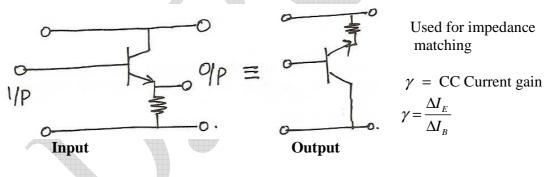


COMMON BASE CONFIGURATION: -


Current $gain(\infty) = Collector current$ output / emitter current = $\frac{I_C}{I_E}$ ~ Varies from 0.9 to 0.95.

COMMON EMITTER CONFIGURATION:

Current gain $(\beta) = \frac{Collector \ Current}{Base \ Current} = \frac{I_c}{I_B}$ I_{B} β varies from 10 to 200 or 80.

COMMON COLLECTOR CONFIGURATION: -

 $\frac{Ic - I_{CBO}}{I_{R}}$ iii) $I_c = \beta I_B + I_{CEO}$ Similarly we can get ii) $\beta =$

iv) $I_{CEO} = (1+\beta) I_{CBO}$

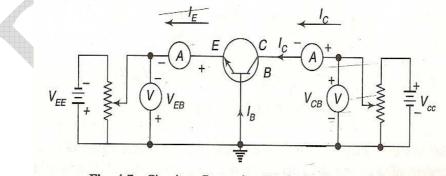
v)
$$I_E = \frac{1}{1} \cdot I_{CBO} + \frac{1}{1} \cdot I_{CBO}$$

$$I_E = \frac{1}{1-\alpha} \cdot I_{CBO} + \frac{1}{1-\alpha} \cdot I_B$$

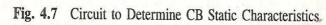
RELATION BETWEEN α , β & Υ

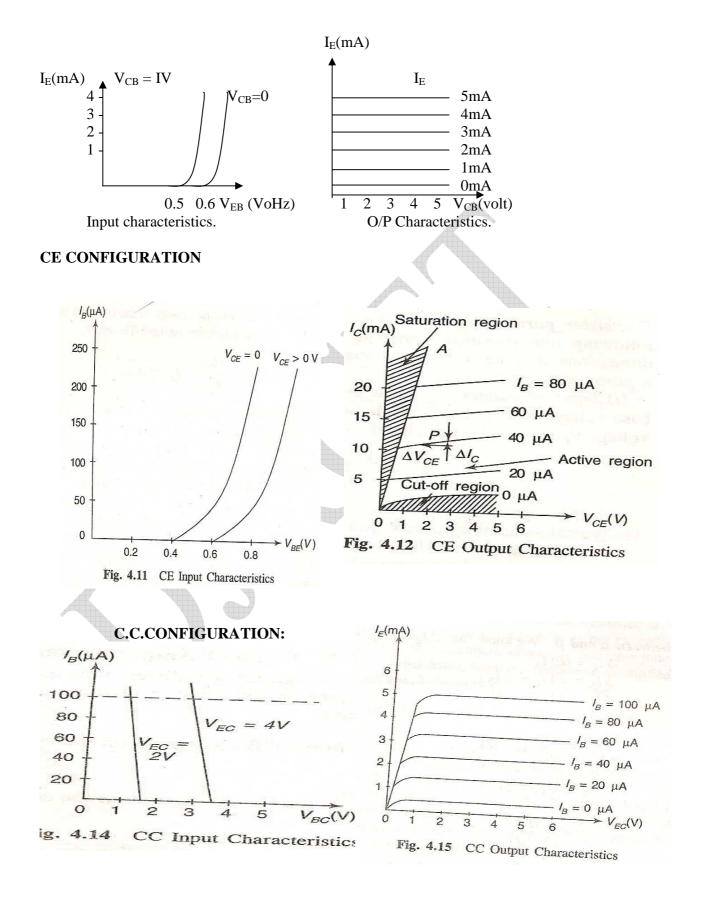
We know $\Delta I_E = \Delta I_C + \Delta I_B$, But $\Delta I_C = \alpha I_E$. a)
$$\begin{split} \Delta I_E &= \alpha \& \Delta I_E + I_B \\ \Delta I_E - \alpha I_E &= \Delta I_B \quad \text{or } \Delta I_B = \Delta I_E (1 - \alpha) \end{split}$$
... Dividing both sides by ΔI_c , $\frac{\Delta I_B}{\Delta I_c} = \frac{\Delta I_E}{\Delta I_c} (1 - \alpha)$

(b)


Or
$$\frac{1}{\beta} = \frac{1}{\alpha} (1 - \alpha) \text{ or } \beta = \frac{\alpha}{1 - \alpha}$$

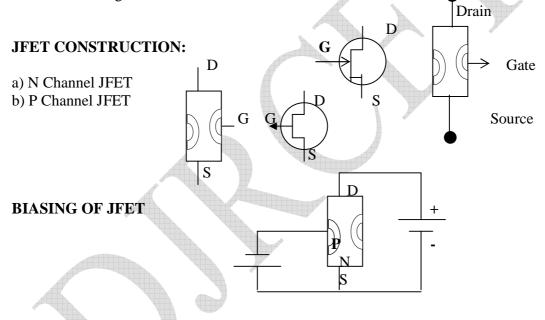
 $\frac{\Delta I_E}{\Delta I_B} = \frac{\Delta I_C}{\Delta I_B} + \frac{\Delta I_B}{\Delta I_B} \text{ OR } \frac{\Delta I_E}{\Delta I_B} = \beta + 1$
Or $\frac{\Delta I_E}{\Delta I_C} \times \frac{\Delta I_C}{\Delta I_B} = \beta + 1 \text{ OR } \frac{I_E}{I_C} \times \frac{I_C}{I_B} = \beta + 1$


