtract a 1 from a 0. In this case, when a 1 is borrowed from
the next column to the left, a 10 is created in the column being subtracted, and the last of the four basic

rules just listed must be applied.

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

18| Page

The binary subtraction and equivalent decimal subtractions are as follows:

Subtraction Using the Direct Method

The direct method of subtraction uses the concept of borrow. In this method, we

borrow a 1 from a higher significant position when the minuend digit is smaller than the
corresponding subtrahend digit.

Example Using the direct method to perform the subtraction

1001 - 1000.
Solution:
1001
(=) 1000
0001
Example Using the direct method to perform the subtraction
1000 - 1001,
Solution.
1000

=) 1 001
Eodcarry —4 1 1 1 1 1
End carry haes to be ignored.
Answer: 1111 = (2's complement of 0001).
When the minuend is smaller than the subtrahend the result of subtraction is negative

and in the direct method the result obtained is in 2's complement form. So to get back the
actual result we have to perform the 2's complement again on the result thus obtained.

But to tackle the problem shown in Example 1.29 we have applied a trick. When a

EXAMPLE
Perform the following binary subtractions:
(@ 11—-01 () 11 —10
Solution (a) 11 3 (b) 1 3
=01 =1 =19 =2
10 2 01 1
No borrows were required in this example. The binary number 01 is the same as 1.
EXAMPLE
Subtraet 011 from 101.
Solution 101 5
—011 =8
010 2

Let’s examine exactly what was done to subtract the two binary numbers since a
borrow is required. Begin with the right column.

Left column; Middle column:
When a 1 is borrowed,

Borrow 1 from next column
alisleft,so0—0=0. to the left, making a 10 in
\ this column, then 10 — | = 1.
0

1'o1 Right column:
—011 1-1=0
010—

19| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Binary Multiplication:

The four basic rules for multiplying bits are as follows:

= 0X0=0

= 0X1=0

= 1x0=0

= 1X1=1
Note

= Binary multiplication of two bits is the same as multiplication of the decimal digits 0 and
1.Multiplication is performed with binary numbers in the same manner as with decimal
numbers.

= |tinvolves forming partial products, shifting each successive partial product left one place, and
then adding all the partial products. The equivalent decimal multiplications are shown below
for reference.

EXAMPLE
Perform the following binary multiplications:
@ llxIl (b) 101 x 111
Solution (a) 11 3 (b) 111 7
X 11 A3 x10l XS
Partial 11 9 Partial 111 35
products ([+11 products 000
1001 +111
100011
Example AMultiply the following binary numbers:
feet 0111 and 1101 and (&) 1.011 and 10.01.
Solution.
(a) 0111 = 1101
0 1 1 1 Multiplicand
»x 1 1 o 1 Multiplier
0 1 1 1
0 0 o] Partial
0 1 1 1 Products
1 1 1
1 0 1 1 o 1 1 Final Product
ib) 1.011 x 10.01
1. i} 1 Multiplicand
x1 0. 0 Multiplier
1 0 1 1
0 0] 0 Partial
0 0 0 0 Products
1 0 1 1
1 1 0 0 o 1 1 Final Product

20| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Binary Division:

Division in binary follows the same procedure as division in decimal. The equivalent decimal
divisions are also given.

Dividend | Divisor Result
0 0 Not Allowed
0 1 0
1 0 Not Allowed
1 1 1

Note: A calculator can be used to perform arithmetic operations with binary numbers as long as the
capacity of the calculator is not exceeded.

EXAMPLE
Perform the following binary divisions:

(@ 110=11 (b) 110+ 10

10 2 11 3
Solution (a) 11)110 3)6 (b) 10)110 2)6
11 6 10 6
[100
10
00

Example 1.31. Divide the following binary numbers:

fa) 11001 and 101 and (b)) 11110 and I001.

Solution.
{a) 11001 + 101
1 0 1
1 0 1 [1 1 0 0 1
1 o 1
0 0 1 0
1 0
0 o
Answer: 101
(b) 11110 + 1001
1 1.
1 0 0 1 11 1 1 1 0
1 0 0 1
0 1 1 0] 0
1 0 0
1 1
Answer: 11
21| Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

1'S AND 2'S COMPLEMENTS OF BINARY NUMBERS:

The I's complement and the 2's complement of a binary number are important because they are
the means for the representation of negative numbers in digital technology. The method of 2's
complementarithmetic is commonly used in computers to handle negative numbers.

Finding the 1's Complement:

The 1's complement of a binary number is found by changing all 1’s to 0’s and all 0’s to 1’s, as shown
below:

10110010 Binary number
Jilillll
01001101 1"s complement

Note: Change each bit in a number to get the I's complement.

The simplest way to obtain the I's complement of a binary number with a digital circuit is to
use parallel inverters (NOT circuits), as shown in Figure 2-2 for an 8-bit binary number.

1 (] | | L] [9]
Oy

Y Y Y'Y

Ll [&

7

(@]) |

Fig: Inverters used to obtain the 1°s cémplement of a binary ﬁumber.
Finding the 2' s Complement:
The 2's complement of a binary number is found by adding 1 to the LSB of the I's complement.
2's complement = (I's complement) + 1

Note: Add 1 to the I' s complement to get the 2's complement.

Find the 2’s complement of 10110010.

Solution 10110010 Binary number
01001101 I's complement
azn B i Add 1

01001110 2's complement

An alternative method of finding the 2's complement of a binary number is as follows:
1. Start at the right with the LSB and write the bits as they are up to and including the first 1.
2. Take the 1's complements of the remaining bits.

Note: Change all bits to the left of the least significant 1 to get 2's complement.

22 |Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

EXAMPLE
Find the 2°s complement of 10111000 using the alternative method.

Solution 10111000 Binary number
1’s complements —> 01001000 2’s complement
of original bits— f 'I

—— These bits stay the same

The 2's complement of a negative binary number can be realized using inverters and anadder,
as shown in Figure below. Figure below gives, how an 8-bit number can be converted toits 2's
complement by first inverting each bit (taking the I's complement) and then adding 1 to the I's
complement with an adder circuit.

Negative number

] [
I’s complement YY) 1 Y

Input bits |
Adder Curl:y =
| (add 1)
Output bits (sum)
[R e
2’s complement 0 1 0 1 0 1 i 0

Fig:Obtaining the 2's complement of a negative binary number.

To convert from an I's or 2's complement back to the true (un-complemented) binary form, use the
same two procedures described previously.

= To go from the I's complement back to true binary, reverse all the bits.
= To go from the 2's complement form back to true binary, take the 1's complement of the 2's
complement number and add 1 to the least significant bit.

23| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

SIGNED NUMBERS:

Digital systems, such as the computer, must be able to handle both positive and negative
numbers. A signed binary number consists of both sign and magnitude information. Thesign indicates
whether a number is positive or negative, and the magnitude is the value of the number.

There are three forms in which signed integer (whole) numbers can be represented in binary:

1. Sign-magnitude,
2. I'scomplement, and
3. 2'complement.

Of thesethe 2's complement is the most important and the sign-magnitude is the least used. Non-

integer and very large or small numbers can be expressed in floating-point format.

To explain the effect of these 3 representations, we consider 4-bit binary representation as in below
table. Carefully observe the differences in three methods.

Decimal Signed 1’s complement 2’s complement
Magnitude

+0 00O0O0 0000 0000
+1 0001 0001 0001
+2 0010 0010 0010
+3 0011 0011 0011
+4 0100 0100 0100
+5 0101 0101 0101
+6 0110 0110 o110
+7 0111 0111 0111
—8 — — 1000
—7 1111 1000 1001
—6 1110 1001 1010
—5 1101 1010 1011
— 1100 1011 1100
—3 1011 1100 1101
—2 1010 1101 1110
—1 1001 1110 1111
—0 1000 1111 —

From the table, it is clear that both signed Magnitude and 1’s complement methodsintroduce
two zeros +0 and — 0 which is awkward. This is not the case with 2’s complement.This is one among
the reasons that why all the modern digital systems use 2’s complementmethod for the purpose of

signed representation. From the above table, it is also clear thatin signed representation 27 positive
numbers and% negative numbers can be representedwith n-bits. Out of 2"combinations of n-bits, first
27 combinations are used to denote thepositive numbers and next 27 combinations represent the
negative numbers.

The Sign Bit:

The left-most bit in a signed binary number is the sign bit, which tells you whether the number
IS positive or negative. A ‘0’ sign bit indicates a positive number, and a ‘1’ sign bit indicates a
negative number.

24 |Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Sign-Magnitude Form:

When a signed binary number is represented in sign-magnitude, the left-most bit is the sign bit
and the remaining bits are the magnitude bits. The magnitude bits are in true (un-complemented)
binary for both positive and negative numbers. For example, the decimal number + 25 is expressed as
an 8-bit signed binary number using the sign-magnitude form as

0001 1001
Sign bit T T Magnitude bits
The decimal number - 25 is expressed as1001100I

= Notice that the only difference between + 25 and - 25 is the sign bit because the magnitude bits
are in true binary for both positive and negative numbers.

= In the sign-magnitude form, a negative number has the same magnitude bits as the
corresponding positive number but the sign bit is a 1 rather than a zero.

Example: Find the decimal equivalent of the following binary numbers assuming the binary numbers
have been represented in sign- magnitude form.

a. 0101100 b.101000 c.1111 d.011011
Solution.

(a) Sign bit is 0, which indicates the number is positive.
Magnitude 101100 = (44),,
Therefore (0101100), = (+44), .

) Sign bit is 1, which indicates the number is negative.
Magnitude 01000 = (8),,
Therefore (101000), = (-8),,.

(c) Sign bit is 1, which indicates the number ia negative.
Magnitude 111 = (7),,
Therefore (1111), = (=T},

{d} Sign bit is 0, which indicates the number is positive.
Magnitude 11011 = (27),,
Therefore (011011), = (+27),,.

I’s Complement Form:Positive numbers in 1's complement form are represented the same way as the
positive signmagnitude numbers. Negative numbers, however, are the I's complements of the
corresponding positive numbers.

Example: using eight bits, the decimal number -25 is expressed as the 1’s complement of
+25(00011001) as11100110

In the I's complement form, a negative number is the I's complement of the corresponding
positive number.

25| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

2’s Complement Form:

Positive numbers in 2's complement form are represented the same way as in the sign
magnitude and I's complement forms. Negative numbers are the 2's complements of the corresponding
positive numbers.

Example: The eight bits 2’s complement form of the decimal number -25 is equivalent to 2's
complement of +25 (00011001) i.e.11100111

In the 2's complement form, a negative number is the 2's complement of the corresponding
positive number.

Note:

Computers use the 2's complement for negative integer numbers in all arithmetic operations.
The reason is that subtraction of a number is the same as adding the 2' complement of the number.
Computers form the 2's complement by inverting the bits and adding 1, using special instructions that
produce the same result as the adder.

EXAMPLE
Express the decimal number —39 as an 8-bit number in the sign-magnitude. 1’s
complement, and 2’s complement forms.

Solution First, write the 8-bit number for + 39,
00100111

In the sign-magnitude form. —39 is produced by changing the sign bit to a 1 and
lesving the magnitude bits as they are. The number is

10100111

In the s complement form, —39 1s produced by taking the 1’s complement of +39
(0010011 1).

11011000

In the 2°s complement form, —39 is produced by taking the 2’s complement of +39
(QO1001 1 1) as follows:

11011000 1's complement
+ 1
11011001 2's complement

The Decimal Value of Signed Numbers:
Sign-magnitude:

Decimal values of positive and negative numbers in the sign-magnitude form are determined
by summing the weights in all the magnitude bit positions where there are 1’s and ignoring those
positions where there are zeros. The sign is determined by examination of the sign bit (i.e., Left Most
bit).

EXAMPLE
Determine the decimal value of this signed binary number cxpressed in sign-
magnitude: 10010101.

Solution The seven magnitude bits and their powers-of-two weights are as follows:
28« 93 g% 93 g gl 30
¢ O 1 0 i 0] 1
Summing the weights where there are 1s,

16 +4+1=21

The sign bit is 1; therefore, the decimal number is —21.

26| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

1’s Complement:

= Decimal values of positive numbers in the I's complement form are determined by summing
the weights in all bit positions where there are 1’s and ignoring those positions where there are
0’s.

= Decimal values of negative numbers are determined by assigning a negative value to the
weight of the sign bit, summing all the weights where there are 1’s, and adding 1 to the result.

EXAMPLE
Determine the decimal values of the signed binary numbers expressed in 1’s
complement:

(a) 00010111 (b) 11101000
Solution (a) The bits and their powers-of-two weights for the positive number arc as follows:
97 26 95 94 93 22 ol 90
6 © 0 1 0 1 ¢ I
Summing the weights where there arc Is,
16+412+1=+23

(b) The bits and their powers-of-two weights for the negative number are as follows.
Notice that the negative sign bit has a weight of —27 or —128.

=gt 9% 2> o 2 g 9t ot
{ I 1 0 I 0 0 o
Summing the weights wherc there arc 1s,
—128 +64+32+8=—-24
Adding 1 to the result, the final decimal number is

—24+1=-23

2’s Complement:

Decimal values of positive and negative numbers in the 2's complement form are determined
by summing the weights in all bit positions where there are 1’s and ignoring those positions where
there are zeros. The weight of the sign bit in a negative number is given a negative value.

27 |Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

EXAMPLE

Determine the decimal values of the signed binary numbers expressed in 2's Complement:
(a) 01010110
(b) 10101010

Solution (a) The bits and their powers-of-two weights for the positive number are as follows:
27 99 23 23 W 9= b 9
0. 1 0 1 o0 I I @
Summing the weights where there are 1s,

64+ 16+4+2=+86

(b) The bits and their powers-of-two weights for the negative number are as follows.
Notice that the negative sign bit has a weight of —27 = —128.

=21 90 ‘92 9t¥ 23 22 b)0
I ¢ 1 06 1. &6 ¥ 9O

Summing the weights where there are 1s,

—128 +32+8 +2 = —86

From above examples, we can see why the 2's complement form is preferred for
representingsigned integer numbers:

To convert to decimal, it simply requires a summation of weights regardless of whether the number is
positive or negative.

The 1°s complement is not preferred because of the following reasons:
= The I's complement system requires adding 1 to the summation of weights for negative
numbers but not for positive numbers.
= Also, the 1's complement form is generally not used because two representations of zero
(00000000 0r 11111111) are possible.
Range of Signed Integer Numbers That Can Be Represented:
We have used 8-bit numbers because the 8-bit grouping is common in most computers and has been
given the special name byte. With one byte or eight bits, we can represent 256 different numbers. With
two bytes or sixteen bits, you can represent 65,536 different numbers. With four bytes or 32 bits, you
can represent 4.295 x 10° different numbers.
The formula for finding the number of different combinations of n bits is
Total combinations = 2"

For 2's complement signed numbers, the range of values for n-bit numbers is
Range=- (2" to+(2"1-1)

where in each case there is one sign bit and n - 1 magnitude bits.

28| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

For example, with four bits we can represent numbers in 2's complement ranging from
-(2%)=-8t023%-1=+7. Similarly, with eight bits you can go from - 128 to + 127, with sixteen bits
you can go from - 32,768 to + 32,767, and so on.

Signed integer representation. Range Of signed integer
representations.

Sign magnitude 2" - to+ (2" -1)

1’s complement -2 -Dto+ (2" -1)

2’s complement (2")Yto+ (2" -1)

ARITHMETIC OPERATIONS WITH SIGNED NUMBERS

Subtraction using 1’s complement:

Binary subtraction can be performed by adding the 1’s complement of the subtrahend to the
minuend.

If a carry is generated, then the result is positive and in true form. Add carry to the LSB
position to get the final result called end around - carry.

If the subtrahend is larger than the minuend, then no carry is generated. The answer obtained is
in 1’s complement and is negative. To get a true answer take the 1’s complement of the result
and put a negative sign in front.

Example:

Subtract (1100), from (1001); using the 1’s complement method. Also subtract using the direct

method and compare.

Solution.
Direct Subtraction 1's complement method
1001 1001 (+)
-1100 1's complement —» 0011
Carry —» 11101 1100
2's complement o011 I's complement —» 0011
True result 0011 True result -0011

In the direct method, whenever a larger number is subtracted from a smaller number, the result
obtained is in 2’s complement form and opposite in sign. To get the true result we have to
discard the carry and make the 2’s complement of the result obtained and put a negative sign
before the result.

In I’s complement subtraction, no carry is obtained and the result obtained is in 1’s
complement form. To get the true result we have to make the 1’s complement of the result
obtained and put negative sign before the result.

29| Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Example: Subtract (1010), from (1001), using the 1’s complement method. Also subtract using
the direct method and compare.

Solution.
Direct Subtraction 1's complement method
1001 1001 (+)
-1010 2% complement — 0110
Carry —» 11111 1111
2's complement 0001 2s complement — 0001
True result -0001 True result -0001

Subtraction using 2’s complement:

In the last section, we learned how signed numbers are represented in three different forms. In this
section, we will learn how signed numbers are added, subtracted, multiplied, and divided. Because the
2's complement form for representing signednumbers is the most widely used in computers and
microprocessor-based systems.

Addition:

The two numbers in an addition are the addend and the augend. The result is the sum.
There are four cases that can occur when two signed binary numbers are added.

Both numbers positive ,

Positive number with magnitude larger than negative number ,

Negative number with magnitude larger than positive number &
Both numbers negative.

Awnh e

Let's take one case at a time using 8-bit signed numbers as examples. The equivalent decimal
numbers are shown below for reference.

Both numbers positive:

00000111 i
=+ 00000100 + 4
00001011 11

Note: Addition of two positive numbers yields a positive number.
The sum is positive and is therefore in true (un-complemented) binary.

Positive number with magnitude larger than negative number:

00001111 15
+ 11111010 + —6
Discard carry > 1 00001001 o

The final carry bit is discarded. The sum is positive and therefore in true (un-complemented)
binary.

Note: Addition of a positive number and a smaller negative number yields a positive number.
30| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Negative number with magnitude larger than positive number:

00010000 16
+ 11101000 + —24
11111000 —8

The sum is negative and therefore in 2’s complements form.

Both numbers negative:

11111011 —5
+ 11110111 + —9
Discard carry —— 1 11110010 —14

The final carry bit is discarded. The sum is negative and therefore in 2’s complements form. In a
computer, the negative numbers are stored in 2's complement form.

The addition process is very simple: Add the two numbers and discard any final carry bit.

Note: Addition of a positive number and a larger negative number or two negative numbers yields a
negative number in 2's complement.

Subtraction using 2’s complement:

* Binary subtraction can be performed by adding the 2’s complement of the subtrahend to the
minuend.

= |facarry is generated, discard the carry.

= |f the subtrahend is larger than the minuend, then no carry is generated. The answer obtained is
in 2’s complement and is negative.

= To get a true answer take the 2’s complement of the result and put a negative sign in front.

Example: Subtract (0111), from (1101), using the 2’s complement method. Also subtract using
the direct method and compare.

Solution.
Diirect Subtraction 1's complement method
1101 1101 [+
- 0111 2's complement —» 1001
0110 Carry — 10110
Discard Carry 011 0 (Result)

Note: In 2’s complement subtraction, no carry is obtained and the result obtained is in 2’s
complement form. To get the true result we have to make the 2’s complement of the result
obtained and put negative sign before the result.

Advantage: The End-Around carry operation present in the 1’s complement method is not present in
2’s complement.

31| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Comparison between 1’s and 2’s complements
A comparison between 1’s and 2’s complement reveals the advantages and disadvantages of each.

1. The 1’s complement has the advantage of being easier to implement by digitals components
(Viz. inverter) since only thing to be done is to change the 1’s to 0’s and vice versa. To
implement 2’s complement we have two ways:

» By finding out the 1’s complement of the number and then adding 1 to the LSB of the
1’s complement, and

= By leaving all leading Os in the LSB positions and the first 1 unchanged, and only then
changing all 1s to Os and vice versa.

2. During subtraction of two numbers by a complement method, the 2’s complement is
advantageous since only one arithmetic addition is required. The 1°s complement requires two
arithmetic additions when an end —around carry occurs.

3. The 1’s complement has an additional disadvantage of having two arithmetic zeros: one with
all Os and one with all 1s. The 2’s complement has only one arithmetic zero. The fact is
explained as follows:

We consider the subtraction of twe egual binary numbers 1010 — 1010,
Using 1's complement:
1010
+ 0101 (1's complement of 1010)
+ 1111 {(negative zero)
We complement again to obtain (— 0000) (positive zero).
Using 2's complement:
1010
+ 0110 {2's complement of 1010}
+ 0000
In this 2's complement method ne guestion of negative or positive zero arises.

Overflow Condition:
= When two numbers are added and the number of bits required to represent the sum exceeds the
number of bits in the two numbers, an overflow results as indicated by an incorrect sign bit.
= An overflow can occur only when both numbers are positive or both numbers are negative. The
following 8-bit example will illustrate this condition.

01111101 125
+ 00111010 + 58
10110111 183

Sign incorrect
Magnitudc incorrect -

In this example the sum of 183 requires eight magnitude bits. Since there are seven magnitude
bits in the numbers (one bit is the sign), there is a carry into the sign bit which produces the overflow
indication.

Numbers are Added Two at a Time:

Now let's look at the addition of a string of numbers, added two at a time. This can be
accomplished by adding the first two numbers, then adding the third number to the sum of the first
two, then adding the fourth number to this result, and so on. This is how computers add strings of
numbers. The addition of numbers taken two at a time is as follows:

32| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

EXAMPLE
Add the signed numbers: 01000100, 00011011, 00001110, and 00010010.

Solution The equivalent decimal additions are given for reference.

68 01000100
+ 27 + 00011011 Add 1st two numbers
95 01011111 Ist sum
+ 14 4 00001110 Add 3rd number
109 01101101 2nd sum
+ 18 + 00010010 Add 4th number
127 01111111 Final sum

Subtraction:

Subtraction is a special case of addition. For example, subtracting +6 (the subtrahend) from +9
(the minuend) is equivalent to adding -6 to +9. Basically, the subtraction operation changes the sign of
the subtrahend and adds it to the minuend. The result of a subtraction is called the difference.
The sign of a positive or negative binary number is changed by taking its 2's complement.

For example, when you take the 2's complement of the positive number 00000100 (+4), we get
11111100, which is -4 as the following sum-of-weights evaluation shows:

-128+64+32+16+8+4=-4

As another example, when you take the 2's complement of the negative number 11101101 (-
19), we get 00010011, which are + 19 as the following sum-of-weights evaluation shows:

16+2+1=19

Since subtraction is simply an addition with the sign of the subtrahend changed, the process is
stated as follows:

To subtract two signed numbers, take the 2's complement of the subtrahend and add. Discard any final
carry bit.

33| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

EXAMPLE:

Perform each of the following subtractions of the signed numbers:
(a) 00001000 — COOCOOLI (b) 60001100 — 11110111

(cy 11100111 — 00010011 (d) 10001000 - 11100010

Solution Like in other examples, the equivalent decimal subtractions are given for reference.
(a) Inthiscase, 8 —3 =8 + (—3) = 5.

00001000 Minuend (+8)
+ 11111101 2’s complement of subwrahend (—3)
Discard carry—— 1 00000101 Difference (+5)
{b) In this case, 12 — (—9) =12 + 9 = 21.

00001100 Minuend (+12)
+ 00001001 2’s complement of subtrahend (+9)
60010101 Difference (+21)

(¢) In this case, —25 — (+19) = —25 + (—19) — —44.

11100111 Minuend (—25)
+ 11101101 2’s complement of subtrahend (- 19)
Discard carry—— 1 11010100 Difference { —44)
(d) In this case, —120 — (—30) = —120 + 30 = —90.

10001000 Minuend {(—120)
+ 00011110 2’s complement of subtrahend (+30)
10100110 Dilference (—90)

Octal Arithmetic: 7’s and 8’s Complement Arithmetic

Subtraction using 7’s Complement:

The 7°s complement of an octal number can be found by subtracting each digit in the number from
7. The 8’s complement can be obtained by subtracting the LSB from 8 & rest of each digit in the
number from 7. The 7’s and 8’s complement of the octal digits 0 to 7 is shown in table below.

* The method of subtraction using 7°s complement method is same as 1’s complement method in
binary system. Here also the carry obtained is added to the result to get the true result.

= And as in the previous case, if the minuend is larger than subtrahend, no carry is obtained and
the result is obtained in 7’s complement form. To get the true result we have to perform 7’s
complement over the result obtained and put negative sign in front.

= Similarly, the method of subtraction using 8’s complement method is same as 2’s complement
method in binary system. Here also the carry obtained is discarded to get the true result.

= And as in the previous case, if the minuend is larger than subtrahend, no carry is obtained and
the result is obtained in 8’s complement form. To get the true result we have to perform 8’s
complement over the result obtained and put negative sign in front.

Octal Digit | 7°’s Complement | 8’s Complement
0

O INWIA~OIO|N
R INWA~lOTOO|N|00

N[O BAWIN(F-

34| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Subtraction Using 7's Complement

Example Subtract (372}, from (453}, using the 7s complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction T's complement method
453 4563 (+}
-3 72 Ts complement —» 405
61 1060
Add Carry — 1
(6 1), (Result)
Example Subtract (453), from (372), using the 7's complement method. Also
subtract using the direet method and compare.
Solution.
Direct Subtraction T's complement method
372 372 4]
453 T's complement —» 324
1717 716
Discard Carry T17 T's complement —» 61
8’s complement : (61)
True result : (- 61)s True result : (- 61)s

Note: In the direct method, whenever a larger number is subtracted from a smaller number, the result
obtained is in 8’s complement form and opposite in sign. To get the true result we have to discard the
carry and make the 8’s complement of the result obtained and put a negative sign in front.

Subtraction using 8’s Complement:

Example Subtract (256}, from (461), using the 8% complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction 8's complement method
461 461 (+)
- 2586 &8s complement —» 522
203 Carry —» 1203
Discard Carry (2 0 3), (Result)
Example Subtract (461), from (256), using the 8% complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction 8's complement method
256 256 (+)
- 461 8's complement —» 317
15765 576
Discard Carry 575 8's complement —» 203
8's complement 2 03
True result (-203), True result (—203),

Note: In the direct method, whenever a larger number is subtracted from a smaller number, the result
obtained is in 8’s complement form and opposite in sign. To get the true result we have to discard the
carry and make the 8’s complement of the result obtained and put a negative sign in front.

35| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Hexadecimal Addition:

Addition can be done directly with hexadecimal numbers by remembering that the
hexadecimal digits O through 9 are equivalent to decimal digits O through 9 and that hexadecimal
digits A through F are equivalent to decimal numbers 10 through 15. Addition of twohexadecimal
numbers is as follows:

EXAMPLE .
Add the lollowing hexadecimal numbers:

(a) 23, + 16, (b) 58, + 22, (¢) 2B + 84, (d) DF,, + AC,,

Solution (a) 23 tight column: 33+ 6;6 =310+ 616= 9= %6

+16,, left column: 2,4+ Lig =210+ Lio = 310 = 346
396
(by 58, right column: 86 + 2, = 8¢ + 25 = 10,y = A
+ 22|ﬁ lefl column: Slb ar 2I6 B 5|0 a 210 = 710 = 716
TA
(c) 2B right column: By + 4 =115+ 45 =15,=F
+ 846 left column: 2,0 + 8, = 2,5 + 8;p = 10,, = A}
AF,
(dy DF, rightcolumn: Fj,+ C, =15+ 12, =27,
+ AC,, 270 — 16, =11, = B g with a 1 carry

18B,, leftcolumn: D+ A+ 11 = 13,0+ 10,6+ 1,0 = 244
24,0 — 16, = 8, = 8, with a 1 carry

Hexadecimal Subtraction:

Weknow that, the 2's complement allows us to subtract by adding binary numbers. Since a
hexadecimal number can be used to represent a binary number, it can also be used to represent the 2's
complement of a binary number.

There are three ways to get the 2's complement of a hexadecimal number. Method 1 is the most
common and easiest to use. Methods 2 and 3 are alternate methods.

Method 1: Convert the hexadecimal number to binary. Take the 2's complement of the binary
number. Convert the result to hexadecimal. This is shown in Figure below.

Hexadecimal R 2’s .cnm.plcmenl 2 S complt:r_nent
in binary in hexadecimat
Example:
2A 00101010 11010110 D6

Fig: Obtaining the 2's complement of a hexadecimal number, Method 1.

36|Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Method 2: Subtract the hexadecimal number from the maximum hexadecimal number and add 1.

This is shown in Figure below.
- Subtract from I,S C()mplel_‘ncnt 2’s complement
Hexadecimal i in hexadecimal in l:cngczilnal
plus 1
Example:
2A FF —2A DS +1 D6
Fig:Obtaining the 2's complement of a hexadecimal number, Method 2.

Method 3: Write the sequence of single hexadecimal digits. Write the sequence in reverse below
the forward sequence. The I's complement of each hex digit is the digit directly below
it. Add 1 tothe resulting number to get the 2's complement. This is shown in Figure.

! 0123456789ABCDEEF Il conplenient 2’s complemen
Ao] FEDCBAO876543210 i hcr’)‘l":gcf‘“‘a‘ e
Example:
01/2/]34567 89 ABCDEF
Zo FEECBA987643210 Basl o
Fig:Obtaining the 2's complement of a hexadecimal number, Method 3.
EXAMPLE

Solution

Subtract the following hexadecimal numbers:

(a) 84,5 — 2A4
(a) 2A,c = 00101010

2’s complement of 2A,, = 11010110 = D6,

84,¢
+ D6,
f5A

The difference is 5A .

(b) 0B,z = 00001011
2’s complement of OB, = 11

The difference is B8, ..

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

(b) C3i6 — 0By

Add
Drop carry, as in 2’s complement addition

110101 = IS,

C3y6
+ F54¢ Add
B8, Drop carry

(using Method 1)

(using Method 1)

37| Page

15°s and 16’s complement Arithmetic:

The 15’s complement of a hexadecimal number can be found by subtracting each digit in
the number from 15. The 16’s complement can be obtained by subtracting the LSB from 16 and
the rest of each digit in the number from 15.

Subtraction using 15’s complement:

Example Subtract (2B1) from (3A2}, using the 155 complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction 15 complement method
3A2 3A2 (+)

- 2B1 15's complement —» D4 E

F1 10F0

Add Carry — 1

(F 1}, (Result)

Example Subtract (3A2),, from (2B1)},, using the 15s complement method. Also
subtract using the direct method and compare.

Solution.

Direct Subtraction 15's complement method

2B 1 Z2B1 (+)
— 3A2 15's complement —# C 5 D
1FOF FOE

Discard Carry FOF 15's complement — F 1
16 complement F 1
True result (-F1),, True result —=F1),

In the direct method, whenever a larger number is subtracted from a smaller number,
the result obtained is in 16's complement form and opposite in sign. To get the true result
we have to discard the carry and make the 16’s complement of the result obtained and put
a negative sign before the result.

Subtraction using 16’s complement:

Example Subtract (1FA),, from (2DC),, using the 18% complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction 16’3 complement method
2DC 2DC {+)
- 1FA 16's complement —» E 06
E 2 Carry 10E 2
Discard Carry {E 2}, (Result)
Example Subtract (2DC),, from (1FA),, using the 16% complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction 16's complement method
lFA 1FA (+)
-2DC 16's complement —* D24
101E F1E
Discard carry 1E 16's complement —#
16's complement E 2
True result (-E2),, True result (-E2),,
38| Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Types of binary codes:

Binary codes are codes which are represented in binary system with modification from the original

ones. The classification of binary codes is as follows:

Codes

|
l l l '

1 l

Weighted Non-weighted Reflective Sequential Alphanumeric Error detecting
codes codes codes codes codes and correcting
codes
,L l * Excess - 3 - 2421 + 8421 + ASCII « Parity
; + Gra « 5211 » Excess - 3 * EBCDIC * Hamming
Binary BCD . Fivey- bit « Excess - 3 * Hollerith
BCD codes
8421
. 2421
- 3321
+ 4221
+ 5211
+ 5311
* 5421
?3;11 Fig. Classification of codes
+7421
<8421
S.No | Particulars | Weighted codes Non — weighted codes
. In this code, each bit position is assigned | In this code, no specific weights
1. Weight o : . . "
a specific weight. are assigned to bit positions.
Each bit position represents a fixed Each position W'.thm the b”ﬁafy
2. Value value number is not assigned any fixed
' value.
4 — Bit BCD code, 4221, 5211, 8421,
3. Examples 6421, 84-2-1. XS — 3 code and Gray code.
. These codes are used in:
These codes are used in: L .
. i . . .| (@) To perform certain arithmetic
(a) Data manipulation during arithmetic . . .
. operations (i.e., used in K — Map
operations. LA
. simplification).
4 Applications (b) For input/output operations in digital
0) For Inp put op g (b) Shift position encoders
circuits.
(c) To represent the decimal digits in | (¢) Used for error detecting
calculators, voltmeters etc. purpose.

