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Data science Introduction  

Data Science is a multidisciplinary field that combines domain expertise, programming skills, 

and knowledge of mathematics and statistics to extract meaningful insights from data. 

Key components of Data Science: 

• Problem Definition 

• Data Collection – Gathering raw data from various sources. 

• Data Cleaning – Removing errors, handling missing values, etc. 

• Exploratory Data Analysis (EDA) – Understanding patterns, trends, and relationships. 

• Modelling – Applying algorithms to make predictions or classifications. 

• Deployment & Monitoring – Implementing the model into production and tracking 

performance. 

What is Exploratory Data Analysis (EDA)? 

• Exploratory Data Analysis (EDA) is the process of analysing datasets to summarize 
their key characteristics using visual and quantitative techniques. 

• It is typically performed before applying any machine learning models and serves as 
a bridge between data collection and modelling 

• Understand the structure of the data 

• Detect outliers and anomalies 

• Identify relationships among variables 

• Generate hypotheses for further analysis 

 

Uses of EDA in the Data Science Life Cycle 

1. Understanding the Data  

• Check Data type ,dimensions and column description  

• Understanding the range and distribution of features  

• Detect missing or invalid data  
 



2. Detecting Pattern and Trends  

• Visualize the relationship(correlation between features) 

• Identify the cluster or groups in data 

• Spot seasonality or trends in time series data 

3. Detecting Pattern and Trends 

• Uses box plot ,scatter plot etc  

• Outliers can effect the model performance if not handled 

4.  Detecting Pattern and Trends 

• Helps identify which features are useful  

• Suggest possible transformations 

5. Data Cleaning and Preprocessing  

• Detect null values ,duplicates and inconsistent categories  

• Guides decision on how to impute or correct the issues 

6. Model selection Preparation   

• Determine if data is suitable for certain type of models (eg: linear vs 

nonlinear) 

• Guide target variable distribution analysis for classification or 

regression   

  

 

 EDA Techniques Include: 

Common EDA Techniques 

Technique Purpose 

Descriptive Statistics 
Mean, median, mode, standard deviation, skewness, 

etc. 

Data Visualization 
Histograms, box plots, scatter plots, bar charts, 

heatmaps 

Correlation Analysis Understanding relationships between variables 

Missing Value 

Analysis 
Identifying and handling missing data 

Outlier Detection 
Identifying abnormal data points that may affect 

modelling 

 

 



What is Anaconda? 

Anaconda is a Python distribution – it includes: 

• Conda is a package manager and environment manager. It is used to: 

• Install and manage Python (and other language) packages. 

• Create isolated environments for different projects with specific versions of Python 

and libraries. 

• Avoid conflicts between different packages or projects. 

  Why use Anaconda? 

• Easy to install and manage packages 

• Ideal for Data Science, Machine Learning, and Scientific Computing 

• Comes with all the tools in one place 

• You are working on two projects: Project A needs Python 3.8 with TensorFlow 2.9 

Project B needs Python 3.11 with PyTorch 2.1 Conda allows you to run both projects 

independently without errors. 

 

What is Jupyter Notebook? 

Jupyter Notebook is a web-based tool that allows you to: 

• Write Python code in small blocks (called "cells") 

• Run one block at a time (great for learning & testing) 

• Add explanations using Markdown (text formatting) 

• Combine code, comments, formulas, and charts in one document. 

Think of it like a notebook where: 

• Each cell can contain code or text 

• You can see results immediately below each code block 

  Example Use: 

• Data cleaning 

• Visualization 

• Machine learning experiments 

• Teaching/learning Python 



Why Use Them Together? 

• Conda gives you a clean, controlled environment with exactly the libraries you need. 

• Jupyter runs inside that environment, using the correct versions of Python and 

packages. 

• This ensures: 

o No version mismatches 

o Reproducible results 

o Stable development environment 

 

VS Code (Visual Studio Code) is a powerful code editor developed by Microsoft. It supports: 

• Writing and running Python scripts 

• Syntax highlighting and auto-completion 

• Debugging tools 

• Extensions like: 

o Python 

o Jupyter 

o Git 

VS Code is used for more advanced Python projects, compared to Jupyter which is more for 

interactive use. 

 

1.1 Download Anaconda Distribution 

Go to https://www.anaconda.com/products/distribution  and select Anaconda 

Distributionin installer to download the latest version of Anaconda. This downloads 

the .exe file to the windows download folder. 



 

1.2 Install Anaconda 

By double-clicking the .exe file starts the Anaconda installation. Follow the below screen 

shot’s and complete the installation 

 



 

 



 

 



 

 



 

This finishes the installation of Anaconda distribution, now let’s see how to create an 

environment and install Jupyter Notebook. 

2. Create Anaconda Environment from Navigator 

A conda environment is a directory that contains a specific collection of conda packages 

that you have installed. For example, you may have one environment with NumPy 1.7 and 

its dependencies, and another environment with NumPy 1.6 for legacy testing. 

https://conda.io/docs/using/envs.html 

2.1 Open Anaconda Navigator 

Open Anaconda Navigator from windows start or by searching it. Anaconda Navigator is a UI 

application where you can control the Anaconda packages, environment e.t.c 



 

2.2 Create an Environment to Run Jupyter Notebook 

This is optional but recommended to create an environment before you proceed. This gives 

complete segregation of different package installs for different projects you would be 

working on. If you already have an environment, you can use it too. 



 

select + Create icon at the bottom of the screen to create an Anaconda environment. 

 

 



3. Install and Run Jupyter Notebook 

Once you create the anaconda environment, go back to the Home page on Anaconda 

Navigator and install Jupyter Notebook from an application on the right panel. 

 

It will take a few seconds to install Jupyter to your environment, once the install completes, 

you can open Jupyter from the same screen or by accessing Anaconda 

Navigator -> Environments -> your environment (mine pandas-tutorial) -> select Open With 

Jupyter Notebook. 

 

This opens up Jupyter Notebook in the default browser. 



 

Now select New -> PythonX and enter the below lines and select Run. On Jupyter, each cell 

is a statement, so you can run each cell independently when there are no dependencies on 

previous cells. 

 

Running Python Code in Visual Studio Code (VS Code) 

Visual Studio Code (VS Code) is a lightweight yet powerful code editor that is widely used for 

Python development. It provides an excellent environment with features like syntax 

highlighting, intelligent code completion, integrated terminal, and powerful extensions. 

Once Python and the necessary extensions are set up, you can easily write, edit, and run 

your Python scripts directly from VS Code. 

Why Use VS Code to Run Python Scripts? 

- Easy to set up and use 

- Integrated terminal for running scripts 

- Support for virtual environments (including Conda) 

- Built-in debugger and output viewer 

- Rich extension marketplace 

Prerequisites 



Before running Python scripts, ensure the following are installed: 

- Visual Studio Code (VS Code) url : https://code.visualstudio.com/download  

- Python Extension in VS Code (provided by Microsoft) 

Click on the Extension tab. You can find it on the left side of the window, denoted by a 

four-squared icon. 

 

Type “Python” into the extension search bar. 



 

Select “Python from Microsoft” from the results. 

 



 

Steps to Run Python Script in VS Code 

Step 1: Open VS Code 

Start VS Code by clicking its icon from the Start menu or taskbar. 

Step 2: Create or Open a Python File 

Go to File → New File and select language as python and save the file  

 

Step 3: Write Python Code 

Example code: 

print("Hello from VS Code!") 

Step 5: Run the Python Script 

You can run the script in three ways: 

1. Click the    Play button in the top right corner. 

2. Right-click inside the editor and choose 'Run Python File in Terminal'. 

 

 

Step 6: View the Output 



The output will appear in the integrated terminal at the bottom of the VS Code window. 

 

Conclusion 

VS Code offers a seamless experience for running and debugging Python code. Once set up, 

you can focus on development without worrying about switching tools or windows. It's an 

excellent choice for students, professionals, and hobbyists alike. 

Structured Data: NumPy’s Structured Arrays  

While often our data can be well represented by a homogeneous array of values, sometimes 

this is not the case. This section demonstrates the use of NumPy’s structured arrays and 

record arrays, which provide efficient storage for compound, heterogeneous data 

Imagine that we have several categories of data on a number of people (say, name, age, and 

weight), and we’d like to store these values for use in a Python program. It would be possible 

to store these in three separate arrays: 

name = ['Alice', 'Bob', 'Cathy', 'Doug'] age = [25, 45, 37, 19] weight = [55.0, 85.5, 68.0,61.5] 

But this is a bit clumsy. There’s nothing here that tells us that the three arrays are related; it 

would be more natural if we could use a single structure to store all of this data. NumPy can 

handle this through structured arrays, which are arrays with com‐ pound data types 

Recall that previously we created a simple array using an expression like this: 

x = np.zeros(4, dtype=int) 

  Creates an array of 4 records (rows). 

Output 

   array([0, 0, 0, 0]) 



 Fills all values initially with zero (or zero-equivalents for each field type). 

We can similarly create a structured array using a compound data type specification: 

data = np.zeros(4, dtype={'names':('name', 'age', 'weight'), 'formats':('U10', 'i4', 'f8')}) 

print(data.dtype) 

Defines a structured data type (i.e., similar to a table with columns of different types). 

Field Type Explanation 

name 'U10' Unicode string of up to 10 characters 

age 'i4' 4-byte (32-bit) integer 

weight 'f8' 8-byte (64-bit) float 

So, each row in this array has: 

• a name (string up to 10 characters), 

• an age (integer), 

• and a weight (float). 

 

Why to use ? 

• Structured arrays are useful when you want to work with tabular data (like a 

lightweight DataFrame). 

You can access fields like: data = np.zeros(4, dtype={'names': ('name', 'age', 'weight'), 

'formats': ('U10', 'i4', 'f8')}) 

data['name']     # Access all names 

data['age']      # Access all ages 

Set Values  

data[0] = ('Alice', 25, 55.5) 

data[1] = ('Bob', 30, 72.0) 

Get Values  

first_row = data[0] 

print("First row:", first_row) 

output : First row: ('Alice', 25, 55.5) 



You can also access individual fields like this: 

 print("Name:", first_row['name']) 

print("Age:", first_row['age']) 

print("Weight:", first_row['weight']) 

Filter: Get all records where age > 25 

            mask = data['age'] > 25 

            result = data[mask] 

More Advanced Compound Types 

• Complex queries (Boolean masking + multiple conditions) 

• Nested dtypes (fields inside fields) 

• Fancy indexing by field 

• Sorting and filtering based on one field 

Example 

import numpy as np 

data = np.array([ 

    ('Alice', 25, 55.5), 

    ('Bob', 30, 72.0), 

    ('Carol', 22, 60.2), 

    ('David', 35, 68.4) 

], dtype=[('name', 'U10'), ('age', 'i4'), ('weight', 'f8')]) 

 

Boolean Masking + Multiple Conditions 

# People over 25 years and weighing less than 70 

filtered = data[(data['age'] > 25) & (data['weight'] < 70)] 

print("Filtered:\n", filtered) 

 

Sorting by a Field 

 sorted_by_age = np.sort(data, order='age') 

print("Sorted by age:\n", sorted_by_age) 

Nested Data Types (Twist!) 



 nested_dtype = np.dtype([ 

    ('name', 'U10'), 

    ('age', 'i4'), 

    ('metrics', [('weight', 'f4'), ('height', 'f4')])  # Nested field 

]) 

 

data2 = np.array([ 

    ('Alice', 25, (55.5, 160.0)), 

    ('Bob', 30, (72.0, 175.2)) 

], dtype=nested_dtype) 

 

print("Nested structure:\n", data2) 

print("Access Alice's height:", data2[0]['metrics']['height']) 

Output 

           Nested structure: 

             [('Alice', 25, (55.5, 160. )) ('Bob', 30, (72. , 175.2))] 

              Access Alice's height: 160.0 

Fancy Field Indexing 

           ages = data['age'] 

           print("All ages:", ages)  

 

The Pandas Series Object  

            The Series is the simplest data structure in Pandas. It's a one-dimensional 

labelled array capable of holding any data type — integers, floats, strings, Python objects, 

etc. 

Key Characteristics: 

• One-dimensional 

• Has index (labels for each element) 



• Can hold any data type 

• Built on top of NumPy array 

 

Example : 

 import pandas as pd 

data = [10, 20, 30, 40] 

s = pd.Series(data) 

print(s) 

 Output  

   0    10 

               1    20 

                2    30 

                3    40 

              dtype: int64 

With custom index: 

               s = pd.Series([10, 20, 30], index=['a', 'b', 'c']) 

                  print(s) 

     Output  

                a    10 

                b    20 

                c    30 

                dtype: int64 

From a dictionary: 

              data = {'a': 1, 'b': 2, 'c': 3} 

              s = pd.Series(data) 

  Output 

              a    1 

              b    2 



              c    3 

Accessing Data in a Series  

   s['a']     # Access by label 

   s[0]       # Access by position 

  s[0:2]     # First two elements 

 

 

population_dict = {'California': 38332521, 

                                'Texas': 26448193, 

                                'New York': 19651127, 

                                'Florida': 19552860,  

                                 'Illinois': 12882135}  

population = pd.Series(population_dict)    

Output 

        California 38332521 

        Florida 19552860 

       Illinois 12882135 

      New York 19651127 

      Texas 26448193 

Pandas Series - Explanation and Operations 

 

What is a Pandas Series? 