Or
$$\frac{1}{\alpha} \cdot \beta = 1 + \beta$$
 or $\alpha = \frac{\beta}{1 + \beta}$

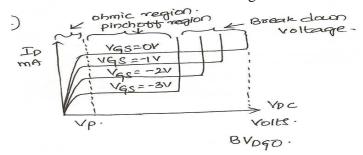

(c)
$$\gamma = \frac{\Delta I_E}{\Delta I_B}$$
, Substituting $\Delta I_B = \Delta I_E - \Delta I_C$.
 $\gamma = \frac{\Delta I_E}{\Delta I_E - \Delta I_C}$, by diving N & 0 on R.H.S, by ΔI_E
 $\gamma = \frac{\Delta I_E / \Delta I_E}{\Delta I_E / \Delta I_E - \Delta I_C / \Delta I_E} = \frac{1}{1 - \alpha}$
Putting the value of $\alpha = \beta / \beta + 1$.
 $\gamma = \frac{1}{1 - \beta / \beta + 1}$

$$(or)\gamma = \frac{1}{\frac{\beta+1-\beta}{\beta+1}} = \frac{\beta+1}{1} = \beta+1$$
$$(or)\gamma = \frac{1}{1-\alpha} = \beta+1$$

INPUT & OUTPUT CHARACTERISTICS OF CB CONFIGURATION.



www.jntuworld.com


EARLY EFFECT OR BASE WIDTH MODULATION. (IN CB CONFIGURATION)

As V_{CC} made to increase the reverse bias, the space charge width between collector and base tends to increase. This results in decrease of effective width of the base. This dependence of base width on collector voltage is known as 'Early Effect'. This decrease of effective base width has three consequences.

- (i) There is less chance of recombination in base region and Ic increases causing α to increase with increase in V_{CB}.
- (ii) The charge gradient is increased with in the base and current of minority carries injected across emitter junction increases.
- (iii) For extremely large Vcs, the effective base width becomes zero causing voltage breaks down in the transistor. This phenomenon is called the "Punch through".

DRAIN CHARACTERISTICS: - **OHMIC REGION:** - Drain current increases With drain voltage

PINCH OFF VOLTAGE(VP):

 V_{DS} for which maximumdrain current is there. Further increase in V_{DS} will not increase I_D .

PINCH OFF REGION: -

Where drain current is saturated.

BREAK DOWN VOLTAGE: -

 $\begin{array}{l} V_{DS} \text{ where JFET breaks down} \\ V_{GS} \text{ cut off} - \text{Where } I_B \text{ becomes zero, irrespective of } V_{DS}. \\ V_P & = \left| V_{GS} \text{ cut off} \right| \end{array}$

CHARACTERISTICS OF JFET MUTUAL CONDUCTANCE OR TRANS CONDUCTANCE OF FET (gm)

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$
 when V_{DC} kept constant.

It is the ratio of small change in the drain current to the corresponding small change in gate voltage when drain voltage is kept constant.

b) Drain resistance
$$(\gamma_d) = \frac{\Delta V_{DS}}{\Delta I_D}$$
, V_{GS} kept constant

c) Amplification factor
$$\mu = \frac{\Delta V_{DC}}{\Delta V_{GS}}$$
, I_D kept constant.

Q.1) In common base connection $I_E = 1$ mA, $I_C = 0.95$ mA calculate value of I_B . (JNTU - 2000)

$$I_B = I_E - I_C = 1 - 0.95 = 0.05 \text{mA}.$$

Q2) In a CB configuration current amplification factor is 0.90 and emitter current is 1mA. Determine base current.

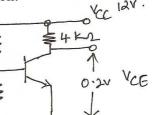
$$\begin{array}{ll} \alpha = 0.9, & I_E = 1 m A \\ \alpha = \frac{I_C}{I_E}; & I_C = \alpha . I_E = 0.9 \ x \ 1 = 0.9 m A \\ I_B = I_E - I_C & = 1 - 0.9 = 0.1 m A. \end{array}$$

Q3) A BJT has $I_B = 10 \ \mu A$, $\alpha = .99$ and $I_{CBO} = 1 \ \mu A$ what is collector current. Solution:

$$I_{\rm C} = \beta I_{\rm B} + (1+\beta) I_{\rm CBO}$$

B
$$= \frac{\alpha}{1-\alpha} = \frac{0.99}{1-0.99} = \frac{0.99}{0.01} = 99$$

$$I_{\rm C} = 99 \ x \ 10 + (1 + 99)1$$


 $= 990 + 100 = 1090 \ \mu A = 1.09 \ mA.$

Q4) A transistor operating in CB configuration has $I_C = 2.98$ mA, $I_E = 3.0$ mA and $I_{co} = 0.01$ mA. What current will flow in collector circuit of that transistor when connected in C_E configuration and base current is 30µA. (May,2006)