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

39| Page

Weighted binary codes are those which obey the positional weighting principles, each position
of the number represents a specific weight. The binary counting sequence is an example.

Decimal | 8421 | 4221 | 5211 | 7421

0 0000 | 0000 | 0000 | 0000
0001 | 0001 | OOO1 | 0111
0010 | 0010 | OO11 | 0110
0011 | 0011 | 0110 | 0101
0100 | 1000 | 0111 | 0100
0101 | 0111 | 1000 | 1010
0110 | 1100 | 1001 | 1001
0111 | 1101 | 1100 | 1000
1000 | 1110 | 1110 | 1111
1001 | 1111 | 1111 | 1110

OO (N[OOI (W|IN|F-

8421 code/BCD code:

The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is
possible to assign weights to the binary bits according to their positions. The weights in the BCD code
are 8,4,2,1.

Example: The bit assignment 1001 can be seen by its weights to represent the decimal 9 because

1x8+0x4+0x2+1x1 = 9.

Weights 8 4 2 1 Result
Binary No. 1 0 0 1

Equivalent 1X8 + 0 X4 + 0 X2 + 1X1 9
Decimal No.

2421 code:

This is a weighted code; its weights are 2, 4, 2 and 1. A decimal number is represented in 4-bit
form and the total four bits weightis 2 + 4 + 2 + 1 = 9. Hence the 2421 code represents the decimal
numbers from 0 to 9.

5211 code:

This is a weighted code; its weights are 5, 2, 1 and 1. A decimal number is represented in 4-bit
form and the total four bits weightis 5+ 2 + 1 + 1 = 9. Hence the 5211 code represents the decimal
numbers from 0 to 9.

Reflective code / Self — Complementing codes:

A code is said to be reflective code, if the code word of the 9’s complement of a number N,
i.e., 9-N can be obtained from the code word of N by interchanging all the 1’s as 0’s and 0’s as 1°’s.
i.e., the code word for 9 is the complement for code 0, 8 for 1, 7 for 2, 6 for 3 and 5 for 4 and so on.
Codes 4211, 2421, 5211, 642-3 and excess-3 are reflective, whereas the 8421 code is not.

Advantage: Self — complementing codes have an advantage that their logical complement is the same
as the arithmetic complement.

40| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Sequential code: In sequential codes,each succeeding code is one binary number greater than its
preceding code, i.e., each succeeding code differs by one.

Examples: 8421 and Excess-3 codes, whereas the 2421 and 5211 codes are not sequential codes.
Non-Weighted code:

Non weighted codes are codes that are not positionally weighted. That is, each position within the
binary number is not assigned a fixed value.

Excess-3 code:

Excess-3 is a non weighted code used to express decimal numbers. The code derives its name from the
fact that each binary code is the corresponding 8421 code plus 0011(3).

Example: 1000 of 8421 = 1011 in Excess-3.

Decimal digit Xs-3 code
0 0011
1 0100
2 0101
3 0110
4 0111
5 1000
6 1001
7 1010
8 1011
9 1100
10 01000011
11 01000100
12 01000101
13 01000110
14 01000111
15 01001000

Example: Find the XS-3 code and its 9’s complement for the following decimal no.s.

(@). (592)10

Sol) (592)10
BCD of 592: 0101 1001 0010
0011 0011 0011

XS-3 (592) 1000 1100 0101

9’s complement of 592: 0111 0011 1010 (XS-3 code is self-complementary codes. i.e.,
Reflective codes).

41| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

(b). (403)0:

BCD of 403: 0100 0000 0011
0011 0011 0011

XS-3 (403) 0111 0011 0110

9’s complement of 403: 1000 1100 1001 (XS-3 code is self-complementary codes. i.e.,
Reflective codes)

Note: In the above two examples, the 9’s complement of a XS — 3 code / number is obtained directly
by interchanging 1’s to 0’s and vice — versa.

XS-3 Addition:

» Add two XS-3 numbers.
= |fcarry = 1,add0011(3) to the sum of 2 digits (i.e., append or add 3 zeros to
the left of carry and add 0011 (3)). And if any carry occurs by adding 0011 (3),
add it to the next higher order bit position.

= 0 subtract 0011(3).
Example:
1. 8+6

8 1011 (XS-3for 8)

+ 6 1001 (XS-3 for 6)

14 0001 0100
0011 0011

0100 0111 (XS-3 for 14)
1) @

1 0100 (XS-3forl)
+ 2 0101 (XS-3for 2)

3 1001 (No carry, so subtract 3)
0011

0110 (XS-3for3)
©)

42 | Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

l & dd 23 & 4& using XS-2 naefrod.

{
Aty L — 23 b1y A5 t
D xS-23 : O)lo | (o | O
AY o XxB3=3 ¢ o1 | Lo |
{ Lt i©] 1) o1 4
)
2 /
(3 -oco0ll 4 0011
= =
F s X$-3 Mo, 101p | 220
p =
2 - Add L2 F € 248 wsq*na XS —3 wehad .
A'W'IS'.'"
' 1! |
>3 in asS-2 © | oo olol |lolo
248 in X$§ -3 " o1l o | ottt let |
e e——— T N
(> F o4 1 T | [giotHolol
. -8 - oo l1 —o0ll Lopl}
3% ° == B
¥ X4 3. MNO: ol lo Ilojo (poo
3 o -3
3 aAdd s § 264 ubing Xxs -3 mebiad -
g -
ﬁ . [r ! Pt
e @ (o x$-3 olti \tooo |toll
264 n xS-2 oloy| |loot [OLL]
{ Faa¥] 1
(_
458 louallﬂommﬂaégo
T * ,
X$ -3 MO tolto ojol ol oy
=+ 2 2 . -
Nofe * e
ole h 4 additia, ofF XS-3 i beu .
¢! EF_

% gemmoled | hou add ooli(3) k

Be vesdE o 4 L Swm £ add he vy #
nem bt higther order ok Her -

o L, 31?_ Coovy [5 net Gagnated Subbteat — ©0l1Cy

43| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

~ A dd g6 . . _
g s " & Fesg L«S—,nlj XS -3 nphied .

T t t ! t ot

XS — 3 No @ §ésgp i o 1 l oo\ el]

XS -3 Ne @ FS6 lo Lo looo Jteol

‘gé)q» © oo | o||or_r';ooloq'joooo
Fs ¢ i @ 1 g0 1) yORLY L8811
[b}b | (S ! ;
St e XS —2 ReZult - © o0 todlt birot ool

(¢ 2. =

Aotes lile C\ddfﬂ(j XS-2 nwnbers, ' tha (ef

Ml L — B E Sum genevates Coory |, hen
& Pprems 2 2emés Hv lefb of Camry € add

oo (2) 4o ta Ewwm o = -k bik Surm.

XS-3 Subtraction

= Complement the subtrahend
= Add the complemented subtrahend to minuend
= |fcarry= 1, Result is positive. Add 0011(3) and end around carry
= 0, Result is negative. Subtract 0011(3) and the result is in excess — 3 negative
number and to get its true form complement the result and put negative in front.

Example:
1. 8-5
XS-3 for5 : 1000
Complement for 5in XS-3 :0111

XS -3 for8 : 1011
Complement of subtrahend : 0111
10010
+ 0011
0101
1

0110 (XS-3for 3)

Note: In excess — 3, 9’s complement and complement of any number is same. So this excess — 3
subtraction method is also known as excess — 3 subtraction using 9°s complement.

44 | Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

XS-3 for 8 1011
Complement for 8 in XS-3 :0100
XS -3forb ; 1000
Complement of subtrahend : 0100
1100
- 0011

1001 (XS-3for-3)
sub {ﬁ:a e an L~
B Su b brat 28 o 4 uAa"mé xXS—2 oehed

D’fit:_ﬂaho_d
A’ 7

- 28

e

| &
X$-= 2 ND: 46 - o I (0o | (Minmend)

¥$S-2 ANo! 2§ =+ _olol 10101 tsubbehand)

S%—ef 2 o d b Com[;Iemee\t of Subbanend =
(q's comd?lem-e,uﬂ’)
e & 1 ey

4's com penert™ : 10 LD olon =
CF Sw!,\‘fow,‘
%t/fzf Add e Cﬂ)mﬁl?ﬁen:wﬁ:;‘ Subffau‘u;c) 23

WT“MMJ; < ;‘ﬁ?]kno qdcl,:{-{;y; yules of X533

Oncept, F Co®vw g anu’ﬂd-e,a! by Qd‘i‘"ﬁ ekt
AL A b Ewm, —freny add hn tavry Ho B ISE
POJ% Han o | -e end aouwnd Canwy.

{]

. o L t ool — Minuend
[oo 2 | 00 —)COmpimehth
I o ve | t4ob
+ 0D -~ o0 [
(o5
I o1 0O
I o
ConTi,
XS -3 Re sl ° ol o o o |
+ C 1 2)

45| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

2. Suéﬁo.tﬂ— L b ooy 2w c,ur;na X8-2 W‘\Qﬁ?jcé'

Pans 2 DI Ye e b woelhicd -
Py
:__C_}?)
X$. 2 No 2 % : o) o | o ©0 CMinikend)
XS -3 "o 5L i o (o1 lo oy Csugfrc;\am[j
S 2 Bnd e com plemect of Cuttrahond
L,

C%rf‘ C o GDJW{{A_@‘) .

Ci-e g% -
" Plesy e od— o
_—— Sul berlon <
N -
Step 2 5 andd —Toe c.empte_mer)l-tg Seebbroddzi d
Ax o xS -3,

Lo-—nrfﬂf"?&u’_

b foim T Ve SHud b e e
Tw%’br}l’” -

ofF >e Sl =3 ?U‘l" o e S’a}’ave o 2

C i & 1 i ot C@) __>.)(S-—-J3 e — =g

T obieyn e —Poym/ obltedn HaAx mmr[emeu()’d”—
Ye sl b &% pub a TV Agn infant

|- € ol o | o\o O

= BCD and 2421 are weighted codes.

= XS-3is an un-weighted code.

= 2421 and XS-3 are self complementary codes. i.e., Reflective codes.

= Such codes have the property that 9’s complement of a decimal number is obtained directly by

changing 1’s to 0’s & 0’s to 1’s in the code.
Example:

(395)10is represented in XS-3 as :0110 1100 1000
The 9’s complement of 395 is 604 (0110 1100 1000), which is obtained by
complementing each bit of the code.

46| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Gray code:

= The Gray code is non-weighted and is not an arithmetic code; that is, there are no specific
weights assigned to the bit positions.

= The important feature of the Gray code is that it exhibits only a single bit change from one
code word to the next in sequence. This property is important in many applications, such as
shaft position encoders, where error susceptibility increases with the number of bit changes
between adjacent numbers in a sequence.

= The gray code is a reflective digital code which has the special property that any two
subsequent numbers codes differ by only one bit. This is also called a unit-distance code. In
digital Gray code has got a special place.

The Gray Code:
Note: The single bit change characteristic of the Gray code minimizes the chance for error.

Table is a listing of the 4-bit Gray code for decimal numbers 0 through 15. Binary numbers are
shown in the table for reference. Like binary numbers, the Gray code can have any number of bits.
Notice the single-bit change between successive Gray code words. For instance, in going from decimal
3 to decimal 4, the Gray code changes from 001 0 to 0110, while the binary code changes from 0011
to 01 00, a change of three bits. The only bit change is in the third bit from the right in the Gray code;
the others remain the same.

DECIMAL BINARY GRAY CODE | DECIMAL BINARY GRAY CODE

O 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
a4 0100 0110 12 1100 1010
5 0101 O111 13 1101 1011
6 0110 0101 14 1110 1001
37 0111 0100 15 FI1L 1000

Binary-to-Gray Code Conversion:

Conversion between binary code and Gray code is sometimes useful. The following rules
explain how to convert from a binary number to a Gray code word:

1. The most significant bit (left-most) in the Gray code is the same as the corresponding MSB in
the binary number.
2. Going from left to right, add each adjacent pair of binary code bits to get the next Gray code
bit. Discard carries.
For example, the conversion of the binary number 10110 to Gray code is as follows:
—>

= > 0 + — i > O Binary

-
- -
O -

1 1
1 1 Gray
The Gray code is 11101.

47 |Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Gray-to-Binary Conversion:

To convert from Gray code to binary, use a similar method; however, there are some
differences. The following rules apply:

1. The most significant bit (left-most) in the binary code is the same as the corresponding bit in
the Gray code.

2. Add each binary code bit generated to the Gray code bit in the next adjacent position. Discard
carries.

For example, the conversion of the Gray code word 11011 to binary is as follows:

1 1 O 1 | G

| A A = i
~ -+ A

1 O ek 1~ v Binary

The binary number is 10010.
Application

The gray code is used in applications where the sequence of binary numbers may produce an
error during the transition from one number to the next. If the binary numbers are used, a change from
0111 to 1000 may produce an intermediate erroneous number 1001 if the right most bit takes no
longer to change in value than the other 3 — Bits.

This above problem can be eliminated by using Gray code.

BINARY CODED DECIMAL (BCD):

Binary coded decimal (BCD) is a way to express each of the decimal digits with a binary code.
There are only ten code groups in the BCD system, so it is very easy to convert between decimal and
BCD. Because we like to read and write in decimal, the BCD code provides an excellent interface to
binary systems. Examples of such interfaces are keypad inputs and digital readouts.

Note: In BCD, 4 bits represent each decimal digit.
The 8421 Code:

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded decimal means
that each decimal digit, 0 through 9, is represented by a binary code of four bits. The designation 8421
indicates the binary weights of the four bits (2° , 2, 2' ,2%). The ease of conversion between 8421
code numbers and the familiar decimal numbers is the main advantage of this code. All that we have
to remember are the ten binary combinations that represent the ten decimal digits as shown in Table.
The 8421 code is the predominant BCD code, and when we refer to BCD, we always mean the 8421
code unless otherwise stated.

DECIMAL DIGIT 0 L 2 3 4 5 6 7 8 9
BCD 0000 0001 0010 0011 0100 0101 O0110 OL11 1000 1001

48 |Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Invalid Codes: With four bits, sixteen numbers (0000 through 1111) can be represented in the 8421
code. Only ten of these are used. The six code combinations that are not used are 1010, 1011, 1100,

1101, 1110, and 1111 are invalid in the 8421 BCD code.

To express any decimal number in BCD, simply replace each decimal digit with the
appropriate 4-bit code, as shown below.
EXAMPLE
Convert each of the following decimal numbers 10 BCD:

(a) 35 (b) 98 () 170 (d) 2469

Solution (a) 3 5 M 9 8

bl 0

00110101 70011000
© 1 7 0 d 2 4 6 9
Ly Ly 1l
000101110000 0010010001101001

It is equally easy to determine a decimal number from a BCD number. Start at the right- most
bit and break the code into groups of four bits. Then write the decimal digit represented by each 4-bit

group.

EXAMPLE
Convert each of the following BCD codes to decimal:
(a) 10000110 (b) 001101010001 (¢) 1001010001110000
Solution (a) 10000110 (b) 001101010001 (c) 1001010001110000
1 !l I 1 A
8 6 3RS 9 4 7 0
BCD Addition:

BCD is a numerical code and can be used in arithmetic operations. Addition is the most
important operation because the other three operations (subtraction, multiplication, and division) can
be accomplished by the use of addition.

Steps for addition of two BCD numbers:
1. Add the two BCD numbers, using the rules for binary addition.
2. If a 4-bit sum is equal to or less than 9, it is a valid BCD number.
3. If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated, it is an invalid

result. Add 6 (0110) to the 4-bit sum in order to skip the six invalid states and return the code
to 8421. If a carry results when 6 is added, simply add the carry to the next 4-bit group.

49 |Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

| EXAMPLE
i Add the following BCD numbers:

(a) 0011 + 0100 (b) 00100011 + 00010101
(c) 10000110 + 00010011 (d) 010001010000 + 010000010111

Solution The decimal number additions are shown for compartson.

(a) 0011 3 (b) 0010 0011 23
+ 0100 _+4 + 0001 0101 1S
0111 7 0011 1000 38
© 1000 0110 86 (d) 0100 0101 0000 450
+ 0001 0011 + 13 + 0100 06001 0111 + 417
1001 1001 99 1000 0110 0111 867

Note that in cach case the sum in any 4-bit column does not exceed 9, and the results
arc valid BCD numbers.

