UNIT -1

Data science Introduction

Data Science is a multidisciplinary field that combines domain expertise, programming skills,
and knowledge of mathematics and statistics to extract meaningful insights from data.

Key components of Data Science:

e Problem Definition

e Data Collection — Gathering raw data from various sources.

e Data Cleaning — Removing errors, handling missing values, etc.

o Exploratory Data Analysis (EDA) — Understanding patterns, trends, and relationships.
e Modelling — Applying algorithms to make predictions or classifications.

e Deployment & Monitoring — Implementing the model into production and tracking
performance.

What is Exploratory Data Analysis (EDA)?

Exploratory Data Analysis (EDA) is the process of analysing datasets to summarize
their key characteristics using visual and quantitative techniques.

o ltis typically performed before applying any machine learning models and serves as
a bridge between data collection and modelling

e Understand the structure of the data
o Detect outliers and anomalies
¢ Identify relationships among variables

¢ Generate hypotheses for further analysis

Uses of EDA in the Data Science Life Cycle

1. Understanding the Data
e Check Data type ,dimensions and column description

e Understanding the range and distribution of features
e Detect missing or invalid data



2. Detecting Pattern and Trends

e Visualize the relationship(correlation between features)

¢ |dentify the cluster or groups in data
e Spot seasonality or trends in time series data
3. Detecting Pattern and Trends

e Uses box plot ,scatter plot etc
e Qutliers can effect the model performance if not handled
4. Detecting Pattern and Trends

e Helps identify which features are useful

e Suggest possible transformations
5. Data Cleaning and Preprocessing

e Detect null values ,duplicates and inconsistent categories
e Guides decision on how to impute or correct the issues
6. Model selection Preparation

e Determine if data is suitable for certain type of models (eg: linear vs

nonlinear)

e Guide target variable distribution analysis for classification or

regression

EDA Techniques Include:
Common EDA Techniques

Technique

Descriptive Statistics

Data Visualization

Correlation Analysis

Missing Value
Analysis

Outlier Detection

Purpose

Mean, median, mode, standard deviation, skewness,
etc.

Histograms, box plots, scatter plots, bar charts,
heatmaps

Understanding relationships between variables

Identifying and handling missing data

Identifying abnormal data points that may affect
modelling



What is Anaconda?

Anaconda is a Python distribution — it includes:
e Condais a package manager and environment manager. It is used to:
e Install and manage Python (and other language) packages.

e Create isolated environments for different projects with specific versions of Python
and libraries.

e Avoid conflicts between different packages or projects.
¢ Why use Anaconda?
e Easy to install and manage packages
e |deal for Data Science, Machine Learning, and Scientific Computing
e Comes with all the tools in one place

¢ You are working on two projects: Project A needs Python 3.8 with TensorFlow 2.9
Project B needs Python 3.11 with PyTorch 2.1 Conda allows you to run both projects
independently without errors.

What is Jupyter Notebook?
Jupyter Notebook is a web-based tool that allows you to:

e Write Python code in small blocks (called "cells")

e Run one block at a time (great for learning & testing)

e Add explanations using Markdown (text formatting)

¢ Combine code, comments, formulas, and charts in one document.
Think of it like a notebook where:

e Each cell can contain code or text

e You can see results immediately below each code block

¢ Example Use:

¢ Data cleaning

e Visualization

¢ Machine learning experiments

e Teaching/learning Python



Why Use Them Together?
e Conda gives you a clean, controlled environment with exactly the libraries you need.

e Jupyter runs inside that environment, using the correct versions of Python and
packages.

e This ensures:
o No version mismatches
o Reproducible results

o Stable development environment

VS Code (Visual Studio Code) is a powerful code editor developed by Microsoft. It supports:
e Writing and running Python scripts
e Syntax highlighting and auto-completion
e Debugging tools

e Extensions like:

o Python
o Jupyter
o Git

VS Code is used for more advanced Python projects, compared to Jupyter which is more for
interactive use.

1.1 Download Anaconda Distribution

Go to https://www.anaconda.com/products/distribution and select Anaconda

Distributionin installer to download the latest version of Anaconda. This downloads
the .exe file to the windows download folder.



J ANACONDA. Products Solutions Resources Company Sign In

Distribution Miniconda

For installation assistance, refer to troubleshooting. For installation assistance, refer to troubleshooting.
m Windows v m Windows

u Mac ~ n Mac

Linux v fy Linux

1.2 Install Anaconda

By double-clicking the .exe file starts the Anaconda installation. Follow the below screen
shot’s and complete the installation

o Anaconda3 2021.05 (64-bit) Setup - O

Welcome to Anaconda3 2021.05
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2021.05 (54-bit).

Itis recommended that you cose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue,

(") ANACONDA.




o Anaconda3 2021.05 (64-bit) Setup - 0

License Agreement
J ANACONDA. Please review the license terms before instaling Anaconda3

2021.05 (64-bit).

Press Page Down to see the rest of the agreement.

Copyright 2015-2021, Anaconda, Inc.
All rights reserved under the 3-dause BSD License:
This End User License Agreement (the "Agreement”) is a legal agreement between you

and Anaconda, Inc. ("Anaconda™) and governs your use of Anaconda Individual Edition
(which was formerly known as Anaconda Distribution). (¥

If you accept the terms of the agreement, did: I Agree to continue. You must accept the
agreement to install Anaconda3 2021.05 (64-bit).

<oac carsl

o Anaconda3 2021.05 (64-bit) Setup - O

Select Installation Type

J ANACONDA Flease select the type of installation you would like to perform for
Anacondad 202105 (64-hit),

Install for:

(") Just Me {recommended)

(®) All Users (requires admin privileges)

<onc Carl



o Anaconda3 2021.05 (64-bit) Setup - O

Choose Install Location
i‘_) ANACOND& Choose the folder in which to install Anaconda3 2021.05 (64-bit).

Setup will install Anaconda3 2021.05 (64-hit) in the following folder. To install in & different
folder, dick Browse and select another folder. Clid Mext to continue.

Destination Folder

| C:\ProgramData\Anaconda3] Browse. ..

Space reguired: 2.9GE
Space available: 8. 1GB

O Anaconda3 2021.05 (64-bit) Setup - O

Advanced Installation Options
}53 ANACONDA.  customize how Anaconda integrates with Windows

Advanced Cptions

[ ]add Anaconda3 to the system PATH environment variable

Mot recommended. Instead, open Anaconda3 with the Windows Start
menu and select "Anaconda (64-bit)". This "add to PATH" option makes
Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

Register Anaconda3 as the system Python 3.8

This will allow other programs, such as Pythaon Toals for Visual Studio
PyCharm, Wing IDE, PyDev, and M5I binary packages, to automatically
detect Anaconda as the primary Python 3.8 on the system.

« Back Install Cancel



o Anaconda3 2021.05 (64-bit) Setup - O

Installing
{2) ANACONDA.  plesse wat hie Anaconda 2021,05 (64-5it) s being nstalied,

Setting up the base environment ...
Show details

Anaconda, Inc,

< Back Mext = Cancel

0 Anaconda3 2021.05 (64-bit) Setup - O

Anaconda3 2021.05 (64-bit)
;iJ ANACONDA.  anaconda + JetBrains

Warking with Python and Jupyter notebooks is a breeze with PyCharm Pro, designed to
be used with Anaconda, Download now and have the best data tools at your
fingertips,

https:/fwww.anaconda. com/pycharm

() ANACONDA

Anaconda, Inc,

« Back Cancel



2 Anaconda3 2021.05 (64-bit) Setup =

Completing Anaconda3 2021.05
(64-bit) Setup

Thank you for instaling Anaconda Individual Edition.

Here are some helpful tips and resources to get you started,

We recommend you bookmark these links so you can refer
back to them later.

Anaconda Individual Edition Tutarial

Getting Started with Anaconda

(") ANACONDA

.
-
(]

This finishes the installation of Anaconda distribution, now let’s see how to create an
environment and install Jupyter Notebook.

2. Create Anaconda Environment from Navigator

A conda environment is a directory that contains a specific collection of conda packages
that you have installed. For example, you may have one environment with NumPy 1.7 and
its dependencies, and another environment with NumPy 1.6 for legacy testing.

https://conda.io/docs/using/envs.html
2.1 Open Anaconda Navigator

Open Anaconda Navigator from windows start or by searching it. Anaconda Navigator is a Ul
application where you can control the Anaconda packages, environment e.t.c



1) ANACONDA NAVIGATOR

Anaconda Navigator

base (root)

Applications on |

"‘ Channels

‘ Enwvironments

e
= = Pl
W Learning £y
Ya.
5

CMD.exe Prompt

011
Run & cmd.exe terminal with your current
environment from Navigator activated

- Community

ANACONDA

Discover premium data
science content

JupyterLab

Documentation A 3014
An extensible environment for interactive
and reproducible computing, based on the

Anaconda Blog Jupyter Notebook and Architecture.

Datalore

©Online Data Analysis Tool with smart
coding assistance by JetBrains. Edit and run
your Python notebooks in the cloud and
share them with your team.

et
Jupyter
L]
Notebook
A 63.0
Web-bazed, interactive computing
notebook environment. Edit and run
human-readable docs while describing the
daka analysis.