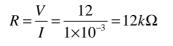
CB =
$$I_C = 2.98 \text{mA}, \qquad I_E = 3.0 \text{mA} \qquad \therefore \alpha = \frac{2.98}{3.0} = 0.99$$

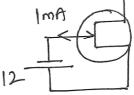
 $I_{CO} = 0.01 \text{mA}.$
CE = $I_B = 30 \,\mu\text{A} \qquad I_C = ? \qquad I_C = \beta I_B$
 $\beta = \frac{\alpha}{1-\alpha} = \frac{0.99}{1-0.99} = \frac{.99}{0.01} = 99$
 $I_C = \beta I_B + (\beta + 1) \text{ Ico.}$
 $= 99 \text{ x } 30 \text{ x } 10^{-6} + (100)0.01 \text{ x } 10^{-3}$
 $= 2.97 \text{ x } 10^{-3} + 1 \text{ x } 10^{-3} = 3.97 \text{mA}$

Q 5) Given an NPN transistor for which $\alpha = 0.98$, Ico = 2 μ A I_{EO} = 1.6 μ A. A_{CE} configuration is used and V_{CC} = 122 and R_C = 4.0K. What is the min. base current required in order that transistor enter in to saturation region.

Given $\alpha = 0.98$, $I_{CO} = I_{CB} = 2\mu A$, $I_{EO} = I_{CEO} = 1.6\mu A$. V_{CC} 12 $VC_E = V_{CC} = 12V$, $R_L = 4.0K$ $I_B = ?$ (In saturation)

Solution:-


Where Transistor is in saturation $V_{CE} = 0.2$ (Assumed) $\therefore V_{RL} = 12 - 0.2 = 11.8$ Volts. $I_c = \frac{V_{RL}}{R_L} = \frac{11.8}{4 \times 10^3} = 2.95 \times 10^{-3} = 2.95 mA$


We know

Ic = $\beta I_{B} + (\beta+1) I_{CBO}$ $\beta = \frac{\alpha}{1-\alpha} = \frac{0.98}{1-0.98} = \frac{.98}{0.02} = 49$ 2.95 x 10-3 = 49 IB + (49+1) 2 x 10-6 2950 μ A = 49I_B + 100 μ A 49I_B = (2950 - 100) μ A = 2850 μ A = $\frac{2850}{49} = 58.16 \mu$ A

 I_B

Q 6) When a reverse gate voltage is 12V, gate current is 1mA. Determine the resistance between gate & source. (JNTU 2000)

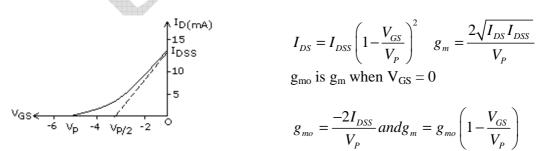
Q 7) When reverse Gate voltage changes from 4.0 to 3.9V, the drain current changes from 1.3 to 1.6 mA. Find the Trans conductance.

Solution: Given

 $\Delta V_{GS} = 4.0 - 3.9 = 0.1 V$ $\Delta I_D = 1.6 - 1.3 = 0.3 mA$ $g_m = ? \qquad g_m = \frac{\Delta I_D}{\Delta V_{CS}} = \frac{0.3 \times 10^{-3}}{0.1} = 3 \times 10^{-3} mho$

Q 8) A FET has a drain current of 4mA. If $I_{DSS} = 8mA$ and V_{GS} off = -6V. Find values of V_{GS} and V_P . (Nov. 2001)

 $\begin{array}{l} I_{DSS} &= 8mA \\ V_{GS \; off} = \text{-} \; 6V \end{array}$


Given $I_{DS} = 4 \text{ mA}$

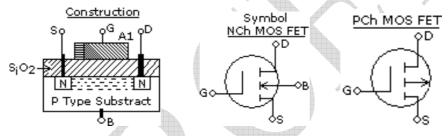
Solution: -

(i)
$$V_P = |V_{GS} \text{ off}| = |-6V| = 6V.$$

(ii) $I_{DS} = I_{DSC} \left(1 - \frac{V_{GS}}{V_P}\right)^2$
 $4 \times 10^{-3} = 8 \times 10^{-3} \left(1 - \frac{V_{GS}}{6}\right)^2$
 $\frac{1}{2} = \left(1 - \frac{V_{GS}}{6}\right)^2 \text{ or } \frac{1}{\sqrt{2}} = 1 - \frac{V_{GS}}{6}$
 $(or) 0.707 = 1 - \frac{v_{GS}}{6};$
or $(or) \frac{v_{GS}}{6} = 1 - 0.707 = 0.293$

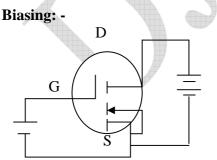
 $V_{GS} = 6 \times 0.293 = 1.758 Volts.$

SATURATION DRAIN CURRENT (IDSS)


8

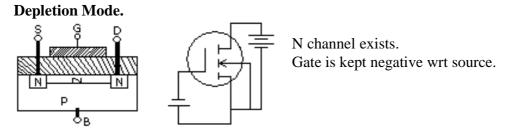
www.jntuworld.com

COMPARISON OF BJT AND FET


- 1) FET is uni polar device current I_D is due to majority (Where as BJT is Bipolar) charge carries only.
- 2) FET is less noisy as there are no junctions(in conduction channel) FET
- 3) FET Input impedance is very high (100 m Ω) (due to reverse bias)
- 4) FET is voltage controlled device, BJT is current controlled device
- 5) FETs are easy to fabricate
- 6) FET performance does not change much with temperature. FET has –Ve temp. Coefficient, BJT has +Ve temp. coefficient.
- 7) FET has higher switching speeds
- 8) FET is useful for small signal operation only
- 9) BJT is cheaper than FET.

