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UNIT - III 

COMBINATIONAL LOGIC CIRCUITS 

Overview 

 Gates, latches, memories and other logic components are used to design computer systems and 

their subsystems. 

 Good understanding of digital logic is necessary in order to learn the fundamentals of computing 

systems organization and architecture. 

 

 Two types of digital logic: 

 

 Combinatorial logic: Output is a function of inputs 

 

 Sequential logic: Output is a complex function of inputs, previous inputs and previous 

outputs 

 

 Neither combinatorial logic nor sequential logic is better than the other. In practice, both are used 

as appropriate in circuit design. 

 

• Combinatorial logic – The output of this type of logic is dependent solely on its current inputs. 

When certain input values are set, a combinatorial circuit generates output values corresponding 

to those input values. When the input of the combinatorial logic is changed, the outputs are 

changing to reflect the changes in the new input values. Previous values of the inputs do not 

matter; the current outputs depend solely on the current inputs. 

• Sequential logic – The outputs of a sequential logic circuit depend on both the current inputs and 

on previous inputs and outputs of the circuit. Sequential elements have storage elements that 

record the state of the circuit. In other words, the state information combined with the inputs is 

generating the outputs. The state and inputs also combine to generate a new state of the circuit. 

The same inputs in a sequential circuit may generate different outputs and different new states, 

depending on the circuit‟s current state. 

In practice both types of logic are used. The sequential logic include combinatorial logic but the 

reverse is not true. 

Note:  

 

Combinational circuits:  

 

 The outputs are a function of the current inputs. 

 

Sequential circuits:  

 

 Contain memory elements. 

 The outputs are a function of the current inputs and the state of the memory elements. 

 The outputs also depend on past inputs. 
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COMBINATIONAL LOGIC CIRCUITS: 

 

Combinational logic circuits are circuits in which the output at any time depends upon the 

combination of input signals present at that instant only, and does not depend on any past conditions. 

 

The block diagram of a combinational circuit with m inputs and n outputs is shown in Fig. 

 

 A combinational circuit has m – input variables, 2
m 

possible combinations of input values and n- 

output variables. 

 

 
Fig: Block diagram of a combinational circuit. 

 

 In particular, the output of particular circuit does not depend upon any past inputs or outputs i.e. 

the output signals of combinational circuits are not feedback to the input of the circuit. 

 Moreover, in a combinational circuit, for a change in the input, the output appears immediately, 

except for the propagation delay through circuit gates. 

 The combinational circuit block can be considered as a network of logic gates that accept signals 

from inputs and generate signals to outputs.  

 For m input variables, there are 2
m

 possible combinations of binary input values. Each input 

combination to the combinational circuit exhibits a distinct (unique) output. Thus a combinational 

circuit can be described by n Boolean functions, one for each input combination, in terms of m 

input variables with n is always less than or equal to 2
m

 [n < 2
m

]. 

 

Specific functions 

 Adders, subtractors , comparators, decoders, encoders, and multiplexers 

 MSI circuits or standard cells. 

 

Analysis Procedure: 

 

The Analysis of a combinational circuit is the Procedure by which we can determine the function that the 

circuit implements. 

 

 Make sure that it is combinational not sequential with no feedback path or memory elements. 

 Label all the gate outputs that are function of input variables with arbitrary symbols, and 

determine the Boolean function for each gate output. 

 Label the gates that are function of input variables and previously labelled gates and determine the 

Boolean function for them. 

 Repeat the above step until the Boolean function for outputs of the circuit are obtained. 

 Finally, substituting previously defined Boolean functions, obtain the output Boolean function in 

terms of input variables. 
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Example: 

 

A straight-forward procedure  

 

 F2  = AB+AC+BC 

 T1 = A+B+C 

 T2 = ABC 

 T3 = F2'T1 

 F1 = T3+T2 

 F1 = T3+T2  = F2'T1+ABC     

                      = (AB+AC+BC)'(A+B+C) +ABC  

           = (A'+B') (A'+C') (B'+C') (A+B+C) +ABC  

                      = (A'+B'C') (AB'+AC'+BC'+B'C) +ABC   

                     = A'BC'+A'B'C+AB'C'+ABC 

 

Once the Boolean function of outputs of circuit is known we can easily determine the truth table using 

the following steps: 

 Determine the number of input variables in the circuit. For n inputs, list the binary numbers from 

0 to 2 
n-1

 in a table. 

 Determine the output of selected gates for all input combinations. 

 Obtain the truth table for the outputs of those gates that are a function of previously defined 

values. 

 Repeat the above step until we get truth table for final outputs. 

 

The truth table: 
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Design Procedure: 

 

The design procedure of combinational circuits 

 

 State the problem definition (system specification). 

 Determine the inputs and outputs. 

 The input and output variables are assigned symbols. 

 Derive the truth table indicating the relationship between input and output variables. List all the 

combination of input variables. 

 Derive the simplified Boolean functions for each output in terms of input variables. 

 Draw the logic diagram and verify the correctness. 

 

Functional description 

 Boolean function. 

 HDL (Hardware description language) 

 Verilog HDL 

 VHDL 

 Schematic entry. 

 

Logic minimization 

 Number of gates 

 Number of inputs to a gate 

 Propagation delay 

 Number of interconnection & 

 Limitations of the driving capabilities. 

 

Example:  Code conversion:  BCD to excess-3 code 

 

The truth table  

 
Simplification using K-Map: 
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The simplified functions 

 z = D'               

 y = CD +C'D'     

 x = B'C + B'D+BC'D'             

 w = A+BC+BD 

 

Another implementation 

 

 z = D'               

 y = CD +C'D'  

   = CD + (C+D)'           

 x = B'C + B'D+BC'D„  

   = B'(C+D) +B(C+D)'         

 w = A+BC+BD 

 

 

The logic diagram: 

 

 

ARITHMETIC CIRCUITS 

 

The logic circuits which are used for performing the digital arithmetic operations such as addition, 

subtraction, multiplication and division are called „arithmetic circuits‟. 

 

Adders 

 

The most common arithmetic operation in digital systems is the addition of two binary digits. The 

combinational circuit that performs this operation is called a half-adder. 

 

 Adders are used not only to perform addition but also to perform subtraction, multiplication and 

division. 

 The most basic adder is the half adder. 

 Inputs two 1-bit values, A and B, and outputs their 2-bit sum as bits C (Carry) and S (Sum).  
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Half Adder 

 

1. Fig below shows the block diagram of half adder (HA). 

 

 0+0=0 ; 0+1=1 ; 1+0=1 ; 1+1=10 

 Two input variables: A, B. 

 wo output variables: C (carry), S (sum) 

 

 
Fig:  Half adder 

 

It has two inputs A and B, that are two 1-bit members, and two output sum (S) and carry (C) produced by 

addition of two bits. 

 

 

2. Truth Table: 

 

The sum output is 1 when any of inputs (A and B) is 1 and the carry output is 1 when both the inputs are 

1. 

 

3. Using a two variable k-map, separately for both outputs S and C. 

 

 

                      S = AB' + A'B                    C= AB 

                         = A ⊕ B. 
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4. Logical Implementation. 

 

(i) Using Basic gates (as shown in Fig.). 

 

(ii) Using XOR gate as shown in Fig. below. 