2.2 Create an Environment to Run Jupyter Notebook

IBM Watson Studio Cloud

|BM Wakson Studic Cloud prowvides you the
tools to analyze and visualize data, to
cleanse and shape data, ko creake and Lrain
machine learning models. Prepare data and
build medels, using open scurce data
ual modeling

e
).':
'R

3

Powershell Prompt
0.0.1
Run a Powershell terminal with your
current envirenment frem MNavigater
activated

science tools

Y |

Refresh

This is optional but recommended to create an environment before you proceed. This gives

complete segregation of different package installs for different projects you would be

working on. If you already have an environment, you can use it too.



0 Anaconda Navigator -

| Search Environm Q ‘ | Installed V‘ Channels Update index.
Environments I base (root) » Name v T Description Version -~
_ipyw_jlab_nb_ex___ __) 0.1.0
. .
W Learning
alabaster O 0.7.12
[ . .
an Community anaconda ) 2021.05
anaconda-client O 17.2
anacenda-project .,) 0.9.1
anyio =_) 220
<
appdirs D 1.4.4
argh o] 0.262
argonz-cffi ») 20.1.0
Discover premium data
science content -
asnicrypto i_) 1.4.0
Documentation astroid =.J 55
Anaconda Blog astropy o] 221
async-generator a 10

L o [ z

Import

select + Create icon at the bottom of the screen to create an Anaconda environment.

9] Anaconda Navigator -

6 Upgrade P

‘ﬁ‘ Home

| Search Envirenments Q | ‘ Installed V‘ Channels Update index.
I base (root) > MName ¥ T Description Version -
O _ipyw_jlab_nb_ex... .,) 0.1.0
Mg Learning
0712
.. .
e Community X | K |
Name: my-en-:i 2021.05
Location:  ClUs evs|my-env
W A 2
Packages: Python 38 -
A 038
o
220

Il o) 0.26.2
Discover premium data argon2-cffi ] 201.0

science content

asnicrypto __) 1.4.0
Documentation

astroid »] A ss
Anaconda Blog

astropy O A az

async-generator a 0

v &5 9 B ®= @ @

Create Import 352 packages available



3. Install and Run Jupyter Notebook

Once you create the anaconda environment, go back to the Home page on Anaconda
Navigator and install Jupyter Notebook from an application on the right panel.

&

=

Jjupyter
:\-’

Motebook

6.4.3
Web-bazed, interactive computing
notebook envirenment. Edit and run
human-readable docs while describing the
data analysis.

It will take a few seconds to install Jupyter to your environment, once the install completes,

you can open Jupyter from the same screen or by accessing Anaconda
Navigator -> Environments -> your environment (mine pandas-tutorial) -> select Open With

Jupyter Notebook.
QD
File Help

{2 ANACONDA NAVIGATOR

'ﬁ‘ Home | Search Environments Q, ‘ | Installed
baze (rook) Mame v T
- _ )
P Ernvironments I my-eny > Open Terminal
Open with Pytheon e
o Open with IPython
g Learning
pen with Jupyter Noteboo

This opens up Jupyter Notebook in the default browser.



" Jupyter

Quit Logout
Files Running Clusters
Select items to perform actions on them Upload | | Mew = | &
Jo ~ W/ MName ¥ Last Modified File size
[0 O AndroidStudioProjects 2 years ago
[0 [O Contacts a year ago
[0 [O Deskiop 3 days ago
[0 [ Documents 4 months ago
[0 O Downloads 4 hours ago
[0 [ Drivers 2 years ago
[0 [ eclipse-workspace 2 years ago
[0 [ eclipse-workspace-MEW 2 years ago

Now select New -> PythonX and enter the below lines and select Run. On Jupyter, each cell
is a statement, so you can run each cell independently when there are no dependencies on
previous cells.

' Ju pytE‘ I Untitled5 Last Checkpoint: 3 hours ago (unsaved changes) A Logout
File Edit WView Insert Cell Kemel Help Trusted | # | Python 3 (ipykemnel) O
B+ & @ B 4 ¥ FRin B C W coe v =

In [1]: |print("Hello World")

Hello World
In [2]:|2+3
out[2]: 5

In [3]: |str="My First Program”
print(str)

My First Program
m[ ]|
Running Python Code in Visual Studio Code (VS Code)

Visual Studio Code (VS Code) is a lightweight yet powerful code editor that is widely used for
Python development. It provides an excellent environment with features like syntax
highlighting, intelligent code completion, integrated terminal, and powerful extensions.
Once Python and the necessary extensions are set up, you can easily write, edit, and run
your Python scripts directly from VS Code.

Why Use VS Code to Run Python Scripts?

- Easy to set up and use

- Integrated terminal for running scripts

- Support for virtual environments (including Conda)
- Built-in debugger and output viewer

- Rich extension marketplace

Prerequisites



Before running Python scripts, ensure the following are installed:

- Visual Studio Code (VS Code) url : https://code.visualstudio.com/download

- Python Extension in VS Code (provided by Microsoft)

Click on the Extension tab. You can find it on the left side of the window, denoted by a

four-squared icon.

| 2 Search OB Mo - O

] Welcome X

Recommended
@) GitHub Copilot

Supercharge your coding ex
as little onth with cuttin

Walkthroughs

Boost your Productivity

g Get Started with Python... [Updatad

E Get Started with Jupyter... [Updatad

v Show welcome page on startup

Type “Python” into the extension search bar.



2 Search

] Welcome X

Recommended

Python Indent G 5OM & 45 @ GitHub Copilot
Comect Python indentation Supercharge your
R coding experience...

Python Extension Pa..
Walkthroughs
Recent g

ChUsers\Use... Boost your Pr...

ChUsers\User-PC... E Get ... [Updated
C\

autoDocstring - Pyth...

CihUsers\User-P...

v Show welcome page on startup

L2 0 os

™ Extension: Python X

Python v1823.14.8

@ 02AM H 4 .
Microsoft L)

IntelliSense (Pylance), Linting, Debuw...
8 Microsoft Install IntelliSense (Pylance), Linting, De...

Python Indent D 5.9M 4 45 Install [» &

Python Extension Pa..

Categories
Python
extension for i

VISLIa| StUdICI Linmters | | Debuggers

autoDocstring - Pyth... 59 5 CDdE Formatters

ETHETE ytnon Qocsinngs autom Data Science
A
with rich support for the

Machine Learning
Python Environment ...

W 3 ana (for all
of Extension

the language: >=3.7), incl*~ng Resources

features such as IntelliSer. &
(Pylamce), linting, debugging,




Steps to Run Python Script in VS Code

Step 1: Open VS Code

Start VS Code by clicking its icon from the Start menu or taskbar.
Step 2: Create or Open a Python File

Go to File - New File and select language as python and save the file

) File Edit Selection View Go Run Terminal Help < £ House Price Modeling Project

@

New Text File Curl+N T
tFile
New File... Ctrl+Alt+Windows+N
New Window Ctrl+Shift+N

New Window with Profile

Open File.. Ctrl+0
Open Folder... Ctrl+K Ctrl+O0
Open Workspace from File...

Open Recent

Add Folder to Workspace...
Save Workspace As...

Duplicate Workspace

Save
Save As...

Save All

Share

Step 3: Write Python Code
Example code:

print("Hello from VS Code!")
Step 5: Run the Python Script

You can run the script in three ways:

1. Click the [@ Play button in the top right corner.
2. Right-click inside the editor and choose 'Run Python File in Terminal'.

Step 6: View the Output



The output will appear in the integrated terminal at the bottom of the VS Code window.

TERMINAL PORTS

PS C:\Users\manoj\Downloads\House Price Modeling Project> & C:/Users/manoj/AppData/Local/Programs/Python/Python311/python.exe
c:/Users/manoj/Downloads/test. py
hello from vs code

PS C:\Users\manoj\Downloads\House Price Modeling Project> & C:/Users/manoj/AppData/Local/Programs/Python/Python311/python.exe
c:/Users/manoj/Downloads/test. py

Conclusion

VS Code offers a seamless experience for running and debugging Python code. Once set up,
you can focus on development without worrying about switching tools or windows. It's an
excellent choice for students, professionals, and hobbyists alike.

Structured Data: NumPy’s Structured Arrays

While often our data can be well represented by a homogeneous array of values, sometimes
this is not the case. This section demonstrates the use of NumPy’s structured arrays and
record arrays, which provide efficient storage for compound, heterogeneous data

Imagine that we have several categories of data on a number of people (say, name, age, and
weight), and we’d like to store these values for use in a Python program. It would be possible
to store these in three separate arrays:

name = ['Alice’, 'Bob’, 'Cathy’, 'Doug'] age = [25, 45, 37, 19] weight = [55.0, 85.5, 68.0,61.5]

But this is a bit clumsy. There’s nothing here that tells us that the three arrays are related; it
would be more natural if we could use a single structure to store all of this data. NumPy can
handle this through structured arrays, which are arrays with com- pound data types

Recall that previously we created a simple array using an expression like this:
X = np.zeros(4, dtype=int)

Creates an array of 4 records (rows).
Output

array([0, 0, 0, 0])



Fills all values initially with zero (or zero-equivalents for each field type).
We can similarly create a structured array using a compound data type specification:
data = np.zeros(4, dtype={'"names':('name’, 'age’, 'weight'), 'formats':('U10', 'i4', 'f8')})
print(data.dtype)

Defines a structured data type (i.e., similar to a table with columns of different types).
Field Type Explanation
name 'U10' Unicode string of up to 10 characters
age 'i4' 4-byte (32-bit) integer
weight 'f8' 8-byte (64-bit) float
So, each row in this array has:
e aname (string up to 10 characters),

e an age (integer),

e and a weight (float).