A Series in pandas is a 1-dimensional labelled array that can hold any data type like 

integers, floats, strings, etc. It is similar to a single column in an Excel sheet. 

 

Features of Series: 

• One-dimensional data structure 

• Can hold different data types (int, float, string, etc.) 



• Has labelled index 

• Supports element-wise operations 

 

Creating a Series 

import pandas as pd 

 

# Simple Series 

s = pd.Series([10, 20, 30, 40]) 

print(s) 

Output: 

0    10 

1    20 

2    30 

3    40 

dtype: int64 

 

Custom Index Series 

s = pd.Series([90, 80, 70], index=['Math', 'Science', 'English']) 

print(s) 

Output: 

Math       90 

Science    80 

English    70 

dtype: int64 

 

Accessing Elements 

print(s['Math'])     # Access by label 

print(s[1])          # Access by position 



Output: 

90 

80 

 

Arithmetic Operations 

s = pd.Series([10, 20, 30]) 

print(s + 5)     # Add 5 to each element 

print(s * 2)     # Multiply each element by 2 

Output: 

0    15 

1    25 

2    35 

dtype: int64 

 

0    20 

1    40 

2    60 

dtype: int64 

 

Statistical Operations 

s = pd.Series([4, 8, 15, 16, 23, 42]) 

print("Max:", s.max()) 

print("Min:", s.min()) 

print("Mean:", s.mean()) 

print("Sum:", s.sum()) 

Output: 

Max: 42 

Min: 4 



Mean: 18.0 

Sum: 108 

 

Filtering / Conditional Selection 

s = pd.Series([45, 90, 60, 30, 80], index=['A', 'B', 'C', 'D', 'E']) 

print(s[s > 60]) 

Output: 

B    90 

E    80 

dtype: int64 

 

Updating Values 

s = pd.Series([10, 20, 30], index=['x', 'y', 'z']) 

s['y'] = 99 

print(s) 

Output: 

x    10 

y    99 

z    30 

dtype: int64 

 

Appending Two Series 

s1 = pd.Series([1, 2], index=['a', 'b']) 

s2 = pd.Series([3, 4], index=['c', 'd']) 

s3 = s1.append(s2) 

print(s3) 

Output: 

a    1 



b    2 

c    3 

d    4 

dtype: int64 

 

Sorting Values and Index 

s = pd.Series([30, 10, 50], index=['a', 'b', 'c']) 

print(s.sort_values())    # By value 

print(s.sort_index())     # By index 

Output (Sorted by Values): 

b    10 

a    30 

c    50 

dtype: int64 

Output (Sorted by Index): 

a    30 

b    10 

c    50 

dtype: int64 

 

Checking for Missing Values 

s = pd.Series([10, None, 20, None]) 

print(s.isnull())     # Check missing (NaN) 

print(s.notnull())    # Check non-missing 

Output: 

0    False 

1     True 

2    False 



3     True 

dtype: bool 

 

0     True 

1    False 

2     True 

3    False 

dtype: bool 

 

Summary 

• Pandas Series is a powerful tool for handling labeled 1D data. 

• Supports indexing, filtering, statistical analysis, and arithmetic operations. 

• Useful for tasks like time series, single-column data analysis, and quick filtering. 

 

Introduction to DataFrames in Python 

A DataFrame is a 2-dimensional labeled data structure provided by the pandas library in 

Python. It's similar to a table in a database or an Excel spreadsheet. Each column can have a 

different data type, making it a powerful tool for data analysis. 

Creating a DataFrame 

 

import pandas as pd 

 

data = { 

    'Name': ['Alice', 'Bob', 'Charlie'], 

    'Age': [25, 30, 35], 

    'Department': ['HR', 'IT', 'Finance'] 

} 

 

df = pd.DataFrame(data) 

print(df) 



Output: 

         Name  Age Department 

0   Alice   25        HR 

1     Bob   30        IT 

2 Charlie   35   Finance 

Common Operations on DataFrames 

• df.info()          

 

  Provides a concise summary of the DataFrame. 

  It helps in understanding  

• Total number of entries (rows) 

• Data types of each column 

• Non-null values per column 

• Memory usage 

 

 

 

Output 

      <class 'pandas.core.frame.DataFrame'> 

Data columns (total 3 columns): 

 #   Column      Non-Null Count  Dtype  

0   Name        3 non-null      object 

 1   Age         3 non-null      int64  

 2   Department  3 non-null      object 

 

df.describe()      

• Gives statistical summary of numeric columns by default. 

Includes: 

• Count, Mean, Std (standard deviation) 

• Min, Max 

• 25%, 50%, 75% (percentiles) 

       Output:  

                     Age 



count   3.0 

mean   30.0 

std     5.0 

min    25.0 

25%    27.5 

50%    30.0 

75%    32.5 

max    35.0 

df.shape          

• Returns the dimensions of the DataFrame in the form (rows, columns) 

df.shape 

# Output: (3, 3) 

df.columns        # List of column names 

df.head(3)        # First 3 rows 

df.tail(2)        # Last 2 rows 

 

Selecting Data 

• Select a single column- df['Name'] 

Output:  

0      Alice 

1        Bob 

2    Charlie 

            Name: Name, dtype: object 

 

• Select multiple columns - df[['Name', 'Age']]     

  

 

• Iloc 



.iloc is a Pandas indexer used to select data by row and column numbers (integer-location 

based indexing) 

 

syntax 

 df.iloc[row_index, column_index] 

 

Example:  

  

1. Get 2nd row 3rd column value 

 

             df.iloc[1, 2] 

 

             Output : 'IT' 

2. Get first two rows  df.iloc[0:2] 

 

Output :  

 
Name Age Department 

0 Alice 25 HR 

1 Bob 30 IT 

    

3. Get specific rows and columns 

 

 df.iloc[[0, 2], [0, 1]] # rows 0 & 2, columns 0 & 1 

 

           

 

 

 

 

 

4. All rows, only column at index 1 

 

df.iloc[:, 1] 

 

Output:  

0    25 

1    30 

2    35 

Name: Age, dtype: int64 

• .loc is a label-based indexer used to select rows and columns by their labels (i.e., names). 

Syntax : df.loc[row_label, column_label] 

 

Example :  

  

data = { 

    'Name': ['Alice', 'Bob', 'Charlie'], 

 
Name Department 

0 Alice HR 

2 Charlie Finance 



    'Age': [25, 30, 35], 

    'City': ['Delhi', 'Mumbai', 'Chennai'] 

} 

 

df = pd.DataFrame(data, index=['a', 'b', 'c']) 

               1. Get row with index 'a' 

                          df.loc['a'] 

                               Output:  

                                           Name    Alice 

Age        25 

City    Delhi 

Name: a, dtype: object 

 

2. Get age of row 'b' 

df.loc['b', 'Age']   # Output: 30 

3. Get multiple rows 

             df.loc[['a', 'c']] 

                   

 

4. Get specific rows and columns 

           df.loc[['a', 'c'], ['Name', 'City']] 

     Output :  

 Name City 

a Alice Delhi 

c Charlie Chennai 

 

5. All rows, only 'City' column 

           df.loc[:, 'City'] 

        Output :  

               a      Delhi 

b     Mumbai 

 Name Age City 

a Alice 25 Delhi 

c Charlie 35 Chennai 



c    Chennai 

Name: City, dtype: object 

 

 

 

 

Filtering Data 

 df[df['Age'] > 28]              # Rows where Age > 28 

df[df['Department'] == 'IT']    # Rows in IT department 

Adding/Modifying Columns 

• df['Salary'] = [50000, 60000, 70000] – Adds a new column. 

• df['AgePlus10'] = df['Age'] + 10 – Adds a calculated column. 

Deleting/Sorting Data 

• df.drop('AgePlus10', axis=1, inplace=True) – Deletes a column. 

• df.sort_values(by='Age', ascending=False) – Sorts by age descending. 

Grouping and Aggregation 

• df.groupby('Department')['Age'].mean() – Groups by department and calculates average 

age.        

Exporting Data 

df.to_csv('output.csv', index=False) 

df.to_excel('output.xlsx', index=False) 

How to read Excel using DataFrame 

import pandas as pd 

# If your file is in the same directory 

df = pd.read_excel("your_file.xlsx") 

 



# If you have multiple sheets 

df = pd.read_excel("your_file.xlsx", sheet_name='Sheet1') 

df.head()       # Shows first 5 rows 

df.tail()       # Shows last 5 rows 

df.shape        # Shows (rows, columns) 

df.info()       # Summary of data types and non-null values 

df.describe()   # Summary statistics 

 

Handling Missing Data 

 df.isnull()  - used to detect missing (null/NaN) values in a DataFrame 

df.fillna(0)  - .fillna() is used to replace missing values (NaN) with a specified value or 

method. 

df.dropna()           # Drop rows with missing values 

 

Selecting Data 

• df['Name'] – Selects a single column. 

• df[['Name', 'Age']] – Selects multiple columns. 

• df.iloc[1] – Accesses the second row by position. 

• df.loc[1] – Accesses the second row by index label. 
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Handling Missing Values 

 

Missing values are a common challenge in machine learning and data analysis. They occur 

when certain data points are missing for specific variables in a dataset. These gaps in 

information can take the form of blank cells, null values or special symbols like "NA", "NaN" 

or "unknown." If not addressed properly, missing values can harm the accuracy and 

reliability of our models. They can reduce the sample size, introduce bias and make it 

difficult to apply certain analysis techniques that require complete data. Efficiently handling 

missing values is important to ensure our machine learning models produce accurate and 

unbiased results, we'll see more about the methods and strategies to deal with missing data 

effectively. 

 

Importance of Handling Missing Values 

Handling missing values is important for ensuring the accuracy and reliability of data analysis 

and machine learning models. Key reasons include: 

• Improved Model Accuracy: Addressing missing values helps avoid incorrect 

predictions and boosts model performance. 

• Increased Statistical Power: Imputation or removal of missing data allows the use of 

more analysis techniques, maintaining the sample size. 

• Bias Prevention: Proper handling ensures that missing data doesn’t introduce 

systematic bias, leading to more reliable results. 



• Better Decision-Making: A clean dataset leads to more informed, trustworthy 

decisions based on accurate insights. 

Challenges Posed by Missing Values 

Missing values can introduce several challenges in data analysis including: 

• Reduce sample size: If rows or data points with missing values are removed, it 

reduces the overall sample size which may decrease the reliability and accuracy of 

the analysis. 

• Bias in Results: When missing data is not handled carefully, it can introduce bias. This 

is especially problematic when the missingness is not random, leading to misleading 

conclusions. 

• Difficulty in Analysis: Many statistical techniques and machine learning algorithms 

require complete data for all variables. Missing values can cause certain analyses or 

models inapplicable, limiting the methods we can use. 

Understanding Different Types of 'Missing' Data 

None: Pythonic Missing Data 

In pure Python, the built-in constant None is used to represent the absence of a value or 

missing data. It’s often the default for variables that haven’t been initialized or when a 

function returns nothing. 

  Example : data = [10, 15, None, 25] 

for value in data: 

    if value is None: 

        print("Missing value found!") 

    else: 

        print("Value:", value) 

Output :  

            Value: 10 

            Value: 15 

            Missing value found! 

            Value: 25 

   Example :2  

           import pandas as pd 



df = pd.DataFrame({ 

    'name': ['Alice', 'Bob', None], 

    'age': [25, None, 30] 

}) 

print(df) 

 Output  

         name   age 

0     Alice  25.0 

1     Bob   NaN 

2    None  30.0 

 

Operating on Null Values 

  As we have seen, Pandas treats None and NaN as essentially interchangeable for indi‐ 

cating missing or null values. To facilitate this convention, there are several useful methods 

for detecting, removing, and replacing null values in Pandas data structures. They are: 

• isnull()  

                   Generate a Boolean mask indicating missing values  

• notnull()  

              Opposite of isnull()  

• dropna()  

       Return a filtered version of the data 

•  fillna() 

        Return a copy of the data with missing values filled or imputed  

Detecting null values 

   Pandas data structures have two useful methods for detecting null data: isnull() and 

notnull(). Either one will return a Boolean mask over the data. For example 



 

 

The isnull() and notnull() methods produce similar Boolean results for Data Frames. 

Dropping null values  

In addition to the masking used before, there are the convenience methods, dropna() (which 

removes NA values) and fillna() (which fills in NA values). For a Series, the result is 

straightforward: 

For a DataFrame, there are more options. Consider the following DataFrame: 

 

 

We cannot drop single values from a DataFrame; we can only drop full rows or full columns. 

Depending on the application, you might want one or the other, so dropna() gives a number 

of options for a DataFrame. 

By default, dropna() will drop all rows in which any null value is present: 

 

Alternatively, you can drop NA values along a different axis; axis=1 drops all columns 

containing a null value: 



 

But this drops some good data as well; you might rather be interested in dropping rows or 

columns with all NA values, or a majority of NA values. This can be specified through the 

how or thresh parameters, which allow fine control of the number of nulls to allow through.  

The default is how='any', such that any row or column (depending on the axis key‐ word) 

containing a null value will be dropped. You can also specify how='all', which will only drop 

rows/columns that are all null values: 

 

 

For finer-grained control, the thresh parameter lets you specify a minimum number of 

non-null values for the row/column to be kept: 

 

thresh=3 

Filling null values 

   Sometimes rather than dropping NA values, you’d rather replace them with a valid value. 