EXAMPLE
Add the following BCD numbers
(a) 1001 + 0100 (b) 1001 + (001
(¢) 00010110 + 00010101 (d) 01100111 + 01010011

Solution The decimal number additions are shown for comparison.

(a) 1001
£ 0100
1101 Invalid BCD number (>>9) 13
__ +010 Add 6
0001 0011 Valid BCD number

{ 2
1 3

(b) 1001
+ 1001 +
[0010 Invalid because of carry 18
#0110 Add 6
0001 1000 Valid BCD number

o

\O \O

|

J;

1 8
{¢) 0001 OIlO 16
+ 0001 0101 +15
¢ 1011 Right group is invalid (>9), 31

left group is valid.
+ 0110 Add 6 to invahid code. Add
carry. 0001, to next group.
0011 0001 Valid BCD number

l l

3 1
(d) 0110 0111 67
+ 0101 0011 + 53
1011 1010 Both groups are invalid (>9) 120

+ 0110 + 0110 Add 6 to both groups
0_09; g{};g m Valid BCD number
) l
2 0

—

50| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

BCD Subtraction:
There are two methods that can be followed for BCD subtraction.
METHOD 1:

In order to subtract any number from another number we have to add the 9’s complement of
the subtrahend to the minuend. We can use the 10’s complement also to perform the subtraction
operation.

The 9°s complement of a decimal number can be found by subtracting each digit in the number

from 9. The 10’s complement can be obtained by subtracting the LSB from 10 and the rest of the each
digit in the number from 9.

The 9’s and 10’s Complement of the decimal digits O to 9 is shown in table below.

Decimal Digit | 9’s Complement | 10’s Complement
0 9 10
1 8 9
2 7 8
3 6 7
4 5 6
5 4 5
6 3 4
7 2 3
8 1 2
9 0 1
Subtraction Using 9's Complement
Example Subtract (358}, from (582),, using the 9% complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction 9's complement method
592 59012 (+}
- 358 9's complement —* 641
234 1233
Add Carry —> 1
(2 3 4),, (Result)
Example Subtract (592),, from (358}, using the 9% complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction 9's complement method
3568 abH 8 (+)
- 592 9's complement —» 407
-1 766 765
Discard carry 776 9s complement —# 234
10's complement 2 3 4 True result (-234),,
True result (-234)

51| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Subtraction Using 10's Complement

Example Subtract (438) , from (798),, using the 10°s complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction 105 complement method
T98 T98 (+)
- 438 10’ complement — 562
360 Carry —» 1360
Discard Carry (3 6 0),, (Result)
Example Subtract (798), from (438) using the 10°s complement method. Also
subtract using the direct method and compare.
Solution.
Direct Subtraction 10's complement method
438 438 (+)
- T98 10's complement —#» 202
1640 640
Diiscard carry 640 10°'s complement —* 360
10’z complement 3 6 0 True result (-360),,
True result (-360),,
Example Carry out BCD subtraction for (893) — (478) using 95 complement method.
Solution.
9z complement of 478 is 999
— 478
521
Direct method 893
— 478
415
Now in BCD form we may write 1000 1001 0011

+ 0101 0010 0001
1101 1011 0100 Left and middle proups are invalid
+ 0110 0110 Add 6
1 0100 0001 0100
T ——————»1 End around carry
0100 0001 0101
Hence, the final result is (0100 0001 0101}, or (415},

52| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Example Carry out BCD subtraction for (768) — (274) using 10 complement

method.
Solution.

10's complement of 274 is 9910

Direct method

Now in BCD form we may write

Ignore Carry —+

Hence, the final result is (0100

Total result positive

- 274
726
TBE

- 274

0111 0110 1000
+ 0111 0010 0110

1110 1000 1110 Left and right groups are invalid
+ 0110 0110 Add 6
1 0100 1001 0100

1001 0100), or (494),,.

736 0111 0011 0110
—273 1101 1000 1100 +— 1's complement of 0010 0111 0011
+ 463 1 Q100 1011 0010
1 « 1
0100 1100 0011
0000 101¢ 0000
0100 10110 0011
4 T 6 3
—— — Ignore this carry 1
Total result negative
427 0100 0010 0111
—-572 1010 1000 1101 +— 1%s complement of 0101 0111 0010
145 1110 1010 0100
1 “""l
v o
o001 0100 1011 Transfer 1's complement of adder 1 output
0000 0000 1010
0001 0100 10101
1 4 T 5

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Ignore this carry 1

53| Page

DIGITAL CODES:

Many specialized codes are used in digital systems. BCD is also one of the digital codes; some codes
are strictly numeric, like BCD, and others are alphanumeric; that is, they are used to represent
numbers, letters, symbols, and instructions.

Alpha numeric codes:

= For communication, we not only require numbers. But, also other symbols known as non —
numeric data.

= The binary codes that can be used to represent all the letters of the alphabet, numbers and
mathematical symbols, punctuation marks, are known as alphanumeric codes or character
codes. These codes enable us to interface the input-output devices like the keyboard, printers,
video displays with the computer.

The most commonly used Alpha numeric codes are:

+ ASCII (American standard code for information interchange) &
+ EBCDIC (Extended Binary code for Decimal Interchange code)

ASCII codes: (American standard code for information interchanges)

= ASCII is the abbreviation for American Standard Code for Information Interchange.
Pronounced ™askee,” ASCII is a universally accepted alphanumeric code used in most
computers and other electronic equipment. Most computer keyboards are standardized with the
ASCII. When we enter a letter, a number, or control command, the corresponding ASCII code
goes into the computer.

= |tisa 7-bit code representing 2’ = 128 different characters.

= ASCII has 128 characters and symbols represented by a 7-bit binary code, Actually, ASCII can
be considered as an 8-bit code with the MSB always 0.

= This 8-bit code is 00 through 7F in hexadecimal. The first thirty-two ASCII characters are non-
graphic commands that are never printed or displayed and are used only for control purposes.

= These codes represent 26 upper case letters (A to Z), 26 lowercase letters (a to z), 10 numbers
(0 to 9), 33 special characters and symbols and 33 control characters.

= Examples of the control characters are ""null," "line feed," "start of text," and "escape."

= The other characters are graphic symbols that can be printed or displayed and include the
letters of the alphabet (lowercase and uppercase). The ten decimal digits, punctuation signs and
other commonly used symbols form the ASCII code.

Note: A computer keyboard has a dedicated microprocessor that constantly scans keyboard circuits to
detect when a key has been pressed and released. A unique scan code is produced by

Computer software representing that particular key. The scan code is then converted to an
alphanumeric code (ASCII) for use by the computer.

54 | Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

ASCII code:

Itis a7 - Bit code in which the decimal digits are represented by the BCD code.

MSB’s

LSB’s

000(0)

001(1)

010(2)

011(3)

100(4)

101(5)

110(6)

111(7)

0000 (0)

NUL

DLE

0001 (1)

SOH

(13

0010 (2)

STX

0011 (3)

ETX

0100 (4)

0101 (5)

0110 (6)

0111 (7)

1000 (8)

1001 (9)

OO |INO|UTIRWIN|FP O

1010(10)

#
$
%
&
(
)
+

N|<|x|g|<|c|H|n|olo|T

N‘<><§<C""CD*Q'O

1011(11)

1100(12)

1101(13)

[A N A (o

1110(14)

@
A
B
C
D
E
F
G
H
|
J
K
L
M
N

1111(15)

O]

O:B_W‘_'_'I(Q =h| D QO |T|D |

ASCII Control Characters:

Table: ASCII code.

= The first thirty-two codes in the ASCII table above represent the control characters. These are
used to allow devices such as a computer and printer to communicate with each other when
passing information and data.

= The control characters and the control key function that allows them to be entered directly
from an ASCII keyboard by pressing the control key (CTRL) and the corresponding symbol
are also shown in the table. A brief description of each control character is also given.

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

55| Page

ASCII control characters:

NAME DECIMAL HEX KEY DESCRIPTION
NUL 0 00 CiRL @ null character
SOH 1 01 CIRL A start of header
STX 2 02 CTRL B statt of text
ETX 3 03 CTRL C cnd of text
EOT 4 04 CTRL D end of transmission
ENQ i 05 CTRL E enquire
ACK 6 06 CTRL. F acknowledge
BEL 7 07 CTRI.G bell
BS 8 08 CTRI.H backspace
HT 9 09 CTRLI horizontal tab
LE 10 0A CTRL Y line feed
VT 11 0B CTRL K vertical tab
FE 12 0C CTRI.L form feed (new page)
CR 13 0b CTRL M carriage rcturn
SO 14 OE CTRL N shift cut
Sl 15 OF CTRL O shift in
DLE 16 10 CTRL P data fink escape
DC1 17 11 CTRLQ device control 1
DC2 18 12 CTRL R device control 2
DC3 19 13 CTRL S device control 3
DC4 20 14 CTRL T device control 4
NAK 21 15 CTRL U negative acknowledge
SYN 22 16 CTRIL V synchronize
ETB 23 17 CTRL W end of transmission block
CAN 24 18 CTRL X cancel
EM 25 19 CTRLY end of medium
SUB 26 1A CTRI. Z substitute
ESC 27 1B CTRL. | escape
S 28 1C CTRL / file separator
GS 29 1D CTRL } group scparator
RS 30 1E CTRI. ~ record separator
us 31 1¥ CTRI. _ unil separator

56| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

EBCDIC code:

= The extended binary code decimal interchange code is an 8 — bit fixed length character set.

= With 8 — Bits there will be 2= 256 codes possible.

= In EBCDIC codes, only 139 out of 256 are used and the remaining codes are assigned to
special characters.

= |n EBCDIC code the LSB is designated as by and MSB as b;. Therefore, the higher bit by is
transmitted first and lower order bit by is transmitted last.

= Itis mainly used with large computer systems like mainframes.

Most Significant Byte (MSB)

Lsg |0000|0001] 0010 |0011/0100(0101/0110]0111/1000/1001(10101011{1100{1101/1110{1111

Tl @l @5 67| e [® (A B (C))D|(E]F
0000 (0) | NUL DS SP | & 0
0001 (1) S0S ! a | | Al J 1
0010 (2) FS ' b | k | s B | K|[s |2
0011 (3) ™ c | 1 |t cClL|T |3
0100 (4)| PF |RES| BYP | PN d | m|u DI M|U/| 4
0101 (5)| HT | NL | LF | RS e | n | v E|{N| V| S5
0110 (6) | LC | BS | EOB | UC flol| w Flo|w]| &
0111 (7)| DL | IL | PRE |EOT gl p | x G| P | X |7
1000 (8) h | gy Hia | Y | 8
1001 (9) - i r | oz Il TRz |9
1010 (A) CC | SM z | !
1011 (B) $ | . | #
1100 (C) < | | %
1101 (D) {) _ : i
1110 (E) s> =

1111 (F)| cu1 |cu2| cu3 | 7|

Table Partial EBCDIC table
57| Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

ERROR DETECTION AND CORRECTION CODES:

Binary information may be transmitted through some communication medium, e.g. using wires
or wireless media. A corrupted bit will have its value changed from 0 to 1 or vice versa. To be able to
detect errors at the receiver end, the sender sends an extra bit (parity bit) with the original binary
message.

Binary
Message

SENDER a Reciever
»
| -'.‘. Ic_r'r |“]|
Detecting Bit
(Parity Bit)

Y Yy

Parity Method for Error Detection:

A parity bit is an extra bit included with the n-bit binary message to make the total number of
1’s in this message (including the parity bit) either odd or even. If the parity bit makes the total
number of 1’s an odd (even) number, it is called odd (even) parity.
Table below gives:

= |dea about how parity bits are attached to a code;

= Lists the parity bits for each BCD number for both even and odd parity. The parity bit for each
BCD number is in the P column.

EVEN PARITY ODD PARITY
PARITY BIT | BCD | PARITY BIT | BCD
0 0000 1 0000
1 0001 0 0001
1 0010 0 0010
0 0011 1 0011
1 0100 0 0100
0 0101 1 0101
0 0110 1 0110
1 0111 0 0111
1 1000 0 1000
0 1001 1 1001

The parity bit can be attached to the code at either the beginning or the end, depending on system
design.

= The total number of 1’s, including the parity bit, is always even for even parity and

= The total number of 1’s including the parity bit is always odd for odd parity.

58| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Detecting an Error:

= At the receiver end, an error is detected if the message does not match have the proper parity
(odd/even).

= Parity bits can detect the occurrence 1, 3, 5 or any odd number of errors in the transmitted
message. At the receiver end, an error is detected if the message does not match have the
proper parity (odd/even). No error is detectable if the transmitted message has 2 bits in error
since the total number of 1’°s will remain even (or odd) as in the original message.

= |n general, a transmitted message with even number of errors cannot be detected by the parity
bit.

Parity bit is used for the detection of a single bit error (or any odd number of errors, which is
very unlikely) but cannot check for two errors in one group.

Example:
For example, let's assume that we wish to transmit the BCD code 0101. (Parity can be used

with any number of bits; we are using four for explanation) The total code transmitted, including the
even parity bit, is

| —Even parity bit
00101
T BCD code

Now let's assume that an error occurs in the third bit from the left (i.e., the 1 becomes a 0).

| Even parity bit

00001
2T
L Bit errror
EXAMPLE
Assign the proper even parity bit to the following code groups:
(a) 1010 (b) 111000 (¢) 101101
(d) 1000111001001 (e} 101101011111
Solution Make the parity bit either 1 or 0 as necessary to make the total number of Is even. The
parity bit will be the left-most bit (color).
(a) 01010 (b) 1111000 (c) 0101101
(d) 0100011100101 (e) 1101101011111
EXAMPLE

An odd parity system receives the following code groups: 10110, 11010, 110011,
L0101 110100, and 1100010101010. Determine which groups, il any, are in error.

Solution Since odd parity 1s required, any group with an even number of s is incorrect, The
following groups are in error: 110011 and 1100010101010.

50| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Error-correcting codes not only detect errors, but also correct them. This is used normally in
Satellite communication, where turn-around delay is very high as is the probability of data getting
corrupt.

There are two methods for adding bits to codes to either detect a single-bit error or detect and
correct a single-bit error.

1. The parity method of error detection.

2. The Hamming method of single-error detection and correction (When a bit in a given code
word is found to be in error, it can be corrected by simply inverting it) and double bit error
detection.

The Hamming Error Correction Code:

It is one of the most common errors correcting code developed by R.W.Hamming. Hamming code
adds a minimum number of bits to the data transmitted in a noisy channel, to be able to correct every
possible one-bit error. It can detect (not correct) two-bit errors and cannot distinguish between 1-bit
and 2-bits inconsistencies. It can't - in general - detect 3(or more)-bits errors.

= We know that, a single parity bit is appended for detection of single-bit errors in a code word.
A single parity bit can indicate that there is an error in a certain group of bits. In order to
correct a detected error, more information is required because the position of the bit in error
must be identified before it can be corrected. More than one parity bit must be included in a
group of bits to be able to correct a detected error.

= Ina 7-bit code, there are seven possible single-bit errors. In this case, three parity bits can not
only detect an error but can specify the position of the bit in error. The Hamming code is one
such code used for detection of error and single-error correction.

= FEC is suited for data communication systems, when acknowledgements are impossible, such
as when simplex transmissions are used to transmit messages to many receivers or when the
transmission, acknowledgement and retransmission time is excessive.

= However, the addition of FEC bits to each message waste time itself.

60| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Construction of a 7-bit Hamming code for detection of error and single-error correction:

Number of Parity Bits:

If the number of data bits is designated d, then the number of parity bits, p, is determined by the
following relationship:

2° > d+p+1

For example, if we have 4 data bits, then p is found by trial and error using the above equation. Let

p=2. Then
22 > 4+2+1
4 > 7

Since 2p > d+p+1, the relationship in above equation is not satisfied. We have to try again. Let p=3.
Then

7N 4+3+1
8 > 8, this value of p satisfies the relationship of equation above, so 3 parity
bits are required to provide single error correction for 4 data bits. It should be noted that error

detection and correction is provided for all bits, both parity and data, in a code group; i.e., the parity
bits also check themselves.

Placement of the Parity Bits in the Code:

The data and parity bits must be arranged properly in the code. In the above example the code
is composed of the four data bits and the three parity bits. The left-most bit is designated bit 1, the next
bit is bit 2, and so on as follows:

Bit 1, bit 2, bit 3, bit 4, bit 5, bit 6, and bit 7

The parity bits are located in the positions that are numbered corresponding to ascending powers of
two (i.e., 1, 2, 4, 8...), as indicated;

20=1] 2t=2 22 =14 =8

P1 P, Ds P4 Ds Ds D Ps Dy Dyo

P1, P2, D3, P4, Ds, D¢, D7

The symbol P, designates a particular parity bit, and D, designates a particular data bit.