Why to use ?

e Structured arrays are useful when you want to work with tabular data (like a
lightweight DataFrame).

You can access fields like: data = np.zeros(4, dtype={'names': ('name’, 'age’, 'weight'),
'formats': ('U10', 'i4', 'f8")})

data['name’] # Access all names
data['age'] # Access all ages
Set Values

data[0] = ('Alice', 25, 55.5)

data[1] = ('Bob’, 30, 72.0)
Get Values

first_row = data[0]

print("First row:", first_row)

output : First row: ('Alice’, 25, 55.5)



You can also access individual fields like this:
print("Name:", first_row['name'])
print("Age:", first_row['age'])
print("Weight:", first_row['weight'])
Filter: Get all records where age > 25
mask = data['age'] > 25
result = data[mask]
More Advanced Compound Types

e Complex queries (Boolean masking + multiple conditions)
¢ Nested dtypes (fields inside fields)

e Fancy indexing by field

e Sorting and filtering based on one field

Example
import numpy as np
data = np.array([
(‘Alice', 25, 55.5),
('Bob', 30, 72.0),
(‘Carol', 22, 60.2),
('David', 35, 68.4)

], dtype=[('name’, 'U10'), ('age’, 'i4'), (‘'weight’, 'f8')])

Boolean Masking + Multiple Conditions

# People over 25 years and weighing less than 70
filtered = data[(data['age'] > 25) & (data['weight'] < 70)]

print("Filtered:\n", filtered)

Sorting by a Field
sorted by _age = np.sort(data, order="age')
print("Sorted by age:\n", sorted_by age)

Nested Data Types (Twist!)



nested_dtype = np.dtype(][
(‘name’, 'U10",
(‘age', 'i4"),
(‘'metrics', [('weight', 'f4'), ('height', 'f4')]) # Nested field

1)

data2 = np.array([
(‘Alice’, 25, (55.5, 160.0)),
('Bob', 30, (72.0, 175.2))

], dtype=nested_dtype)

print("Nested structure:\n", data2)
print("Access Alice's height:", data2[0]['metrics']['height'])
Output
Nested structure:
[('Alice’, 25, (55.5, 160.)) ('Bob', 30, (72., 175.2))]
Access Alice's height: 160.0
Fancy Field Indexing
ages = data['age']

print("All ages:", ages)

The Pandas Series Object

The Series is the simplest data structure in Pandas. It's a one-dimensional
labelled array capable of holding any data type — integers, floats, strings, Python objects,
etc.

Key Characteristics:

e One-dimensional

¢ Hasindex (labels for each element)



¢ Can hold any data type

e Built on top of NumPy array

Example :
import pandas as pd
data =[10, 20, 30, 40]

s = pd.Series(data)

print(s)
Output
0 10
1 20
2 30
3 40
dtype: int64

With custom index:
s = pd.Series([10, 20, 30], index=['a’, 'b", 'c'])
print(s)
Output
a 10
b 20
C 30
dtype: int64
From a dictionary:
data={'a"'1,'b" 2,'c": 3}
s = pd.Series(data)

Output



c 3

Accessing Data in a Series

s['a'] # Access by label
s[0] # Access by position
s[0:2] # First two elements

population_dict = {'California': 38332521,
'"Texas': 26448193,
'New York': 19651127,
'Florida': 19552860,
"lllinois': 12882135}
population = pd.Series(population_dict)
Output
California 38332521
Florida 19552860
lllinois 12882135
New York 19651127
Texas 26448193

Pandas Series - Explanation and Operations

What is a Pandas Series?

A Series in pandas is a 1-dimensional labelled array that can hold any data type like
integers, floats, strings, etc. It is similar to a single column in an Excel sheet.

Features of Series:
« One-dimensional data structure

¢ Can hold different data types (int, float, string, etc.)



e Has labelled index

e Supports element-wise operations

Creating a Series

import pandas as pd

# Simple Series

s = pd.Series([10, 20, 30, 40])

print(s)
Output:

0 10

1 20

2 30

3 40
dtype: int64

Custom Index Series

s = pd.Series([90, 80, 70], index=['Math’, 'Science', 'English'])

print(s)

Output:

Math 90
Science 80
English 70
dtype: int64

Accessing Elements
print(s['Math']) # Access by label

print(s[1]) # Access by position



Output:
90

80

Arithmetic Operations

s = pd.Series([10, 20, 30])

print(s + 5) # Add 5 to each element
print(s * 2) # Multiply each element by 2
Output:

0 15

1 25

2 35

dtype: int64

0 20
1 40
2 60

dtype: int64

Statistical Operations

s = pd.Series([4, 8, 15, 16, 23, 42])
print("Max:", s.max())
print("Min:", s.min())
print("Mean:", s.mean())
print("Sum:", s.sum())

Output:

Max: 42

Min: 4



Mean: 18.0

Sum: 108

Filtering / Conditional Selection

s = pd.Series([45, 90, 60, 30, 80], index=['A", 'B', 'C', 'D', 'E'])
print(s[s > 60])

Output:

B 90

E 80

dtype: int64

Updating Values

s = pd.Series([10, 20, 30], index=['x", 'y', 'z'])
s['y'1=99

print(s)

Output:

X 10

Y 99

z 30

dtype: int64

Appending Two Series

s1 = pd.Series([1, 2], index=['a’, 'b'])
s2 = pd.Series([3, 4], index=['c', 'd'])
s3 =sl.append(s2)

print(s3)

Output:

a 1



o 3
d 4
dtype: int64

Sorting Values and Index

s = pd.Series([30, 10, 50], index=['a’, 'b’, 'c'])
print(s.sort_values()) # By value
print(s.sort_index()) # By index

Output (Sorted by Values):

b 10
a 30
o 50
dtype: int64

Output (Sorted by Index):

a 30
b 10
o 50
dtype: int64

Checking for Missing Values

s = pd.Series([10, None, 20, None])

print(s.isnull()) # Check missing (NaN)
print(s.notnull()) # Check non-missing
Output:

0 False

1 True

2 False



3 True

dtype: bool
0 True
1 False
2 True
3 False
dtype: bool
Summary

e Pandas Series is a powerful tool for handling labeled 1D data.
e Supports indexing, filtering, statistical analysis, and arithmetic operations.

o Useful for tasks like time series, single-column data analysis, and quick filtering.

Introduction to DataFrames in Python

A DataFrame is a 2-dimensional labeled data structure provided by the pandas library in
Python. It's similar to a table in a database or an Excel spreadsheet. Each column can have a
different data type, making it a powerful tool for data analysis.

Creating a DataFrame
import pandas as pd

data ={
‘Name': ['Alice’, 'Bob’, 'Charlie'],
'Age': [25, 30, 35],
'Department': ['HR', 'IT', 'Finance']

df = pd.DataFrame(data)
print(df)



Output:
Name Age Department
0 Alice 25 HR
1 Bob 30 IT

2 Charlie 35 Finance

Common Operations on DataFrames

o df.info()

Provides a concise summary of the DataFrame.
It helps in understanding

e Total number of entries (rows)

e Data types of each column

e Non-null values per column

e Memory usage

Output

<class 'pandas.core.frame.DataFrame'>

Data columns (total 3 columns):

#  Column Non-Null Count Dtype
0 Name 3 non-null object
1 Age 3 non-null int64
2  Department 3 non-null object

df.describe()
e  Gives statistical summary of numeric columns by default.
Includes:
e Count, Mean, Std (standard deviation)
e Min, Max

e 25%, 50%, 75% (percentiles)

Output:

Age



count 3.0

mean 30.0

std 5.0

min 25.0
25% 27.5
50% 30.0
75% 325
max 35.0

df.shape
e Returns the dimensions of the DataFrame in the form (rows, columns)
df.shape

# Output: (3, 3)

df.columns # List of column names
df.head(3) # First 3 rows
df.tail(2) # Last 2 rows

Selecting Data

e Select a single column- df['Name']

Output:
0 Alice
1 Bob
2 Charlie

Name: Name, dtype: object

e Select multiple columns - df[['Name', 'Age']]

e lloc



.iloc is a Pandas indexer used to select data by row and column numbers (integer-location
based indexing)

syntax
df.iloc[row_index, column_index]

Example:
1. Get 2" row 3™ column value
df.iloc[1, 2]

Output : 'IT'
2. Get first two rows df.iloc[0:2]

Output :
Name Age Department
0 Alice 25 HR
1 Bob 30 IT

3. Get specific rows and columns

df.iloc[[0, 2], [0, 1]] # rows 0 & 2, columns 0 & 1

Name Department

0 Alice HR

2 Charlie Finance

4. All rows, only column at index 1

df.iloc[;, 1]
Output:
0 25
1 30
2 35

Name: Age, dtype: int64
loc is a label-based indexer used to select rows and columns by their labels (i.e., names).
Syntax : df.loc[row_label, column_label]

Example :

data ={
'Name': ['Alice’, 'Bob’, 'Charlie'],



'Age': [25, 30, 35],
'City": ['Delhi’, 'Mumbai', 'Chennai']

df = pd.DataFrame(data, index=['a’, 'b’, 'c'])

1. Get row with index 'a'

df.loc['a']
Output:
Name
Age 25
City Delhi
Name: a, dtype: object
2. Get age of row 'b'
dfloc['b’, 'Age']  # Output: 30
3. Get multiple rows
df.loc[['a’, 'c'l]
Name Age
a Alice 25
c Charlie 35

4. Get specific rows and columns

df.loc[['a’, 'c'], ['Name', 'City']]

Output :
Name City
a Alice Delhi
c Charlie Chennai

5. All rows, only 'City' column
df.loc[:, 'City']
Output :
a Delhi

b Mumbai

Alice

City
Delhi

Chennai



c Chennai

Name: City, dtype: object

Filtering Data
df[df['Age'] > 28] # Rows where Age > 28

df[df['Department'] == "IT'] # Rows in IT department

Adding/Modifying Columns
e df['Salary'] = [50000, 60000, 70000] — Adds a new column.

e df['AgePlus10'] = df['Age'] + 10 — Adds a calculated column.