This value might be a single number like zero, or it might be some sort of imputation or 

interpolation from the good values. You could do this in-place using the isnull() method as a 

mask, but because it is such a common operation Pandas provides the fillna() method, which 

returns a copy of the array with the null values replaced. 

data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde')) 

Keep only rows with at least 3 non-null values 



We can fill NA entries with a single value, such as zero: 

   

We can specify a forward-fill to propagate the previous value forward: 

 

Or we can specify a back-fill to propagate the next values backward 

 

For DataFrames, the options are similar, but we can also specify an axis along which the fills 

take place: 

  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Trade-Offs in Missing Data Conventions 

               There are several strategies to handle missing data, such as filling with 

mean, median, or               mode, interpolation, or dropping rows entirely. Each 

strategy has its own advantages and disadvantages, and choosing the right one involves 

making trade-offs. 

1. Filling Missing Values with Mean 

Description: 

The mean (average) is a commonly used method for replacing missing values 

in numeric columns. 

Pros: 

• Easy to compute and implement. 

• Preserves the dataset size (no rows dropped). 

• Useful when data is symmetrically distributed. 

Cons: 

• Sensitive to outliers, which can distort the average. 

• Can underestimate or overestimate values if the distribution is 

skewed. 

• Reduces data variance and can lead to biased models. 

Real-World Example: 



In a student performance dataset, if one student's math score is missing, we 

might fill it with the average score of the class. However, if a few students 

have extremely high or low scores, the average might not reflect a fair value. 

Example : import pandas as pd 

import numpy as np 

 

data = {'student': ['A', 'B', 'C', 'D'], 

        'marks': [80, 85, np.nan, 90]} 

df = pd.DataFrame(data) 

# Fill missing marks with mean 

df['marks'].fillna(df['marks'].mean(), inplace=True) 

2. Filling Missing Values with Median 

Description: 

The median is the middle value when all values are sorted. It is a better measure of central 

tendency for skewed data. 

Pros: 

• Not affected by outliers. 

• Better for skewed data distributions (e.g., income). 

Cons: 

• Ignores distribution shape in normal data. 

• Doesn’t consider the relationships between data points. 

Real-World Example: 

In a financial dataset containing household income, if one value is missing, replacing it with 

the median income avoids the problem of a few very rich households skewing the results. 

import pandas as pd 

import numpy as np 

data = {'customer': ['A', 'B', 'C', 'D', 'E'], 

        'income': [30000, 35000, np.nan, 40000, 1000000]}  # Notice the outlier 

(1000000) 

df = pd.DataFrame(data) 



df['income'].fillna(median_income, inplace=True) 

Output :  

customer   income 

0        A   30000.0 

1        B   35000.0 

2        C   37500.0  ← filled with median 

3        D   40000.0 

4        E 1000000.0 

3. Filling Missing Values with Mode 

Description: 

The mode is the most frequent value in a column. This method is especially useful for 

categorical data. 

Pros: 

• Best suited for categorical variables. 

• Maintains the most common class or category. 

Cons: 

• Doesn’t work well with numeric or continuous variables. 

• Can introduce bias if the missing data is not actually most similar to the mode. 

Real-World Example: 

In a survey dataset, if the gender column is missing for some entries, and the most frequent 

gender is 'Female', we might fill the missing entries with 'Female'. However, this can lead to 

overrepresentation of that category. 

import pandas as pd 

import numpy as np 

data = {'customer': [1, 2, 3, 4, 5], 

        'gender': ['Male', 'Female', np.nan, 'Male', np.nan]} 

df = pd.DataFrame(data) 

df['gender'].fillna(df['gender'].mode()[0], inplace=True) 

df 



   customer  gender 

0         1    Male 

1         2  Female 

2         3    Male  ← filled with mode 

3         4    Male 

4         5    Male  ← filled with mode 

4. Interpolation 

Description: 

Estimates missing values by using the values before and after the missing one. Commonly 

used for time series data. 

Pros: 

• Maintains trends and patterns. 

• Preserves time-sequence data. 

Cons: 

• Can create artificial trends. 

• Not suitable for unordered or categorical data. 

Real-World Example: 

In a weather dataset, if the temperature reading is missing for a single day, it can be 

estimated by taking the average of the temperature from the previous and next day. 

import pandas as pd 

import numpy as np 

# Temperature data with one missing value 

data = {'day': ['Mon', 'Tue', 'Wed', 'Thu', 'Fri'], 

        'temperature': [28.0, 30.0, np.nan, 32.0, 34.0]} 

df = pd.DataFrame(data) 

df['temperature'] = df['temperature'].interpolate() 

Output :  

    day  temperature 

0   Mon         28.0 



1   Tue         30.0 

2   Wed         31.0  ← interpolated between Tue (30.0) and Thu (32.0) 

3   Thu         32.0 

4   Fri         34.0 

Data Duplication Removal from Dataset 

Duplicates are a common issues in real-world datasets that can negatively impact our 

analysis. They occur when identical rows or entries appear multiple times in a dataset. 

Although they may seem harmless but they can cause problems in analysis if not fixed. 

Duplicates could happen due to: 

• Data entry errors: When the same information is recorded more than once by 

mistake. 

• Merging datasets: When combining data from different sources can lead to 

overlapping of data that can create duplicates. 

Why Duplicates Can Cause Problems? 

• Skewed Analysis: Duplicates can affect our analysis results which leads to misleading 

conclusions such as an wrong average salary. 

• Inaccurate Models: It can cause machine learning models to overfit which reduces 

their ability to perform well on new data. 

• Increased Computational Costs: It consume extra computational power which slows 

down analysis and impacts workflow. 

• Data Redundancy and Complexity: It make it harder to maintain accurate records 

and organize data and adds unnecessary complexity. 

Identifying Duplicates  

• To manage duplicates the first step is identifying them in the dataset. Pandas offers various 

functions which are helpful to spot and remove duplicate rows 

 

import pandas as pd 

 

data = { 

    'Name': ['Alice', 'Bob', 'Alice', 'Charlie', 'Bob', 'David'], 

    'Age': [25, 30, 25, 35, 30, 40], 

    'City': ['New York', 'Los Angeles', 'New York', 'Chicago', 'Los Angeles', 'San Francisco'] 

} 

 

df = pd.DataFrame(data) 

df 

Output  



   

1. Using duplicated() Method 

• The duplicate() method helps to identify duplicate rows in a dataset. It returns a boolean 

Series indicating whether a row is a duplicate of a previous row. 

duplicates = df.duplicated() 

duplicates 

Output: 

 

              

Removing Duplicates 

Duplicates may appear in one or two columns instead of the entire dataset. In such cases, 

we can choose specific columns to check for duplicates. 

1. Based on Specific Columns 

Here we will specify columns i.e name and city to remove duplicates 

using drop_duplicates(). 

df_no_duplicates_columns = df.drop_duplicates(subset=['Name', 'City']) 

df_no_duplicates_columns 

Output  

  

2. Keeping the First or Last Occurrence 



By default drop_duplicates() keeps the first occurrence of each duplicate row. However, 

we can adjust it to keep the last occurrence instead 

df_keep_last = df.drop_duplicates(keep='last') 

df_keep_last 

Output 

 

Outliers 

Outliers are data points that deviate significantly from other data points in a dataset. They 

can arise from a variety of factors such as measurement errors, rare events or natural 

variations in the data. If left unchecked it can distort data analysis, skew statistical results 

and impact machine learning model performance 

Methods for Detecting and Removing Outliers 

There are several ways to detect and handle outliers in Python. We can use visualization 

techniques or statistical methods depending on the nature of our data Each method serves 

different purposes and is suited for specific types of data. Here we will be 

using Pandas and Matplotlib libraries on the Diabetes dataset which is preloaded in 

the Sckit-learn library. 

1. Visualizing and Removing Outliers Using Box Plots 

import sklearn 

from sklearn.datasets import load_diabetes 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

diabetes = load_diabetes() 

column_name = diabetes.feature_names 

df_diabetics = pd.DataFrame(diabetes.data, columns=column_name) 

sns.boxplot(df_diabetics['bmi']) 



plt.title('Boxplot of BMI') 

plt.show() 

 

in the boxplot, outliers appear as points outside the whiskers. These values are much higher 

or lower than the rest of the data. For example, bmi values above 0.12 could be identified as 

outliers. 

To remove outliers, we can define a threshold value and filter the data. 

def removal_box_plot(df, column, threshold): 

      removed_outliers = df[df[column] <= threshold] 

    sns.boxplot(removed_outliers[column]) 

    plt.title(f'Box Plot without Outliers of {column}') 

    plt.show() 

    return removed_outliers 

threshold_value = 0.12 

no_outliers = removal_box_plot(df_diabetics, 'bmi', threshold_value) 

Output 

                                   

2. IQR Method (Interquartile Range) 



This method is a widely used and reliable technique for detecting outliers. It is robust to 

skewed data and helps identify extreme values based on quartiles and it most trusted 

approach used in the research field. The IQR is calculated as the difference between the 

third quartile (Q3) and the first quartile (Q1): 

  IQR=Q3−Q1 

Q1 = df['bmi'].quantile(0.25) 

Q3 = df['bmi'].quantile(0.75) 

To define the outlier base value is defined above and below dataset's normal range namely 

Upper and Lower bounds define the upper and the lower bound (1.5*IQR value is 

considered i.e: 

• upper=Q3+1.5∗IQRupper=Q3+1.5∗IQR 

• lower=Q1−1.5∗IQRlower=Q1−1.5∗IQR 

In the above formula the 0.5 scale-up of IQR (new_IQR = IQR + 0.5*IQR) is taken to consider 

all the data between 2.7 standard deviations in the Gaussian Distribution. 

upper = Q3+1.5*IQR 

upper_array = np.array(df_diabetics['bmi'] >= upper) 

print("Upper Bound:", upper) 

print(upper_array.sum()) 

 

lower = Q1-1.5*IQR 

lower_array = np.array(df_diabetics['bmi'] <= lower) 

print("Lower Bound:", lower) 

print(lower_array.sum()) 

 

Now lets detect and remove outlier using the interquartile range (IQR). 

Here we are using the interquartile range (IQR) method to detect and remove 

outliers in the 'bmi' column of the diabetes dataset. It calculates the upper 

and lower limits based on the IQR it identifies outlier indices using Boolean 

arrays and then removes the corresponding rows from the DataFrame which 



results in a new DataFrame with outliers excluded. The before and after 

shapes of the DataFrame are printed for comparison. 

 

    import sklearn 

from sklearn.datasets import load_diabetes 

import pandas as pd 

diabetes = load_diabetes() 

 

column_name = diabetes.feature_names 

df_diabetes = pd.DataFrame(diabetes.data) 

df_diabetes .columns = column_name 

df_diabetes .head() 

print("Old Shape: ", df_diabetes.shape) 

 

 

Q1 = df_diabetes['bmi'].quantile(0.25) 

Q3 = df_diabetes['bmi'].quantile(0.75) 

IQR = Q3 - Q1 

lower = Q1 - 1.5*IQR 

upper = Q3 + 1.5*IQR 

 

upper_array = np.where(df_diabetes['bmi'] >= upper)[0] 

lower_array = np.where(df_diabetes['bmi'] <= lower)[0] 

 

df_diabetes.drop(index=upper_array, inplace=True) 

df_diabetes.drop(index=lower_array, inplace=True) 

 

print("New Shape: ", df_diabetes.shape) 



Output: 

Old Shape: (442, 10) 

New Shape: (439, 10) 

 

 

What are Anomalies 

An anomaly is any data point, event, or pattern that does not conform to the expected 

behavior of the dataset. 

• Sometimes, anomalies are bad data (errors, noise). 

• Sometimes, anomalies are critical insights (fraud, failures, rare events). 

Types of Anomalies 

 1. Point Anomalies (Global Anomalies) 

Definition: 

A single data point that is significantly different from the majority of other data points in the 

dataset. This is the most common and widely recognized anomaly type. 

Real-World Examples: 

• Credit Card Fraud: Suddenly seeing a $10,000 charge on your credit card, 

when your typical bill is around $2,000. 



• Healthcare: A patient’s heart rate suddenly spikes to 200 bpm for a single 

measurement, even though previous and following readings are normal. 

• Network Security: A sudden, singular spike in network traffic that could 

indicate a potential DDoS attack. 

• Energy Usage: A household records an abnormally high electricity usage for one day, 

suggesting a faulty appliance or unauthorized use. 

2. Contextual Anomalies (Conditional Anomalies) 

Definition: 

A data point that is only anomalous in a specific context (such as time, season, or 

environment) but might appear normal otherwise. 

Real-World Examples: 

• Website Traffic: High web traffic during a marketing campaign is expected, 

but a similar traffic spike on a regular night might indicate bot activity or a 

technical glitch. 

• Energy Consumption: Elevated energy use is normal during daytime for 

offices, but high power usage late at night may be suspicious and could 

indicate problems. 

• Healthcare Monitoring: An increased heart rate during exercise is normal, but 

the same elevated rate during rest is a contextual anomaly. 

3. Collective Anomalies 

Definition: 

A collection or sequence of data points that, as a group, represents anomalous behavior, 

even if individual points are not anomalous. 