 

Full Adder: 

Full adder is a combinational circuit that performs the addition of three binary digits. 

 

1. Fig. below shows a full adder (FA). It has three inputs A, B and C and two outputs S and Co 

produced by addition of three input bits. Carry output is designated Co just to avoid confusion 

between with I/p variable C. 

 

Fig: Full adder 

2. Truth Table: The eight possible combinations of three input variables with their respective 

outputs are shown. We observe that when all the three inputs are 1, the sum and carry both 

outputs, are 1. 
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3. Using a three variable map for both outputs. 

 

            S = ABC + AB'C' + A'BC' + A'B'C and    C0 = AB + AC + BC. 

 

4. Logical Implementation. (i) Using basic gates as shown in Fig. 

 

(ii) A „Full Adder‟ can also be implemented using two half adders and an „OR‟ Gate as shown in Fig. 

 

The Sum,            S = ABC + AB'C' + A'BC' + A'B'C 

            = ABC + A'B'C + AB'C' + A'BC' 

= C (AB + A'B') + C' (AB' + A'B) 

= C (AB' + A'B)' + C' (AB' + A'B) 

= (A ⊕ B) ⊕ C 

 

and the carry           C0 = AB + AC + BC 

= AB + C (A + B) 

= AB + C (A + B) (A + A') (B + B') 

= AB + C [AB + AB' + A'B] 

= AB + ABC + C (AB' + A'B) 

= AB (1 + C) + C (A ⊕ B) 

= AB + C (A ⊕ B) 

 

Therefore, S = (A ⊕ B) ⊕ C  and   C0 = AB + C (A ⊕ B) 

 

 

Fig: Implementation of a full- adder. 
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Block Diagram representation of a full-adder using two half adders: 

 

 S1 and C1 are outputs of first half adder (HA1) 

 S2 and C2 are outputs of second half adder (HA2) 

 A, B and C are inputs of Full adder. 

 Sum and Cout are outputs of full adder. 

Subtractors 

 

The logic circuits used for binary subtraction, are known as „binary subtractors‟. 

 

Half Subtractor: The half subtractor is a combinational circuit which is used to perform the subtraction 

of two bits. 

 

1. Fig. below shows a half subtractor. (HS) It has two inputs, A (minuend) and B (subtrahend) and two 

outputs D (difference) and B0 (Borrow). [The symbol for borrow (B0) is taken to avoid confusion with 

input variable B] produced by subtractor of two bits. 

 

 

Fig:  Half subtractor. 

2. Truth Table 

The difference output is 0 if A = B and 1 if A ≠ B; the borrow output is 1 whenever A < B. If A < B, the 

subtraction is done by borrowing 1 from the next higher order bit. 
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3. Using a two variable map, for outputs D and B0. 

 
D = AB' + A'B                B0 = A'B 

        = A ⊕ B 

 

4. Logical Implementation shown in Fig.  

 

    (a) Using Basic gates (b) using XOR gate 

 
Fig: Basic gate implementation & X-OR gate implementation of half subtractor. 

 

Full subtractor: Full subtractor is a combinational circuit that performs the subtraction of three binary 

digits. 

 

1. Fig. shows a full subtractor (FS). 

 

It has three inputs A, B and C and two outputs D and B0 produced by subtraction of three input bits. 

     

 
Fig: Full subtractor. 

2. Truth Table: 

The eight possible combinations of three input variables with their respective outputs are shown. 

We observe that when all the three inputs are 1, the difference and borrow both outputs are 1.  
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3. Using a three variable map for both outputs. 

 
D = ABC + AB'C' + A'BC' + A'B'C,       B0 = A'B + A'C + BC 

 

4. Logical implementation: 

 

 A „full subtractor‟ can also be implemented using two „half subtractors‟ and an 

„OR‟ gate as shown in Fig. 

 

The difference     D  = ABC + AB'C' + A'BC' + A'B'C 

= ABC + A'B'C + AB'C' + A'BC' 

= C (AB + A'B') + C' (AB' + A'B) 

= C (AB' + A'B)' + C' (AB' +A'B) 

= C (A ⊕B)' + C' (A ⊕ B) 

= (A ⊕ B) ⊕ C 

 

and the borrow   B0  = A'B + A'C + BC 

= A'B + C (A' + B) 

= A'B + C (A' + B) (A + A') (B + B') 

= A'B + C [A'B + AB + A'B'] 

= A'B + A'BC + C (AB + A'B') 

= A'B (C + 1) + C (A ⊕ B)' 

= A'B + C (A ⊕ B)' 

 

D = (A ⊕ B) ⊕ C   and    B0 = A'B + C (A ⊕ B)' 

 

 
 

Block Diagram Representation of a full subtractor using two half subtractors : 

 

 
 

 D1 and B01 are outputs of first half subtractor (HSI) 

 D2 and B02 are outputs of second half subtractor (HS2) 

 A, B and C are inputs of full subtractor. 

 Difference and Bout are outputs of full subtractor. 
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PARALLEL BINARY ADDERS 

 Two or more full-adders are connected to form parallel binary adders. Here we will learn the basic 

operation of this type of adder and its associated input and output functions. 

 As we know that, a single full-adder is capable of adding two 1-bit numbers and an input carry. 

To add binary numbers with more than one bit, we must use additional full-adders.  

 When one binary number is added to another, each column generates a sum bit and a 1 or 0 carry 

bit to the next column to the left, as illustrated here with 2-bit numbers. 

 

 To add two binary numbers, a full-adder is required for each bit in the numbers. So for    2-bit 

numbers, two adders are needed; for 4-bit numbers, four adders are used; and so on.  

 In general n-bit numbers, n full adders are used. The carry output of each adder is connected to 

the carry input of the next higher-order adder, as shown in Figure below for a 2-bit adder.  

 

Fig: Block diagram of a basic 2-bit parallel adder using two full-adders. 

 Note that either a half-adder can be used for the least significant position or the carry input of a 

full-adder can be made 0 (grounded) because there is no carry input to the least significant bit 

position. 

 In Figure above the least significant bits (LSB) of the two numbers are represented by A1 and B1. 

The next higher-order bits are represented by A2 and B2. The three sum bits are S1, S2 and S3. Note 

that the output carry from the left-most full-adder becomes the most significant bit (MSB) in the 

sum, S3. 
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Example:  

Determine the sum generated by the 3-bit parallel adder in Figure below and show the intermediate 

carries when the binary numbers 101 and 011 are being added. 

 

Solution: The LSBs of the two numbers are added in the Right-most full-adder. The Sum bits and the 

intermediate carries are indicated as shown in Figure above. 

Four-Bit Parallel Adders  

A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented with four full-adder 

stages as shown in Figure. 

 Again, the LSBs (A1 and B1) in each number being added go into the right-most full-adder: the higher-

order bits are applied as shown to the successively higher-order adder, with the MSBs (A4 and B4) in 

each number being applied to the left-most full-adder. The Carry output of each adder is connected to the 

carry input of the next higher-order adder as indicated. These are called internal carries. 

 

Fig: Block diagram of 4 – Bit Parallel Adder. 