MOS FET (Metal Oxide Semiconductor Field Effect Transistor)

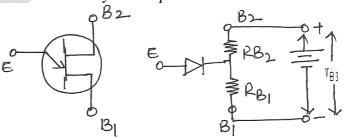
N regions are highly doped P regions are lightly doped. Both N regions (D & S) are repeated by 1 mil. (10⁻³ inch) or So.


A thin insulating layer is over the surface. This is Si 0_2 (a metal oxide) layer that curves entire channel region given and a gate of metal (AP) is formed over the Si 0_2 layer.

Gate is kept positive w.r.t source. And attracts electrons (or induces negative Charge in the channel opposite to gate) This region acts like a capacitor with SiO_2 layer acts as insulator between two plates of the capacitor.

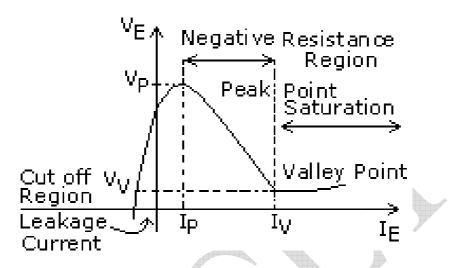
Due to this induced negative region a temporarily N Channel is created from Drain to source or N channel is enhanced. Therefore it is called as Enhancement MOSFET.

Gate leakage current is in the order of 10^{-12} Amps. Hence input impedance is very (10^{10} to 10^{15} ohms).



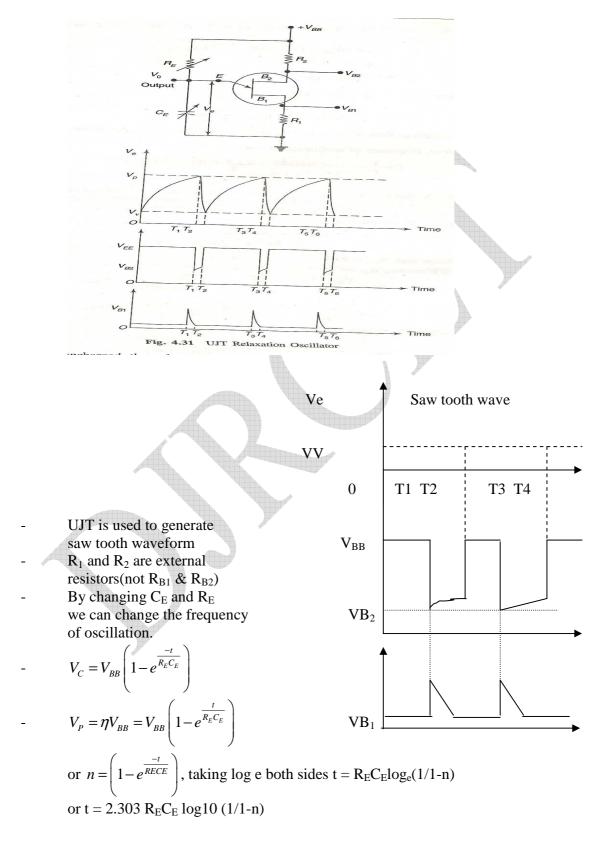
Volt Ampere characteristics of MOSFET (or) Output characteristics of MOS FET

Precautions of Handling MOS FET


- MOS FET may be damaged due to high voltage or static change. Thin Si0₂ layer get damaged which is between Gate and Channel.
- Static voltage up to 300V may develop across a man if he uses high resistance soled shoes.
- MOS FET are protected by shorting ring that is rapped around all the four terminals.
- Technician handling the MOS FET are required to use shorting strap to discharge static charge.
- Q) Explain the working principle of UJT with its characteristics (May 06, 07). Unit Junction Transistor Symbol Equivalent Circuit

- It has only one PN junction. Therefore it is called as Unit Junction Transistor.
- Arrow indicates direction of convectional circuit
- Inter Base resistance $(R_{BB}) = R_{B1} + R_{B2}$.

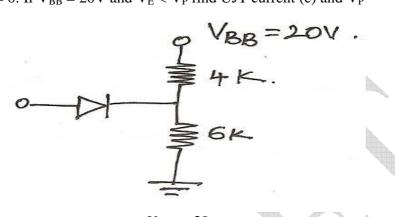
Intrinsic stand off ratio $\eta = \frac{R_{BI}}{R_{B1+}R_{B2}}$ and ranges from 0.56 to .75.


Voltage drop across $R_{B1} = \eta V_{BB}$ which reverse biases PN junction.