Real-World Examples: 

• Cybersecurity: Multiple failed login attempts from the same IP address in a 

short period indicate a brute-force attack, even if a single failed attempt is 

normal. 



• Finance: A customer makes several small transactions in rapid succession to 

evade detection—together, these form a collective anomaly and potential 

money laundering case. 

• Healthcare: A slowly and steadily declining vital sign (such as blood pressure 

dropping a little every hour) may indicate an emerging medical crisis. 

• Traffic Management: While low traffic volumes on certain days are normal, a 

week-long, sustained dip could indicate construction or an event affecting 

traffic flow. 

 

Anomalies in EDA (Exploratory Data Analysis) 

In EDA, anomalies are often treated as outliers. The purpose is to understand data 

quality, distribution, and patterns. 

Common EDA Techniques to Detect Anomalies 

Visualization-based 

• Box plots → find points beyond whiskers. 

• Scatter plots → find points away from clusters. 

• Histogram/Distribution plots → identify long tails. 

Statistical methods 

• Z-score  

• IQR (Interquartile Range) → points beyond Q1 - 1.5×IQR or Q3 + 1.5×IQR. 

 

Encoding Categorical Variables  

  

Encoding categorical variables is an essential step in preparing data for machine learning 

models, which often require numerical input. The two most common methods are Label 

Encoding and One-hot Encoding, and they serve different purposes based on the nature of 

your data. 



 

 

 

Label encoding: 

 Label encoding is a technique used in machine learning to convert categorical data into 

numerical data by assigning a unique integer to each category. This allows machine learning 

algorithms to process and analyze categorical variables that originally contain non-numerical 

data. Typically, each unique category is assigned a number starting from 0 upwards. 

 

 KeyPoints: 

•  It assigns a distinct numerical label to each category within a variable. 

• It is especially useful for ordinal data where categories have a meaningful order. 

• For nominal data (categories without order), label encoding can sometimes mislead 
models into assuming an inherent ranking, which might affect performance. 

 

 

Categorical data is broadly divided into two types: 

 

• Nominal Data: Categories without inherent order (e.g., colors: red, blue, green). 



• Ordinal Data: Categories with a natural order (e.g., satisfaction levels: low, medium, 
high). 

Sample code  

       

import pandas as pd 

from sklearn.preprocessing import LabelEncoder 

 

# Severity levels 

severity = ['Low', 'Medium', 'High', 'Medium', 'Low'] 

df = pd.DataFrame({'Severity': severity}) 

 

# Label Encoding 

label_encoder = LabelEncoder() 

df['Severity_encoded'] = label_encoder.fit_transform(df['Severity']) 

print(df) 

 

Output : 

   

 

 

Other examples of ordinal categorical data that can be label encoded include: 

1. Education Levels: “High School” < “Some College” < “Bachelor’s Degree” < “Master’s 
Degree” < “Ph.D.” 



2. Income Levels: “Low” < “Medium” < “High” 

3. Rating Scales: “Poor” < “Average” < “Good” < “Excellent” 

 

Now we are able to convert that numerical but algorithms like linear regression may 

misinterpret numbers as ordinal (Red=2 > Green=1). 

For non-ordinal categorical variables, use One-Hot Encoding instead. 

 

 

 

One-hot encoding: 

      One-Hot Encoding is a method of converting categorical variables into a binary 

vector representation. 

• Each unique category in the original column becomes a new column. 

• A value of 1 in a column indicates the presence of that category, while 0 indicates its 
absence. 

• This encoding is used to make categorical data machine-readable for algorithms that 
require numerical input. 

 

Original Column: ['Apple', 'Banana', 'Mango'] 

After applying One-Hot Encoded: 

Apple Banana Mango 

1 0 0 

0 1 0 

0 0 1 

 

Example 1 : 

   fruits = ['Apple', 'Banana', 'Mango', 'Banana', 'Apple', 'Orange'] 

import pandas as pd 

 

df = pd.DataFrame({'Fruit': fruits}) 



 

# One-Hot Encoding 

one_hot = pd.get_dummies(df, columns=['Fruit']) 

print(one_hot) 

          Output : 

   Fruit_Apple  Fruit_Banana  Fruit_Mango  Fruit_Orange 

0            1             0            0             0 

1            0             1            0             0 

2            0             0            1             0 

3            0             1            0             0 

4            1             0            0             0 

5            0             0            0             1 

         

          Example : 2  

                    from sklearn.preprocessing import OneHotEncoder 

import pandas as pd 

 

df = pd.DataFrame({'Fruit': ['Apple', 'Banana', 'Mango']}) 

 

encoder = OneHotEncoder(sparse=False)  # sparse=False returns a NumPy 

array 

encoded_array = encoder.fit_transform(df[['Fruit']]) 

 

encoded_df = pd.DataFrame(encoded_array, 

columns=encoder.get_feature_names_out(['Fruit'])) 

print(encoded_df) 

 

 

                    



                   Fruit_Apple   Fruit_Banana   Fruit_Mango 

             0          1.0        0.0        0.0 

             1          0.0       1.0         0.0 

             2          0.0       0.0          1.0 

 

 

Data Transformation 

 Data Transformation is the process of converting raw data into a more useful 

format for analysis or machine learning. 

It helps in: 

• Improving data quality and consistency 

• Preparing data for ML models 

• Handling different scales, distributions, or data types 

 

Normalization 

       Normalization is a technique in Machine Learning applied during data 

preparation to change the values of numeric columns in the dataset to use a 

common scale between 0 to 1 . It is not necessary for all datasets in a model. It 

is required only when features of machine learning models have different 

ranges. 

 

Mathematically, we can calculate normalization with the below formula: 

1. Xn = (X - Xminimum) / ( Xmaximum - Xminimum)   

 

Example: Let's assume we have a model dataset having maximum and 

minimum values of feature. To normalize the machine learning model, values 

are shifted and rescaled so their range can vary between 0 and 1. This 

technique is also known as Min-Max scaling. In this scaling technique, we will 

change the feature values as follows: 



Values: [10, 20, 30, 40, 50] - Min = 10, Max = 50 

For 30: [ x’ =   0.5 ] 

Normalized values: [0, 0.25, 0.5, 0.75, 1] 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 

# Sample data 

X = np.array([[10], [20], [30], [40], [50]]) 

# Apply Min-Max Normalization to [0,1] 

scaler = MinMaxScaler() 

X_normalized = scaler.fit_transform(X) 

print("Original Data:\n", X.ravel()) 

print("Normalized Data (0-1 range):\n", X_normalized) 

 

Output  

Original Data: 

[10 20 30 40 50] 

Normalized Data (0-1 range): 

[0.   0.25 0.5  0.75 1.  ] 

Binning  

     Binning is the process of dividing a continuous variable into a 
set of discrete intervals or bins. The intervals can be of equal or 
unequal size, and can be defined using different methods, such as 

 

• Fixed Width Binning: Dividing the data into a fixed number of equally 

sized bins. For example, dividing a range of values from 0 to 100 into 10 

bins of width 10. 

• Fixed Frequency Binning: Dividing the data into a fixed number of bins 

with approximately the same number of data points in each bin. For 

example, dividing a dataset of 1000 data points into 10 bins with 100 

data points in each bin. 

• Custom binning : Bins are defined manually based on domain 

knowledge. 



Example: Age groups = Child (0-12), Teen (13-19), Adult (20-59), Senior 

(60+). 

Example with Age Data 

    ages = [5, 12, 18, 24, 30, 35, 40, 50, 60, 70, 80, 90] 

    Equal-width Binning (3 bins) 

We want 3 bins. 

• Range of data = 90 − 5 = 85 

• Bin width = 85 ÷ 3 ≈ 28.3 

So bins are approximately: 

• Bin 1: 5–33 

• Bin 2: 33–61 

• Bin 3: 61–90 

 Ages grouped: 

• Bin 1 → [5, 12, 18, 24, 30] 

• Bin 2 → [35, 40, 50, 60] 

• Bin 3 → [70, 80, 90] 

 

 Equal-frequency Binning (3 bins) 

We want 3 bins with equal number of people. 

• 12 people ÷ 3 bins = 4 people per bin 

So bins are: 

• Bin 1: [5, 12, 18, 24] 

• Bin 2: [30, 35, 40, 50] 

• Bin 3: [60, 70, 80, 90] 

Notice here: 

• Ranges are uneven (Bin 1: 5–24, Bin 2: 30–50, Bin 3: 60–90) 

• But each bin has exactly 4 people 

 Python Example : 

          import pandas as pd 

 



ages = [5, 12, 18, 24, 30, 35, 40, 50, 60, 70, 80, 90] 

df = pd.DataFrame(ages, columns=['Age']) 

 

# Equal-width binning (3 bins) 

df['Equal_Width_Bin'] = pd.cut(df['Age'], bins=3) 

 

# Equal-frequency binning (3 bins) 

df['Equal_Freq_Bin'] = pd.qcut(df['Age'], q=3) 

 

print(df)  

    Age  Equal_Width_Bin    Equal_Freq_Bin 

0     5     (4.915, 33.3]     (4.999, 24.0] 

1    12   (4.915, 33.3]      (4.999, 24.0] 

2    18   (4.915, 33.3]      (4.999, 24.0] 

3    24   (4.915, 33.3]      (4.999, 24.0] 

4    30   (4.915, 33.3]      (29.999, 50.0] 

5    35   (33.3, 61.7]       (29.999, 50.0] 

6    40   (33.3, 61.7]      (29.999, 50.0] 

7    50   (33.3, 61.7]      (29.999, 50.0] 

8    60   (33.3, 61.7]      (59.999, 90.0] 

9    70   (61.7, 90.0]      (59.999, 90.0] 

10   80   (61.7, 90.0]     (59.999, 90.0] 

11   90   (61.7, 90.0]    (59.999, 90.0] 

    Equal-width → fixed-size ranges, but bins may have unequal counts. 

    Equal-frequency → bins have equal counts, but ranges vary. 

 

Example for Custom Binning  

    import pandas as pd 

 

ages = [5, 12, 18, 24, 30] 



df = pd.DataFrame(ages, columns=['Age']) 

 

bins = [0, 12, 19, 35]   # intervals: (0-12], (12-19], (19-35] 

labels = ['Child', 'Teen', 'Young Adult'] 

 

df['Age_Group'] = pd.cut(df['Age'], bins=bins, labels=labels) 

print(df) 

 

Output  

       Age    Age_Group 

0    5            Child       → falls into (0–12] 

1   12           Child       → falls into (0–12] 

2   18            Teen       → falls into (12–19] 

3   24           Young Adult       → falls into (19–35] 

4   30           Young Adult       → falls into (19–35] 

 

 

 

 

 

Data Types Conversion 

 Data Type Conversion is the process of changing one data type into another, 

so the data can be used correctly in analysis 

   Example: "25" (string) → 25 (integer) 

  Example: 25 (integer) → 25.0 (float) 

 

Why Data Type Conversion is Needed  

  Memory Efficiency 

• Large datasets can be optimized by converting types. 

• Example: Converting float64 → float32 reduces memory usage. 



  Data Cleaning 

• Data loaded from CSV/Excel might come as object (string) even if 

values are numeric. 

• Conversion ensures proper type before analysis. 

 Correct Calculations 

• Wrong type leads to wrong results: 

o "25" + "5" → "255" (string concatenation) 

o 25 + 5 → 30 (integer addition) 

Types of Data Type Conversion 

          Numeric Conversions 

• Integer ↔ Float 

• Example: int(25.9) → 25 

• Example: float(25) → 25.0 

         String ↔ Numeric 

• Example: "100" → 100 (string → integer) 

• Example: 100 → "100" (integer → string) 

       Object ↔ Category 

• Example: "Male"/"Female" → 0/1 (category encoding) 

import pandas as pd 

 

# Sample dataset 

data = {'Age': ['25', '30', '35'],  

        'Salary': ['40000', '50000', '60000'],  

        'Gender': ['Male', 'Female', 'Male']} 

df = pd.DataFrame(data) 

print("Before Conversion:") 

print(df.dtypes) 

# Convert Age and Salary from string → integer 

df['Age'] = df['Age'].astype(int) 

df['Salary'] = df['Salary'].astype(float) 



# Convert Gender to category 

df['Gender'] = df['Gender'].astype('category') 

print("\nAfter Conversion:") 

print(df.dtypes) 

 

Data Type Casting 

             Data Type Casting is the process of forcibly changing one data 

type into another, even if it may lead to data loss or truncation 

Why Casting is Important in AI/ML? 

1. Memory Optimization 

o Large datasets → reduce precision from float64 → float32 to save 

memory. 

2. Speed 

o Smaller types (int32 instead of int64) improve training 

performance. 

3. Compatibility 

o Some ML models or libraries expect specific types (float32 for 

TensorFlow/PyTorch). 

4. Data Cleaning 

o When values are not in the desired type, casting ensures they 

become usable. 

 

 Example : 

1.     x = 10 

y = float(x) 

print(y, type(y)) 

Output: 10.0 <class 'float' 

2. x = 10.75 

y = int(x)   # Casting removes decimal part 

print(y, type(y)) 

Output: 10 <class 'int'> (lost .75 



3. x = "25" 

y = int(x) 

print(y, type(y)) 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



           UNIT – 3 

Measures of Central Tendency and 
Dispersion 
 

1. Measures of Central Tendency 

 

Central tendency is a fundamental statistical concept that represents the "center" or typical 

value around which data points in a dataset cluster. It helps summarize a dataset with a 

single representative value, giving an idea about the average or most common outcome.  