Deleting/Sorting Data
e df.drop('AgePlus10’, axis=1, inplace=True) — Deletes a column.

e df.sort_values(by='Age', ascending=False) — Sorts by age descending.

Grouping and Aggregation
e df.groupby('Department')['Age'].mean() — Groups by department and calculates average
age.

Exporting Data

df.to_csv('output.csv', index=False)
df.to_excel('output.xlsx', index=False)
How to read Excel using DataFrame
import pandas as pd

# If your file is in the same directory

df = pd.read_excel("your_file.xIsx")



# If you have multiple sheets

df = pd.read_excel("your_file.xIsx", sheet_name='Sheet1’)

df.head() # Shows first 5 rows

df.tail() # Shows last 5 rows

df.shape # Shows (rows, columns)

df.info() # Summary of data types and non-null values

df.describe()  # Summary statistics

Handling Missing Data

df.isnull() - used to detect missing (null/NaN) values in a DataFrame

dffillna(0) - .fillna() is used to replace missing values (NaN) with a specified value or
method.
df.dropna() # Drop rows with missing values

Selecting Data
e df['Name'] — Selects a single column.

e df[['Name', 'Age']] — Selects multiple columns.
e df.iloc[1] — Accesses the second row by position.

e df.loc[1] — Accesses the second row by index label.



UNIT -2

Handling Missing Values

Missing values are a common challenge in machine learning and data analysis. They occur
when certain data points are missing for specific variables in a dataset. These gaps in
information can take the form of blank cells, null values or special symbols like "NA", "NaN"
or "unknown." If not addressed properly, missing values can harm the accuracy and
reliability of our models. They can reduce the sample size, introduce bias and make it
difficult to apply certain analysis techniques that require complete data. Efficiently handling
missing values is important to ensure our machine learning models produce accurate and
unbiased results, we'll see more about the methods and strategies to deal with missing data

effectively.

School ID Name Address City Subject Marks Rank Grade
0 101.0 Alice 123 Main 3t Los Angeles Math 85.0 2 B
1 102.0 Bob 456 Oak Ave Mew York  English 2.0 1 A
2 103.0 Charlie 768 Pine Ln Houston  Science 78.0 4 C
3 MaM David 101 Elm 3t Los Angeles Math a9.0 3 B
4 105.0 Eva Miami History MaN 3 D
5 106.0 Frank 222 Maple Rd Math 5.0 1 A
6 107.0  Grace 444 Cedar Blvd Houston  Science &0.0 5 C
T 108.0 Henry 555 Birch Dr Mew York  Englizsh 358.0 3 B

Importance of Handling Missing Values

Handling missing values is important for ensuring the accuracy and reliability of data analysis
and machine learning models. Key reasons include:

¢ Improved Model Accuracy: Addressing missing values helps avoid incorrect
predictions and boosts model performance.

¢ Increased Statistical Power: Imputation or removal of missing data allows the use of
more analysis techniques, maintaining the sample size.

¢ Bias Prevention: Proper handling ensures that missing data doesn’t introduce
systematic bias, leading to more reliable results.



¢ Better Decision-Making: A clean dataset leads to more informed, trustworthy
decisions based on accurate insights.

Challenges Posed by Missing Values
Missing values can introduce several challenges in data analysis including:

e Reduce sample size: If rows or data points with missing values are removed, it
reduces the overall sample size which may decrease the reliability and accuracy of
the analysis.

e Bias in Results: When missing data is not handled carefully, it can introduce bias. This
is especially problematic when the missingness is not random, leading to misleading
conclusions.

o Difficulty in Analysis: Many statistical techniques and machine learning algorithms
require complete data for all variables. Missing values can cause certain analyses or
models inapplicable, limiting the methods we can use.

Understanding Different Types of 'Missing' Data
None: Pythonic Missing Data

In pure Python, the built-in constant None is used to represent the absence of a value or
missing data. It’s often the default for variables that haven’t been initialized or when a
function returns nothing.

Example : data = [10, 15, None, 25]
for value in data:
if value is None:
print("Missing value found!")
else:

print("Value:", value)

Output :
Value: 10
Value: 15
Missing value found!
Value: 25
Example :2

import pandas as pd



df = pd.DataFrame({
'name': ['Alice’, 'Bob', None],
'age': [25, None, 30]
1)
print(df)
Output
name  age
0 Alice 25.0
1 Bob  NaN

2 None 30.0

Operating on Null Values

___As we have seen, Pandas treats None and NaN as essentially interchangeable for indi-
cating missing or null values. To facilitate this convention, there are several useful methods
for detecting, removing, and replacing null values in Pandas data structures. They are:

o isnull()
Generate a Boolean mask indicating missing values
e notnull()
Opposite of isnull()
e dropna()
Return a filtered version of the data
o fillna()

Return a copy of the data with missing values filled or imputed

Detecting null values

Pandas data structures have two useful methods for detecting null data: isnull() and
notnull(). Either one will return a Boolean mask over the data. For example



In[13]: data = pd.Series{[1, np.nan, 'hello’, None])
In[14]: data.isnull()

Qut[14]: @ False

1 True
2 False
3 True
dtype: bool

In[15]: data[data.notnull{)]
Qut[15]: @ 1

2 hello

dtype: object

The isnull() and notnull() methods produce similar Boolean results for Data Frames.

Dropping null values

In addition to the masking used before, there are the convenience methods, dropna() (which
removes NA values) and fillna() (which fills in NA values). For a Series, the result is
straightforward:

For a DataFrame, there are more options. Consider the following DataFrame:

In[17]: df = pd.DataFrame([[1, np.nan, 2],
[;J -.:: :]:
[np.nan, 4, 1
df
Out[17]: a 1 2
@ 1.8 NanN 2
1 2.8 3.8 5
2 MaN 4.0 &

We cannot drop single values from a DataFrame; we can only drop full rows or full columns.
Depending on the application, you might want one or the other, so dropna() gives a number
of options for a DataFrame.

By default, dropna() will drop all rows in which any null value is present:

In[18]: df.dropna()

Out[1B]: 8

1 2
1 2.6 3.8 5

Alternatively, you can drop NA values along a different axis; axis=1 drops all columns
containing a null value:



In[19]: df.dropnalaxis="columns')

Out[19]: 2
2
5
6

But this drops some good data as well; you might rather be interested in dropping rows or
columns with all NA values, or a majority of NA values. This can be specified through the
how or thresh parameters, which allow fine control of the number of nulls to allow through.

The default is how="any', such that any row or column (depending on the axis key- word)
containing a null value will be dropped. You can also specify how="all’, which will only drop
rows/columns that are all null values:

In[208]: df[3] = np.nan

df

Out[28]: L] 12 3
B 1.8 NaN 2 NaN
1 2.8 3.8 5 NaN
2 MNahN 4.8 & NaN

In[21]: df.dropnalaxis="columns', how="'all")

Out[21]: 2] 1
B 1.8 NaN
i1 2.8 3.8
2 MNah 4.8

= R R N

For finer-grained control, the thresh parameter lets you specify a minimum number of
non-null values for the row/column to be kept:

In[22]: df.dropnalaxis="rows', thresh=3)
Qut[22]: a 1 2 3
1 2.8 3.8 5 NaW

thresh=3  Keep only rows with at least 3 non-null values

Filling null values

Sometimes rather than dropping NA values, you’d rather replace them with a valid value.
This value might be a single number like zero, or it might be some sort of imputation or
interpolation from the good values. You could do this in-place using the isnull() method as a
mask, but because it is such a common operation Pandas provides the fillna() method, which
returns a copy of the array with the null values replaced.

data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde'))



We can fill NA entries with a single value, such as zero:

In[24]: data.fillna(®)

Out[24]: a 1.8
b 0.8
C 2.0
d 6.a
e 3.0
dtype: floatsd

We can specify a forward-fill to propagate the previous value forward:

In[25]): # forward-fill
data. fillna{method="ffill")

Out[25]: a 1.8

b 1.0
c 2.8
d 2.0
e 3.0

dtvne: floatad

Or we can specify a back-fill to propagate the next values backward

In[26]: # back-fill
data.fillna(method="bfi1Ll")

Qut[26]: a 1.8
b 2.8
C 2.0
d 3.8
] 3.0
dtype: floatsd

For DataFrames, the options are similar, but we can also specify an axis along which the fills
take place:

In[27]: df

out[27]: @ 12 3
8 1.8 NaN 2 NaN
1 2.8 3.8 5 NaN
2 MaN 4.8 6 Nai

In[28]: df.fillna({method="ffill', axis=1)

Out[28]: ] 1 2 3
8 1.6 1.8 2. 2.8
1 2.6 3.0 5.0 5.0
2 MNaN 4.8 6.0 6.0



Trade-Offs in Missing Data Conventions

There are several strategies to handle missing data, such as filling with
mean, median, or mode, interpolation, or dropping rows entirely. Each
strategy has its own advantages and disadvantages, and choosing the right one involves
making trade-offs.