Working Principle

- UJT remains cut off till emitter voltage is greater than $\eta V_{BB.}$
- When $V_E > \eta V_{BB}$, large number of holes are injected into the N region.
- These holes are repelled by terminal B_2 (being +Ve biased) and collected by B_1 .
- Accumulation of holes in E to B_1 region reduced the resistance in this section leading to increase in current I_E .
 - UJT has a stable firing voltage $V_P = \eta V_{BB} + V_d = \text{voltage across } R_{B1} + V_d$. (R_{B1}) / (R_{B1} + R_{B2}) . V_{BB}.

UJT RELAXATION OSCILLATOR.



12

_

DEPARTMENT OF ECE

- Frequency of Oscillation $f = \frac{1}{t} = \frac{1}{2.3R_E C_E \log_{10} \frac{1}{1-n}}$
- Q1) A silicon UJT has an inter base resistance $R_{BB} = 10k\Omega$ and $R_{B1} = 6k\Omega$ with $I_E = 0$. If $V_{BB} = 20V$ and $V_E < V_P$ find UJT current (c) and V_P (Dec.2003)

R_{BB} = 10KΩ; T current (c) = $\frac{V_{BB}}{R_{BB}} = \frac{20}{10K} = 2mA$ V_P = V_{RB1} + V_d = 6K x 2mA + 0.7V = 12.7Volts

Q2) If $\eta = 0.8$ and $V_{BB} = 15V$ and $V_d = 0.7V$, find the value of V_P . (June 2005)

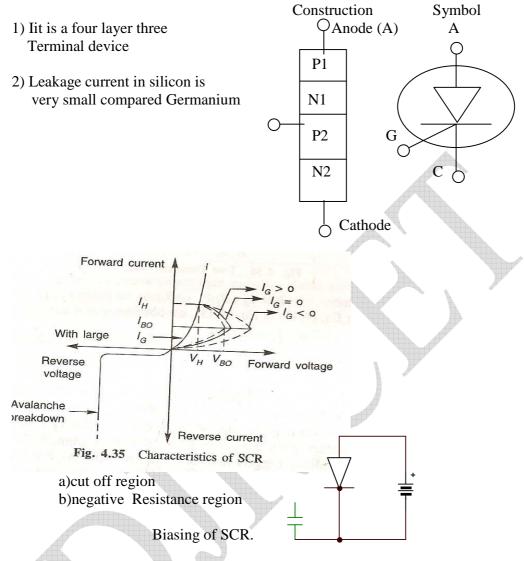
Solution:

 $V_P = \eta V_{BB} + V_d = 0.8 \text{ x } 15 + 0.7 = 12.7 \text{ Volts}$

Q 3) A UJT has a firing potential of 20V. It is connected across the capacitor of a series RC circuit with R = 100K and C = 1000 Pf supplied by a source 40V DC. Calculate the time period of saw tooth wave form generated.

Solution: -

$$V_{C} = V_{BB} \left(1 - e^{-t/R_{C}} \right)$$


$$V_{C} = 20V, V_{BB} = 40V, R = 100K, C = 1000Pf.$$

$$20 = 40 \left(1 - e^{\frac{-t}{10^{5} \times 1000 \times 10^{-12}}} \right) or \frac{1}{2} = 1 - e^{\frac{-t}{10^{4}}}$$

Or

$$\frac{1}{2} = 1 - e^{-10^4 t} \quad \text{or} \quad e^{-10^4 t} = 1 - 1/2 = 1/2$$
$$-10^4 t \log_e^e = \log e 1/2 \text{ or } -10^4 t = -0.693$$
$$t = \frac{0.693}{10^4} = \frac{.693 \times 10^6}{10^4} \mu \sec = 69.3 \mu \sec.$$

SILICON CONTROLLED RECTIFIER:

CHARACTERISTICS OF SCR.

- 3) SCR acts as a switch when it is forward biased.
- 4) When gate is open i.e., $I_G = 0$, and anode voltage is applied junctions $P_1 N_1$ and $P_2 N_2$ are forward biased where $N_1 P_2$ is reverse biased. Only small reverse current flows.
- 5) If we increase anode voltage further, at one stage anode current increases suddenly and voltage across the SCR falls to holding voltage VH.
- 6) Once SCR fires (conducts), it will remain in conduction till the current through the device is reduced less than IH, adding current by reducing applied voltage (to less than holding voltage) close to zero.

14

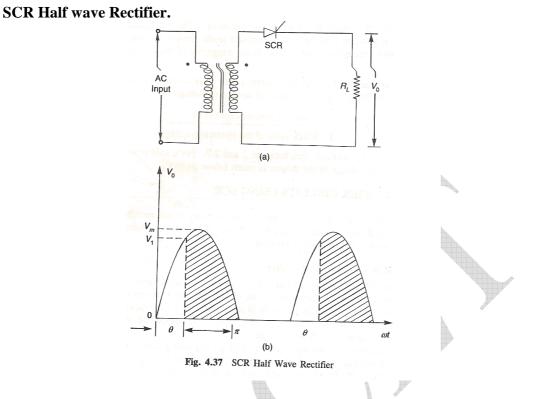
7) The firing angle can be varied by varying the Gate voltage. With very large positive (gate current break over may occur at very low voltage and SCR works as if it is a normal PN diode.