The three main measures of central tendency  

1.1 Mean (Arithmetic Average) 

Definition: The sum of all values divided by the number of values. 

Formula: Mean = Σx / n 

 

Example: Predicting house prices using features like average square footage in a 

neighborhood. 

In datasets, mean values summarize typical feature values, helping to fill missing data (mean 

imputation) or standardize scales before feeding into ML models. 

Use case: If 10% of house records lack square footage, replacing missing values with the 

mean square footage avoids data loss and improves model stability. 

1.2 Median (Middle Value) 

Definition: The middle value when data is arranged in order. 

Example:  

• Income prediction models often handle skewed income data with heavy outliers (few very 

high earners). 

• Using the median instead of mean to impute missing income values ensures the 

imputation is not skewed by extreme values. 



• Use case: This preserves model accuracy by maintaining a representative “typical” 

income value during training. 

. 

1.3 Mode (Most Frequent Value) 

Definition: The value that occurs most frequently. 

• Example: In customer churn prediction, categorical features like “preferred communication 

channel” (email, phone, app) may have missing values. 

• Imputing missing categories with the mode (most frequent category) helps keep 

dataset integrity. 

• Use case: Mode imputation avoids introducing rare categories and preserves 

dominant customer behavior patterns in ML models. 

2. Measures of Dispersion 

Dispersion in statistics is a way to describe how spread out or scattered the data is around 

an average value. It helps to understand if the data points are close together or far apart. It 

shows the variability or consistency in a set of data.  

 

Common Measures of Dispersion 



2.1 Range 

Definition: Difference between maximum and minimum values. 

Formula: Range = Max – Min 

Example: Given {20, 42, 13, 71, 54, 93, 15, 16} 

• Largest value = 93 

• Smallest value = 13 

• Range = 93 - 13 = 80 

2.2 Variance 

Definition: Average of squared differences from the mean. 

Formula: Variance = Σ(x - mean)^2 / n 

Example: Test scores: 60, 65, 70, 75, 80 

• Mean (X‾X) = (2+6+12+15)/4 = 8.75 

Variance = ((60−70)2+(65−70)2+(70−70)2+(75−70)2+(80−70)2)÷5 

= (100 + 25 + 0 + 25 + 100) ÷ 5 = 50 

2.3 Standard Deviation (SD) 

Definition: Square root of variance; shows average deviation from mean. 

Formula: SD = √Variance 

Example: Dataset = {1, 3, 6, 7, 12} 

• Mean = 5.8 

• Find squared differences: (1-5.8)^2 = 23.04, (3-5.8)^2 = 7.84, (6-5.8)^2 = 0.04, 

(7-5.8)^2 = 1.44, (12-5.8)^2 = 38.44 

Sum = 70.8 

Variance = 70.8 / 5 = 14.16 

Standard Deviation = 14.16≈3.7614.16≈3.76 

 

AI/ML Use Cases: 

- Used in feature scaling (z-score normalization) 

- Important for Gaussian distribution assumptions in ML models. 

 

Real-World Example: In height measurement, if average height = 170 cm with SD = 10 cm, 

then most people are between 160–180 cm. 



2.4 Interquartile Range (IQR) 

Definition: Spread of middle 50% of data. 

Formula: IQR = Q3 - Q1 

where, 

• Q1 = First quartile (25th percentile), the median of the lower half of the data, 

• Q3 = Third quartile (75th percentile), the median of the upper half of the data. 

 

Here are real-world scenarios where measures of dispersion (range, standard deviation, 

MAD, IQR) are used in AI/ML, analytics, and everyday contexts, each with concrete examples 

that can be brought into the classroom: 

 

1. Sales Revenue Variability 

Scenario: 

Two retail stores each report an average monthly revenue of ₹1,00,000. 

• Store A: Monthly figures range from ₹98,000 to ₹1,02,000 (SD = ₹1,500). 

• Store B: Figures fluctuate from ₹50,000 to ₹1,50,000 (SD = ₹24,000). 

Application: 

Although means are identical, measures of dispersion reveal that Store B’s income is far less 

consistent, indicating higher financial risk—critical for planning and forecasting. 

 

2. Stock Price Volatility 

Scenario: 

Suppose two stocks average the same closing price (₹500) over a month: 

• Stock X: Prices are ₹499, ₹501, ₹500, ₹502, ₹498 (low SD). 

• Stock Y: Prices are ₹400, ₹600, ₹460, ₹540, ₹500 (high SD). 

Application: 

Investors use standard deviation to judge investment risk—lower SD suggests more stable 

stocks, guiding portfolio decisions. 

 

3. Weather Data Monitoring 

Scenario: 



• City 1: Daily temperatures over a week are 30°C, 31°C, 32°C, 30°C, 29°C, 30°C, 31°C 

(low SD: weather is consistent). 

• City 2: Temperatures are 20°C, 35°C, 31°C, 42°C, 24°C, 28°C, 15°C (high SD: weather is 

unpredictable). 

Application: 

For event planning or agriculture, knowing the dispersion helps in risk assessment and 

strategy planning—greater dispersion means preparation for more variability. 

 

 

Takeaway  

Concept What It Shows Common 

Measures 

Use Cases 

Central 

Tendency 

Typical or average 

value in data 

Mean, Median, 

Mode 

Data summary, baseline 

models, imputation 

Dispersion 

Variability or spread 

of data 

Range, SD, IQR, 

Variance 

Outlier detection, scaling, risk 

analysis 

 

Histogram 
A histogram is a type of graphical representation used in statistics to show the distribution 

of numerical data. It looks somewhat like a bar chart, but unlike bar graphs, which are used 

for categorical data, histograms are designed for continuous data, grouping it into logical 

ranges, which are also known as "bins." 

A histogram helps in visualizing the distribution of data across a continuous interval or 

period which makes the data more understandable and also highlights the trends and 

patterns 



 
Types of Histogram 

There are various variations of the histograms based on their shapes: 

Uniform Histogram 

A Uniform Histogram shows uniform distribution means that the data is uniformly 

distributed among the classes, with each having a same number of elements. It may display 

many peaks, suggesting varying degrees of incidence. 

 

Bimodal Histogram 



A histogram is called bimodal if it has two distinct peaks. This implies that the data consists 

of observations from two distinct groups or categories, with notable variations between 

them. 

 

Symmetric Histogram 

Symmetric Histogram is also known as a bell-shaped histogram, it has perfect symmetry 

when divided vertically down the centre, with both sides matching each other in size and 

shape. The balance reflects a steady distribution pattern. 

 

Right-Skewed Histogram 

A right-skewed histogram shows bars leaning towards the right side. This signifies that 

the majority of the data points are on the left side, with a few outliers reaching to the right. 

Consider a histogram showing the distribution of family earnings. A right-skewed histogram 

occurs when the majority of families are in lower income groups, but a small number of 

highly rich households skew the average income. 



 

Left-Skewed Histogram 

A left-skewed histogram shows bars that lean towards the left side. This means that 

the majority of the data points are on the right side, with a few exceptionally low values 

extending to the left. Consider a histogram reflecting the distribution of test scores in a 

classroom. A left-skewed histogram occurs when the majority of students receive excellent 

grades but a few do badly, resulting in an average that is dragged to the left. 

 

 

Sudo Code 

import matplotlib.pyplot as plt 



import numpy as np 

 

scores = np.random.normal(loc=70, scale=10, size=130)  # mean=70, std=10 

# Create Histogram 

plt.figure(figsize=(10,10)) 

plt.hist(scores, bins=10, color="skyblue", edgecolor="black") 

 

# Labels and Title 

plt.title("Histogram of Student Exam Scores") 

plt.xlabel("Score Ranges") 

plt.ylabel("Number of Students") 

 

# Show grid 

plt.grid(axis='y', linestyle='--', alpha=0.7) 

 

plt.show() 

 

scores = np.random.normal(loc=70, scale=10, size=130)  # mean=70, std=10 

 

   loc=70 

• This is the mean (center) of the distribution. 

• The generated values will be centered around 70. 

• Example: Think of it as the "average score" in an exam. 

scale=10 

• This is the standard deviation (spread) of the distribution. 

• A higher scale means values will spread out more from the mean. 

• Here, most values will fall within 70 ± 10 → between 60 and 80. 

size=130 



• This is the number of random samples to generate. 

• It will create an array with 130 numbers following that distribution. 

 

 

Visualization Techniques in Python: Bar 

Charts, Count Plots, and Pie Charts 

1. Bar Charts 

  Concept 

• A bar chart uses rectangular bars to represent numerical values for different 

categories. 

• The length/height of the bar corresponds to the value. 

• Useful when comparing discrete categories (e.g., sales by product, students by 

grade). 

  Example Use Case 

• Showing the average marks of students in different subjects. 

  Python Pseudo Code 

import matplotlib.pyplot as plt 

subjects = ["Math", "Science", "English", "History"] 

marks = [85, 90, 75, 80] 



plt.bar(subjects, marks, color='skyblue') 

plt.title("Student Marks by Subject") 

plt.xlabel("Subjects") 

plt.ylabel("Marks") 

plt.show() 

 

 

2. Count Plots 

  Concept 

• A count plot (Seaborn) is a special kind of bar chart. 

• Instead of giving values manually, it counts the number of occurrences of each 

category in a dataset. 

• Useful for categorical data frequency visualization. 

  Example Use Case 

• Counting how many students chose Science stream vs Arts vs Commerce. 

  Python Pseudo Code 

import seaborn as sns 

import matplotlib.pyplot as plt 

stream_choices = ["Science", "Arts", "Commerce", "Science", "Arts", "Science"] 

sns.countplot(x=stream_choices, palette="pastel") 

plt.title("Student Stream Preferences") 



plt.xlabel("Stream") 

plt.ylabel("Count") 

plt.show() 

 

 

 

3. Pie Charts 

  Concept 

• A pie chart shows proportions of categories as slices of a circle. 

• Good for showing percentage distribution. 

• Should be used when you want to highlight parts of a whole. 

 Note: Avoid too many categories (>6), otherwise the chart becomes confusing. 

  Example Use Case 

• Distribution of students by gender in a class. 

  Python Pseudo Code 

import matplotlib.pyplot as plt 

 

# Categories and values 



genders = ["Male", "Female", "Other"] 

counts = [50, 45, 5] 

plt.pie(counts, labels=genders, autopct='%1.1f%%', colors=["lightblue", "pink", "lightgreen"]) 

plt.title("Gender Distribution in Class") 

plt.show() 

 

When to use Histograms, Boxplots, KDE, Bar Charts, Count Plots, Pie 

Charts? 

1. Histogram 

A histogram is used to display the distribution of a continuous numerical variable. The data 

is grouped into intervals (called bins), and the height of each bar shows how many values fall 

into that interval. 

• When to use: When you want to see how data is spread across different ranges. 

• Example: If you plot exam scores of 100 students, a histogram will show how many 

students scored between 0–10, 10–20, 20–30, and so on. 

• Good for: Detecting skewness, spread, and common ranges. 

 

2. Boxplot  



A boxplot shows the summary of a dataset: median, quartiles (25%, 50%, 75%), and 

outliers. The "box" represents the middle 50% of the data, while the "whiskers" show the 

spread of the rest. Outliers are shown as dots. 

• When to use: When comparing distributions across groups or when you want to 

check for outliers. 

• Example: Comparing salaries of employees in different departments. A boxplot will 

quickly show which department has higher salaries and where outliers exist. 

• Good for: Spotting outliers, comparing groups. 

 

3. KDE (Kernel Density Estimate Plot) 

A KDE plot is like a smooth version of a histogram. Instead of showing bins, it creates a 

continuous curve that represents the probability distribution of the data. 

• When to use: When you want to visualize the shape of the distribution (whether it 

looks normal, skewed, or has multiple peaks). 

• Example: Plotting the heights of students in a class. A KDE curve will show if most 

students are around a certain height and whether the distribution is normal or 

skewed. 

• Good for: Understanding the shape of data distribution. 

 

4. Bar Chart 

A bar chart is used to compare numerical values across categories. Each category has a bar, 

and the length/height of the bar represents its value. 

• When to use: When comparing averages or totals across different groups. 

• Example: Showing the average marks in different subjects (Math, Science, English, 

History). A bar chart makes it clear which subject has the highest or lowest marks. 

• Good for: Comparing categories side by side. 

 

5. Count Plot 

A count plot is a special type of bar chart used when the data is categorical. Instead of 

providing numerical values, it automatically counts how many times each category occurs in 

the dataset. 

• When to use: When you want to see the frequency of categories in your data. 



• Example: Counting how many students chose Science, Arts, or Commerce as their 

stream. The plot will show which stream is most popular. 

• Good for: Frequency analysis of categorical variables. 

 

6. Pie Chart 

A pie chart shows data as slices of a circle, where each slice represents the proportion of a 

category relative to the whole. 

• When to use: When you want to show percentage share of categories. 

• Example: Showing the gender distribution in a classroom (Male, Female, Other). 

Each slice shows what percentage of the class belongs to that category. 

• Good for: Displaying proportions or parts of a whole. 

• Note: Works best with 3–6 categories; too many slices make it confusing. 