 

Fig: logic symbol of 4 – Bit Parallel Adder. 
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4 bit 2’s complement Subtractor: 

 The subtraction A – B can be done by taking the 2‟s complement of B and adding it to A because 

A- B = A + (-B) 

 It means if we use the inverters to make 1‟s complement of B (connecting each Bit to an inverter) 

and then add 1 to the least significant bit (by setting carry C0 to 1) of binary adder, then we can 

make a binary subtractor. 

 

4 - Bit Adder / Subtractor: 

 The addition and subtraction can be combined into one circuit with one common binary adder.  

 The mode M controls the operation. When M=0 the circuit is an adder when M=1 the circuit is 

subtractor. It can be done by using exclusive-OR for each Bi and M.  

Note:  1 ⊕ x = x‟ and 0 ⊕ x = x  
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RIPPLE CARRY VERSUS LOOK-AHEAD CARRY ADDERS 

Parallel adders can be classified into two categories based on the way in which internal carries 

from stage to stage are handled.  

The categories are: 

1. Ripple carry Adder and  

2. Look-ahead carry.  

Externally, both types of adders are the same in terms of inputs and outputs. The difference is the speed at 

which they can add numbers. The look-ahead carry adder is much faster than the ripple carry adder. 

The Ripple Carry Adder: 

 A ripple carry adder is one in which the carry output of each full-adder is connected to the carry 

input of the next higher-order stage (a stage is one full-adder).  

 The sum and the output carry of any stage cannot be produced until the input carry occurs; this 

causes a time delay in the addition process, as illustrated in Figure below.  

 The carry propagation delay for each full-adder is the time from the application of the input carry 

until the output carry occurs, assuming that the A and B inputs are already present. 

 

Fig: A 4-bit parallel ripple carry adder showing "worst-case" carry propagation delays. 

 Full-adder 1 (FA 1) cannot produce an output carry until an input carry is applied.  

 Full-adder 2 (FA2) cannot produce an output carry until full-adder 1 produces an output carry.  

 Full-adder 3 (FA3) cannot produce an output carry until an output carry is produced by FA1 

followed by an output carry from FA2, and so on.  

 As we can see in Figure, the input carry to the least significant stage has to ripple through all the 

adders before a final sum is produced. The cumulative delay through all the adder stages is a 

"worst-case" addition time. The total delay can vary, depending on the carry bit produced by each 

full-adder.  

 If two numbers are added such that no carries (0) occur between stages, the addition time is 

simply the propagation time through a single full-adder from the application of the data bits on the 

inputs to the occurrence of a sum output. 

The look-Ahead Carry (more complex mechanism, yet faster): 

 The speed with which an addition can be performed is limited by the time required for the carries 

to propagate, or ripple, through all the stages of a parallel adder.  

 A clear solution for reducing the carry propagation delay time is to employ faster gates with 

reduced delays. However, physical circuits have a limit to their capability. 
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 Another solution is to increase the equipment complexity in such a way that the carry delay time 

is reduced. 

 There are several techniques for reducing the carry propagation time in a parallel adder. The most 

widely used technique of speeding up the addition process is by eliminating this ripple carry delay 

is called look- ahead carry addition. The look-ahead carry adder anticipates the output carry of 

each stage, and based on the inputs, produces the output carry by either carry generation or carry 

propagation. 

 

Fig: Full Adder with Pi (Carry propagate) and G i (Carry Generate). 

Consider the full adder shown in figure above. Here we define two new binary variables as 

 Pi =Ai ⊕Bi 

 Gi = Ai Bi 

The output sum and carry can be expressed in terms of Pi and Gi  as  

 Si = Pi ⊕Ci 

 C i + 1 = Gi + Pi Ci 

Where Gi is called carry generate and it produces a carry of 1 when both Ai and Bi are 1, regardless of 

the input carry Ci .  

Pi is called carry propagate because it is the term associated with the propagation of the carry from C i   

to C i + 1. 

The Boolean function for the carry outputs of each stage is as follows and substitute for each C i   its value 

from the previous equations. 

C 0 = input carry 

C 1 = G0  + P0 C0 

C 2 = G1  + P1 C1 

      = G1  + P1 (G0  + P0 C0) 

      = G1  + P1 G0  + P1 P0 C0 

C 3 = G2  + P2 C2 

      = G2  + P2 (G1  + P1 G0  + P1 P0 C0) 

      = G2  + P2 G1  + P2P1 G0  + P2P1 P0 C0 
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Since the Boolean function for each output carry is expressed in sum of products, each function 

can be implemented with one level of AND gates followed by an OR gate (or by two level NAND). The 

3 Boolean functions are implemented in the carry look ahead generator as shown in figure below.  

 

Fig: 4 – Bit Adder with Carry Look Ahead. 

 We can observe that, C 3 does not have to wait for C 2 and C 1 to propagate: in fact, C 3 is 

propagated at the same time as C 2 and C 1. 

 Each sum output requires two X –OR gates. The output of the first X-OR gate generates Pi 

Variable, and the AND gate generates Gi variable.  

 The carries are propagated through the carry look ahead generator and applied as inputs to the 

second X-OR gate.  

 All output carries are generated after a delay through the two levels of gates. Thus, outputs S1 

through S3 have equal propagation delay times. The two-level circuits for the output carry C4 is 

not shown. This circuit can be easily derived by the equation substitution method. 
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Serial Adder: 

 

Shift register with added circuitry can be used to design a serial adder.  

 

It consists of :  

 

 Two right shift registers, 

 Full adder and  

 D- flip – flop. 

 

Serial Addition Process:  

 

o A full adder is used to perform bit by bit addition and D – flip – flop is used to store the 

carry output generated after addition. This carry is used as carry input for the next 

addition.  

o Initially, the D- flip – flop is cleared and addition starts with LSBs of both register.  

o After each clock pulse data within the right shift register are shifted right,       1 – bit and 

we get the bits from next digit and carry of previous addition as new inputs for the full 

adder.  

o The sum bit of the full adder is connected as serial input o shift register A. Thus the result 

of the serial addition gets stored in register A.  

o The new number can be added to the contents of register A by loading a new number into 

register B and repeating the process of serial addition. 

 

Fig: Serial Adder 
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Comparison between Serial and Parallel Adder: 

S.No: Serial Adder Parallel Adder 

1 Serial adder uses shift registers 
Parallel adder uses registers with parallel 

loads 

2 
The serial adder requires only one full – adder 

circuit. 

The number of full – adder circuits in the 

parallel adder equals to the number of bits 

in the binary numbers. 

3 The serial adder is a sequential circuit. 
Excluding the register, the parallel adder 

is purely combinational circuit. 

4 
Time required for addition depends on 

number of bits. 

Time required for addition does not 

depend on number of bits. 

5 It is slower. It is faster. 

 

Overflow: 

 When 2 numbers of n digits each are added and the sum occupies n+ 1 digit, we say that an 

overflow occurred. This is true for binary or decimal numbers whether signed or unsigned.  

 When the addition is performed with paper and pencil, an overflow is not a problem, since there is 

no limit by the width of the page to write down the sum.  

 Overflow is a problem in digital computers because the number of bits that hold the number is 

finite and the result contains n+ 1 bit cannot be accommodated.  

 For this reason, many computers detect the occurrence of an overflow, and when it occurs, a 

corresponding flip-flop is set that can then be checked by the user. 

 The detection of an overflow after the addition of 2 binary numbers depends on whether the 

numbers are considered to be signed or unsigned.  