6l|Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Assignment of Parity Bit Values:

= Finally, we must properly assign a 1 or 0 values to each parity bit. Since each parity bit
provides a check on certain other bits in the total code, we must know the value of these others
in order to assign the parity bit value.

= To find the bit values, first number each bit position in binary, that is, write the binary number
for each decimal position number, as shown in the second two rows of Table below. Next,
indicate the parity and data bit locations, as shown in the first row of Table below.

= Notice that the binary position number of parity bit P1 has a 1 for its right-most digit. This
parity bit checks all bit positions, including itself that has 1’s in the same location in the binary
position numbers. Therefore, parity bit P1 checks bit positions 1, 3, 5, and 7.

Bit position table for a 7 -bit error correction code:

BIT DESIGNATION P1 P, D; | Ps Ds | Dg | Dy
BIT POSITION 1 2 3 4 5 6 7

BINARY POSITION
NUMBER 001 | 010 | O11 | 100 | 101 | 110 | 111

Data Bits (Dy)
Parity Bits (Py)

= The binary position number for parity bit P, has a 1 for its middle bit. It checks all bit
positions, including it, that have 1s in this same position. Therefore, parity bit P2 checks bit
positions 2, 3, 6, and 7.

= The binary position number for parity bit P3 has a 1 for its left-most bit. It checks all bit
Positions, including itself, that have 1s in this same position. Therefore, parity bit P; checks bit
positions 4, 5, 6, and 7.

= In each case, the parity bit is assigned a value to make the number of 1s in the set of bits
It checks either odd or even, depending on which is specified.

62| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

THE FOLLOWING EXAMPLES MAKE THIS PROCEDURE CLEAR.

Idea about how parity bits are attached to a code:

EXAMPLE 1: Determine the Hamming code for the BCD number 1001 (data bits), using even parity.
Solution:

Step 1: Find the number of parity bits required. We Use trial and error method. Let p = 3. Then

2° > d+p+1
28 > 4+3+1 (True)

Therefore 3 parity bits are sufficient.
Total code bits (Length of Hamming code)

nnn

N
+
w

Step 2: Construct a bit position table, as shown below, and enter the data bits. Parity bits are
determined in the following steps.

BIT DESIGNATION Py P, D3 | P, | Ds | Dg | Dy
BIT POSITION 1 2 3 4 5 6 7
BINARY POSITION NUMBER | 001 | 010 | 011 | 100 | 101 | 110 | 111
Data Bits (Dp) 1 0 0 1
Parity Bits (Py) 0 0 1

Step 3: Determine the parity bits as follows:

= Bit PI checks bit positions 1, 3, 5, and 7 and it must be a 0 to make the total number of 1s (2)
even in this group to obtain even parity.

= Bit P 2 checks bit positions 2, 3, 6, and 7 and must be a 0 to make the total number of 1s (2)
even in this group to obtain even parity.

= Bit P 3 checks bit positions 4, 5, 6, and 7 and must be a 1 to make the total number of 1s (2)
even in this group to obtain even parity.

Step 4: These parity bits are entered in Table, and the resulting combined code is called
Hamming Code:0011001.

EXAMPLE 2: Determine the Hamming code for the data bits 10110 using odd parity.
Solution:

Step 1: Determine the number of parity bits required. In this case the number of data bits, d, is five.
We Use trial and error method. Let p = 4. Then

2P >d+p+1

2*>5+4+1 (True)
Therefore 4 parity bits are sufficient.
Total code bits=5+4=9

63| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Step 2: Construct a bit position table, as shown below, and enter the data bits. Parity bits are
determined in the following steps.

BIT DESIGNATION Py P2 D3 Pa Ds Ds Dy Ps Dy

BIT POSITION 1 2 3 4 5 6 7 8 9
BINARY POSITION

NUMBER 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001
Data Bits (Dn) 1 0 1 1 0
Parity Bits (Py) 1 0 1 1

Step 3: Determine the parity bits as follows:

= Bit P1 checks bit positions 1,3,5, 7 and 9 and it must be a 1 to make the total number of 1s (3)
odd in this group to obtain odd parity.

= Bit P 2 checks bit positions 2, 3, 6, and 7 and must be a 0 to make the total number of 1s (3)
odd in this group to obtain odd parity.

= Bit P 3 checks bit positions 4, 5, 6, and 7 and must be a 1 to make the total number of 1s (3)
odd in this group to obtain odd parity.

= Bit P4 checks bit positions 8 and 9 and must be a 1 to make the total number of 1s (1) odd in
this group to obtain odd parity.

Step 4: These parity bits are entered in Table, and the resulting combined code is called
Hamming Code: 101101110.

Detecting and Correcting an Error using the Hamming Code:

The Hamming method for constructing an error-correction code is as follows:

Detection of error bit position and correction:

Each parity bit, along with its corresponding group of bits, must be checked for the proper parity. If
there are three parity bits in a code word, then three parity checks are made. If there are four parity
bits, four checks must be made, and so on. Each parity check will yield a good or a bad result. The
total result of all the parity checks indicates the bit, if any, that is in error, as follows:

Step 1: Start with the group checked by P1

Step 2: Check the group for proper parity. A ‘0’ represents a good parity check, and ‘1’ represents a
bad check.

Step 3: Repeat step 2 for each parity group.
Step 4: The binary number formed by the results of all the parity check designates the position of the

code bit that is in error. This is the error position code. The first parity check generates the least
significant bit (LSB). If all checks are good, there is no error.

64| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

EXAMPLE 3: Assume that the code word 0011001 is transmitted and that 001 0001 is
received. The receiver does not "know" what was transmitted and must look for proper parities to
determine if the code is correct. Designate any error that has occurred in transmission if even parity is
used.

Solution: First, make a bit position table, as indicated below
BIT DESIGNATION P1 P Ds P4 Ds Ds D,
BIT POSITION 1 2 3 4 5 6 7
BINARY POSITION
NUMBER 001 | 010 | 011 | 100 | 101 | 110 | 1112
Received Code 0 0 1 0 0 0 1

First parity check:

Bit PI checks positions 1, 3, 5, and 7.

There are two 1°s in this group.

Parity check is go0d.-=-=========mmmmmmm e > 0 (LSB)

Second parity check:

Bit P 2 checks positions 2, 3, 6, and 7.

There are two 1°s in this group.

Parity check is go0d.----=-=--=--=-mmmm oo oo > 0

Third parity check:

Bit P 3 checks positions 4, 5, 6, and 7.

There is one 1 in this group.

Parity check is bad.------==-===== e 2> 1 (MSB)
Result:

The error position code is 100 (binary four). This says that the bit in position 4 is in error. It is a 0 and
should be a 1. The corrected code is 001100 1, which agrees with the transmitted code.

EXAMPLE 4: The code 101101010 is received. Correct any errors. There are four parity bits,
and odd parity is used.

Solution:

First, make a bit position table as indicated below

BIT DESIGNATION | Py P Ds P4 D5 |D6 |D7 |P8 D9

BIT POSITION 1 2 3 4 5 6 7 8 9
BINARY POSITION

NUMBER 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001
Received Code 1 0 1 1 0 1 0 1 0

First parity check:

Bit PI checks positions 1, 3,5, 7, and 9.

There are two 1°s in this group.

Parity check is bad.---------=-=-mmm oo - 1(LSB)

65| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Second parity check:

Bit P 2 checks positions 2, 3, 6, and 7.

There are two 1°s in this group.

Parity check is bad.---~--=--s--semmemmemmemme e ->1

Third parity check:

Bit P 3 checks positions 4, 5, 6, and 7.

There are two 1°s in this group.

Parity check is bad.---------=--=-=mmm oo ->1

Fourth parity check:

Bit P 4 checks positions 8 and 9.

There is one 1 in this group.

Parity check is go0d.--------==mmmm e - 0 (MSB)

Result:

The error position code is 0111 (binary seven). This says that the bit in position 7 is in error. The
corrected code is therefore 101101110.

EXAMPLES : Determine the Hamming code for the data bits 1011 using even parity.

Solution:

Step 1: Determine the number of parity bits required. In this case the number of data bits, d, is five.
We Use trial and error method. Let p = 4. Then

Therefore 4 parity bits are sufficient.
Length of Hamming code (Total code bits) =5+4=9

Step 2: Construct a bit position table, as shown below, and enter the data bits. Parity bits are
determined in the following steps.

BIT DESIGNATION Py P2 D3 P4 Ds Ds Dy

BIT POSITION 1 2 3 4 5 6 7
BINARY POSITION

NUMBER 001 | 010 | 011 | 100 | 101 | 110 | 111
Data Bits (Dp) 1 0 1 1
Parity Bits (Py) 0 1 0

Step 3: Determine the parity bits as follows:

= Bit P; checks bit positions 1,3,5 and 7, and it must be a 1 to make the total number of 1’s (4)
even in this group to obtain even parity.

Parity bit P; checks : 3 5 7 - 1
1 1 1 (Numberof I’s=3 odd,soP; =1
to make it even parity)

66| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

= Bit P, checks bit positions 2, 3, 6, and 7 and must be a 0 to make the total number of 1s (2)
even in this group to obtain even parity.

Parity bit P, checks : 3 6 7 - 0
1 0 1 (Number of 1’s =2 even, so P,=0

to make it even parity)

= Bit P 4 checks bit positions 4, 5, 6, and 7 and must be a 0 to make the total number of 1s (2)
even in this group to obtain even parity.

Parity bit P, checks : 5 6 7 - 0
1 0 1 (Number of 1’s=2 even, so P, =0

to make it even parity)

Step 4: These parity bits are entered in Table, and the resulting combined code is called
Hamming Code : 101101110.

BIT DESIGNATION P; P, D3 P4 Ds D¢ Dy
BIT POSITION 1 2 3 4 5 6 7
BINARY POSITION

NUMBER 001 | 010 | 011 | 100 | 101 | 110 | 111
Data Bits (D) 1 0 1 1
Parity Bits (Py) 0 1 0

Hamming code 0 1 1 0 0 1 1

Correction of single bit errors if any:

BIT DESIGNATION Py P, D3 Py Ds Dg D; | Error position
BIT POSITION 1 2 3 4 5 6 7 | Bitvalue
BINARY POSITION
NUMBER 001 | 010 | 011 | 100 | 101 | 110 | 111
Received code 0 1 1 0 0 1 1
For Py : P, checks locations 1,3,5,7. C1=0(LSB)
There are four 1’s in this group
~parity check for even parity is correct and
indicate it with ‘0’.
For P;: P, checks locations 3,6,7. C,=0
There are two 1’s in this group
~parity check for even parity is correct and
indicate it with ‘0’.
For Py: P4 checks locations 5,6,7. C,=0(MSB)
There are two 1’s in this group
~parity check for even parity is correct and
indicate it with ‘0’.
The resultant bit position that is in error is: C4 C, Ci = 0 0
i.e No errors.
67| Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Single error correction and Double error detection:

Hamming code explained above provides the detection and correction of only a single error.
With a slight modification, it is possible to construct a hamming code for single error correction and
double error detection. A one more parity bit is added to the hamming code obtained to make sure that
the hamming code (including all parity bits) contains an even number of 1’s. The added parity bit is
not used in determining the values of the other parity bits. The resulting hamming code makes single

error correction and detects double error detection.

Resulting hamming code after adding overall parity bit is as follows:

BIT DESIGNATION | OP | Dy Ds Ds P4 D3 P, P:

Hamming code 0 0 1 1 0 0 1 1
Case 1:
1) OP (Overall parity) === -2 correct
i) Check for correction ~ ------- > C4 C2 C1
0 0 0

If (i) & (ii) are satisfied, No Error.
Case 2:

1) OP (Overall parity) ~ --=----- > In correct, Single Error
i) Check for correction ~ ------- > C4 C2 C1

1 0 1 (5" bitin error)
If (i) & (ii) are satisfied, Single Error and that can be corrected by detecting error bit position.
Case 3:

) OP (Overall parity) ~ -=------ > correct
i) Check for correction ~ ------- > C4 C2 C1

0 1 0 (Other than ‘0)
If (i) & (ii) are satisfied, Double Error and that cannot be corrected.
Example : 6 Finding no. of bits required for hamming code:

2k > n+k+1

2k > 12+k+1

2k > 13+k

for k=5 the equation holds true. so no. of parity bits required=5

68| Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Hamming code:

P, Ds Ds D7 Pg Dg Dig Di1 D1z D1z Dis Dis| P D
deS|gnat|on 4 5 Ds D7 Fs 9 Dio D11 D1z D1z Dig Dis| Fie 17

Bit loc No.| 71819 1111211314 |15| 16 | 17
Binary loc|0001/0010{0011{0100{0101{0110j0111/1000/1001j1010}1011{1100{1101{1110({1111/10000{10001
DataBits 1 0|11 ojofof21(0]|]0]1 0
ParityBits| 1 | O 0 0 0
Rules for finding the parity bits:
= P = (3,5,7,9,11,13,15,17)
(1,010, 0, 0,1, 0) =1
= P = (3,6,7,10,11,14,15)
(1,11, 0,0, 0, 1) =0
= Py = (5,6,7,12,13,14,15)
011, 1,0, 0 1) =0
= Pg = (9,210,11,12,13,14,15)
0,00 10,01 =0
u P16 = (17)
(0) =0
Error detection:
= Hamming code :10100110000100100.
= Errorinbit6 :10100010000100100.
= C (P1,3,5,7,9,11,13,15,17)
(1, 1,01,0,0, 0, 1, 0) =0
= C (P2,3,6,7,10,11,14,15)
o, 10,1, 0, 0, 0, 1) =1
= Cy (P4,5,6,7,12,13,14,15)
0, 001, 1, 0, 0, 1) =1
= Cg (P8,9,10,11,12,13,14,15)
(0,000,100 1 =0
* Cs (P16,17)
(0, 0 =0
69| Page

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Correction C16 c8 ca Co c1 DeC|ma_I equivalent of
code correction code
0 0 1 1 0 6

Example 7:Determine which Bit, if any, is in error in the even parity. Hamming coded character is

1100111. Decode the message.

BIT DESIGNATION P, P, D3 P, Ds Ds D; | BitValue
BIT POSITION 1 2 3 4 5 6 7 Error
BINARY POSITION .
NUMBER 001 010 011 100 101 110 111 | Position
Received Data 1 1 0 0 1 1 1
P; checks Bit Positions 1,3,5, 1 0 1 1 C: = 1
& 7 for even Parity check (LSB)
P, checks Bit Positions 2,3,6, _
& 7 for even Parity check 1 0 1 1 |G=1
P4 checks Bit Positions 4,5,6 0 1 1 1 C, = 1
& 7 for even Parity check (MSB)

The resultant bit position that is in error is: Cy C, Ci = 1 1 1

This means that the bit in position 7 is in error. So, the correction is done by simply changing

1to 0.

Hence the corrected code: 1

1

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

70| Page

BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS

OUTLINE

= Fundamental postulates of Boolean Algebra,
= Basic theorems and properties,

= Switching functions,

= Canonical and Standard forms,

= Algebraic simplification Digital logic gates,
= Properties of XOR gates,

= Universal gates,

= Multilevel NAND/NOR realizations.

Why Boolean algebra?

= |t is highly desirable to find the simplest circuit implementation (Logic) with less number of
gates or wires.

= We can use the Boolean minimization process to reduce the function (expression) to its
simplest form.

= The result is an expression with the less number of literals and requires less number of wires
for the final gate implementation. If number of terms in the expression is reduced, then the
number of gates reduces.

= So, simplification plays an important role in digital designs, which reduces the hardware
required, i.e. the number of gates and number of wires required. And it also reduces cost,
power required and increases the speed of the digital system.

Boolean algebra:
Basic mathematics for the study of logic design is Boolean algebra.

Boolean algebra is a mathematical system for the manipulation of variables that can have one of two
values.

» In formal logic, these values are “true” and “false.”

= In digital systems, these values are “on” and “off,” 1 and 0, or “high” and “low.”
= Boolean expressions are created by performing operations on Boolean variables.
= Common Boolean operators include AND, OR, and NOT.

= Networks of Logic gates allow us to manipulate digital signals

= Can perform numerical operations on digital signals such as addition, multiplication
= Can perform translations from one binary code to another.