1. Filling Missing Values with Mean
Description:

The mean (average) is a commonly used method for replacing missing values
in numeric columns.

Pros:
e Easy to compute and implement.
e Preserves the dataset size (no rows dropped).

e Useful when data is symmetrically distributed.

¢ Sensitive to outliers, which can distort the average.

e« Can underestimate or overestimate values if the distribution is
skewed.

e Reduces data variance and can lead to biased models.

Real-World Example:



In a student performance dataset, if one student's math score is missing, we
might fill it with the average score of the class. However, if a few students
have extremely high or low scores, the average might not reflect a fair value.

Example : import pandas as pd

import numpy as np

data = {'student': ['A", 'B', 'C', 'D'],
'marks': [80, 85, np.nan, 90]}
df = pd.DataFrame(data)
# Fill missing marks with mean
df['marks'].fillna(df['marks'].mean(), inplace=True)
2. Filling Missing Values with Median
Description:

The median is the middle value when all values are sorted. It is a better measure of central
tendency for skewed data.

Pros:

¢ Not affected by outliers.

o Better for skewed data distributions (e.g., income).
Cons:

e lIgnores distribution shape in normal data.

e Doesn’t consider the relationships between data points.
Real-World Example:

In a financial dataset containing household income, if one value is missing, replacing it with
the median income avoids the problem of a few very rich households skewing the results.

import pandas as pd
import numpy as np
data = {'customer': ['A', 'B', 'C', 'D', 'E'],

'income': [30000, 35000, np.nan, 40000, 1000000]} # Notice the outlier
(1000000)

df = pd.DataFrame(data)



df['income'].fillna(median_income, inplace=True)
Output :

customer income

0 A 30000.0

1 B 35000.0

2 C 37500.0 < filled with median
3 D  40000.0

4 E 1000000.0

3. Filling Missing Values with Mode
Description:

The mode is the most frequent value in a column. This method is especially useful for
categorical data.

Pros:

o Best suited for categorical variables.

e Maintains the most common class or category.
Cons:

e Doesn’t work well with numeric or continuous variables.

e Canintroduce bias if the missing data is not actually most similar to the mode.
Real-World Example:

In a survey dataset, if the gender column is missing for some entries, and the most frequent
gender is 'Female’, we might fill the missing entries with 'Female'. However, this can lead to
overrepresentation of that category.

import pandas as pd
import numpy as np
data ={'customer": [1, 2, 3, 4, 5],

'‘gender': ['Male', 'Female’, np.nan, 'Male', np.nan]}
df = pd.DataFrame(data)
df['gender'].fillna(df['gender'].mode()[0], inplace=True)
df



customer gender

0 1 Male
1 2 Female
2 3 Male < filled with mode
3 4 Male
4 5 Male < filled with mode

4. Interpolation
Description:

Estimates missing values by using the values before and after the missing one. Commonly
used for time series data.

Pros:

e Maintains trends and patterns.

e Preserves time-sequence data.
Cons:

e Can create artificial trends.

¢ Not suitable for unordered or categorical data.
Real-World Example:

In a weather dataset, if the temperature reading is missing for a single day, it can be
estimated by taking the average of the temperature from the previous and next day.

import pandas as pd
import numpy as np
# Temperature data with one missing value
data = {'day": ['Mon', 'Tue', 'Wed', 'Thu', 'Fri'],
'temperature': [28.0, 30.0, np.nan, 32.0, 34.0]}
df = pd.DataFrame(data)
df['temperature'] = df['temperature'].interpolate()
Output :
day temperature

0 Mon 28.0



1 Tue 30.0

2 Wed 31.0 < interpolated between Tue (30.0) and Thu (32.0)
3 Thu 32.0
4  Fri 34.0

Data Duplication Removal from Dataset

Duplicates are a common issues in real-world datasets that can negatively impact our
analysis. They occur when identical rows or entries appear multiple times in a dataset.
Although they may seem harmless but they can cause problems in analysis if not fixed.
Duplicates could happen due to:

e Data entry errors: When the same information is recorded more than once by
mistake.

e Merging datasets: When combining data from different sources can lead to
overlapping of data that can create duplicates.

Why Duplicates Can Cause Problems?

o Skewed Analysis: Duplicates can affect our analysis results which leads to misleading
conclusions such as an wrong average salary.

¢ Inaccurate Models: It can cause machine learning models to overfit which reduces
their ability to perform well on new data.

¢ Increased Computational Costs: It consume extra computational power which slows
down analysis and impacts workflow.

¢ Data Redundancy and Complexity: It make it harder to maintain accurate records
and organize data and adds unnecessary complexity.

Identifying Duplicates

e To manage duplicates the first step is identifying them in the dataset. Pandas offers various
functions which are helpful to spot and remove duplicate rows

import pandas as pd

data ={
'Name': ['Alice’, 'Bob’, 'Alice’, 'Charlie', 'Bob’, 'David'],
'Age': [25, 30, 25, 35, 30, 40],
'City': ['New York’, 'Los Angeles', 'New York', 'Chicago’, 'Los Angeles', 'San Francisco']

df = pd.DataFrame(data)
df
Output



Name Age City
0 Alice 25 New York
1 Bob 30 Los Angeles
2 Alice 25 New York
3 Charlie 35 Chicago
4 Bob 30 Los Angeles

5 David 40 San Francisco

1. Using duplicated() Method

e The duplicate() method helps to identify duplicate rows in a dataset. It returns a boolean
Series indicating whether a row is a duplicate of a previous row.
duplicates = df.duplicated()
duplicates
Output:

e

o False

-

False

True

False

True

O » O N

False

dtype: bool

Removing Duplicates

Duplicates may appear in one or two columns instead of the entire dataset. In such cases,
we can choose specific columns to check for duplicates.

1. Based on Specific Columns

Here we will specify columns i.e name and city to remove duplicates
using drop_duplicates().

df _no_duplicates_columns = df.drop_duplicates(subset=['Name', 'City'])

df no_duplicates_columns

Output
Name Age City
0 Alice 25 New York

1 Bob 30 Los Angeles
3 Charlie 35 Chicago

5§ David 40 San Francisco

2. Keeping the First or Last Occurrence



By default drop_duplicates() keeps the first occurrence of each duplicate row. However,
we can adjust it to keep the last occurrence instead

df_keep_last = df.drop_duplicates(keep='last')

df_keep_last
Output

Name Age City
2 Alice 25 New York
3 Charlie 35 Chicago

4 Bob 30 Los Angeles

5 David 40 San Francisco

Outliers

Outliers are data points that deviate significantly from other data points in a dataset. They
can arise from a variety of factors such as measurement errors, rare events or natural
variations in the data. If left unchecked it can distort data analysis, skew statistical results
and impact machine learning model performance

Methods for Detecting and Removing Outliers

There are several ways to detect and handle outliers in Python. We can use visualization
techniques or statistical methods depending on the nature of our data Each method serves
different purposes and is suited for specific types of data. Here we will be

using Pandas and Matplotlib libraries on the Diabetes dataset which is preloaded in

the Sckit-learn library.

1. Visualizing and Removing Outliers Using Box Plots
import sklearn
from sklearn.datasets import load_diabetes
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
diabetes = load_diabetes()
column_name = diabetes.feature_names
df_diabetics = pd.DataFrame(diabetes.data, columns=column_name)

sns.boxplot(df_diabetics['bmi'])



plt.title('Boxplot of BMI')

plt.show()

Boxplot of BMI
o

o

in the boxplot, outliers appear as points outside the whiskers. These values are much higher
or lower than the rest of the data. For example, bmi values above 0.12 could be identified as
outliers.

To remove outliers, we can define a threshold value and filter the data.
def removal_box_plot(df, column, threshold):
removed_outliers = df[df[column] <= threshold]
sns.boxplot(removed_outliers[column])
plt.title(f'Box Plot without Outliers of {column}')
plt.show()
return removed_outliers
threshold_value =0.12

no_outliers = removal_box_plot(df diabetics, 'bmi', threshold_value)

Output

Box Plot without Outliers of bmi

-0.05

-0.10

2. 1QR Method (Interquartile Range)



This method is a widely used and reliable technique for detecting outliers. It is robust to
skewed data and helps identify extreme values based on quartiles and it most trusted
approach used in the research field. The IQR is calculated as the difference between the
third quartile (Q3) and the first quartile (Q1):

IQR=Q3-Q1
Q1 = df['bmi'].quantile(0.25)
Q3 = df['bmi'].quantile(0.75)

To define the outlier base value is defined above and below dataset's normal range namely
Upper and Lower bounds define the upper and the lower bound (1.5*IQR value is
considered i.e:

e upper=Q3+1.5*xIQRupper=Q3+1.5*xIQR
e Jlower=Q1-1.5%IQR/ower=Q1-1.5%IQR

In the above formula the 0.5 scale-up of IQR (new_IQR = 1QR + 0.5*IQR) is taken to consider
all the data between 2.7 standard deviations in the Gaussian Distribution.

upper = Q3+1.5*IQR
upper_array = np.array(df_diabetics['bmi'] >= upper)
print("Upper Bound:", upper)

print(upper_array.sum())

lower = Q1-1.5*IQR
lower_array = np.array(df_diabetics['bmi'] <= lower)
print("Lower Bound:", lower)

print(lower_array.sum())

Upper Bound: ©.12879000811776306
3

Lower Bound: -©.13204851376139045
%]

Now lets detect and remove outlier using the interquartile range (IQR).