 When 2 unsigned numbers are added, an overflow is detected from the end carry out of the most 

significant position.  

 In the case of signed numbers, the left most bit always represent the sign and negative numbers 

are in 2‟s complement form. When 2 signed numbers are added, the sign bit is treated as part of 

the number and the end carry does not indicate an overflow. 

 An overflow cannot occur after an addition if one number is positive and other number is 

negative, since adding a positive number to a negative number produces a result which is smaller 

than the larger of the two numbers.  

 An overflow may occur if the 2 numbers added are both positive and both negative.  

 

 

 

 

 

For example, 
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Carries: 0 1      

    +70     0 1000110 

   + 80     0 1010000 

 + 150     1 0010110 

Carries: 1 0      

    -70     1 0111010 

   - 80     1 0110000 

 - 150     0 1101010 

 Note that the 8 – bit result that should have been positive has a negative sign bit and the       8 – bit 

result that should have been negative has a positive sign bit.  

 If however, the carry out of sign bit position is taken as the sign bit of the result, then the 9-bit 

answer so obtained will be correct. Since the answer cannot be accommodated within 8-bits, we 

say that an overflow has occurred.  

 An overflow condition can be detected by observing the carry into the sign bit and carry out of 

sign bit position. If these two carries are not equal, an overflow has occurred. This is indicated in 

the example where the two carries are not equal. If the 2 carries are applied to an X-OR gate an 

overflow is detected when the output is equal to 1. 

The binary adder-subtractor circuit with outputs C and V is shown in figure below. 

 

Fig: Binary adder-subtractor circuit with outputs C and V. 
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DECIMAL (BCD) ADDER 

BCD is a numerical code and can be used in arithmetic operations. Addition is the most important 

operation because the other three operations (subtraction, multiplication, and division) can be 

accomplished by the use of addition.  

Steps for addition of two BCD numbers:   

 Add the two BCD numbers, using the rules for binary addition. 

 If a 4-bit sum is equal to or less than 9, it is a valid BCD number. 

 If a 4-bit sum is greater than 9, or if a carry out of the     4-bit group is generated, it is an invalid 

result. Add 6 (0110) to the 4-bit sum in order to skip the six invalid states and return the code to 

8421.  

 If a carry results when 6 is added, simply add the carry to the next 4-bit group. 

Logic circuit to detect Sum greater than 9 
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Y = S3 S2 + S3 S1 

Y = 1 indicates sum is greater than 9. We can put one more term, Cout in the above expression to check 

whether carry is 1. If any one condition is satisfied we add 6 (0110) in the sum. 

 

Fig: Block diagram of BCD Adder. 
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Block diagram of 8 – Bit BCD Adder: 
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DECIMAL SUBTRACTOR: 

 

Steps to perform 9’s complement BCD subtraction: 

 

 Find the 9‟s complement of a negative number 

 Add two numbers using BCD addition 

 If carry is generated add the carry to the result otherwise find the 9‟s complement of the result. 
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Binary Multiplier: The multiplication process for the binary numbers is similar to the decimal 

numbers. The binary multiplication is simple than decimal multiplication since it involves only 1‟s and 

0‟s. 

 

Rules for binary multiplication: 

 

 0 × 0 = 0 

 0 × 1 = 0 

 1 × 0 = 0 

 1 × 1 = 1 

 

Generalized multiplication process for 2 × 2 for two unsigned    2 - bit numbers: 

 

Partial products – AND operations 

 

 
4-bit by 3-bit binary multiplier: 

 

 

Fig: 4-bit by 3-bit binary multiplier. 
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MODULAR DESIGN USING IC CHIPS 

MAGNITUDE COMPARATOR 

 Magnitude comparator is a combinational circuit that compares two numbers, A and B, and 

determines their relative magnitudes. The outcome of the comparison is specified by three binary 

variables that indicates whether  A>B, A=B and A<B.  

 The circuit for comparing two n-bit numbers has 2 
2n

 entries in the truth table and becomes too 

cumbersome even with n= 3.  

 The comparison of two numbers 

 outputs: A>B, A=B, A<B 

 Design Approaches 

 The truth table 

 2
2n 

entries - too cumbersome for large n 

 use inherent regularity of the problem 

 reduce design efforts 

 reduce human errors  

2 – Bit Comparator 

 

Fig: 2 – Bit Comparator 

Let the 2 numbers be 

 A = A1 A0 

 B = B1 B0 
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Truth table for 2- Bit Comparator: 

 

The circuit for comparing two 2 – bit numbers requires 16 entries in the truth table and we can construct. 

But, the circuit for comparing two n-bit numbers has 2 
2n

 entries in the truth table and becomes too 

cumbersome even with n= 3. 

So we follow finite set of steps to overcome the above problem. 

The algorithm is a direct process, which is used to compare the relative magnitude of 2 numbers. 

Consider 2 numbers A and B, with 4 bits each. Write down the coefficients with descending significance 

A = A3 A2 A1 A0 

B = B3 B2 B1 B0 

 The 2 numbers are equal if all the pairs of significant digits are equal:    A3 = B3 and A2 = B2 and 

A1 = B1 and A0 = B0. 

 When the numbers are binary, the digits are either 1 or 0, and the equality relation of each pair of 

bits can be expressed logically with an X-NOR gate as  

Xi = Ai Bi + Ai
1 
Bi

1
    for i = 0,1,2,3 

Where Xi =1 only if the pairs of bits in positions I are equal (i.e., if both are 1 or both are 0). 

 The equality of 2 numbers, A and B, is displayed in a combinational circuit by an output binary 

variable that we designate by the symbol (A=B). This binary variable is equal to 1 if the input 

numbers, A and B are equal, and it is equal to 0 otherwise. For the condition to exist, all Xi 

variables must be equal to 1.  

(A=B) = X3 X2 X1 X0 

 The binary variable (A=B) is equal to 1 only if all pairs of digits of the two numbers are equal. 

 The procedure for binary numbers with more than 2 bits can also be found in the similar way. The 

expressions for the output of  4-bit magnitude comparator is as follows, in which 

(A= B)    = X3X2X1X0 

(A> B)    = A3B3
1 
+ X3 A2B2

1
 + X3X2 A1B1

1 
+ X3X2X1 A0B0

1
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(A< B)   = A3
1
B3 + X3 A2

1
B2 + X3X2 A1

1
B1 + X3X2X1 A0

1
B0      

 The symbols (A>B) and (A<B) are binary output variables that are equal to 1 when A>B or A<B, 

respectively. 

 

Decoders: 

A Decoder is a multiple-input, multiple-output logic circuit which converts coded inputs into coded 

outputs, where the input and output codes are different. The input code generally has fewer bits than the 

output code. Each input code word produces a different output code word, i.e., there is one-to-one 

mapping from input code words to output code words. 

 A decoder accepts a binary value as input and decodes it.  

 It has n inputs and 2
n
 outputs, numbered from 0 to 2

n
 -1. 

 Each output represents one minterm of the inputs 

 The output corresponding to the value of the n inputs is activated 

 

• An n-to-2
n
 decoder takes an n-bit input and produces 2

n
 outputs. The n inputs represent a binary 

number that determines which of the 2
n
 outputs are uniquely true. 

• For n=2, 2-to-2
2 
i.e., we get 2-to-4 decoder. 