 

 

 

Box Plot 

A Box Plot (or Whisker plot) display the summary of a data set, including 

minimum, first quartile, median, third quartile and maximum. it consists of a 

box from the first quartile to the third quartile, with a vertical line at the 

median. the x-axis denotes the data to be plotted while the y-axis shows the 

frequency distribution. The matplotlib.pyplot module of matplotlib library 

provides boxplot() function with the help of which we can create box plots. 
 

Syntax 

matplotlib.pyplot.boxplot(data) 

 

Example: 



   import matplotlib.pyplot as plt 

   import numpy as np 

   np.random.seed(10) 

  d = np.random.normal(100, 20, 200) 

// generates 200 random values from a normal distribution with 

mean = 100 and standard deviation = 20. 

//Most values will lie within ±20 of the mean 

// ~68% of values between 80 and 120 (μ ± 1σ) 

// ~95% of values between 60 and 140 (μ ± 2σ) 

//~99.7% of values between 40 and 160 (μ ± 3σ) 

fig = plt.figure(figsize =(10, 7)) 

plt.boxplot(d) 

plt.show() 

 



 

KDE Plot 

What is KDE Plot? 

KDE Plot described as Kernel Density Estimate is used for visualizing the 

Probability Density of a continuous variable. It depicts the probability density 

at different values in a continuous variable. We can also plot a single graph for 

multiple samples which helps in more efficient data visualization. It provides a 

smoothed representation of the underlying distribution of a dataset. 

The KDE plot visually represents the distribution of data, providing insights into 

its shape, central tendency, and spread. It is particularly useful when dealing 

with continuous data or when you want to explore the distribution without 

making assumptions about a specific parametric form (e.g., assuming the data 

follows a normal distribution). KDE plots are commonly used in statistical 

software packages and libraries for data visualization, such as Seaborn and 

Matplotlib in Python. 

 

Creating a Univariate Seaborn KDE Plot 

To start our exploration, we delve into the creation of a Univariate Seaborn KDE 

plot, visualizing the probability distribution of a single continuous attribute. 



We can visualize the probability distribution of a sample against a single 

continuous attribute. 

from sklearn import datasets 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Setting up the Data Frame 

iris = datasets.load_iris() 

iris_df = pd.DataFrame(iris.data, columns=['Sepal_Length', 

                      'Sepal_Width', 'Petal_Length', 'Petal_Width']) 

iris_df['Target'] = iris.target 

iris_df['Target'].replace([0], 'Iris_Setosa', inplace=True) 

iris_df['Target'].replace([1], 'Iris_Vercicolor', inplace=True) 

iris_df['Target'].replace([2], 'Iris_Virginica', inplace=True) 

 

# Plotting the KDE Plot 

sns.kdeplot(iris_df.loc[(iris_df['Target']=='Iris_Virginica'), 

            'Sepal_Length'], color='b', shade=True, label='Iris_Virginica') 

 

# Setting the X and Y Label 

plt.xlabel('Sepal Length') 

plt.ylabel('Probability Density') 

Output: 



 

We can also visualize the probability distribution of multiple samples in a single 

plot. 

sns.kdeplot(iris_df.loc[(iris_df['Target']=='Iris_Setosa'), 

            'Sepal_Length'], color='r', shade=True, label='Iris_Setosa') 

 

sns.kdeplot(iris_df.loc[(iris_df['Target']=='Iris_Virginica'),  

            'Sepal_Length'], color='b', shade=True, label='Iris_Virginica') 

 

plt.xlabel('Sepal Length') 

plt.ylabel('Probability Density') 

Output: 



 

Bivariate Analysis 

Bivariate Analysis is the statistical technique used to study the relationship between two 

variables in a dataset. It helps us understand whether the variables are related, how strongly 

they are related, and in what direction. 

• Understanding dependencies between features and target. 

• Detecting patterns, trends, and correlations. 

• Deciding which features are important for predictive modeling. 

 

1. Scatter Plots 

  Definition 

A scatter plot is a type of data visualization that displays values for two numerical variables 

as points on a two-dimensional graph. Each point represents an observation in the dataset, 

with: 

• The x-axis showing one variable 

• The y-axis showing another variable 

This helps to visually identify patterns, relationships, correlations, clusters, and outliers 

between the two variables. 

  When to Use 

• To check if two variables are correlated (positive, negative, or no correlation). 



• To observe linear or non-linear relationships. 

• When you need to check for unusual data points that don’t follow the general 

pattern 

  Example 

• Study Hours vs Exam Score → More study hours → Higher exam scores. 

  Python Pseudo Code 

import seaborn as sns 

import matplotlib.pyplot as plt 

import pandas as pd 

 

# Sample data 

data = pd.DataFrame({ 

    "Study_Hours": [2, 3, 4, 5, 6, 7, 8, 9], 

    "Exam_Score": [50, 55, 60, 65, 70, 78, 85, 90] 

}) 

 

# Scatter Plot 

sns.scatterplot(x="Study_Hours", y="Exam_Score", data=data) 

plt.title("Study Hours vs Exam Score") 

plt.show() 



 

 

2. Pair Plots 

  Definition 

A pair plot is a data visualization that shows the pairwise relationships between multiple 

numerical variables in a dataset. It creates a grid of scatter plots for every combination of 

variables, along with histograms (or KDE plots) on the diagonal to show the distribution of 

each variable.. 

  When to Use 

• To analyze all pairwise relationships at once. 

• To identify clusters, trends, or separations in data. 

• To explore data with multiple features before modeling. 

  Example 

• Iris dataset → See how sepal and petal measurements are related for different 

species. 

  Python Pseudo Code 

from sklearn.datasets import load_iris 

 

# Load dataset 

iris = load_iris() 

Loads the Iris dataset from scikit-learn. 



 This dataset is widely used in ML tutorials. 

 It contains 150 flower samples from 3 species: 

• Setosa 

• Versicolor 

• Virginica 

 

Each sample has 4 features: 

• Sepal length 

• Sepal width 

• Petal length 

• Petal width 

 

df = pd.DataFrame(iris.data, columns=iris.feature_names) 

df["species"] = iris.target 

 

# Pair Plot 

sns.pairplot(df, hue="species")  # hue adds color by class 

plt.show() 



 

 

3. Heatmaps 

  Definition 

A heat map is a data visualization technique that represents values in a matrix or table using 

colour gradients. The intensity of the colour shows the magnitude of the value, making it 

easy to spot patterns, correlations, and outliers at a glance, it is often used to visualize 

correlation values between features. 

  When to Use 

• To see correlation patterns among variables. 

• To quickly detect which features are strongly related to the target. 

• To identify multicollinearity (when two features are highly correlated). 

  Example 

• Correlation matrix of house features (size, price, number of rooms). 

  Python Pseudo Code 



# Correlation matrix 

corr = df.corr() 

 

# Heatmap 

sns.heatmap(corr, annot=True, cmap="coolwarm", linewidths=0.5) 

plt.title("Correlation Heatmap") 

plt.show() 

 

 

 

 

 

 

4. Correlation Analysis 

  Definition 



Correlation Analysis is a statistical method used to measure the strength and direction of 

the relationship between two variables. It tells us whether an increase (or decrease) in 

one variable is associated with an increase or decrease in another variable. 

• Values range from -1 to +1: 

o +1 → Perfect positive relationship (as one increases, the other increases). 

o -1 → Perfect negative relationship (as one increases, the other decreases). 

o 0 → No relationship. 

  When to Use 

• To quantify the relationship strength between variables. 

• To select features that are strongly related to the target variable. 

  Example 

• Height vs Weight → Strong positive correlation. 

• Temperature vs Sales of Ice Cream → Positive correlation. 

  Python Pseudo Code 

# Correlation value between two variables 

correlation = data["Study_Hours"].corr(data["Exam_Score"]) 

print("Correlation:", correlation) 

Output : 

Correlation: 0.9966669694751458 

 

5. Covariance Analysis 

  Definition 

Covariance Analysis is a statistical method that measures the degree to which two variables 

change together. It indicates whether an increase in one variable corresponds to an increase 

or decrease in another variable. 

• Positive covariance → Variables increase together. 

• Negative covariance → One increases while the other decreases. 

• Unlike correlation, covariance is not standardized (depends on scale). 

  When to Use 



• To check the direction of relationship (but not strength). 

• Used as a foundation for correlation (since correlation = normalized covariance). 

  Example 

• Height and Weight → Positive covariance (both increase together). 

• Temperature and Heater Usage → Negative covariance (as temperature increases, 

heater usage decreases). 

  Python Pseudo Code 

# Covariance matrix 

cov_matrix = data.cov() 

print(cov_matrix) 

 

             Study_Hours  Exam_Score 

Study_Hours     6.000000   34.928571 

Exam_Score     34.928571  204.696429 

 

     Summary Table 

Technique Purpose When to Use Example 

Scatter 

Plot 

Visualize relationship between 2 

numeric variables 

Check correlation, trends, 

outliers 

Study hours vs 

Exam score 

Pair Plot 
Visualize all pairwise 

relationships 

Explore datasets with 

multiple numeric features 

Iris dataset 

features 

Heatmap Show correlation matrix visually 
Identify strong/weak 

feature relationships 

House features 

correlation 

Correlation 
Strength + direction of 

relationship (-1 to +1) 

Feature selection, 

dependency check 
Height vs Weight 

Covariance 
Direction of relationship 

(scale-dependent) 

Foundation for correlation 

analysis 

Temp vs Heater 

usage 

 

 



             UNIT -4  

Matplotlib 

 

Matplotlib is a powerful and versatile open-source plotting library for Python, designed to 

help users visualize data in a variety of formats. Developed by John D. Hunter in 2003, it 

enables users to graphically represent data, facilitating easier analysis and understanding 

• Matplotlib is a low level graph plotting library in python that serves as a visualization 

utility. 

• Matplotlib was created by John D. Hunter. 

• Matplotlib is open source and we can use it freely. 

Installation 

Before you can start using Matplotlib, you need to install it. You can do this easily using 

pip install matplotlib 

Seaborn  

 is a high-level data visualization library in Python built on top of Matplotlib. It helps you 

create stunning statistical graphics using just a few lines of code. Seaborn is especially useful 

when you are working with datasets and want to explore relationships between variables. 

The library comes with a variety of built-in themes and colour palettes, which means your 

graphs will look professional without needing much customization 

Installation  

pip install seaborn 

 

Visualization using Matplotlib 

 

import matplotlib.pyplot as plt 

x = [5, 7, 8, 7, 6, 9, 5] 

y = [99, 86, 87, 88, 100, 86, 103] 

plt.scatter(x, y, color="blue") 

plt.title("Scatter Plot (Matplotlib)") 

plt.xlabel("X-axis") 



plt.ylabel("Y-axis") 

plt.show() 

 

 

Using Seaborn  

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Sample dataset 

tips = sns.load_dataset("tips") 

 

sns.scatterplot(x="total_bill", y="tip", hue="sex", data=tips) 

plt.title("Scatter Plot (Seaborn)") 

plt.show() 

 



 

 

Another example  

import matplotlib.pyplot as plt 

 

# Sample data 

students = ['Alice', 'Bob', 'Charlie', 'David', 'Eva'] 

math_scores = [85, 90, 78, 92, 88] 

english_scores = [80, 85, 82, 88, 90] 

# Bar plot for Math and English scores 

plt.bar(students, math_scores, color='skyblue', label='Math') 

plt.bar(students, english_scores, color='lightgreen', label='English', alpha=0.7)// alpha 

ranges from 0 to 1:  

// 0 → completely transparent (invisible) 

 //1 → completely opaque (solid color) 

 //0.7 → 70% opaque, 30% transparent 

plt.title("Students' Scores") 

plt.xlabel("Students") 

plt.ylabel("Scores") 

plt.legend() 

plt.show() 



 

 

Seaborn  

import seaborn as sns 

import pandas as pd 

import matplotlib.pyplot as plt 

# Create DataFrame 

df = pd.DataFrame({ 

    'Student': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'], 

    'Math': [85, 90, 78, 92, 88], 

    'English': [80, 85, 82, 88, 90] 

}) 

# Melt DataFrame for seaborn 

df_melt = df.melt(id_vars='Student', var_name='Subject', value_name='Score') 

# Bar plot 

sns.barplot(x='Student', y='Score', hue='Subject', data=df_melt) 

plt.title("Students' Scores (Seaborn)") 

plt.show() 

 



 

 

 

 

What is df.melt()? 

melt() converts a DataFrame from wide format to long format. 

• Wide format: Each variable is in a separate column. 

   Student   Math  English 

   Alice      85       80 

   Bob        90       85 

Long format: All values of variables are stacked in one column, with another column 

indicating the variable type 

   Student   Subject   Score 

   Alice     Math      85 

   Alice     English   80 

   Bob       Math      90 

   Bob       English   85 

Customization in plotting refers to enhancing visual clarity and presentation by adding 

titles, axis labels, legends, and themes. 

These elements make a plot easier to understand and more professional. 

 



1. Adding Titles 

Definition 

A title describes the purpose of the graph — what information it shows. 