(OR)

Boolean algebra may be defined as a set of elements, a set of operators, and a number of unproved
axioms or postulates.

71| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Common Postulates in Algebraic Structure

= Closure

= Associative Law

= Commutative Law
= |dentity Element

= |nverse

= Distributive Law

AXIOMATIC DEFINITION OF BOOLEAN ALGEBRA

= |n 1854, George Boole developed an algebraic system to deal with ‘1’ and ‘0’ now called
Boolean algebra.

= In 1904, E. V. Huntington developed some postulates required to deal with the symbols ‘1’ or
‘O‘called Boolean algebra.

= In 1938, Claude E. Shannon introduced a two-valued Boolean algebra called switching algebra
that represented the properties of bi - stable electrical switching circuits.

Definition: Boolean algebra is an algebraic structure defined by a set of elements, B, together with
two binary operators, + and . , provided that the following (Huntington) postulates are satisfied:

Postulates:

1. (a) The structure is closed with respect to the operator +.
(b) The structure is closed with respect to the operator . .

2. (a) The element 0 is an identity element with respect to +; thatis, x + 0 =0+ X = X.
(b) The element 1 is an identity element with respect to . ; thatis, x . 1 =1 .x = X.

3. (a) The structure is commutative with respect to +; that is, x +y =y + X.
(b) The structure is commutative with respect to . ; thatis, X .y =y .X.

4. (a) The operator. isdistributive over +; that is, x . (y +z) = (x .y) + (X . 2).
(b) The operator + is distributive over . ; thatis, X +(y.z)= (X +y) . (X + 2).

5. For every element x € B, there exists an element x* eB (called the complement of x) such that
(a) x+ x* = 1 and
(b) x .x' = 0.

6. There exist at least two elements X, y € Bsuch that x not equal to y.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real numbers), we note
the following differences:

1. The distributive law of + over. (i.e.,, x + (y.z) = (X +y). (X + z)) Is valid in Boolean algebra,
but not for ordinary algebra.

2. Boolean algebra does not have additive or multiplicative inverses; therefore, there are no

subtraction or division operations.

The complement operator is not available in ordinary algebra.

4. Ordinary algebra deals with the real numbers, which constitute an infinite set of elements. But
two-valued Boolean algebra deals with finite set of elements B (‘0” and “1°). B={0,1}.

w

72| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Two valued Boolean algebra:

A two-valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with rules for the two
binary operators + and .as shown in the following operator tables:

x y X-y X y X +y X x'

] 0 0 o 0 0 0 1
0 1 0 0 1 1 1 0
1
1

These rules are exactly the same as the AND, OR, and NOT operations, respectively.

1. That the structure is closed with respect to the two operators “.” or ‘+’ , i.e. the result is either
‘0’ or ‘1’ and (1,0) € B.
2. ldentity element:

(@ “+
X+0=0+x
1+0= 0+1=1;
0+0= 0+0=0;

(b) <
X.1=1X
1.1=1.1=1
0.1=1.0=0;

3. The commutative laws are clear from the symmetry of the binary operator tables.

(@A X+Y=Y+X

X X+Y

0

==
ROk o<
L

R, lo|oX
ROk o<
Rk o]+

73| Page
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

() X.Y=Y.X

XY

==
ROk o<
===

Y. X

Rk |Oo|oX
ROk o<
R|lo|lo|lo

4. (a) The distributive law
X.(y+2z)=(x.y) +(x.2):

X v z y+z x-(y+2) x-¥ | x-z | (x-y)+(x-2)

0] [0} 0 0 0 0 0 0
0] 0 1 1 4] 0 0 (4]
) 1 0 1 0 0 0 0
0] 1 1 1 4] 0 0 (4]
0 0 0 0 0 0 0
[0} 1 1 1 0 1 1
1
1 1 1 1 1 1 1

[S —
—
—_—
-
[
—
—
-
-

(b) The distributive law of + over .is similar to the one shown above.
5. From the complement table, it is easily shown that
(@) x+x'=1,since0+0'=0+1=1land1+1'=1+0=1.
(b) x x*=0,since0.0'=0.1=0and1.1'=1.0=0.
6. Postulate 6 is satisfied because the two-valued Boolean algebra has two elements, ‘1’ and ‘0’,
with ‘1° not equal to ‘0’.

DUALITY:

Definition of duality:A dual of a Boolean expression is derived by replacing AND operations by ORs,
OR operations by ANDs, constant 0’s by 1°s, and 1’s by 0’s (everything else is left unchanged).

Steps are to be followed to obtain the Duality of a Boolean expression.

= Changing OR to AND sign
= Changing AND to OR sign
= Complementing any ‘0’ by ‘1°, ‘1’ by a ‘0’ in the expression.

Principle of duality: If a statement is true for an expression, then it is also true for the dual of the
expression.

Page 74 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Basic Theorems and Properties of Boolean algebra

Theorem 1:
(@) x+x=x;
(b) x.x=x;

THEOREM 1(a): x + x = x.

Statement
Y+xr=(x+x)-1
= (X + x)x + x")
= X + xx'
=x+ 0
=X
THEOREM 1(b): x-x = x.

Statement

Xx=xx+0

= xx + xx’
= x{x + x")
= x-1
= x
Theorem 2:
(@ x+1=1;
(b)x. 0=0;

THEOREM 2Z(a): x + 1 = 1.

Statement
x+1=1-(x + 1)

=(x + x"Mx + 1)

=x +x"-1

=x + x’

=1

THEOREM 2(b): x . 0 = 0 by duality.
Theorem 3:

(a) Involution: (x)'=x

Justification

postulate 2(b)
S5(a)
4(b)
5(b)
2(a)

Justification

postulate 2(a)
5(b)
4(a)
5(a)
2{b)

Justification

postulate 2(b)
S(a)
4(b)
2(b)

Sia)

(X))

| o X
[EEN

Theorem 4: Associative

@ x+(y+2z)=(x+y)+z
(b)x.(y.2)=(x.y).z

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Page 75 of 111

Theorem 5: Demorgans Theorem

(@) (x+y) =x".y;
(b) (x.y) =xt +y"

(@)
x y|x+tyl(x+y) x|y | xy
0 0] 0 1 1|11
0 1| 1 0 10| o
1 0| 1 0 0o[1] o0
1 1| 1 0 olo]| o
(b)
A|lB| (AB)! | Al+B!
00 1 1
01 1 1
110 1 1
1)1 0 0

Complement of a function:

The complement of a function F is F*& is obtained by:

» Interchanging 0’s for 1’s & 1’s for 0’s in the value of F.
= The complement of a function may be derieved algebraically through Demorgans theorem.

Theorem 6: Absorption

(@) x +xy =x;
(b) x. (x +y) =Xx;

THEOREM 6(a): x + xy = x.

Statement
xX+xy=x-1+xy
=x(1+y)
=x(y +1)
=x-1
=X

THEOREM 6(b): x(x +y) = x by duality.

Justification

postulate

2(b)
4(a)
3(a)
2(a)
2(b)

NOTE: The postulates are basic axioms of algebraic structure and need no proof. The theorems are

proved by using postulates.

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Page 76 of 111

Consensus therorem:

(i) AB + AC + BC = AB+ AC

Proof: | AB+AC+BC=AB+AC+BC-1
= AB+AC +BC(A+ A) (A+A=1)
AB + AC + ABC + ABC
AB(1+C)+ AC(1+ B) (s1+B=1=1+C)
AB+ AC

Il

1l

(ii) (A+B)Y(A+CY(B+C)=(A+B)(A+C)

Proof: (A+BYA+CYB+C)=(A+BYA+CHB+C +0)
=(A+BX{A+CYB+C+ AA)
=(A+BYA+CYB+C+ A(B+C+ A)
s [A+BC=(A+B)YA4A+C)]
=(A+B{A+B+CYA+CYA+C+ B)
=(A+BY(A+C)
[o A(A+ B) = A)

Recognition of consensus term:

Stepl: Find pair of terms, one of which contains a variable & other contains its complement.

Step 2: Find a 3™ term which should contain the remaining variables from pair of terms eliminating
selected variables and its complement.

Operator Precedence:

The operator precedence for evaluating Boolean expressions is:
Parentheses,

NOT,

AND, and
OR.

Awnh e

Page 77 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

BOOLEAN FUNCTIONS:

A Boolean function can be represented in a truth table. The number of rows in the truth table is
2", where n is the number of variables in the function. The binary combinations for the truth
table are obtained from the binary numbers by counting from 0 through 2"- 1.

Table below shows the truth table for the function F;. There are eight possible binary
combinations for assigning bits to the three variables x, y, and z. The column labeled F; contains
either 0 or 1 for each of these combinations. The table shows that the function is equal to 1 when
X =1 or when yz= 01 and is equal to O otherwise.

Truth Tables for F, and F,

X ¥ 4 Fy F,
0] 0 0 0
0] 1 1 1
0 1 0 0 0
0 1 1 0 1
1] 0 1 1
1] 1 1 1
1 1 0 1 0
1 1 1 1 0

A Boolean function can be transformed from an algebraic expression into a circuit diagram
composed of logic gates connected in a particular structure.

The logic-circuit diagram (also called a schematic) for F1 is shown in Fig. below. There is an
inverter for input y to generate its complement. There is an AND gate for the term y*z and an
OR gate.

F
¥ D@ :
FIGURE
Gate implementation of F; = x + y'z

Page 78 of 111

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

OTHER LOGIC OPERATIONS:

For n variables, there are 2°" functions. Thus, for two variables, n = 2, the number of possible Boolean
functions is 22% = 16.

Truth table for the 16 functions of 2 — variables is shown below.

Truth Tables for the 16 Functions of Two Binary Variables

x y | Fo F F2 F3 F4 Fs Fs F; Fg Fo Fio Fi1 Fi2 Fi3 Fiq Fis
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 o o 1 1 o o0 1 1 O O 1T 1 O0 0 1 1
1 1 o 1. 0 1 o0 1 0 1 0 1 O 1 o0 1 0 1
Boolean Expressions for the 16 Functions of Two Variables
Operator
Boolean Functions Symbol Name Comments
Frb=20 Null Binary constant 0
Fi=xy x-y AND xandy
F, =xy’ x/y Inhibition x, but not y
Fs=x Transfer X
Fy=x'y y/x Inhibition y, but not x
Fs=y Transfer y
Fe=xy" +x'y x®y Exclusive-OR x or y, but not both
FF=x+y x+ty OR xory
Fs=(x +y) xly NOR Not-OR
Fo=xy +x'y' x®y) Equivalence x equals y
Fip=y' y' Complement Not y
Fh=x+y' xCy Implication If y, then x
Fi, =x' x' Complement Not x
Fz=x"+y xDy Implication If x, then y
Fiy = (xy)' xTy NAND Not-AND
Fis=1 Identity Binary constant 1
Example: find the dual of the following equalities
1) XY+Z =0
Sol) X+YzZ=1
2) a (b+c)=ab+ac
Sol) at(bc)=(a+hb)(a+c)
Duality is very important property of Boolean Algebra
Page 79 of 111

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Minimization (Simplification) of Boolean Expressions

Example 1. Prove that AB + BC + BC = AB + C,

Solution AB + BC + BC= AB+C(B + B)
= AB+C-1
= AB +C

2. A-B+ A B+A-B=(A+A)-B+A-B
1-B+ A-B

B+A-B

=B+A (- A+A-B=A+ B)

I

Example 3. Simplify the given expression A+ A- B+A-B

Solution A+ A-B+A-B=Al+B)+A-B
- A-1+A-B
= A+ B

Example 4a. Complement the expression 4B+ CD.

Solution AB+CD = (AB)-(CD)

Example . 5. Simplify the expression AB + AC + ABC(AB +C).

Solution AB + AC + ABC(AB +C)= AB+ AC + ABC-AB+ ABC-C
= AB+AC+ ABC [C-C=Cand B-B =0]
= AB+A+C + ABC

=AB+A+C +BC [+ A+AB=A+B]
=A+AB+C +CB

=A+B+C+B

=A+C+1 [+ B+B-=1]

=A+1

=1

Example:

1. Expand the given Boolean function using shannon’s expansion theorem.
F(A,B,C,D)=AB!'+(AC+B)D
Sol) F(A, B,C,D) AB!'+(AC+B)D
A[l.B'+(1.C+B)D]+A'[0.B*+(0.C+B)D]
A[B'+(C+B)D]+A'[BD]
AB'+A(C+B)D +A'BD

Page 80 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

2. Expand the given Boolean function using shannon’s expansion theorem.
F(A,B,C,D)=A'C+((B+AD)C

Sol) F (A, B,C,D) =A'C+(B+AD)C
=A[1*.C+(B+1D)C]+A'[0'.C+(B +0.D)C]

=A[0.C+(B+D)C]+A'[1.C+(B+0.D)C]
=A(B+D)C+A*(C +BC)
Switching functions / Boolean function
= Boolean algebra is an algebra that deals with binary variables and logic operations.
= A Boolean function described by the algebraic expression consists of binary variables, the
constants ‘0’&*1’, and logic operation symbols.
For a given value of binary variables, the function is equal to 1 or 0.

Examples:

Four variable Boolean functions is shown below:

Product terms

1

':{:+

n

A E
I I - (11)
Literals

In this boolean function, the variables are appeared either in a complemented form or an
uncomplemented form called Literal.

f(A,B,C,D)= ' AT+ ©

+
T

Literal: Literal is a binary variable that can occur either in complemented or un complemented form.

A product term is defined as either a literal or a product of literals.

The above function contains 6 literals and 3 product terms.

Example:

Sum terms

Literals
Sum term: It is defined as either a literal or a sum of literal.

f{A,B,C D)=

The Boolean function can be expressed in any one of the two forms, depending on arrangement
of literals and terms.

Page 81 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Boolean function is of two types:

1. SOP (sum of products) &
2. POS (product of sums).

Sum of products

The sum of products is a Boolean function containing AND terms (product terms) of one or more
literals each.

Products of sums

The products of sum is a Boolean function containing OR terms (sum terms) of one or more literals
each.

Eg: (A>+C) (A>+C’) (A+B+C’D)

Algebraic forms of switching functions

» Sum of products form (SOP)
f(A,B,C,D)=ABC+ BD+ACD
* Product of sums form (POS)

f(A,B,C,D)=(A+B+C)(B+C+D)A+C+D)

Logic representations:

(a) truth table (b) boolean equation

from 1-rows in truth table:

F <XY'ZD+ X'YZ HKXY'Z ¥ XYZ' + XYZ
oo F<YZ> XY +YZ

from O-rows in truth table:

F =
Definitions:
Literal : A variable or complemented variable (e.g., X or X)
Product term - Single literal or logical product of literals (e.g., X or XY)
Sum term : Single literal or logical sum of literals (e.g. X' or (X' +Y))

Sum-of-products : Logical sum of product terms (e.g. X'Y + Y'Z)

Page 82 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Product-of-sums > Logical product of sum terms (e.g. (X + Y')(Y + 2))

Normal term : Sum term or product term in which no variable appears more than once
(e.0. X'YZ but not X'YZX or XYzZX'
(X+Y +Z)butnot (X +Y +Z + X))
Minterm : Normal product term containing all variables (e.g. XYZ')
Maxterm : Normal sum term containing all variables (e.g. (X + Y + Z))
Canonical sum : Sum of minterms from truth table rows producing a ‘1°.

Canonical product : Product of maxterms from truth table rows producing a ‘0’.

Product and Sum Terms —Definitions:
Definitions:

Literal: A Boolean variable or its complement
X X’ A B’

Product term:

A literal or the logical product (AND) of multiple literals:

X XY XYZ xXYZ’ A’BC

Note: X(Y2)'

Sum term:

A literal or the logical sum (OR) of multiple literals:

X X+Y X+Y+Z X+Y+Z’ A’+B+C

Note: X+(Y+Z)'
SOP & POS — Definitions:

Sum of products (SOP) expression: The logic sum (OR) of multiple product terms:
AB+A’C+B’+ABC
AB’C + B’'D” + A°CD’

Product of sums (POS) expression: The logic product (AND) of multiple sum terms:
(A+B).(A’+C).B’.(A+B+C)
(A’+B+C).(C+D)
Note:
SOP expressions ==> 2-level AND-OR circuit
POS expressions ==> 2-level OR-AND circuit

Page 83 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Minterms and Maxterms
Minterm:
Each individual term in a standard SOP form is called minterm.

For n variable there are 2 "minterms.