T_1 В E C 9 J_{c} G N1 P_2 In P1 JC J_E $I_{b1} = I_{C2}$ I_k I_a N₁ P_2 N2 A 6 C 0 B Ε T_2 Fig. 4.36 Two Transistor Version of SCR

TWO TRANSISTOR VERSION OF SCR.

$-T_1$ is PNP and T_2 is NPN.	
$I_{b1} = I_A - I_{e1} = I_A - \alpha_1 I_A = I_A(1 - \alpha_1) \qquad -$	(1)
$I_{b1} = I_{c2} \text{ and } I_{c2} = \alpha_2 I_k -$	(2)
$I_{b1} = I_A(1 - \alpha_1) = \alpha_2 I_K \qquad -$	(3)

We know $I_k = I_A + Ig.$ ($I_A = I_{C1} + I_{b1}$) (4) Putting the value of I_k from eqn. (4) in eqn. (3) $I_A(1 - \alpha_1) - \alpha_2(I_A + Ig)$ $I_A(1 - \alpha_1) = \alpha_2(I_A + Ig)$


$$I_A(1 - \alpha_1 - \alpha_2) = \alpha_2 \text{ Ig. Or } \qquad I_A = \left(\frac{\alpha_2 I_g}{1 - (\alpha_1 + \alpha_2)}\right) \quad -(5)$$

Equation 5 indicates that if $(\alpha 1 + \alpha 2) = 1$, $I_A = \infty$

SCR is also called as Thirster

- Latching current (I_L) the min. current required to fire the device _
- Holding current (I_H) min. current to keep the SCR conductivity

- Voltage safety factor
$$V_f = \frac{PIV}{\sqrt{2}RMS \ of \ operating \ voltage}}$$
.
Value of V_f is 2 to 2.7.

SCR does not conduct during negative half cycle (like normal PN diode)

- Firing angle θ depends on gate voltage
- Conduction angle is $(\pi \theta)$

Average DC output

$$V_{av} = \frac{1}{2\pi} \int_{0}^{\pi} V_{m} \sin wt.dwt$$
$$= \frac{1}{2\pi} \left[-V_{m} \cos wt \right]_{0}^{\pi}$$
$$= \frac{1}{2\pi} \left[-V_{m} \cos \pi - \cos \theta \right]$$
$$= \frac{1}{2\pi} \left[-V_{m} \left(-1 - \cos \theta \right) \right]$$
$$= \frac{V_{m}}{2\pi} \left(1 + \cos \theta \right)$$

RMS VOLTAGE: V_{RMS} is given by $V_{RMS} = \frac{V_m}{2} \left[\frac{1}{\pi} (\pi - \theta + \sin 2\theta) \right]^{1/2}$

16

www.jntuworld.com

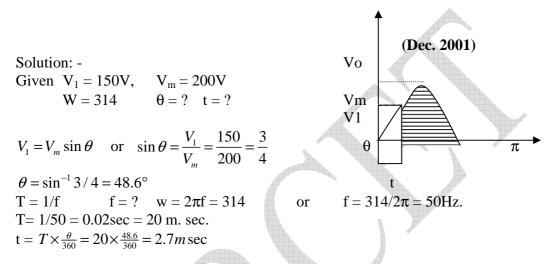
SCR 1 000000 AC Trigger Input circuit $R_L \lesssim$ V, SCR 2 (a) A Vo Vm V1 0 θ ωt θ (b) Fig. 4.38 SCR Full Wave Rectifier

SCR FULL WAVE RECTIFIER

$$V_{DC} = \frac{Vm}{\pi} (1 + \cos \theta)$$

Q) An SCR FWR is connected to 250V. 50 Hz mains to supply ac voltage to resistive load of 10 Ω for firing angle of 90°. Find DC output voltage and load current. (May, 2000)

Solution: -


Given

$$V_{RMS} = 230V, R_{L} = 10\Omega, \qquad \theta = 90^{\circ}$$
$$V_{DC} = ? \qquad I_{L} = ?$$
$$V_{RMS} = \frac{V \max}{\sqrt{2}}$$
$$V_{DC} = \frac{V_{m}}{\pi} (1 + \cos\theta)$$

www.jntuworld.com

Or
$$V_{\text{max}} = V_{\text{RMS}} \sqrt{2} = 250\sqrt{2} = 353.6 \text{ volts}$$

 $\frac{353.6}{\pi} (1 + \cos 90) = 112.6 \text{ volts}$
 $I_L = \frac{V_{DC}}{R_L} = \frac{112.6}{10} = 11.26 \text{ Amps}$

Q 2) A sinusoidal voltage $V = 200 \sin 314$ t is applied to an SCR whose forward break down voltage is 150V. Determine the time during which SCR remain off.