Syntax 

plt.title("Your Title", fontsize=14, color='blue', loc='center') 

Example 

import matplotlib.pyplot as plt 

plt.plot([1, 2, 3, 4], [10, 20, 25, 30]) 

plt.title("Sales Growth Over Time", fontsize=14, color='darkblue', 

fontweight='bold',loc='left') 

plt.show() 

 

 

 Parameters 

Parameter Description Example 

label Title text "Sales Growth" 

fontsize Title size fontsize=14 

color Title color color='red' 

loc Location ('left', 'center', 'right') loc='left' 

 

 2. Adding Axis Labels 

 Definition 

Axis labels tell us what data each axis represents — like Time, Sales, etc. 



 Syntax 

plt.xlabel("X-axis Label", fontsize=12) 

plt.ylabel("Y-axis Label", fontsize=12) 

 Example 

plt.plot([1, 2, 3, 4], [10, 20, 25, 30]) 

plt.xlabel("Quarter", fontsize=12, color='purple') 

plt.ylabel("Sales (in $1000s)", fontsize=12, color='green') 

plt.title("Quarterly Sales Performance") 

plt.show() 

 

 

 3. Adding Legends 

Definition 

A legend identifies different datasets or lines in a single plot. 

Syntax 

plt.legend(title="Legend Title", loc="upper right", fontsize=10) 

Example 

plt.plot([1, 2, 3, 4], [10, 20, 25, 30], label='Product A') 

plt.plot([1, 2, 3, 4], [15, 18, 22, 28], label='Product B') 

plt.title("Product Sales Comparison") 

plt.xlabel("Quarter") 

plt.ylabel("Sales (in $1000s)") 

plt.legend(title="Products", loc='upper right’) 

plt.show() 



 

 

 

4. Applying Themes (Styles) 

Definition 

Themes (also called styles) control the overall look of the plot — colors, gridlines, 

backgrounds, and fonts. 

Syntax 

plt.style.use("stylename") 

Example 

plt.style.use("ggplot") 

plt.plot([1, 2, 3, 4], [10, 20, 25, 30], label='Product A', marker='o') 

plt.plot([1, 2, 3, 4], [15, 18, 22, 28], label='Product B', linestyle='--') 

plt.title("Styled Sales Graph", fontsize=14) 

plt.xlabel("Quarter") 

plt.ylabel("Sales (in $1000s)") 

plt.legend(title="Products", loc="upper left") 

plt.grid(True) 

plt.show() 



 

Violin Plots 
A violin plot is a combination of a boxplot and a kernel density plot. 

It displays the probability density of the data at different values (the width of the “violin” 

shows how frequent values are) along with key summary statistics such as the median and 

quartiles. 

The symmetrical “violin” shape represents the distribution of the data — wider areas 

indicate higher data density, while narrower parts show fewer observations. Violin plots are 

especially useful for comparing multiple distributions side-by-side. 

import seaborn as sns 

import matplotlib.pyplot as plt 

# Load example dataset 

tips = sns.load_dataset("tips") 

# Create a violin plot 

sns.violinplot(x="day", y="total_bill", data=tips, palette="Set2") 

plt.title("Distribution of Total Bill by Day") 

plt.xlabel("Day of the Week") 

plt.ylabel("Total Bill ($)") 

plt.show() 



 

 

 Strip Plots 
Definition: 

A Strip Plot is a categorical scatter plot where individual data points are plotted along a 

single axis corresponding to a categorical variable. 

• Each dot represents one observation. 

• Dots may overlap, but adding jitter spreads them out for better visibility. 

• Mainly used to visualize distribution and spread of data points across categories. 

import seaborn as sns 

import matplotlib.pyplot as plt 

tips = sns.load_dataset("tips") 

sns.stripplot(x="day", y="total_bill", data=tips, jitter=True) 

plt.title("Strip Plot of Total Bill by Day") 

plt.show() 

 

 



Swarm Plots 

Definition: 

A Swarm Plot is similar to a strip plot but automatically adjusts the position of points to 

avoid overlapping. 

• Each dot represents one observation, but the points are spaced out horizontally or 

vertically for clarity. 

• Provides a clear view of data distribution, especially when many points are 

clustered. 

Key Points: 

• Prevents overlapping of points (unlike strip plots). 

• Best for small to medium datasets (large datasets can be slow). 

• Can be combined with violin or boxplots for distribution + points visualization. 

import seaborn as sns 

import matplotlib.pyplot as plt 

sns.swarmplot(x="day", y="total_bill", data=tips) 

plt.title("Swarm Plot of Total Bill by Day and Gender") 

plt.show() 

 

 

 

adding palette and hue for the above graph  

import seaborn as sns 

import matplotlib.pyplot as plt 

sns.swarmplot(x="day", y="total_bill", data=tips, hue="sex", palette="Set2") 



plt.title("Swarm Plot of Total Bill by Day and Gender") 

plt.show() 

 

 

 

Note :  

palette="Set2"   means Use a set of light pastel colours to differentiate categories in the 

plot. 

Multivariate Visualization 

Multivariate Visualization is the process of graphically 

representing three or more variables in a dataset 

simultaneously to understand how they relate, interact, and 

influence each other. 

It visualizing multiple variables together to discover 

patterns, correlations, trends 

 

Use  

• To explore complex relationships among multiple features 

• To detect interactions, clusters, or outliers 



• To understand dependencies before building predictive 

models 

 

Example :  

If you’re studying sales data with these columns: 

• Sales Amount 

• Advertising Spend 

• Customer Age 

• Region 

 Pair Plot – shows pairwise relationships between variables 

•  Heatmap – shows correlations among many numeric 

features 

• 3D Scatter Plot – visualizes relationships among three 

variables 

• Parallel Coordinates Plot – compares several features 

across samples 

• Facet Grid – shows the effect of multiple categorical 

variables 

3D Scatter Plot 

A 3D Scatter Plot is a type of data visualization that displays the 
relationship among three numerical variables using a 
three-dimensional coordinate system (X, Y, Z axes). 

• Each point in the plot represents one observation, positioned 
according to its values on those three variables. 



Example : 

Imagine a dataset of customers with: 

• X-axis: Age 

• Y-axis: Income 

• Z-axis: Spending Score 

A 3D scatter plot will show how customers of different ages and 

incomes vary in spending behavior — helping in customer 

segmentation. 

import plotly.express as px 

import pandas as pd 

 

# Create a small dataset 

data = { 

    'Age': [23, 45, 30, 55, 27, 38, 50, 22, 35, 48], 

    'Annual_Income': [35000, 70000, 60000, 90000, 40000, 65000, 
85000, 30000, 58000, 75000], 

    'Spending_Score': [80, 40, 75, 20, 90, 60, 30, 85, 65, 45], 

    'Customer_Type': ['High', 'Low', 'High', 'Low', 'High', 'Medium', 
'Low', 'High', 'Medium', 'Low'] 

} 

 

df = pd.DataFrame(data) 

 

# Create 3D Scatter Plot 

fig = px.scatter_3d(df, 



                    x='Age', 

                    y='Annual_Income', 

                    z='Spending_Score', 

                    color='Customer_Type', 

                    symbol='Customer_Type', 

                    size='Spending_Score', 

                    title="Customer Segmentation in 3D: Age vs 
Income vs Spending Score") 

 

fig.show() 

 

color 

• color='Customer_Type' means the points will be colored 

differently based on the customer type 

symbol 

• symbol='Customer_Type' means the marker shape changes 

based on customer type. 

 size 

• size='Spending_Score' means the marker size varies according to 

the spending score. 



 

 



 

 

Parallel Coordinates 

A Parallel Coordinates Plot is a way to compare multiple 

variables at the same time. 

• Each variable has its own vertical line (axis). 

• Each data point (like a student, customer, or car) is drawn as a 

line connecting its values across all the vertical axes. 

Example: 

Imagine students have three scores: 

Student Math Science English 

Alice 90 85 70 

Bob 60 75 80 

Carol 80 90 95 



Student Math Science English 

    

 Draw three vertical axes: Math, Science, English. 

For Alice, put a dot at 90 on Math, 85 on Science, 70 on English, 

and connect the dots with a line. 

Repeat for Bob and Carol. 

 

import pandas as pd 

from pandas.plotting import parallel_coordinates 

import matplotlib.pyplot as plt 

# Simple dataset 

data = { 

    'Student': ['Alice', 'Bob', 'Carol'], 

    'Math': [90, 60, 80], 

    'Science': [85, 75, 90], 

    'English': [70, 80, 95] 

} 

df = pd.DataFrame(data) 

# Parallel Coordinates Plot 

plt.figure(figsize=(8,5)) 

parallel_coordinates(df, 'Student', color=['r','g','b']) 

plt.title("Parallel Coordinates Plot - Students") 

plt.xlabel("Subjects") 

plt.ylabel("Scores") 



plt.show() 

 

 

 Patterns across subjects: 

• Alice is strong in Math & Science, weaker in English. 

• Carol is strong in all subjects. 

Compare multiple students at once: 

• See who has similar performance patterns. 

  Identify extremes/outliers: 

• Lines that are very high or low stand out. 

 

Subplots 

  Subplots are multiple plots displayed within a single figure. 

Instead of creating separate figures for each graph, you can arrange 

multiple plots in a grid (rows × columns) inside one figure 



 

import matplotlib.pyplot as plt 

import seaborn as sns 

# Load dataset 

tips = sns.load_dataset("tips") 

# Create subplots: 2 rows × 2 columns 

fig, axes = plt.subplots(2, 2, figsize=(10, 8)) 

# Top-left plot 

sns.scatterplot(data=tips, x="total_bill", y="tip", ax=axes[0, 0]) 

# Top-right plot 

sns.histplot(data=tips, x="total_bill", bins=20, ax=axes[0, 1]) 

# Bottom-left plot 

sns.boxplot(data=tips, x="day", y="total_bill", ax=axes[1, 0]) 

# Bottom-right plot 

sns.violinplot(data=tips, x="day", y="tip", ax=axes[1, 1]) 

 

plt.tight_layout()  # Adjust spacing 

plt.show() 



 

 

 

Plotly  

Plotly is a Python library for interactive data visualization. 

• Unlike Matplotlib or Seaborn, which produce static plots, Plotly allows 

users to interact with plots. 

• You can zoom, pan, hover, and rotate 3D plots. 

• It works for both simple charts and complex dashboards, and integrates 

easily with Pandas dataframes 

 

Example : 

import plotly.express as px 



# Data in long format for Plotly 

df_long = pd.DataFrame({ 

    'Student': 

['Alice','Alice','Alice','Bob','Bob','Bob','Carol','Carol','Carol'], 

    'Subject': ['Math','Science','English']*3, 

    'Score': [90,85,70,60,75,80,80,90,95] 

}) 

fig = px.line(df_long, x='Subject', y='Score', color='Student', 

markers=True, 

              title="Student Scores - Plotly Interactive") 

fig.show() 

 

 



 

What Are Interactive Visualizations? 

Interactive visualizations are plots or charts that allow users to 

interact with the data instead of just viewing it as a static image. 

• Users can zoom, pan, filter, hover, or rotate to explore data. 

• They make it easier to discover patterns, trends, and outliers 

dynamically. 

Uses : 

Explore Data Dynamically 

• Zoom into a specific region or filter categories 

• Hover to see exact values for each data point 

  Handle Large Datasets 

• Avoid clutter by exploring only the area you need 

  Better Presentations 

• Makes charts more engaging for reports, dashboards, or web 

apps 

  Multivariate Data 

• Can visualize relationships between 3+ variables using color, 

size, shape, or 3D axes 



With 2D plot  

import plotly.express as px 

 

# Sample dataset 

df = px.data.iris() 

 

fig = px.scatter(df,  

                 x='sepal_length',  

                 y='sepal_width',  

                 color='species',  

                 size='petal_length',  

                 hover_name='species', 

                 title="Interactive 2D Scatter Plot") 

fig.show() 

 

 

With 3D 



 

fig = px.scatter_3d(df, 

                    x='sepal_length', 

                    y='sepal_width', 

                    z='petal_length', 

                    color='species', 

                    size='petal_width', 

                    title="Interactive 3D Scatter Plot") 

fig.show() 

 

 

 

 

 

 

 



            UNIT – 5 

Step-by-step EDA on Titanic Datasets 

Overview of the Titanic Dataset Columns 

Before diving into data visualization and feature engineering, it’s essential to 

understand the context and meaning of each column in the Titanic dataset. 

Here’s a brief overview of the columns: 

1. PassengerId: A unique identifier for each passenger. 

2. Survived: Indicates whether the passenger survived (1) or not (0). 

3. Pclass: Passenger’s class (1 = 1st class, 2 = 2nd class, 3 = 3rd class). This is 

a proxy for socio-economic status (SES). 

4. Name: The full name of the passenger. 

5. Sex: The gender of the passenger (male or female). 

6. Age: The age of the passenger in years. Some entries contain fractional 

values to represent ages less than one year. If the age is estimated, it is in 

the form of xx.5. 

7. SibSp: Number of siblings and spouses aboard the Titanic. 

• Sibling = brother, sister, stepbrother, stepsister 

• Spouse = husband, wife (mistresses and fiancés were ignored ) 

8. Parch: Number of parents and children aboard the Titanic. 

• Parent = mother, father 

• Child = daughter, son, stepdaughter, stepson 

• Some children travelled only with a nanny, therefore Parch=0 for them. 

9. Ticket: The ticket number. 

10. Fare: The amount of money paid for the ticket. 

11. Cabin: The cabin number where the passenger stayed. 



12. Embarked: The port where the passenger boarded the ship (C = Cherbourg; 

Q = Queenstown; S = Southampton). 