Here we are using the interquartile range (IQR) method to detect and remove
outliers in the 'bmi' column of the diabetes dataset. It calculates the upper
and lower limits based on the IQR it identifies outlier indices using Boolean
arrays and then removes the corresponding rows from the DataFrame which



results in a new DataFrame with outliers excluded. The before and after
shapes of the DataFrame are printed for comparison.

import sklearn
from sklearn.datasets import load_diabetes
import pandas as pd

diabetes = load_diabetes()

column_name = diabetes.feature_names
df_diabetes = pd.DataFrame(diabetes.data)
df_diabetes .columns = column_name
df_diabetes .head()

print("Old Shape: ", df_diabetes.shape)

Q1 = df_diabetes['bmi'].quantile(0.25)
Q3 = df_diabetes['bmi'].quantile(0.75)
IQR=Q3-Q1

lower =Q1 - 1.5*IQR

upper = Q3 + 1.5%IQR

upper_array = np.where(df_diabetes['bmi'] >= upper)[0]

lower_array = np.where(df_diabetes['bmi'] <= lower)[0]

df_diabetes.drop(index=upper_array, inplace=True)

df_diabetes.drop(index=lower_array, inplace=True)

print("New Shape: ", df_diabetes.shape)



Output:

Old Shape: (442, 10)
New Shape: (439, 10)

What are Anomalies

An anomaly is any data point, event, or pattern that does not conform to the expected

behavior of the dataset.

e Sometimes, anomalies are bad data (errors, noise).

e Sometimes, anomalies are critical insights (fraud, failures, rare events).

Types of Anomalies

1. Point Anomalies (Global Anomalies)

Definition:
A single data point that is significantly different from the majority of other data points in the

dataset. This is the most common and widely recognized anomaly type.

Real-World Examples:

e Credit Card Fraud: Suddenly seeing a $10,000 charge on your credit card,
when your typical bill is around $2,000.



e Healthcare: A patient’s heart rate suddenly spikes to 200 bpm for a single
measurement, even though previous and following readings are normal.

e Network Security: A sudden, singular spike in network traffic that could

indicate a potential DDoS attack.

e Energy Usage: A household records an abnormally high electricity usage for one day,

suggesting a faulty appliance or unauthorized use.
2. Contextual Anomalies (Conditional Anomalies)

Definition:
A data point that is only anomalous in a specific context (such as time, season, or

environment) but might appear normal otherwise.

Real-World Examples:

e Website Traffic: High web traffic during a marketing campaign is expected,
but a similar traffic spike on a regular night might indicate bot activity or a
technical glitch.

e Energy Consumption: Elevated energy use is normal during daytime for
offices, but high power usage late at night may be suspicious and could
indicate problems.

e Healthcare Monitoring: An increased heart rate during exercise is normal, but

the same elevated rate during rest is a contextual anomaly.

3. Collective Anomalies

Definition:
A collection or sequence of data points that, as a group, represents anomalous behavior,
even if individual points are not anomalous.

Real-World Examples:

e Cybersecurity: Multiple failed login attempts from the same IP address in a
short period indicate a brute-force attack, even if a single failed attempt is

normal.



e Finance: A customer makes several small transactions in rapid succession to
evade detection—together, these form a collective anomaly and potential
money laundering case.

e Healthcare: A slowly and steadily declining vital sign (such as blood pressure
dropping a little every hour) may indicate an emerging medical crisis.

e Traffic Management: While low traffic volumes on certain days are normal, a
week-long, sustained dip could indicate construction or an event affecting

traffic flow.

Anomalies in EDA (Exploratory Data Analysis)

In EDA, anomalies are often treated as outliers. The purpose is to understand data

quality, distribution, and patterns.

Common EDA Techniques to Detect Anomalies

Visualization-based

e Box plots - find points beyond whiskers.
e Scatter plots - find points away from clusters.

e Histogram/Distribution plots - identify long tails.
Statistical methods

e /-score

e |QR (Interquartile Range) - points beyond Q1 - 1.5xIQR or Q3 + 1.5xIQR.

Encoding Categorical Variables

Encoding categorical variables is an essential step in preparing data for machine learning
models, which often require numerical input. The two most common methods are Label
Encoding and One-hot Encoding, and they serve different purposes based on the nature of

your data.



Categorical

Label encoding:

Label encoding is a technique used in machine learning to convert categorical data into
numerical data by assigning a unique integer to each category. This allows machine learning
algorithms to process and analyze categorical variables that originally contain non-numerical
data. Typically, each unique category is assigned a number starting from 0 upwards.

KeyPoints:

. It assigns a distinct numerical label to each category within a variable.
e |tis especially useful for ordinal data where categories have a meaningful order.

e For nominal data (categories without order), label encoding can sometimes mislead
models into assuming an inherent ranking, which might affect performance.

Categorical data is broadly divided into two types:

¢ Nominal Data: Categories without inherent order (e.g., colors: red, blue, green).



¢ Ordinal Data: Categories with a natural order (e.g., satisfaction levels: low, medium,
high).

Sample code

import pandas as pd

from sklearn.preprocessing import LabelEncoder

# Severity levels
severity = ['Low’, 'Medium', 'High', 'Medium’, 'Low']

df = pd.DataFrame({'Severity': severity})

# Label Encoding
label _encoder = LabelEncoder()
df['Severity_encoded'] = label_encoder.fit_transform(df['Severity'])

print(df)

Output :

severity Severity encoded

Low
Medium
High
Medium

Low

Other examples of ordinal categorical data that can be label encoded include:

1. Education Levels: “High School” < “Some College” < “Bachelor’s Degree” < “Master’s
Degree” < “Ph.D.



2. Income Levels: “Low” < “Medium” < “High”

3. Rating Scales: “Poor” < “Average” < “Good” < “Excellent”

Now we are able to convert that numerical but algorithms like linear regression may
misinterpret numbers as ordinal (Red=2 > Green=1).

For non-ordinal categorical variables, use One-Hot Encoding instead.

One-hot encoding:

One-Hot Encoding is a method of converting categorical variables into a binary
vector representation.
e Each unique category in the original column becomes a new column.

e Avalue of 1in a column indicates the presence of that category, while 0 indicates its
absence.

¢ This encoding is used to make categorical data machine-readable for algorithms that
require numerical input.

Original Column: ['Apple’, 'Banana’, 'Mango']

After applying One-Hot Encoded:

Apple Banana Mango

1 0 0

0 1 0

0 0 1
Example 1:

fruits = ['Apple', 'Banana’, 'Mango', '‘Banana’, 'Apple’, 'Orange']

import pandas as pd

df = pd.DataFrame({'Fruit": fruits})



# One-Hot Encoding
one_hot = pd.get_dummies(df, columns=['Fruit'])
print(one_hot)

Output :

Fruit_Apple Fruit_Banana Fruit_Mango Fruit_Orange

0 1 0 0 0

1 0 1 0 0

2 0 0 1 0

3 0 1 0 0

4 1 0 0 0

5 0 0 0 1
Example : 2

from sklearn.preprocessing import OneHotEncoder

import pandas as pd

df = pd.DataFrame({'Fruit': ['Apple’, 'Banana’, 'Mango']})

encoder = OneHotEncoder(sparse=False) # sparse=False returns a NumPy
array

encoded_array = encoder.fit_transform(df[['Fruit']])

encoded_df = pd.DataFrame(encoded_array,
columns=encoder.get_feature_names_out(['Fruit']))

print(encoded_df)



Fruit_Apple Fruit_Banana Fruit_Mango

0 1.0 0.0 0.0
1 0.0 1.0 0.0
2 0.0 0.0 1.0

Data Transformation

Data Transformation is the process of converting raw data into a more useful
format for analysis or machine learning.

It helps in:

« Improving data quality and consistency
o Preparing data for ML models

« Handling different scales, distributions, or data types

Normalization

Normalization is a technique in Machine Learning applied during data
preparation to change the values of numeric columns in the dataset to use a
common scale between 0 to 1. It is not necessary for all datasets in a model. It
is required only when features of machine learning models have different
ranges.

Mathematically, we can calculate normalization with the below formula:

1. Xn = (X - Xminimum) / ( Xmaximum - Xminimum)

Example: Let's assume we have a model dataset having maximum and
minimum values of feature. To normalize the machine learning model, values
are shifted and rescaled so their range can vary between 0 and 1. This
technique is also known as Min-Max scaling. In this scaling technique, we will
change the feature values as follows:



Values: [10, 20, 30, 40, 50] - Min = 10, Max = 50

For30:[x' = 0.5]
Normalized values: [0, 0.25, 0.5, 0.75, 1]

import numpy as np

from sklearn.preprocessing import MinMaxScaler
# Sample data

X = np.array([[10], [20], [30], [40], [50]])

# Apply Min-Max Normalization to [0,1]

scaler = MinMaxScaler()

X_normalized = scaler.fit_transform(X)
print("Original Data:\n", X.ravel())

print("Normalized Data (0-1 range):\n", X_normalized)

Output
Original Data:
[10 20 30 40 50]
Normalized Data (0-1 range):

[0. 02505 0.751. ]

Binning

Binning is the process of dividing a continuous variable into a

set of discrete intervals or bins. The intervals can be of equal or
unequal size, and can be defined using different methods, such as

Fixed Width Binning: Dividing the data into a fixed number of equally
sized bins. For example, dividing a range of values from 0 to 100 into 10
bins of width 10.