Q 3) A half wave rectifier employing SCR is adjusted to have a gate current of 1mA and its forward breakdown voltage is 150V. If a sinusoidal voltage of 400V peak is applied, determine.

i)	Firing angle	(ii)	Average output voltage
iii)	Average current f	for a load re	esistance of 200Ω
iv)	Power output.		(Nov. 2002)

Given

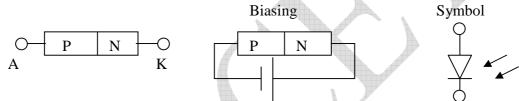
$$V_1 = 150V, V_m = 400V, \theta = ? V_{DC} = ? I_{DC} = ? P_{DC} = ? R_L = 200\Omega$$

Solution: -

$$V_{1} = V_{m} \sin\theta, \text{ or } \sin\theta = V_{1} / V_{m} = 150/400 = 3/8 = 0.375.$$

$$\theta = \sin^{-1} 0.375 = 22^{\circ}.$$

$$V_{DC} = \frac{V_{m}}{2\pi} (1 + \cos\theta) = \frac{400}{2\pi} (1 + \cos 22^{\circ}) = \frac{400}{2\pi} (1.927) = 122.6 \text{ volts}$$

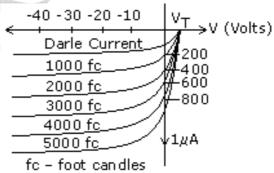

$$I_{DC} = \frac{V_{DC}}{R_{L}} = \frac{122.6}{200} = 0.613 \text{ Amps}.$$

$$P_{DC} = V_{DC} \cdot I_{DC} = 122.6 \times 0.613 = 75.15 \text{ Watts}.$$

Color	Construction	Typical FWD Voltage (V)
Amber	Al In Ga P	2.1
Blue	Ga N	5.0
Green	Ga P	2.2
Orange	Ga As P	2.0
Red	Ga As P	1.8
White	Ga N	4.1
Yellow	Al In Ga P	2.1

- Reverse break down voltage of LED is very less 3 to 5 volts
- LEDs are used for displays, including seven-segment display.

PHOTO DIODES:


- Photo diode is always reverse biased
- When light falls on reverse biased junction, electrons are liberated and an EMF is available at the terminals, which leads to current through external load.

W = hf Joules

1 Lumen = 1.496×10^{-10} watts

- Current will be zero only for a
- positive voltage V_T.
- Current α luminous flux

application – signal detector, alarm systems.

COMPARISON OF CB, CE, CC CONFIGURATIONS:

Q) Summarize salient features of characteristics of BJT operating in CE, CB, CC configurations. (August 07)

S. No.	Property	СВ	CE	CC
1	Input Resistance	Low (≈100Ω)	Moderate(≈750Ω)	High (≈750kΩ)
2	Output resistance	High (≈450k)	Moderate (≈45k)	Low (≈75Ω)
3	Current gain	1	High	High
4	Voltage gain	≈150	≈500	< 1

(Auth: EDC by Salivahanam : P –112)

5	Phase shift between input and output voltages		180°	0 or 360°
6	Applications	High frequency	AF circuits	Impedance
		circuits		matching.

Q 1b) Calculate the values of I_E , β_{dc} and α_{dc} for a transistor with $Ic = 13\mu A$, $I_B=200mA$, $I_{CBO} = 6\mu A$. Also determine the new level of Ic which will result in reducing $I_B = 100mA$. (August 07)

Solution: -

Given $Ic = 13 \mu A$ find Ic, when $I_B = 100 \text{ mA}$ $I_E = ? \quad \frac{PART - I}{\beta_{dc}} = ? \ \alpha_{dc} = ?$ $I_{\rm B} = 200 {\rm mA}$ $I_{CBO} = 6\mu A$ PART – I When $I_B = 200 \text{mA}$ I_c cannot be 13 μ A. as $Ic = \beta X. I_B.$ Assume Ic = 13 Amperes Then $\beta_{\rm dc} = \frac{I_C}{I_p} = 13/200 \text{ x } 10^3 = 65$ $I_E = I_C + I_B$ or $I_E = 13+0.2$ Amperes.= 13.2 Amperes We can also use the formulae $I_E = \frac{1}{1 - \alpha} I_{CBO} + \frac{1}{1 - \alpha} IB$, Which will also result $I_c \approx 13.2$ Amperes. $\alpha_{dc} = \frac{I_C}{I_F} = \frac{13}{13.2} = 0.985$ PART – II $I_C = \beta_{dc.} I_B = 65 \text{ x } 200 \text{ x } 10^{-3} = 6.5 \text{ Amperes}$

5. a) A transistor operating in CB configuration has $I_c = 2.98$ mA in $I_{E^-} = 3.00$ mA and Ico = 0.01mA. What current will flow in the collector circuit of the transistor when connected in CE configuration with base current of 30µA (May 2006)

Solution: Given $I_c = 2.98 \text{ mA}$ If $I_B = 30 \ \mu\text{A}$, $I_c = ?$ $I_E = 3 \ \text{mA}$ Ico = 0.01 mA $I_c = \beta I_B + (\beta+1) \text{ ICO and } \beta = \frac{\alpha}{1-\alpha}, \alpha = \frac{I_c}{I_E}$ $\alpha = \frac{2.98}{3.0} = 0.99 \ \beta = \frac{\alpha}{1-\alpha} = \frac{0.99}{1-0.99} = 99$ $I_c - 99 \ x \ 30 \ x \ 10^{-6} + (99+1) \ x \ 0.01 \ x \ 10^{-3} = 3970 \ \mu\text{A} = 3.97 \ \text{mA}.$

20

5(b) The reverse saturation current in a transistor is 8μ A. If the transistor common base current gain is 0.979, calculate the collector and emitter current for 40 μ A base current.