• A 2-to-4 decoder operates according to the following truth table. 

– Let the 2-bit input is called S1S0, and the four outputs are Q0-Q3. 

– If the input is the binary number i, and then output Qi is uniquely true. 

• For example, if the input S1 S0 = 10 (decimal 2), then output Q2 is true, and Q0, Q1, Q3 are all 

false. 

• This circuit “decodes” a binary number into a “one-of-four” code.  
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• By following the design procedures, we have a truth table, so we can write equations for each of 

the four outputs (Q0-Q3), based on the two inputs (S0-S1). 

 

• In this case there‟s not much to be simplified. Here are the equations: 

 Q0 = S1‟ S0‟ 

 Q1 = S1‟ S0 

 Q2 = S1 S0‟ 

 Q3 = S1 S0 

 

A truth table and logic diagram of a 2-to-4 decoder is as follows: 

 

2-to-4 decoder with Enable inputs: 

• Many devices have an additional enable input, which is used to “activate” or “deactivate” the 

device. 

• For a decoder, 

– EN=1 activates the decoder, so it behaves as specified earlier. Exactly one of the outputs 

will be 1. 

– EN=0 “deactivates” the decoder. By convention, that means all of the decoder‟s outputs 

are 0. 

• We can include this additional input in the decoder‟s truth table as shown below: 
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• In the above table, note that whenever EN=0, the outputs are always 0, regardless of inputs S1 and 

S0. 

• So, we can abbreviate the table by writing x‟s in the input columns for S1 and S0 as below.  

 

 

Fig: logic diagram of a 2-to-4 decoder with Enable input. 

3-to-8 decoder: 

• Larger decoders are similar. Here is a 3-to-8 decoder. 

– The block symbol is shown below. 
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The truth table (without EN) and output equations are as follows. 

 
 

 
Note: Only one output is true for any input combination. 

Advantages: 

• The truth table and equations look familiar and are easy to form the equations. 

 

• Decoders are sometimes called minterm generators. 

– For each of the input combinations, exactly one output is true. 

– Each output equation contains all of the input variables. 

– These properties hold for all sizes of decoders. 

• This means that we can implement any arbitrary functions with decoders. If we have a sum of 

minterms equation for a function, you can easily use a decoder (a minterm generator) to 

implement that function. 
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Example: 1 

Designing a Full- Adder using Decoder. 

• Let‟s make a circuit that adds three 1-bit inputs X, Y and Z. 

• We need two bits to represent the total; let‟s call them C and S, for “carry” and “sum.” Note that 

C and S are two separate functions of the same inputs X, Y and Z. 

• Here are a truth table and sum-of-minterms equations for C and S. 

 

Decoder-based adder: 

• Here, two 3-to-8 decoders implement C and S as sums of minterms. 

• The “+5V” symbol (“5 volts”) is how we represent a constant 1 or true in Logic Works. We use it 

here so the decoders are always active. 
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Using just one decoder: 

• Since the two functions C and S both have the same inputs, we could use just one decoder instead 

of two. 

 

Construction of a 3-to-8 decoder using two 2 – to – 4 decoder: 

• We can construct a 3-to-8 decoder directly from the truth table and equations below, just like how 

we built the 2-to-4 decoder. 

• Another way to design a decoder is to break it into smaller pieces.  

• Notice some patterns in the table below: 

– When S2 = 0, outputs Q0-Q3 are generated as in a 2-to-4 decoder. 

– When S2 = 1, outputs Q4-Q7 are generated as in a 2-to-4 decoder. 
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Decoder expansion: 

• We can use enable inputs to string decoders together. Here‟s a 3-to-8 decoder constructed from 

two 2-to-4 decoders: 

 

Fig : Block diagram and truth table of 3- to – 8 Decoder. 

• Be careful not to confuse with the “inner” inputs and outputs of the 2-to-4 decoders with the 

“outer” inputs and outputs of the 3-to-8 decoder (which are in boldface). 

• We can verify that this circuit is a 3-to-8 decoder, by using equations for the    2-to-4 decoders to 

derive equations for the 3-to-8. 

A variation of the standard decoder: 

• The decoders we‟ve seen so far are active-high decoders. 

 

• Active-high decoders generate minterms , as we‟ve already seen. 

• An active-low decoder is similar to active- High decoder, but with an inverted EN input and 

inverted outputs.  

 

• The output equations for an active-low decoder are similar, yet somehow different. 

• The active-low decoders generate maxterms. 
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Building a 2 – Bit Decoder with NAND Gates: 

– Add an enable signal (E) 

 

 

Note: Implementation with NANDs has only one 0 active, for each input combination,  

if E = 0. 

Active-low decoder example: 

• We can use active-low decoders to implement arbitrary functions too, but as a product of 

maxterms. 

Example: 2 

The implementation of the function, f(X, Y, z) = M (4, 5, 7), using an active-low decoder is as follows: 

 

• The “ground” symbol connected to EN represents logical 0, so this decoder is always 

enabled. 
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Example: 3 

Implement the Full – Adder, using an active-low decoder. 

 

 C (X, Y, Z) = Π M (0, 1, 2, 4) 

 S (X, Y, Z) = Π M (0, 3, 5, 6) 

 
Implementation of 4 – to – 16 Decoder using 3 – to – 8 Decoders:  

 Enable can also be active high 

 In this example, only one decoder can be active at a time. 

 x, y, z effectively select output line for w  
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ENCODER 

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2
n  

input 

lines and n output lines. The output lines generate the binary code corresponding to the input value. 

 If the decoder's output code has fewer bits than the input code, the device is usually called an 

encoder. 

E.g. 2
n
-to-n   

 One of 2
n
 inputs = 1  

 Output is an n-bit binary number 

 

 

Fig: Block Diagram of Encoder. 

8 –to- 3 Binary Encoder 

 

Fig: Truth table & Logic Diagram of 8 – to – 3 Encoder. 

Note: At any one time, only one input line has a value of 1. 

The encoder can be implemented with OR gates whose inputs are determined directly from the 

truth table. The output y2 is equal to 1 for the input octal digits I4, I5, I6, I7. The output y1 is equal to 1 for 

the input octal digits I2, I3, I6, I 7. The output y0 is equal to 1 for the input octal digits I1, I3, I5, I 7. 

Limitation of Encoder:  

 The Encoder has a limitation that only one input can be active at any given time.  
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Ambiguities:  

1. If two inputs are active simultaneously, the output produces an undefined combination. For 

example, if I3 and I6 are 1 simultaneously, the output of the Encoder will be 111 because all the 3 

outputs are equal to 1. This does not represent either binary 3 or binary 6. To resolve this 

ambiguity, encoder circuits must establish an input priority to ensure that only one input is 

encoded. If we establish a higher priority for inputs with higher subscripts numbers, and if both I3 

and I6 are 1 at the same time, the output will be 110 because I6 has higher priority than I3. 

2. Another ambiguity in the Octal – to – Binary encoder is that an output with all 0‟s is generated 

when all the inputs are 0; this output is same as when I0 is equal to 1. The discrepancy can be 

resolved by providing one more output to indicate that at least one input is equal to 1. 

To overcome the above Ambiguities we use Priority Encoder. 