Minterm |Designation | Bil Combination
XY’Z1? mf} 000
XYL ml 001
xXYZ’ m2 010
X’YZ m3 011
XY*Z’ m4d 100
XY’Z mS 101
XYZ’ mbé 110
XYZ m7 111

Example: if X, Y and Z are the input variables, the minterms are:
XY'Z XYZ XYZ© XYZ XYZ XY'Z XYZ' XYZ
Standard or canonical SOP:

In the SOP form, all the individual minterms do not contain all the literals. If each term in a SOP form
contains all the literals then the SOP form is known as “standard or canonical SOP” form.

Maxterm:
Each individual term in a standard POS form is called Maxterm.

For n variable there are 2 " max-terms.

Maxterm Bit Combination | Desipnmation
X+Y+Z 00 MO
X+Y+2° 001 M1
X+Y +Z 010 M2
X+Y +2? 011 M3
X+Y+Z 100 M4
X+Y+Z? 101 M5
X+Y’+Z 110 Mé
X+Y +2 111 M7

Page 84 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Example: if X, Y and Z are the input variables, the maxterms are:

X+Y’+2 X+Y'+Z X+Y+Z’

Standard or canonical POS :

X+Y+Z X+Y’+2° X+Y’+Z

X+Y+2Z X+Y+Z

It each term in a POS form contains all the literals then the POS form is known as Standard or canonical

POS’.

Deriving Boolean Expression from Truth Table:

Input Qutput Minterm

AB C F term designation
00O 1 A'BC mO

0O 0 1 0 A'B'C m-1
010 0 A'BC m2
o1 1 1 A'BC m3
100 0 AB'C m4
101 0 AB'C m5S
110 0 ABC’ mo6
11 1 0 ABC m7

Sum of minterms form:

A Boolean function is equal to the sum of minterms for which the output is one.

The sum of minterms (also called the standard SOP) form

Example: F=X m (0, 3)

Deriving Boolean Expression from Truth Table:

Input Qutput Minterm Maxterm
AB C F term Designation| term Designation
000 1 A'BC mO A +B+C MO
001 0 AB'C m1 A+B+C M1
010 0 A'BC’ m2 A+B+C M2
011 1 A'BC m3 A+B+C M3
100 0 AB'C’ m4 A +B+C M4
101 0 AB'C m5 A'+B+C M5
110 0 ABC’ m6 A +B +C M6
111 0 ABC m7 A +B +C M7

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Page 85 of 111

Product of Maxterms:
A Boolean function is equal to the product of Maxterms for which the output is 0.

The product of Maxterms (also called the standard Product of Sums) form
Example: F = TIM(1,2,4,5,6,7)

Truth table vs. minterms&maxterms:

Rowr x A il F

S
§

Maxtern

X+ +L
X+¥Y+Z7
X+¥"'+ £
H+¥"+ 27
'+¥+Z
X+ +Z7
X'+Y '+ Z
X'+Y '+ 7

] (I o T Fio, 0.0
0 0 1 L T
0 1 0 Fio,1 .00
0 1 1 Fio. .13
W W Fil 0,00
0 1 Fil.0.1)
1 i Fil. 1.0
1 1 Fil.1.1)

I
<< << <<=
NNNNNNNN

— F=XY2Z+ XYZ+ XYZ + XYZ + XYZ
2 0 1 0 o0 =2(0,3,4,6,7)

oo F=(X+Y+Z)X+Y +Z)(X +Y +2)
R =H(11215)

Note equivalences:
(0,3,4,6,7)=11(1,2,5)

£(0,3,4,6,7)==(1,2,5)=T1(0, 3, 4, 6, 7)

I1(1,2,5)] =T11(0,3,4,6,7)=% (1, 2, 5)

Exclusive-OR (XOR) Function
= XOR is often denoted by the symbol

Logic operation of XOR
= X@Y=X'Y.+XY"?
= Equal to1ifonly x isequal to 1 or if only y is equal to 1, but not when both are equal to 1
= |t.s complement, exclusive-NOR (XNOR), is often denoted by the symbol Ce>

Logic operationof X - NOR

X (&Y =XY +X1y?

Itis equal to 1 if both x and y is equal to 1 or if both are equal to 0

Seldom used in general Boolean functions

Particularly useful in arithmetic operations and error detection and correction circuits

Page 86 of 111

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Digital logic gates:

= Logic gates are the basic elements that make up a digital system. The electronic gate is a circuit
that is able to operate on number binary inputs in order to perform a particular logical function.
The type of gates available are NOT, AND, OR, NAND, NOR, EX - OR & EX — NOR.

= The gate is a digital circuit with one or more input voltages but only one output voltage. By
connecting the different gates in different ways, we can build circuits that perform arithmetic
and other functions also.

= The operation of a logic gate can be easily understood with the help of “truth table”. A truth
table is a table that shows all the input — output possibilities of a logic circuit. The truth table
indicates the outputs for different possibilities of the inputs.

Graphic Algebraic Truth
Name symbol function table

AND ; D—F F=x-y

=
!

Ll =l — I]
-o0 o

x y| F
OR x _ 0 0| 0
) D> Fexey R
1 0|1
1 1| 1

x| F

Inverter x—DRF F=x' T_l

11 0

x| F

Buffer —% = 1

x F F=x ol o

111
x y| F
X 0 of 1

F F= !
NAND y (xy) 0 1l 1
1 0|1
1 1] 0
x y| F
X | ’ 0 0 1
=(x+

NOR) :DD—F F=(x+y) P
1 0| 0
1 1[0
x y| F
Exclusive-OR x F=xy +x'y 0 0| 0
(XOR) y F =x@y 0 1|1
1 0|1
1 1[0
x y| F
Exclusi(;e-NOR x F F = xy + x!y' 0 0 1
. y =(xDy) 0 1| 0
equivalence 1 ol o
1 1|1

Page 87 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Positive and Negative Logic:

The binary signal at the inputs and outputs of any gate has one of two values, except during transition.
One signal value represents logic 1 and the other logic 0. Since two signal values are assigned to two
logic values, there exist two different assignments of signal level to logic value, as shown in Fig. below.

Logic Signal Logic Signal
value value value value
1 —— H 0 —— H
0 L 1 L
(a) Positive logic (b) Negative logic

Fig: Signal assignment and logic polarity

= The higher signal level is designated by H and the lower signal level by L. Choosing the
high-level H to represent logic 1 defines a positive logic system.

= Choosing the low-level L to represent logic 1 defines a negative logic system.

= The terms positive and negative are somewhat misleading, since both signals may be positive or
both may be negative. It is not the actual values of the signals that determine the type of logic,
but rather the assignment of logic values to the relative amplitudes of the two signal levels.

= Hardware digital gates are defined in terms of signal values such as H and L. It is up to the user
to decide on a positive or negative logic polarity.

Consider, for example, the electronic gate shown in Fig. (b) below. The truth table for this gate is listed
in Fig. (a) below. It specifies the physical behavior of the gate when His3V and L is 0 V.

Digital
gate

TN | e
il o BRS

TS |

(a) Truth table (b) Gate block diagram
with H and L

The truth table of Fig. (c) assumes a positive logic assignment, with H = 1 and L = 0. This truth table is
the same as the one for the AND operation.

The graphic symbol for a positive logic AND gate is shown in Fig.(d) below.

x y z

0 0 0

0 1 0

1 0 0 o — &
1 1 1 y———

(c) Truth table for (d) Positive logic AND gate
positive logic

Page 88 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Now consider the negative logic assignment for the same physical gate with L =1 and H = 0.
The result is the truth table of Fig. (e) Below. This table represents the OR operation, even though the
entries are reversed. The graphic symbol for the negative logic OR gate is shown in Fig. (f) Below. The
small triangles in the inputs and output designate a polarity indicator, the presence of which along a
terminal signifies that negative logic is assumed for the signal. Thus, the same physical gate can operate
either as a positive-logic AND gate or as a negative-logic OR gate.

x y z

1 1 1

1 0 1

0 1 1 - | %
0 o 0 y |

(e) Truth table for (f) Negative logic OR gate
negative logic

Fig: Demonstration of positive and negative logic

PROPERTIES OF X-OR GATE:

1. A@QA =0; Output is ‘0’ when inputs are same.
Proof: W.K.T, X@y=xy'+xly
From above equation, A@ A = AAL + AA
=0 + 0
ADA =0

2. A@A'=1 Output is ‘1’ when inputs are different.

Proof: W.K.T, X@y=xyt+xly
From above equation, A A = AAY)H+ A'AT
=AA +A
=A+A
A QA =1

3. A@1 =A! XORasinverter.

When one input of XOR gate is connected to logic 1 .we get the complement of the other
input of XOR gate.

10= 1
11= 0 (When one input is tied to logic “1”, Output is complement form of the
other input).
Proof: W.K.T, X@y=xy'+xly
From above equation, A@ 1 =A.1*+ A’ 1
=A.0+ A
=0 + A
AD1l=A

Page 89 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

4., AP0 =A XOR as Non - inverter.

When one input of XOR gate is connected to logic 0 .we get the same output as other input

of XOR gate.
0p0= 0
0pl1= 1 (When one input is tied to logic “0”, Output is same as the other
Input) .
Proof: W.K.T, X@y=xy'+xly
From above equation, A@ 0 = AO*+AL0
=A.1+ A0
=A + 0
ADO=A

5. XOR as Modulo — 2 adder:

The XOR gate can be used as Modulo — 2 adder. Because its truth table is same as truth table
of the Modulo — 2 adder.

0+0= 0
0+1= 1
1+0= 1
1+1= 0

(Equal)

O rr kO

6. ABE@ AC= AB&C)

ABC
000
001
010
011
100
101
110
111

>
©
>
@)
>
©
D
>
@)
©
@]

A (B @ C)

PP IOOlOlOC|O|O

ROl OOC|lO|O|O

o|lr|r|o|lo|lr|r|o|®

O|lrRr| P OO OC|lO|O

Page 90 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

7. If A@B =C, then

A®C -B
B@C A&

AGBDC =0

AlB|Aa@B=c|Aa@c=B| B@c=a |APBOBC=0
0|0 0 0 0 0
01 1 1 0 0
110 1 0 1 0
11 0 1 1 0

Note:

For 3 input XOR gate, output is one only for odd number of logic 1 inputs.

Alternate Logic Gate Symbols:

= Most of the logic networks use standard symbols. But in some networks an alternative set of
symbols is used in addition to standard symbols.

= The alternative set of symbols for the 5 basic gates is shown in figure below. These alternate
symbols are equivalent to standard and their equivalence can be proved using DeMorgan’s
theorems.

= For example, we know that the output expression for standard NAND symbol is (AB)! = A! +
B*, which is same as the output expression of alternate gate symbol.

AND E:} -Y=A-a = ;:D— YeRiB=A-B=A-B

OR Jﬂ'l:D— Y=A+B A —S _}— Y=ﬁ=i+==h+ﬂ
B B —=¢

NAND ‘;j} Y=A-B ;:D'*

NOR ::Dn— Y=A+B ;:D— Y=A.B=A+B
—>— —>—

I

]

Il

INV A Y=A = A

Fig. 2.25 Standard and alternate symbols for basic logic gates

Page 91 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

sy Example 2.1 :

c

Solution :

Fig. 2.26

I1C’S OF DIFFERENT LOGIC GATES:

gﬁ ﬁg Vee
g? 2]
] @@
gﬁ]

Fig. 2.4 Pin Diagram of a 7404

Fig. 2.26 (a)

[[o] o] [[+ [

] vee

W

]

iy
=

RIRREIE)E]E

s

FEEFE

g

Fig. 2.20 Pin diagram of a 7400

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Fig. 2.10 Pin diagram of a 7408

| >

Draw the circuit shown in Fig. 2.26 using alternate symbols.

>
—1 >

GND E

14[Ucc

@
L=l =] =] B 1]]

v

Fig. 2.16 Pin diagram of a 7432

14| Vee

A

) e

oioisizichs

D I

GND E

o
é?

Fig. 2.24 Pin diagram of a 7402

Page 92 of 111

UNIVERSAL GATES

The NAND and NOR gates are known as universal gates, since any logic function can be
implemented using NAND or NOR gates. For any logic gate to be fabricated, the NAND and NOR
plays an important role.

Universality of NAND Gates:

The NAND gate can be used to generate the NOT function, the AND function, the OR function,
and the NOR function.

NOT gate realization using NAND:

An inverter can be made from a NAND gate by connecting all of the inputs together and
creating a to produce a single common input as shown in figure for a two — input gate.

A B AB
m P e S
A __ x=0 REEoE 1l [v-
x—E}YFABEXXZX*-X-—X
5 o 1 1
1 0 1
N e,
X=1 ; ¥ =0

Fig. 2.27 NOT function using NMAND gate

AND gate realization using NAND:

An AND gate function can be generated using only NAND gates. It is generated by simply
inverting output of NAND gate; i.e. ((AB)")! = AB. Figure below shows the 2 input AND gate using
NAND gates.

A © YeiBeag = 27 e)—YA=E|AB
B— B B = B—

Fig. 2.28 AND function using NAND gates

A B AB A| B AB AB
0 0 0 0 0 1 0
0 1 0 = 0 1 1 0
1 0 0 1 0 1 0
1 1 1 1 1 0 1

Table 2.7 Truth table

Page 93 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

OR gate realization using NAND:

B—Dvgr}v- B:Dj
DA
s

=A'B

1

B

Fig. 2.29 OR function using only NAND gates
NOR gate realization using NAND:

-Yg
00 g
R

Fig. 2.30 NOR function using only NAND gates

A s ALB A B A B A B AR
o] 1 0 0 1 8] 1
o 1 o = 0 1 0 1 o
1 0 o 1 0 0 1 &)
1 1 0 1 1 4] 1 (8]

Universality of NOR Gates:

The NOR gate can be used to generate the NOT function, the AND function, the OR function, and the
NOR function.

NOT gate realization using NOR:

Al 8 | mm
A Xx=0| ‘0| 0 1 |vy=1
x—4 | D vemmmeR
B 0 1 0
il @ 0
x=1| 3 Al o |v=0

Fig. 2.31 NOT function using NOR gate

Page 94 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

OR gate realization using NOR:

1 A+B A+B
5 Y=A+B=A+8B A Y=A+B=A+8B
B —} B

Fig. 2.32 OR function using NOR gates

[

A B A+B A .B A+ B N
) o o o o 1 o
o 1 1 - 0 1 o 1
1 o 1 1 o o 1
1 1 1 1 1 o 1

Table 2.9 Truth table

AND gate realization using NOR:

A
A

Fig. 2.33 AND function using NOR gates
Note : Bubble at the input of NOR gate indicates inverted input.