Fixed Frequency Binning: Dividing the data into a fixed number of bins
with approximately the same number of data points in each bin. For
example, dividing a dataset of 1000 data points into 10 bins with 100
data points in each bin.

Custom binning : Bins are defined manually based on domain
knowledge.



Example: Age groups = Child (0-12), Teen (13-19), Adult (20-59), Senior
(60+).

Example with Age Data
ages =[5, 12, 18, 24, 30, 35, 40, 50, 60, 70, 80, 90]
Equal-width Binning (3 bins)
We want 3 bins.
« Range ofdata=90-5=285
o Binwidth =85+ 3 =283
So bins are approximately:
e Bin 1:5-33
e Bin 2:33-61
« Bin 3:61-90
Ages grouped:
e Bin1-1[5 12,18, 24, 30]
e Bin2 — [35, 40, 50, 60]
e Bin3 - [70, 80, 90]

Equal-frequency Binning (3 bins)
We want 3 bins with equal number of people.
o 12 people =+ 3 bins = 4 people per bin
So bins are:
o Bin1:[5, 12, 18, 24]
« Bin 2:[30, 35, 40, 50]
« Bin 3:[60, 70, 80, 90]
Notice here:
« Ranges are uneven (Bin 1: 5-24, Bin 2: 30-50, Bin 3: 60-90)
« But each bin has exactly 4 people
Python Example :

import pandas as pd



ages =[5, 12, 18, 24, 30, 35, 40, 50, 60, 70, 80, 90]
df = pd.DataFrame(ages, columns=['Age'])

# Equal-width binning (3 bins)
df['Equal_Width_Bin'] = pd.cut(df['Age'], bins=3)

# Equal-frequency binning (3 bins)
df['Equal_Freq_Bin'] = pd.qcut(df['Age'], g=3)

print(df)
Age
0 5
1 12
18
24
30
35
40
50
60
70
80
11 90

O 00 N oo U1 b W N

—_
o

Equal_Width_Bin
(4.915, 33.3]

(4.915, 33.3]
(4915, 33.3]
(4915, 33.3]
(4915, 33.3]
(33.3,61.7]
(33.3, 61.7]
(33.3, 61.7]
(33.3, 61.7]
(61.7,90.0]
(61.7,90.0]
(61.7,90.0]

Equal_Freq_Bin
(4.999, 24.0]
(4.999, 24.0]
(4.999, 24.0]
(4.999, 24.0]
(29.999, 50.0]
(29.999, 50.0]
(29.999, 50.0]
(29.999, 50.0]
(59.999, 90.0]
(59.999, 90.0]
(59.999, 90.0]
(59.999, 90.0]

Equal-width — fixed-size ranges, but bins may have unequal counts.

Equal-frequency — bins have equal counts, but ranges vary.

Example for Custom Binning

import pandas as pd

ages =[5, 12, 18, 24, 30]



df = pd.DataFrame(ages, columns=['Age'])

bins = [0, 12, 19, 35]  # intervals: (0-12], (12-19], (19-35]
labels = ['Child’, 'Teen’, 'Young Adult']

df['Age_Group'] = pd.cut(df['Age'], bins=bins, labels=labels)

print(df)
Output
Age Age_Group
0 5 Child - falls into (0-12]
1 12 Child - falls into (0-12]
2 18 Teen - falls into (12-19]
3 24 Young Adult - falls into (19-35]
4 30 Young Adult - falls into (19-35]

Data Types Conversion

Data Type Conversion is the process of changing one data type into another,
so the data can be used correctly in analysis

Example: "25" (string) — 25 (integer)
Example: 25 (integer) — 25.0 (float)

Why Data Type Conversion is Needed
Memory Efficiency
« Large datasets can be optimized by converting types.

o Example: Converting float64 — float32 reduces memory usage.



Data Cleaning

o Data loaded from CSV/Excel might come as object (string) even if
values are numeric.

« Conversion ensures proper type before analysis.
Correct Calculations
« Wrong type leads to wrong results:
o "25" +"5" — "255" (string concatenation)
o 25+ 5 — 30 (integer addition)
Types of Data Type Conversion
Numeric Conversions
o Integer < Float
o Example: int(25.9) — 25
o Example: float(25) — 25.0
String < Numeric
o Example: "100" — 100 (string — integer)
o Example: 100 — "100" (integer — string)
Object — Category
o Example: "Male"/"Female" — 0/1 (category encoding)

import pandas as pd

# Sample dataset

data = {'Age": ['25', '30", '35,
‘Salary': ['40000', '50000', '60000'7],
'‘Gender'": ['Male’, 'Female’, '‘Male']}

df = pd.DataFrame(data)

print("Before Conversion:")

print(df.dtypes)

# Convert Age and Salary from string — integer

df['Age'] = df['Age'].astype(int)

df['Salary'] = df['Salary'].astype(float)



# Convert Gender to category
df['Gender'] = df['Gender'].astype('category’)
print("\nAfter Conversion:")

print(df.dtypes)

Data Type Casting

Data Type Casting is the process of forcibly changing one data
type into another, even if it may lead to data loss or truncation

Why Casting is Important in Al/ML?
1. Memory Optimization

o Large datasets — reduce precision from float64 — float32 to save
memory.

2. Speed

o Smaller types (int32 instead of int64) improve training
performance.

3. Compatibility

o Some ML models or libraries expect specific types (float32 for
TensorFlow/PyTorch).

4. Data Cleaning

o When values are not in the desired type, casting ensures they
become usable.

Example :
1. x =10
y = float(x)
print(y, type(y))
Output: 10.0 <class 'float’
2. x=10.75
y = int(x)  # Casting removes decimal part

print(y, type(y))
Output: 10 <class 'int'> (lost .75



3. x ="25"
y = int(x)
print(y, type(y))



UNIT -3

Measures of Central Tendency and
Dispersion

1. Measures of Central Tendency

Central tendency is a fundamental statistical concept that represents the "center" or typical
value around which data points in a dataset cluster. It helps summarize a dataset with a
single representative value, giving an idea about the average or most common outcome.

The three main measures of central tendency

1.1 Mean (Arithmetic Average)

Definition: The sum of all values divided by the number of values.
Formula: Mean =3x/n

Example: Predicting house prices using features like average square footage in a
neighborhood.

In datasets, mean values summarize typical feature values, helping to fill missing data (mean
imputation) or standardize scales before feeding into ML models.

Use case: If 10% of house records lack square footage, replacing missing values with the
mean square footage avoids data loss and improves model stability.

1.2 Median (Middle Value)

Definition: The middle value when data is arranged in order.
Example:

e Income prediction models often handle skewed income data with heavy outliers (few very
high earners).

¢ Using the median instead of mean to impute missing income values ensures the
imputation is not skewed by extreme values.



e Use case: This preserves model accuracy by maintaining a representative “typical”
income value during training.

1.3 Mode (Most Frequent Value)

Definition: The value that occurs most frequently.

e Example: In customer churn prediction, categorical features like “preferred communication

IM

channel” (email, phone, app) may have missing values.

e Imputing missing categories with the mode (most frequent category) helps keep
dataset integrity.

e Use case: Mode imputation avoids introducing rare categories and preserves
dominant customer behavior patterns in ML models.

2. Measures of Dispersion

Dispersion in statistics is a way to describe how spread out or scattered the data is around
an average value. It helps to understand if the data points are close together or far apart. It
shows the variability or consistency in a set of data.

Measure of Dispersion
A

Spread

Common Measures of Dispersion



2.1 Range

Definition: Difference between maximum and minimum values.
Formula: Range = Max — Min

Example: Given {20, 42, 13, 71, 54, 93, 15, 16}
e lLargest value =93
¢ Smallest value =13

e Range=93-13=80

2.2 Variance

Definition: Average of squared differences from the mean.
Formula: Variance = 3(x - mean)*2 / n

Example: Test scores: 60, 65, 70, 75, 80
e Mean (X X) = (2+6+12+15)/4 = 8.75
Variance = ((60-70)2+(65-70)2+(70-70)2+(75-70)2+(80-70)2)+5

= (100 + 25 + 0 + 25 + 100) + 5 = 50

2.3 Standard Deviation (SD)

Definition: Square root of variance; shows average deviation from mean.
Formula: SD = VVariance

Example: Dataset = {1, 3, 6, 7, 12}
¢ Mean=5.8

¢ Find squared differences: (1-5.8)"2 = 23.04, (3-5.8)"2 = 7.84, (6-5.8)2 = 0.04,
(7-5.8)72 = 1.44, (12-5.8)A2 = 38.44
Sum =70.8
Variance =70.8 /5 = 14.16
Standard Deviation = 14.16=3.7614.16=3.76

Al/ML Use Cases:
- Used in feature scaling (z-score normalization)
- Important for Gaussian distribution assumptions in ML models.