Priority Encoder:  

  A priority encoder is an encoder circuit that includes the priority function. The operation 

of the priority encoder is such that if two or more inputs are equal to 1 at the same time, the input 

having the highest priority will take precedence.  

  In addition to 2 outputs Y1 and Y0, the circuit has a      3 rd output designated by V; this is 

a valid bit indicator that is set to 1 when one or more inputs are equal to 1. If all inputs are 0, there 

is no valid input and V=0. The other two outputs are not inspected when V=0 and are specified as 

Don‟t care condition 

 

Truth table of 4-Bit Priority Encoder 
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Multiplexer (Data Selector) 

 It is a combinational circuit that selects binary information from one of the input lines and directs 

it to a single output line based on the selection input. 

 Usually there are 2
n 

input lines and n selection lines whose bit combinations determine which 

input line is selected. 

 In a 2
n
 – to – 1 multiplexer, there are 2 

n
 inputs, n selection lines and 1 output line. 

 For example, in 2 
1 

– to -  1 multiplexer if selection S is zero, then I0 has the path to output and if 

S is one, I1 has the path to output . 

 

 

Note: Multiplexer acts as a switch. 

2 
1 
– to - 1 multiplexer 

 

 

Note:  

In general, a 2
n
 – to -1 line Mux is constructed from an        n – to – 2

n
 Decoder by adding to it 2

n
 input 

lines, one to each AND gate. The outputs of the AND gates are applied to a single OR gate. 
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MUX: A decoder + an OR gate. 

2 
2 
– to - 1 Multiplexer: 

 

Example: Like a railyard switch 

 

2 
3
 – to – 1 Multiplexer: 

Selection Lines Output 

S2 S1 S0 Y 

0 0 0 D0 

0 0 1 D1 

0 1 0 D2 

0 1 1 D3 

1 0 0 D4 

1 0 1 D5 

1 1 0 D6 

1 1 1 D7 
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Fig: Multiplexer with 8 Data inputs. 

Quadruple 2 –to – 1 Line Mux : 

 

 

 

 



D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.  42 | P a g e  
 

Boolean function Implementation 

The method for implementing Boolean function using multiplexer is as follows: 

For doing that assume Boolean function has n variables. We have to use multiplexer with n-1 selection 

lines and  

 The first n-1 variables of function are used for input: Selection lines. 

 The remaining single variable (named z) is used for data input. Each data input can be z, z‟, 1 or 

0. From truth table we have to find the relation of F and z to be able to design input lines.  

Example: 1 

F (X, y, z) = ∑ (1, 2, 6, 7)  

 

Example: 2 F (A,B,C,D) = ∑(1,3,4,11,12,13,14,15)  

 

Note: It is possible to use any other variable of the function F (A, B, C) = ∑ m (1, 2, 4, 5) for the MUX 

data inputs as follows: 
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Example: 3 

 Implement the Boolean function using 4: 1 Mux. F (A, B, C) = ∑ m (1, 3, 5, 6) 
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Steps to be followed to obtain the implementation Table 

 The implementation table is the List of the inputs of the Mux and under them the list of all the 

minterms in two rows. The first row lists all those minterms where „A‟ is complemented, and the second 

row lists all the minterms with „A‟ uncomplemented. The minterms given in the function are circled and 

then each column is inspected separately as follows: 

 If the two minterms in a column are not circled, 0 is applied to the corresponding mux Input (see 

column 0). 

 If the two minterms in a column are circled, 1 is applied to the corresponding mux Input      (see 

column 1). 

 If the minterms in the second row is circled, and minterm in the first row is not circled, A is 

applied to the corresponding mux Input (see column 2). 

 If the minterms in the first row is circled, and minterm in the second row is not circled, A
1
 is 

applied to the corresponding mux Input (see column 3). 

Procedure: 

 assign an ordering sequence of the input variable 

 The leftmost variable (A) will be used for the input lines 

 Assign the remaining n-1 variables to the selection lines w.r.t. their corresponding 

sequence 

 List all the minterms in two rows (A' and A)  

 Circle all the minterms of the function 

 Determine the input lines 

 

The Mux implementation is also possible by connecting the most significant variables i.e., A and B to the 

select lines of the Mux. The procedure is same but with Minor changes: 
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Alternate method: 

Implementation table consists of two columns. The first column lists all those minterms where least 

significant variable C is complemented (C
1
), and the second column lists all the minterms with C un-

complemented. The minterms given in the function are circled and then each row is inspected separately 

as follows: 

 If the two minterms in a row are not circled, 0 is applied to the corresponding mux Input (see row 

0). 

 If the two minterms in a row are circled, 1 is applied to the corresponding mux Input (see row 1). 

 If the minterms in the second column is circled, and minterm in the first column is not circled, C 

is applied to the corresponding mux Input (see row 2). 

 If the minterms in the first column is circled, and minterm in the second column is not circled, C
1
 

is applied to the corresponding mux Input (see row 3).  

 

Example: 4 

Implement the following Boolean function using 8:1 Mux. F(A,B,C,D) =∑ m (0,1,3,4,8,9,15) 
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Example: 5 

Example: F(A,B,C,D)= ∑ m (0,1,3,4,8,9,15)  

 

Example: 6 

Implement the following Boolean function using 4:1 Mux.                                 F(A,B,C,D) =∑ m 

(0,1,2,4,6,9,12,14) 

 

Example: 7 

Implement the following Boolean function using 8:1 Mux.  

F (A, B, C, D) = A
1
 B D

1
 + ACD + B

1
 C D + A

1
 C

1
D. 

The given function is not in SOP form. First convert it into Standard SOP form. 

F(A,B,C,D)   = A
1 
B D

1
 (C+C

1
) + ACD (B+B

1
) +  B

1
CD (A+A

1
) +A

1
C

1
D (B+B

1
) 

           = A
1
BCD

1
 + A

1
BC

1
D

1
 + ABCD + AB

1
C D +  AB

1
CD + A

1
B

1
CD + A

1
BC

1
D + A

1
B

1
C

1
D. 

            = A
1
BCD

1
 + A

1
BC

1
D

1
 + ABCD + A B

1
CD +  A

1
B

1
CD + A

1
BC

1
D + A

1
B

1
C

1
D 
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F (A, B, C, D) = A
1 
B

1
 C

1
 D + A

1 
B

1
 C D + A

1
 B C

1
 D

1  + 
A

1 
B C

1
 D + A

1
 B C D

1  + 
A B

1
 C D + ABCD 
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Example: 8 

Implement the following Boolean function using 8:1 Mux.  

F(A,B,C,D) = Π M (0,3,5,6,8,9,10,12,14) 

Instead of minterms, maxterms are specified. So, we have to circle maxterms which are not 

included in the function. 

 

Example: 9 

Implement the following Boolean function using 8:1 Mux. 

F(A,B,C,D) =∑ m (0,2,6,10,11,12,13) + d (3,8,14) 
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De-multiplexers  

 A DEMUX basically reverses the MUX function. 

 It takes digital information from one line and distributes it to a given number of output lines based 

on the selection lines. 

 It also known as data distributor. 

 

The diagram below shows the relation between a multiplexer and a De-multiplexer. 