 

 

 

Load the Data and show basic information about the data 

1. titanic.head(): Provides top 5 rows in dataset,  

2. titanic.info(): Offers a concise summary of the dataset, highlighting the 

number of entries, non-null counts, data types, and memory usage. It acts as a 

fact sheet for our DataFrame, outlining its structure and alerting us to potential 

data quality issues. We note missing values in the Age, Cabin, 

and Embarked columns, which need to be addressed before analysis. 

3. titanic.describe(): Provides descriptive statistics that summarize the central 

tendency, dispersion, and shape of a dataset’s distribution, excluding NaN 

values. It offers a quick statistical summary of numerical columns which helps 

in understanding the distribution, scale, and spread of data. 

We can observe that about 38% of the passengers survived (the mean of 

the Survived column is 0.38). 

We can also observe the median of Fares is 14.454 but the mean is 32.2, thus 

indicating a number of very high-paying passengers. 

 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

titanic = sns.load_dataset('titanic') 

 

titanic.head() 



 

 titanic.info() 

 

titanic.describe()) 



 

 

 

 

 

Now, let’s get an overview of missing values: 

missing_values = titanic.isnull().sum() 

print(missing_values) 



 

 

Filling in the Missing Values 

When addressing the issue of missing values in the Titanic dataset, different 

strategies can be applied to fill the data based on the nature of the data in each 

column, let’s look at the basic approach: 

 

1. Age: 

The median can be used to fill missing values in the Age column because: 



• The median is robust against outliers which means it preserves the 

original distribution of ages without being skewed by outliers, which can 

occur with the mean if outliers are present. 

• It is more representative of the central tendency of the dataset. 

2. Embarked: 

The mode is used to fill the two missing values in the Embarked column 

because: 

• The data is nominal, meaning no category inherently ranks above 

another. 

• Only two values are missing, making the mode a straightforward and 

justifiable choice given its simplicity and the small number of 

imputations needed. 

3. Cabin: 

• Due to the large number of missing values in the cabin column, (687 out 

of 891), and very small sample data, we will drop this column. 

• However, we will use predictive modelling for Cabin prediction and filling 

the column in other articles of this series. (Surprise!) 

median_age = titanic["age"].median() 

 
titanic["Age"].fillna(median_age,inplace = True) 

 

mode_point = titanic["Embarked"].mode()[0] 

 
titanic["Embarked"].fillna(mode_point,inplace = True) 

 



# Drop the original 'Cabin' column 

titanic.drop(columns=['Cabin'], inplace=True) 

Data Visualization 

Before diving into feature engineering and scaling, it’s crucial to understand the 

initial distribution and relationships within the data. First of all we will plot 

histograms to see what the distribution of continuous numerical features(ie. 

data from Age and Fare column) is like. 

To see any outliers within the Age and Fare column, which will help us in 

deciding what scaling algorithm to use, we also make boxplots. 

We make count plots to view the distribution within our categorical variables. 

You can make as many plots as you please and ask GPT to explain the code to 

you line by line, hell, it will plot it for you and explain to you the visualizations, 

what are we even doing, anyway, let’s keep this existential crisis away for now 

and focus here. 

# 1. Histogram and KDE Plots 

plt.figure(figsize=(12, 6)) 

# Age Distribution 

plt.subplot(1, 2, 1) 

sns.histplot(data=titanic, x='age', bins=30, kde=True, color='skyblue') 

plt.title('Histogram & KDE of Age', fontsize=14) 

plt.xlabel('Age') 

plt.ylabel('Frequency') 

 

# Fare Distribution 

plt.subplot(1, 2, 2) 

sns.histplot(data=titanic, x='fare', bins=30, kde=True, color='lightcoral') 

plt.title('Histogram & KDE of Fare', fontsize=14) 

plt.xlabel('Fare') 



plt.ylabel('Frequency') 

plt.tight_layout()#it fits to the screen  

plt.show() 

# plt.subplot(1, 2, 1) 

# 1You want 1 row of plots. 

      #2You want 2 columns of plots (side by side). 

      #1This is the first plot in that grid. 

 

 

Histograms of Age and Fare, respectively 

Histograms for ‘Age’ and ‘Fare’ features reveal their distributions. 

The ‘Age’ histogram shows a roughly normal distribution (or is it ? More on it 

at Feature Scaling Part) with a peak around 30 years old, slightly right-skewed, 

indicating a few older passengers. 

The ‘Fare’ histogram is highly right-skewed, with most values at the lower end 

and significant outliers extending up to 500. 

 

 



# 2. Box Plots 

plt.figure(figsize=(12, 6)) 

 

# Age Boxplot 

plt.subplot(1, 2, 1) 

sns.boxplot(data=titanic, y='age', color='lightgreen') 

plt.title('Box Plot of Age', fontsize=14) 

 

# Fare Boxplot 

plt.subplot(1, 2, 2) 

sns.boxplot(data=titanic, y='fare', color='lightblue') 

plt.title('Box Plot of Fare', fontsize=14) 

 

plt.tight_layout() 

plt.show() 

 

 

Box Plots of Age and Fare 



The ‘Age’ box plot shows a median around 30, with outliers beyond 60, 

indicating elderly passengers. 

The ‘Fare’ box plot highlights a low median fare with numerous outliers above 

300. This confirms the presence of high-value outliers seen in the histogram, 

underscoring the need for robust scaling, especially for ‘Fare’. 

 

 

# 3. Count Plots for Categorical Features 

plt.figure(figsize=(12, 6)) 

 

# Passenger Class Count 

plt.subplot(1, 2, 1) 

sns.countplot(data=titanic, x='pclass', palette='Set2') 

plt.title('Count Plot of Passenger Class (Pclass)', fontsize=14) 

plt.xlabel('Pclass') 

plt.ylabel('Count') 

 

# Embarked Port Count 

plt.subplot(1, 2, 2) 

sns.countplot(data=titanic, x='embarked', palette='Set3') 

plt.title('Count Plot of Port of Embarkation (Embarked)', fontsize=14) 

plt.xlabel('Embarked') 

plt.ylabel('Count') 

plt.tight_layout() 

plt.show() 

 



 

 

Count plot PClass(Passenger Class) and Embarked 

Count plots for ‘Pclass’ and ‘Embarked’ reveal distributions in categorical 

features. 

Most passengers are in the third class, followed by the first and second classes, 

indicating socio-economic disparities. 

For ‘Embarked’, most passengers embarked from port ‘S’ (Southampton), 

followed by ‘C’ (Cherbourg) and ‘Q’ (Queenstown). This shows Southampton 

was the most common embarkation point, correlating with class distribution 

and fare. 

Feature Engineering 

Feature engineering is a crucial step in preparing data for machine learning 

models. It involves transforming raw data into features that better represent 

the underlying problem to the predictive models(like Logistic Regression). 

In this step, we’ll convert categorical variables into numerical values, which is 

essential for most machine learning algorithms. 

Mapping for binary value categorical data 



First, we’ll convert the Sex column into numerical values. This is because many 

machine learning algorithms require numerical input. We’ll map the values 

‘male’ to 0 and ‘female’ to 1. 

# Convert 'Sex' to numerical values 

titanic['Sex'] = titanic['Sex'].map({'male': 0, 'female': 1}) 

One-hot encoding for multi-value categorical data 

Next, we’ll convert the Embarked column into numerical values using a 

technique called one-hot encoding. 

# Convert 'Embarked' to numerical values using one-hot encoding 

titanic = pd.get_dummies(titanic, columns=['Embarked']) 

One-hot encoding is a method of converting categorical data into numerical 

data by creating new columns for each unique category. Each column 

corresponds to a category and contains binary values (0 or 1) indicating the 

presence or absence of the category in a particular row. 

One-hot encoding is used for nominal categorical data, where the categories do 

not have an inherent order. Examples of such data include: 

• Colours (e.g., ‘red’, ‘blue’, ‘green’) 

• Cities (e.g., ‘New York’, ‘Los Angeles’, ‘Chicago’) 

• Types of fruit (e.g., ‘apple’, ‘banana’, ‘cherry’) 

Example of One-Hot Encoding 

Let’s illustrate one-hot encoding with the Embarked column: 

Original Embarked column: 

| Embarked | 

|----------| 

| C        | 

| Q        | 

| S        | 

| C        | 

| S        | 



After one-hot encoding: 

| Embarked_C | Embarked_Q | Embarked_S | 

|------------|------------|------------| 

| 1          | 0          | 0          | 

| 0          | 1          | 0          | 

| 0          | 0          | 1          | 

| 1          | 0          | 0          | 

| 0          | 0          | 1          | 

Feature Scaling 

We through titanic.describe() saw that the Ages vary from 0 to 80 and the Fares 

vary from £ 7 to £ 512. 

All other columns do not have such variety, and we need to scale these 

features to prevent dominance by these features and ensure equal 

contribution by all features. 

Here, comes the nice part, we have three kinds of feature scaling techniques: 

Standardization (Z-score Normalization) 

Standardization scales the features to have a mean of zero and a standard 

deviation of one. It is useful when the features follow a Gaussian distribution. 

MinMaxScaler (Normalization) 

Min-Max scaling transforms the features to a fixed range, typically [0, 1]. It is 

useful when the features are required to be within a specific range. 

Robust Scaling 

Robust scaling uses the median and the interquartile range (IQR) for scaling. It 

is useful for datasets with outliers, as it reduces the impact of outliers. 

 

 

# Fit and transform the selected features 

from sklearn.preprocessing import StandardScaler 

age_scaler = StandardScaler() 



fare_scaler = StandardScaler() 

 

titanic['Age'] = age_scaler.fit_transform(titanic[['Age']]) 

titanic['Fare'] = fare_scaler.fit_transform(titanic[['Fare']]) 

 

# Display the first few rows of the modified dataset 

print(titanic.head()) 

 

Correlation Analysis 

Now, the insights from this will help us do predictive modelling on our dataset, 

but with a ton of insight on why we do what we do. 

So, to apply correlation analysis here we will first identify what kind of data is 

within our columns, first, we observe that the data types are as follows: 

• Numerical Continuous: Data that can take any value within a range and 

has a meaningful order and interval (e.g., Age, Fare) 

• Ordinal: Categorical data with a meaningful order but not necessarily 

equidistant between categories (e.g., Pclass) 

• Nominal: Categorical data without a meaningful order or ranking (e.g., 

Sex, Embarked, Survived) 



• Binary (treated as nominal): A special case of nominal data with only 

two categories, often represented as 0 and 1 (e.g., Sex, Survived). 

Then we see what are some of the correlation measures we could use that are 

appropriate to the above data types: 

• Numerical Continuous: Pearson or Spearman correlation 

• Ordinal: Spearman or Kendall’s Tau correlation 

• Nominal: Cramer’s V, Chi-Square Test of Independence 

Here is a brief overview of what these words mean because we are trying to 

understand the fundamentals, here: 

1. Pearson Correlation: 

• Definition: Measures the linear relationship between two continuous 

variables. 

• Values: Range from -1 (perfect negative linear relationship) to 1 (perfect 

positive linear relationship), with 0 indicating no linear relationship. 

2. Spearman Rank Correlation: 

• Definition: Measures the monotonic relationship between two 

continuous or ordinal variables. 

• Values: Range from -1 (perfect negative monotonic relationship) to 1 

(perfect positive monotonic relationship), with 0 indicating no 

monotonic relationship. 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Calculate Spearman correlation matrix for numerical continuous and ordinal 

variables 

spearman_corr = titanic[['survived', 'pclass', 'age', 'sibsp', 'parch', 

'fare']].corr(method='spearman') 

 

# Plot heatmap 

plt.figure(figsize=(10, 8)) 

sns.heatmap(spearman_corr, annot=True, fmt=".2f", cmap='coolwarm', 



linewidths=0.5) 

plt.title('Spearman Correlation Heatmap (Numerical Continuous and Ordinal 

Data)') 

plt.show() 

Press enter or click to view image in full size 

 

Spearman Coefficient based Heatmap for continuous and ordinal variables 

Key Takeaways for the survival column we intend to predict: 

• Positively Correlated with Fare (0.32): 

• Passengers who paid higher fares tend to have higher survival rates. 

• Negatively Correlated with Pclass (-0.34): 

• Lower class passengers (higher Pclass value) tend to have lower survival 

rates. 



• Weak Positive Correlation with SibSp (0.09): 

• Passengers with more siblings/spouses aboard have a slightly higher 

chance of survival. 

• Weak Positive Correlation with Parch (0.14): 

• Passengers with more parents/children aboard also have a slightly higher 

chance of survival. 

Feature Selection 

features = ['pclass', 'sex', 'age', 'sibsp', 'parch', 'fare']  

X = titanic[features] 

y = titanic['survived'] 

print(X) 

 

Train-Test Split 

Split the available data in to train and test dataset 



from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split( 

    X, y, test_size=0.2, random_state=42 

) 

 

 

 

Now  we can use the model and train the model with our dataset here we are 

using logisticregression model and train the model on our train data set 

 

from sklearn.linear_model import LogisticRegression 

model = LogisticRegression(random_state=42) 

model.fit(X_train, y_train) 

 

for validation we use the test dataset 

y_pred = model.predict(X_test) 

 

 

 

 