(May 2006)

Solution: $I_{CO} = I_{CBO} = 8\mu A$ $I_C \& I_E \text{ for } I_B = 40\mu A$ $\alpha = 0.979$ $I_E = \frac{1}{1-d} I_{CBO} + \frac{1}{1-\alpha} I_B; \quad \frac{1}{1-\alpha} = \frac{1}{1-0.979} = 47.62$ $I_E = 47.62 \times 8 \times 10^{-6} + 47.62 \times 40 \times 10^{-6} = 2285 \times 10^{-6} = 2285 \mu A$ $I_C = I_E - I_B = 2285 - 40 = 2245 \mu A.$

Q 6b) Given an NPN transistor for which $\alpha = 0.98$, $I_{CO} = 2\mu A$ and $I_{EO} = 1.6\mu A$. A common emitter connection is used and $V_{CC} = 12V$ and $R_L = 4.0K$. what is the minimum base current required in order that transistor enter into saturation region. (Nov. 05)

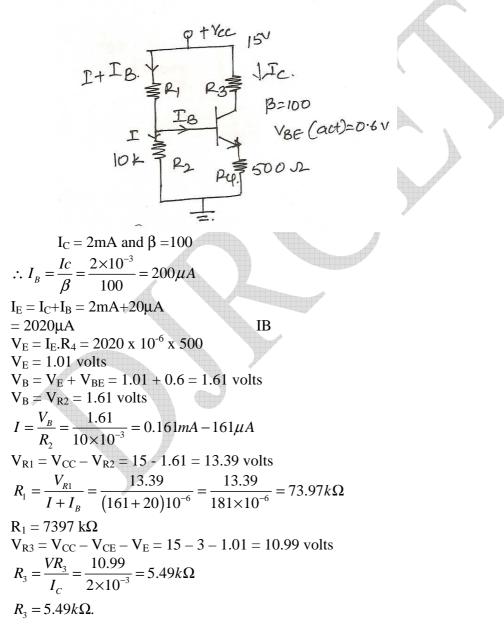
Solution:

Given d = 0.98 $I_{CO} = 2\mu A$ $I_{EO} = 1.6\mu A$ $V_{CC} = 12V$ $R_L = 4.0 \text{ K}.$ To Find I_B for I_{csat}

When the transistor is in saturation $Ic = I_{csat}$ and V_{CE} of ideal transistor = 0 volts.

$$I_{csat} = \frac{V_{cc}}{R_L} = \frac{12}{4000} = 3mA$$
$$I_B = \frac{Ic}{\beta} and \beta = \frac{\alpha}{1-\alpha} = \frac{0.98}{1-0.98} = 49$$
$$I_B = \frac{3 \times 10^{-3}}{49} = 0.061mA \qquad \text{Or} \qquad 61\mu\text{A}$$

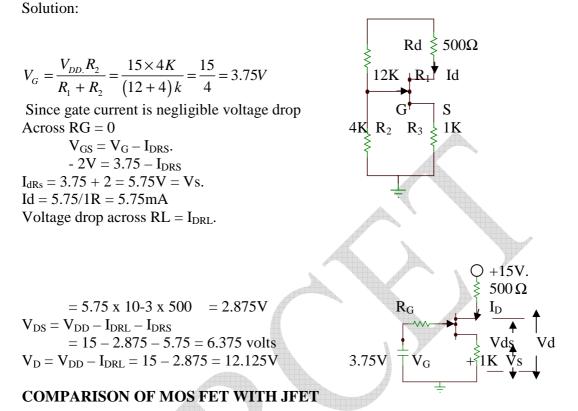
Q 9b) The current gain of a transistor in CE circuit is 49. Calculate CE gain and find base current where the emitter current in 3mA.


Solution

 $\begin{array}{ll} \mbox{Given} & \beta = 49 & \mbox{To find} & \alpha = ? \\ & I_B \mbox{ for } I_E = 3mA. \end{array}$

$$d = \frac{\beta}{1+\beta} = \frac{49}{1+49} = 0.98$$

I_E = (\beta+1) I_B or $I_B = \frac{I_E}{1+\beta} = \frac{3 \times 10^{-3}}{1+49} = 60 \mu A$


Q 1b) In the circuit shown if Ic = 2mA and $V_{CE} = 3V$. Calculate R_1 and R_3 . May 07, Aug. 06, 07)

Solution: -

22

Q 3) For the JFET shown in the circuit with the voltage divider bias as shown below, calculate V_G , V_S , V_D and V_Ds if VGS = -2V (Sep. 2006)

- 1) In JFET, the transverse electric field across the reverse biased P N junction controls the conductivity of he channel. In FET Transverse electric field is induced across the insulating layer.
- 2) Input impedance of MOS FET is much higher $(10^{10} \text{ to } 10^{15} \Omega)$ compared to that of JFET $(10^8 \Omega)$ because gate is insulated from channel.
- 3) The output characteristics of JFET are flatter than that of MOS FET because drain resistance of JFET is much higher than MOS FET.
- 4) JFET is operated in depletion mode only where as MOSFET can be operated in depletion and enhancement mode.
- 5) MOSFET are easier to fabricate than JFET
- 6) MOSFETs are easily get damaged due to static change
- 7) In MOSFET source and drain can be interchanged
- 8) CMOSFETs discipates very low power
- 9) MOS FETs are widely used in VLSI.