 

Selection Lines Data Input Output Lines 

S1 S0 Din D0 D1 D2 D3 

0 0 0 0 0 0 0 

0 0 1. 1 0 0 0 

0 1 0 0 0 0 0 

0 1 1 0 1 0 0 

1 0 0 0 0 0 0 

1 0 1 0 0 1 0 

1 1 0 0 0 0 0 

1 1 1 0 0 0 1 

 

 

Fig: Logic Diagram and Logic Symbol of 1: 4 De-Mux. 
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Fig : Truth table and Logic Diagram of 1: 4 De-Mux with Enable Input. 

 

Fig: Implementation of a 1: 8 De-Mux using two 1: 4 De- Mux. 

Examples: 1 

Implement Full-Adder using De- Multiplexer: 

INPUTS OUTPUT 

A B CIN COUT S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

 

S (A, B,CIN) = ∑ m (1, 2, 4, 7) 

COUT (A, B, CIN) = ∑ m (3, 5, 6, 7) 
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Example: 2 

Implement full-subtractor using De- Multiplexer: 

D = F (A, B, Bin) = ∑ m (1, 2, 4, 7) 

Bout = F (A, B, Bin) = ∑ m (1, 2, 3, 7) 

   

Fig : Implementation of a Full – Subtractor Using 1: 8 De-Mux. 

Example: 3 

Implement the Boolean function F (A, B, C) = ∑ m (1, 3, 5, 6) using De-Multiplexer. 
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CODE CONVERTERS 

BINARY TO BCD CONVERTER: 
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BINARY TO GRAY CODE CONVERTER: 

 

K- Map : 

 

Fig: K- Map and Logic diagram of Binary Code to Gray Code Converter 
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GRAY TO BINARY CONVERTER: 
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Fig: Gray Code to Binary Code 
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BCD TO GRAY CODE CONVERTER: 

 

Fig : Logic diagram of BCD to Gray code. 

 



D.Y.PUSHPAMITHRA, ECE DEPT., SITAMS.  58 | P a g e  
 

BCD TO EXCESS – 3 CODE CONVERTERS: 

Truth table  

 

The simplified functions 

 z = D'               

 y = CD +C'D'             

 x = B'C + B'D+BC'D'             

 w = A+BC+BD 

Another implementation 

 z = D'               

 y = CD +C'D' = CD + (C+D)'           

 x = B'C + B'D+BC'D„ = B'(C+D) +B(C+D)'         

 w = A+BC+BD 

 

 

Fig: LOGIC DIAGRAM OF BCD TO EXCESS – 3 CODE CONVERTER. 
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PROGRAMMABLE LOGIC DEVICES & THRESHOLD LOGIC 
 

There are 3 approaches for the design a digital circuit: 

 

 Use of Fixed function ICs, 

 Use of Application Specific Integrated Circuit & 

 Use of Programmable Logic Devices. 

 

So for we have seen various digital IC approach for performing basic operations (i.e., 

NOT,AND  and OR) required to implement arbitrary functions and other functions,  such as 

Adders, Comparators, Code converters Multiplexers, De- Mux, Decoders & Encoders etc. 

 

These ICs due to their fix functions are known as fixed function IC’s. These IC’s are 

designed by manufacturers and produced in large quantities required for a wide variety of 

applications. The design of digital circuit using fixed function IC’s are seen i.e., these IC’s are 

used to perform only specific function, so they are called fixed function IC’s. 

 

In fixed function IC approach, we have to use various fixed function IC’s to implement different 

functional blocks in the digital circuit. 

 

In ASIC approach, a single IC is designed and manufactured to implement the entire circuit. 

 

In PLDs approach, the PLDs are used to implement the Logic functions. 

 

The main advantage of PLD approach is that the PLDs can be easily programmed by 

individual users for specific application.  

 

S.No. Parameter 
Fixed function IC 

approach 
ASIC approach PLD approach 

1 Development Cost Low High Low 

2 Space required Large Minimum Less 

3 Power required More Less Less 

4 Design time Less More Less 

5 Reliability 

Less Compared to 

other two 

approaches 

Highest High 

6 Circuit Testing Easy 

Specialized Testing 

methods are 

required , which 

may increase the 

cost & effort 

Easy 

7 Design flexibility Less Not possible More 

8 
Modification in the 

design 

Possible with 

change in circuit 

AND/OR with 

change in 

components. 

Not possible 

Possible without 

any circuit or 

component 

changes. But, 

only by 

reconfigurable 

 

 PLDs can be reprogrammed in few sec and hence gives more flexibility to experiment 

with designs. 

 Reprogramming feature of PLDs allows changes/modifications in the previously 

designed circuits. The above advantages and some parameters like cost, design flexibility 

and design time makes the PLDs more popular in digital design. 

 

 

 

 

 

 

 

 

 



2 | P a g e  
 

According to the architecture, complexity & flexibility in programming, PLDs are classified as  

 

 PROMs, 

 PLAs, 

 PAL, 

 FPGAs and  

 CPLDs etc. 

 

ROM (Read Only Memory) 

 

A ROM is memory device in which permanent binary information is stored. The binary 

information must be specified by the designer and is then embedded in the Unit to form the 

required interconnection pattern. Once the pattern is established, it stays within the Unit even 

when power is turned off and on again. 

 

A block diagram of ROM is shown in Figure below. 

 

 
Fig: ROM Block Diagram. 

 

 It consists of K inputs and n output lines. 

 Each bit combination of input variable is called an address. Each bit combination that 

comes out of the output lines is called a word. 

 The number of bits / word is equal to the number of output lines ‘n’. 

 The address specified in binary number denotes one of the minterms of K variable. The 

number of distinct address possible with K – variable is 2 
K 

. 

 An output word can be selected by a unique address and since there are 2 
n
 distinct 

address in a PROM , there are 2 
n
 distinct words in the PROM. 

 

The word available on the output lines at any given time depends on the address value applied to 

input lines. 

 

Example:  

 

A 32 x 8 ROM consists of 32 words of 8 bits each. There are five input lines that form the binary 

numbers from 0 through31 for the address. Figure below shows the internal logic construction of 

ROM.  

 

 
 

Fig: Internal Logic diagram of 32 × 8 ROM. 
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 The five input lines are decoded by into 32 distinct outputs (memory addresses) using a    

5 x 32 decoder. Each output of decoder represents a memory address or minterm. The 32 

outputs of the decoder are connected to each of the 8 OR gates. Each OR gate has 32 

input connections (i.e. each output of the decoder is connected to one of the inputs of 

each OR gate). Since each OR gate has 32 input connections and there are 8 OR gates, 

the ROM contains 32 x 8 = 256 internal connections 32 x 8. 

 

 In general, a 2
K
 x n ROM will have an internal k x 2

K
 decoder and n OR gates with 2

K
 x n 

internal connections. 

 

 A programmable connection (a cross point) between two lines is logically equivalent to a 

switch that can be closed (two lines are connected) or open (two lines are disconnected). 

The programmable interconnection between two lines is called cross point. A switch can 

be a fuse that normally connects the two points, but can be opened by blowing the fuse 

using a high voltage pulse. 

 

Programming by blowing fuses 

 

Fig: (a) Before Programming     (b) After Programming 

The internal binary storage of a ROM is specified by a truth table that shows the word content in 

each address. 

For example, the content of a 32 × 8 ROM may be specified with a truth table as follows: 

Decimal 

No. 