A B A- B ‘ A B A+B A+ B
0 0 0 0 0 1 0
0 1 0 = 0 1 1 0
1 0 0 1 0 1 0
1 1 1 1 1 0 1

Table 2.10 Truth table

NAND gate realization using NOR:

A B A-B A B A+B A+B AR
b 0 1) 0 1 0 e
0 1 1 = 0 1 1 (o] SHF

1 o 1 1 o 1 o 1

1 1 o 1 1 o 1 (o)

Truth table 2.11

Page 95 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Multi-Level Gate Implementation

LRERE

A @ oW

—

(a) AND-OR gates

(b) NAND gates

Fig. . Implementing F = (AB "+ A" B)(C+UI>")

ND-OR-INVERT Gate Implementation

A
B

(&
D

—1 O
1 > >

(a) AND-NOR

LN

E——— >

1>

5

;

= —

(b) AND-NOR

() NAND-AND

Fig AND-OR-INVERT Circuits: F = (AB + CD + E)’

OR-AND-INVERT Gate Implementation

A
B

<
D

T

I

0

(a) OR-NAND
A
B

[
D

E———{ >

(b) OR-NAND

) >—J >~

(c) NOR-OR

Fig. OR-AND-INVERT Circuits;: F = [(A + B)(C + D)E]"

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Page 96 of 111

EXCLUSIVE-OR FUNCTION
T —1 >

[>o
[-

) > >

—— >

(a) With AND-OR-NOT gates

— > —

(b)) With NAND gates

Fig. Exclusive-OR Implementations

Sum of Minterms

= A Boolean function can be
expressed algebracially from
a given truth table by
= forming a minterm for each
combination of the variables
that produces a 1 in the
function
= And then taking the OR of
all those terms
m f=XYyz+xyZ + xyz = my
+ M, +m,

-+
._.J
-
\JJ

— - O O OO A
—— 0 O = = QO O
— o, O~ O~ON
— oo O oO~CO

O == O~ O OO,

s f, = X'yz+ xy'z + xyz'4+xyz =
M+ Mg +My + M-

The Complementation

The minterms that produce a 0
f1' =m0 + m2+m3+m5+mé6
= XY'Z'+X'yz'+X'yz+xy'z+xyz'

fl =(fL)
= (X+y+z) (X+y'+2) (X+y'+Z)) (X'+y+2Z') (X'+y'+2)
= MO M2 M3 M5 M6

Example: Sum of Minterms

F = A+B'C
=A(B+B) +B'C
=AB +AB'+B'C
= AB(C+C") + AB'(C+C") + (A+A")B'C
=ABC+ABC'+AB'C+AB'C'+A'B'C
F = A'B'C +AB'C' +AB'C+ABC'+ ABC
= ml+ md+m5+ m6+m7
F(A,B,C) =2(1,4,56,7)

¥ stands for the ORing of number of minterms

Page 97 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

From Truth Table for Sum of Minterms

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
F = A+BC

= All terms that A=1 in Truth table
= All terms that B' AND C

F =ml + m4 +m5 + m6 + m7
F(ABC) =X(14567)

Product of Maxterms

Bring into a form of OR terms
= By using the distributive law
" Xxtyz =(x+y)(x+2)

= Then any missing variable x in each OR terms is ORed with xx'

= (X+y+zZ')(x+z+yy’)
=(xt+y+z)(xty+z’)(xty'+z)
Example:
F =Xy + X'z
= (xy +X) (xy +2)
= (X+X)(y+x)(x+2)(y+2)
= (X+y)(x+2)(y+2)
X'+y =x'+y+zz
= (X'+y+z)(X'+y+Z))
F = (X+y+2)(X+y'+2) (X +y+2) (X' +y+Z)
=MO M2 M4
F(x,y,2) =T11(0,2,4,5)

Conversion between canonical forms:

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

M5

Page 98 of 111

= The complement of a function expressed as the sum
of minterms equals the sum of minterms missing
from the original function
= Original function: F(A,B,C) = X(1, 4, 5, 6, 7)
= The complement of F: F'(A,B,C) = X(0, 2, 3)=mg+m,+m;
= If take the complement of F' by DeMorgan’s
theorem
= F=(F)' =(my+m,+m;)'=M,M,M,= I1(0,2,3)
= The maxterm with subscript jis a complement of
the minterm with the same subscript j and vice
versa m, =M, M, =m,

LU T T " B T T e

HOW TO CONVERT?

TInterchanging the symbols X
and IT and list those numbers
missing from the original form
by using a truth table

= Example: F=xy+xz

= In sum of minterms:
= F(x,y,2)=X(1, 3,6, 7)
= In product of maxterms:
= F(x,y,2)=11(0,2,4,5)

= =~ ololo|lo|X
= | = | OO~ O|O|=

H O = Ol | O||[O|N
Lt o I s s Y T D By | |

Standard Forms:

= Canonical forms are seldom used

= Standard form
= sum of products: ORing all the product terms
= Example: F, = y' + zy+ x'yzZ'
= product of sums: ANDing all the sum terms
= Example: F, = x(y'+z)(X'+y+z'+w)

Y e —— T

==)

(a) Sum of Products (b) Product of Sains

Page 99 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Nonstandard Form vs. Standard Forms

A
B

A

B) — N ;
¢ oD)1
E E
(a) AB + C(D + E) (b)AB + CD + CE
Fig, Three- and Two-Level implementation

Two-Level Implementation (NAND):

It’s easy to implement a Boolean function with only NAND gates if converted from a sum of
products form

Ex: F = AB+CD = ((AB)'(CD)’y’

1. add two bubbles
at the ends

A
E_

C— £ F
D_

(a)
A R
3. all-NAND B—DDI 2. convert to
circuit has c } F NANII_) gate
roduced T using
i D_DDI DeMorgan’s
() theorem
F(x.y.2)=> (1.23.4.5.7)

Procedures:

1. Simplify the function in sum of
products L 0001 T 10
2. Draw NAND gates for the first 0 RN IENIE
level X[l B —1| .
3. Draw a single AND-invert or : '
invert-OR in the second level @)
4. Add an inverter at
the first level for y — ¥

the term with a "}:D G ;:D -

single literal

F=xy' +x'y+rz

(b) (c)

Page 100 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Two-Level Implementation (NOR):

= It's easy to implement a Boolean function with only
NOR gates if converted from a product of sums form

= Ex: F=(A+B)(C+D)E

1. add two bubbles
at the ends

C
F
D
3. convert to
2. complement E’ NOR gate
this input to add using
the third bubble DeMorgan’s
(if required) theorem

Multilevel NAND Circuits:

= Procedures:

1. Convert all AND gates
to NAND gates with
AND-invert symbols

2. Convert all OR gates
F to NAND gates with

:D invert-OR symbols

(@ ANDOR s 3. Check all bubbles and
insert an inverter for
the bubble that are
not compensated by

» another bubble

F=A(CD+B)+BC’

Aw b ® YN

SN R o om0

—1 >

(a) NAND gates
Multilevel NOR Circuits:

= For NOR gates, AND — invert-AND, OR = OR-invert
= Other procedures are the same as those for NAND

3 F=(AB’+A’B)(C+D")
B F

7 () AND-OR gates complemented

A

.

w

(b} NAND gates

complemented

Fig. 327 Implementing F = (AB’ + A"B)}C + D) with NOR Gates

Page 101 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

IMPLEMENT WITH TWO-LEVEL FORMS:

Table 3-3
Implementation with Other Two-Level Forms
Equivalent Implements Simplify To Get
Nondegenerate the F' an Output
Form Function in of
(a) (b)*
AND-NOR NAND-AND AND-OR-INVERT Sum of products F
by combining 0’s
in the map
OR-NAND NOR-OR OR-AND-INVERT Product of sums by F
combining 1’s in
the map and then
complementing

*Form (b) requires an inverter for a single literal term.

AND-OR-INVERT Implementation:

= NAND-AND and AND-NOR are equivalent and both
perform the AND-OR-INVERT (AOI) function
= Require sum-of-products form in nature

= When starting from product-of-sums form, complement it
using DeMorgan’'s theorem to obtain sum-of-products form

= Ex: F=(AB + CD + E)’

A A
B B

C
F D F

N
2

(a) AND-NOR (b) AND-NOR (c) NAND-AND

OR-AND-INVERT Implementation:

= OR-NAND and NOR-OR are equivalent and both
perform the OR-AND-INVERT (OAI) function
= Require product-of-sums form in nature

= When starting from sum-of-products form, complement it
using DeMorgan’s theorem to obtain product-of-sums form

= Ex: F = [(A+B)(C+D)EY’

A A A
B B B
[y C C
F F F
D D D
E E E
(a) OR-NAND (b) OR-NAND (c) NOR-OR

Page 102 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Problems
1. Reduce A (A +B)
A(A+B)=AA+AB
=A(1+B)[1+B=1]
=A
2. Reduce A'B'C'+ A'BC'+ A'BC
ABC' + ABC'+ ABC =AC(B'+B)+ABC
=AC +ABC[A+A =1]
= A'(C' + BC)
=A(C'+B)[A+ AB=A+B]
3. Reduce AB + (AC)' + AB’C (AB + C)
AB + (AC) + AB’C (AB + C) = AB + (AC)' + AAB'BC + AB'CC
= AB + (AC)' + AB'CC [A.A' = 0]
= AB + (AC) + AB'C [A.A = 1]
=AB +A'+C'+AB'C [(AB)' = A' + B]
=A'+B+C' +ABC[A+AB =A +B]
=A'+BC+B+C [A+AB=A+B]
=A'+B+C'+BC
=A'+B+C'+B'
=A'+C'+1=1[A+1=1]
4. Simplify the following expression Y = (A + B) (A + C’) (B' + C’)
Y =(A+B)(A+C)(B'+C)
=(AA'+ AC+AB+BC) (B'+ C) [A.A'=0]
=(AC+AB +BC) (B'+C’)
= AB'C + ACC'+ ABB'+ ABC' + BB'C + BCC'

=AB'C+ ABC'

Page 103 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

5. Show that (X + Y' + XY) (X +Y") (X'Y)=0
(X+Y'+ XY)(X + Y)(XY) =X+Y+X)X+Y)X'+Y)[A+AB=A +B]
=X+Y)X+Y)XY)[A+A=1]
=X+Y")(XY)[AA=1]
= XX +Y'.X.Y=0[AA =0]
6. Prove that ABC + ABC'+ AB'C+ A'BC=AB+AC +BC
ABC + ABC' + AB'C + ABC=AB(C + C) + AB'C + ABC
=AB + AB'C+ ABC=A(B +B'C) + ABC
=A(B+C)+ABC
=AB + AC + ABC
=B(A+C)+AC
=AB + BC + AC
=AB + AC +BC ...Proved
7. Convert the given expression in canonical SOP form Y = AC + AB + BC
Y =AC+AB +BC
=AC (B+B’)+AB (C+C’)+ (A +A")BC
=ABC + ABC'+ AB'C + AB'C'+ ABC + ABC' + ABC
=ABC + ABC' +AB'C + AB'C' [A + A =1]

8. Find the complement of the functions F1 = x'yz' + x'y'z and F2 = x (y'z' + yz). By applying
De-Morgan's theorem.

F1I' =(XYyz' +xYy2)
= (Xyz)/(xy2)
=(X+y' +2)(x+y +2)
F2 =Ix(yz+y2)l
=X+ (yz' +yz)
=x'+(yz)(yz)
=X+ (y+2)(y+2)

Page 104 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

9. Simplify the following expression
Y =(A+B)(A+C)(B+C)

=(AA+AC+AB+BC)(B+C)
=(AC+AB+BC)(B+C)
=ABC+ACC+ABB+ABC+BBC+BCC
=ABC

Problem: 2-1

Demonstrate by means of truth tables the validity of the following identities:

(a) DeMorgan’s theorem for three variables: (x+y+z)’ = x’y’z’ and (xyz)'=x"+y’+z’
(b) The distributive law: x+yz = (x+y)(x+2)

Solution:

(@)

-
-
-
-
)
-

OO OO0 OO X

X+y+z | (x+y+z)’

<
N

k=R =R =K =1 P
PR OORRFROO|L

PORORFROR ON
PR RPRRERRRERO
oNoNoNoNoNoNall =
COOOR R R E|X
OORFRPRRFPOORRERK
OFrRPORFRrORFR OR|N

-
-
»
-

OOPFRPPFRPOORFrPFPK

Xyz X’ +y’+z’

=
P

<
N

—

PR PR OOOO|X
PP OORRFROO|K
RPORFRPROROR O|N
P OOO0OOOO0OOo
ORRPRRRERRERRE
OCOO0OOR R R E|X
OFRPOROROR|N
ORRPRRPRRERRERERRE

(b)

N
+
N

(x+y)(x+2)

+
<

PR PR O oo o|X
PP OORRFROO|L

PORORFROR ON
P OOOFr OO0OOoOK
PR RPRRPRR PO OIX
PR R R ROR OX
PR RPRRPRRLROOO

Page 105 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Problem: 2-2 :Reduce the following Boolean expressions to the indicated number of literals:

(@ A’C’+ ABC + AC’ to three literals

(b) X’y’+z)’ +z+xy +wz to three literals

(c) A’B(D’+C’D) + B(A+A’CD)to one literal

(d) (A’+C)(A’+C’)(A+B+C’D) to four literals
Solution:

(@ A’C+ABC+AC’ =A’C’+AC’+ABC
=C’(A’+ A)+ ABC

=C’"1 +ABC

=C’+ ABC

=(C+AB)(C’+C) [distributive]
= AB+C’

(b) X’y +z)’ +z+xy + wz =(Xy'+z) +z+wz+xy
=(Xy’+z) +z(1+ w) + xy

=(X’y'+z)’ +z+xy

=(x+y)z’ +z+xy [DeMorgan]
=(z+(x+y)) (z+2)+xy [distributive]
=(z+t(x+y)-1+xy

=X+y+Z+Xy

=X+ty+z [absorption]

() A’B(D’ + C’D) + B(A+A’CD) = A’BD’ + A’BC’D + AB+ A’BCD
= A’BD(C+C’)+ A’BD’+ AB

— A’BD+ A’BD’+ AB
— A’B(D+D’)+ AB

— A’B+ AB

—B(A™+ A)

=B

(d) (A’+C)A’+C’)(A+B+C’D) = (A’+C)(A’+C’)(A+B+C’D)
=(A’+CC)A+B+CD)

=A(A+B+C’D)
=A’A+A’B+ACD
=A’B+A’C’D
~A’(B+C’D)

Page 106 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Problem 2-3:

Find the complement of F =X+ YZ; then show that FF'=0 and F + F' =1
Solution:

F=x+yz
The dual of F is: X®(y+2)
Complement each literal: x’o(y'+ Z'): F'

FF' =(x+yz)e(x o(y' +2')=(xx"+Xyz)e(y' +2')=xyze(y +2')=Xyy'z +Xyzz' =0

F+F =(x+yz)+ (X o(y'+2')=(x+yz+x)+(x+ yz+y' +2')= 1+ yz)+(x+ yz+ y' +2')
=1+(x+yz+y' +2')=1

Problem 2-4:
List the truth table of the function: F=xy+xy'+yz

Solution:

The truth table is:

P RPRPREPRPOOOOIX
PP OORRKFOOK
RPORPORFR O O|N
PRPPFRPPRPOORFR O

Problem 2-4:
Draw the logical diagrams for the following Boolean expressions:

(@) Y=A"B’+B(A+C).

(b) Y=BC+AC’.

Page 107 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

(c) Y=A+CD.

D_
C_

(d) Y=(A+B)(C’+D).

)
=

Page 108 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Problem 2-5

Given the Boolean function F=xy’z+x’y’z+w’Xy+wXx y+wxy.

(a) Obtain the truth table of the function.

(b) Draw the logical diagram using the original Boolean expression.

(c) Simplify the function to a minimum number of literals using Boolean algebra.
(d) Obtain the truth table of the function using the simplified expression.

(e) Draw the logical diagram from the simplified expression and compare the total number of gates with

the diagram of part (b).
Solutions:

(&) The truth table of the function:

F(simplified)

0

0

X1Y
010
0O
0O
0O
011
011
011
011
110
110
110
110
111
111
111
111

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Page 109 of 111

(b)The logic diagram:

Q

=) ——— -
= ——
= >

(b) The simplified function:
F =XY’Z+X’Y’Z+ WXY + W XY+ WX’Y

=Y’Z (X+X’) +XY (W+W’) + WX'Y
=Y’ Z+ XY+ WX'Y

(c) The truth table of the simplified function has been added in the truth table of (a) as F(simplified)

(d) Logic circuit for simplified function

~
[—

U
:

e —

X3
Hj

For 1* design there are 5 AND gates with 3 inputs and 1 OR gate with 5 inputs.

For 2" design there are 2 AND gates with 2 inputs and 1 OR gate with 3 inputs and 1 AND gate with 3
inputs.

Problem 2-6:
Convert the following to the other canonical form:
(a) F(x, y,2=>.(1,3.7) (b) F(A,B,C,D)=1](0,1,2,3,4,6,12)
Solution:
(a) F(x,y, 2= >.(1,3,7)=1](0,2,4,5,6)

FIX, Y, 2)=(X+Y+2)e(X+Y+2Z)e(X+Yy+2Z)e(X+Y+2)e(X+Yy+2)
(b) F(A,B,C,D)=[](0,1,2,3,4,6,12)= ¥(5,7,8.9,10,11,13,14,15)

F(A,B,C,D)=
(ABCD) + (ABCD) + (ABCD) + (ABCD) + (ABC D) + (ABCD) + (ABCD) + (ABC D) + (ABCD)

Page 110 of 111
D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Problem 2-7:

Show that the dual of the exclusive-OR is equal to its complement.

Solution:
XOR: XY =XY’'+X’Y
Dual of XOR: =(X+Y’) e (X+Y)
=XX+ XY +X’Y’ +YY’
=XY +XY’
Complement of XOR (XNOR) =(X®Y)y
= (XY’ +XY)
= (X+Y) e (X +Y")
= XX+ XY + XY+ YY’
=XY + XY’
Problem 2-8:

Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

Solution:
Truth table for a NAND gate:

Truth table for positive logic NAND gate (L=0 H=1)withHand L:

X
<

IITrr
IrITr
‘I—III|N‘

Truth table for negative logicletL=1,H=0

o or r|x
or orlx
‘I—‘OOOlN‘

This resulting truth table is that of the NOR gate using negative logic.

D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.

Page 111 of 111