Inputs Outputs 

I4 I3 I2 I1 I0 A7 A6 A5 A4 A3 A2 A1 A0 

0 0 0 0 0 0 1 0 1 1 0 1 1 0 

1 0 0 0 0 1 0 0 0 1 1 1 0 1 

2 0 0 0 1 0 1 1 0 0 0 1 0 1 

3 0 0 0 1 1 1 0 1 1 0 0 1 0 

 

 

 

 

 

 

 

             

30 1 1 1 1 0 0 1 0 0 1 0 1 0 

31 1 1 1 1 1 0 0 1 1 0 0 1 1 

 

The truth table shows that the 5 inputs under which all the 32 addresses are listed. At each 

address, a word of 8 – Bit is stored, which is listed under the output column. 

 

The hardware procedure that programs the ROM results in blowing the fuse links according to 

the given truth table. 

Every 0 listed in the truth table specifies no connection and every 1 listed specifies connection. 
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Example: 

 

The 8 – Bit word (10110010) in the table is stored permanently at the address 3 (00011). The 4 

0’s in the word are programmed by blowing the fuse links, between output 3 of the decoder and 

inputs of the OR gate associated with the outputs A6 , A3 , A2 and A0. The 4 I’s in the word are 

marked in the diagram with an x to denote a connection in place of a dot used for permanent 

connection in the logic diagram. 

 

When the inputs of ROM are 00011, all the outputs of the decoder are 0 except for output 3, 

which is at logic 1. The signal equivalent to logic 1 at the decoder output 3 propagates through 

the connections to the OR gate output of the A7 , A5 , A4  AND A1. The other 4 outputs remain 

at 0. The result is that the stored word 101100010 is applied to the eight data outputs as shown 

below: 

 

Fig: Programming the ROM according to truth table. 

Output A7 and A6  can be expressed in sum of minterms as: A7 (I4,I3,I2,I1,I0) = ∑ m (0,2,3...,29) 

           A6  (I4,I3,I2,I1,I0) = ∑ m (2,...,29,30) 

 

In practice, when a combinational circuit is designed by means of a ROM, it is not 

necessary to design the logic or to show the internal gate connections inside the Unit. The 

designer work is to specify the particular ROM by its IC number and provide the ROM truth 

table. The truth table gives all the information needed for programming the ROM. No internal 

logic diagram is needed. 

 

Example: 

 

Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates 

an output binary number equal to square of the input number. 

 

Step 1: Derive the truth table for combinational circuit. 

 

Inputs Outputs 
Decimal 

A2 A1 A0 B5 B4 B3 B2 B1 B0 

0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 1 

0 1 0 0 0 0 1 0 0 4 

0 1 1 0 0 1 0 0 1 9 

1 0 0 0 1 0 0 0 0 16 

1 0 1 0 1 1 0 0 1 25 

1 1 0 1 0 0 1 0 0 36 

1 1 1 1 1 0 0 0 1 49 

 

Step 2: we can use the partial truth table for the Rom by utilizing certain properties in the output 

if any like: 

 

 The output B0 is always equal to A0; so there is no need to generate B0 with a ROM. 

Since it is equal to input variable. 

 Output B1 is always equal to 0, so this output is a known constant. 
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So we need to generate only four outputs with ROM; the other two are readily obtained. 

 

The minimum size ROM needed must have 3 – inputs and 4 – outputs. Three inputs specify 8 

words of 4 – bits each. 

 
Fig: ROM Implementation. 

 

Implement 128 X 8 ROM chips using 32 x 8 ROM chips: 

 

 
 

Combinational PLD’s 

 

The PROM is a combinational Programmable Logic Device (PLD). 

A combinational PLD is an IC with programmable gates divided into an AND array and OR 

array to provide an AND – OR sum of product implementation. 

 

Programmable logic devices (PLD) are designed with configurable logic and flip-flops linked 

together with programmable interconnect. 

 

PLDs provide specific functions, including 

 

 Device-to-device interfacing 

 Data communication 

 Signal processing 

 Data display 
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Types of combinational PLDs: 

 

There are 3 types of PLDs & they differ in the placement of programmable connections in the 

AND – OR array. 

 

1. PROM, 

2. PLA &  

3. PAL. 

 

 

The basic configuration of three PLDs is shown in figure below: 

 
 

Fig: Basic configuration of three PLDs. 

 

PLA: 

 

The PLA is similar to PROM in concept, except that the PLA does not provide full decoding of 

the variables and does not generate all min-terms.  

In PROM, the decoder is replaced by an array of AND gates that can be programmed to generate 

any product term of input variables. 

 

The product terms are then connected to OR gates to provide the required Boolean function. 

 

Example :  Realize the Boolean function F1 = AB 
1
 + AC + A

1
 BC

1  
 & F2 = (AC +BC)

1
 . 

 

PLA Programmable table: 

 

 
Product 

term 

Inputs 
Outputs 

T C 

A B C F1 F2 

AB 
1
 1 1 0 - 1 - 

AC 2 1 - 1 1 1 

A
1
 BC

1  
  3 0 1 0 1 - 

BC 4 - 1 1 - 1 

 

 

 

Fig: Two graphic symbols for AND gate. 
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Implementation: 

 
Fig: PLA with 3 Inputs, 4 product terms and 2 Outputs. 

Each input goes through a buffer and an inverter as shown in figure with a composite 

graphic symbol, which has both true and complement outputs. Each input and its complement are 

connected to the inputs of each AND gate as shown indicated by the intersection between 

horizontal and vertical lines. 

 

The output of the AND gates are connected to the inputs of each OR gate. 

 

The output of OR  gate goes to an X-OR gate where the other input can be programmed to 

receive a signal equal to either a Logic 1 or Logic 0. 

 

The output is inverted when the XOR input is connected to 1 (since X ⊕ 1 = X 
1
) & the output 

does not change when the XOR input is connected to 0 (since X ⊕ 0 = X). 

 

Example: 

 

Implement the following function with a PLA: 

 

i. F 1 = ∑ m (0, 1, 2, 4) 

ii. F 2 = ∑ m (0, 5, 6, 7) 
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Fig: PLA With 3 inputs, 4 Product terms and 2 outputs. 

 

Example: 

 

Implement the following functions using PLA. 

F0 = AB 
1
 + A

1
 B + A

1
 B

1 
 & 

F1 = AB 
1
 + A

1
 B + A B. 

 

PLA Programming table: 

 

 Product term 
Inputs 

Outputs 

T T 

A B F1 F2 

AB 
1
 1 1 0 1 1 

A
1
 B 2 0 1 1 1 

A
1
 B

1
 3 0 0 1 - 

A B 4 1 1 - 1 

 

A blank PLA with 2 inputs and 2 outputs 
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Programmable Array Logic (PAL) 

 

The programmable array logic (PAL) is a logic device with fixed OR array and a programmable 

AND array. It is easier to program but not as flexible as PLA. 

 

Note: 

 

Boolean functions must be simplified to fit into each section. The product term cannot be shared 

among two or more gates. 

 

 
 

Fig: PAL with 4 inputs, 4 Outputs and 3 wide AND – OR structure. 

 

Example: Implement the following Boolean functions using PAL. 

  

 

 

 

Simplify the above functions using K-Map results as below:  

 

 



10 | P a g e  
 

 

 

Fig: Fuse map for PAL as shown in programming table. 

 