Real-World Example: In height measurement, if average height = 170 cm with SD =10 cm,
then most people are between 160-180 cm.



2.4 Interquartile Range (IQR)

Definition: Spread of middle 50% of data.
Formula: IQR=Q3 - Q1
where,

e Q1 = First quartile (25th percentile), the median of the lower half of the data,

e Q3 =Third quartile (75th percentile), the median of the upper half of the data.

Here are real-world scenarios where measures of dispersion (range, standard deviation,
MAD, IQR) are used in Al/ML, analytics, and everyday contexts, each with concrete examples
that can be brought into the classroom:

1. Sales Revenue Variability

Scenario:
Two retail stores each report an average monthly revenue of 1,00,000.

¢ Store A: Monthly figures range from 98,000 to X1,02,000 (SD = %1,500).
e Store B: Figures fluctuate from 50,000 to X1,50,000 (SD = X24,000).

Application:
Although means are identical, measures of dispersion reveal that Store B’s income is far less
consistent, indicating higher financial risk—critical for planning and forecasting.

2. Stock Price Volatility

Scenario:
Suppose two stocks average the same closing price (X500) over a month:

e Stock X: Prices are X499, X501, X500, X502, X498 (low SD).

e Stock Y: Prices are 2400, X600, X460, X540, X500 (high SD).

Application:
Investors use standard deviation to judge investment risk—lower SD suggests more stable
stocks, guiding portfolio decisions.

3. Weather Data Monitoring

Scenario:



o City 1: Daily temperatures over a week are 30°C, 31°C, 32°C, 30°C, 29°C, 30°C, 31°C
(low SD: weather is consistent).

e City 2: Temperatures are 20°C, 35°C, 31°C, 42°C, 24°C, 28°C, 15°C (high SD: weather is
unpredictable).

Application:
For event planning or agriculture, knowing the dispersion helps in risk assessment and
strategy planning—greater dispersion means preparation for more variability.

Takeaway
Concept What It Shows Common Use Cases
Measures
Central Typical or average Mean, Median, Data summary, baseline
Tendency value in data Mode models, imputation
Variability or spread Range, SD, IQR, Outlier detection, scaling, risk
Dispersion of data Variance analysis

Histogram

A histogram is a type of graphical representation used in statistics to show the distribution
of numerical data. It looks somewhat like a bar chart, but unlike bar graphs, which are used
for categorical data, histograms are designed for continuous data, grouping it into logical
ranges, which are also known as "bins."

A histogram helps in visualizing the distribution of data across a continuous interval or
period which makes the data more understandable and also highlights the trends and
patterns




Histogram

Frequency

O 2 a4 6 8 10
Data values

Types of Histogram
There are various variations of the histograms based on their shapes:
Uniform Histogram

A Uniform Histogram shows uniform distribution means that the data is uniformly
distributed among the classes, with each having a same number of elements. It may display
many peaks, suggesting varying degrees of incidence.

Bimodal Histogram



A histogram is called bimodal if it has two distinct peaks. This implies that the data consists
of observations from two distinct groups or categories, with notable variations between

them.

A

Symmetric Histogram

Symmetric Histogram is also known as a bell-shaped histogram, it has perfect symmetry
when divided vertically down the centre, with both sides matching each other in size and
shape. The balance reflects a steady distribution pattern.

A

Right-Skewed Histogram

A right-skewed histogram shows bars leaning towards the right side. This signifies that

the majority of the data points are on the left side, with a few outliers reaching to the right.
Consider a histogram showing the distribution of family earnings. A right-skewed histogram
occurs when the majority of families are in lower income groups, but a small number of
highly rich households skew the average income.



Left-Skewed Histogram

A left-skewed histogram shows bars that lean towards the left side. This means that

the majority of the data points are on the right side, with a few exceptionally low values
extending to the left. Consider a histogram reflecting the distribution of test scores in a
classroom. A left-skewed histogram occurs when the majority of students receive excellent
grades but a few do badly, resulting in an average that is dragged to the left.

A

Sudo Code

import matplotlib.pyplot as plt



import numpy as np

scores = np.random.normal(loc=70, scale=10, size=130) # mean=70, std=10
# Create Histogram
plt.figure(figsize=(10,10))

plt.hist(scores, bins=10, color="skyblue", edgecolor="black")

# Labels and Title
plt.title("Histogram of Student Exam Scores")
plt.xlabel("Score Ranges")

plt.ylabel("Number of Students")

# Show grid

plt.grid(axis="y', linestyle='--', alpha=0.7)

plt.show()

scores = np.random.normal(loc=70, scale=10, size=130) # mean=70, std=10

loc=70
e This is the mean (center) of the distribution.
e The generated values will be centered around 70.
e Example: Think of it as the "average score" in an exam.
scale=10
¢ This is the standard deviation (spread) of the distribution.
¢ A higher scale means values will spread out more from the mean.
e Here, most values will fall within 70 + 10 - between 60 and 80.

size=130
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This is the number of random samples to generate.

It will create an array with 130 numbers following that distribution.
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Visualization Techniques in Python: Bar
Charts, Count Plots, and Pie Charts

1. Bar Charts

¢ Concept

A bar chart uses rectangular bars to represent numerical values for different
categories.

The length/height of the bar corresponds to the value.

Useful when comparing discrete categories (e.g., sales by product, students by
grade).

¢ Example Use Case

Showing the average marks of students in different subjects.

¢ Python Pseudo Code

import matplotlib.pyplot as plt

subjects = ["Math", "Science", "English", "History"]

marks = [85, 90, 75, 80]



plt.bar(subjects, marks, color="'skyblue')
plt.title("Student Marks by Subject")
plt.xlabel("Subjects")
plt.ylabel("Marks")

plt.show()

Student Marks by Subject

801

601

Marks

40

204

T T T T
Math Science English History
Subjects

2. Count Plots

¢ Concept
e A count plot (Seaborn) is a special kind of bar chart.

e Instead of giving values manually, it counts the number of occurrences of each
category in a dataset.

o Useful for categorical data frequency visualization.
¢ Example Use Case
e Counting how many students chose Science stream vs Arts vs Commerce.
¢ Python Pseudo Code
import seaborn as sns
import matplotlib.pyplot as plt

stream_choices = ["Science", "Arts", "Commerce", "Science", "Arts", "Science"]
sns.countplot(x=stream_choices, palette="pastel")

plt.title("Student Stream Preferences")



plt.xlabel("Stream")

plt.ylabel("Count")

plt.show()

3.0

2.5 1

2.0 1

Count

1.0

0.5 1

0.0

1.5 1

Student Stream Preferences

T T T
Science Arts Commerce
Stream

3. Pie Charts

¢ Concept

Note:

A pie chart shows proportions of categories as slices of a circle.
Good for showing percentage distribution.
Should be used when you want to highlight parts of a whole.

Avoid too many categories (>6), otherwise the chart becomes confusing.

¢ Example Use Case

Distribution of students by gender in a class.

¢ Python Pseudo Code

import

matplotlib.pyplot as plt

# Categories and values



genders = ["Male", "Female", "Other"]
counts =[50, 45, 5]
plt.pie(counts, labels=genders, autopct='%1.1f%%', colors=["lightblue", "pink", "lightgreen"])

plt.title("Gender Distribution in Class")

plt.show()

Gender Distribution in Class

Male

50.0%

5.0%
Other

45.0%

Female

When to use Histograms, Boxplots, KDE, Bar Charts, Count Plots, Pie
Charts?

1. Histogram

A histogram is used to display the distribution of a continuous numerical variable. The data
is grouped into intervals (called bins), and the height of each bar shows how many values fall
into that interval.

¢ When to use: When you want to see how data is spread across different ranges.

¢ Example: If you plot exam scores of 100 students, a histogram will show how many
students scored between 0-10, 10-20, 20-30, and so on.

¢ Good for: Detecting skewness, spread, and common ranges.

2. Boxplot



A boxplot shows the summary of a dataset: median, quartiles (25%, 50%, 75%), and
outliers. The "box" represents the middle 50% of the data, while the "whiskers" show the
spread of the rest. Outliers are shown as dots.

¢ When to use: When comparing distributions across groups or when you want to
check for outliers.

o Example: Comparing salaries of employees in different departments. A boxplot will
quickly show which department has higher salaries and where outliers exist.

e Good for: Spotting outliers, comparing groups.

3. KDE (Kernel Density Estimate Plot)

A KDE plot is like a smooth version of a histogram. Instead of showing bins, it creates a
continuous curve that represents the probability distribution of the data.

¢ When to use: When you want to visualize the shape of the distribution (whether it
looks normal, skewed, or has multiple peaks).

¢ Example: Plotting the heights of students in a class. A KDE curve will show if most
students are around a certain height and whether the distribution is normal or
skewed.

¢ Good for: Understanding the shape of data distribution.

4. Bar Chart

A bar chart is used to compare numerical values across categories. Each category has a bar,
and the length/height of the bar represents its value.

¢ When to use: When comparing averages or totals across different groups.

e Example: Showing the average marks in different subjects (Math, Science, English,
History). A bar chart makes it clear which subject has the highest or lowest marks.

e Good for: Comparing categories side by side.

5. Count Plot

A count plot is a special type of bar chart used when the data is categorical. Instead of
providing numerical values, it automatically counts how many times each category occurs in
the dataset.

¢ When to use: When you want to see the frequency of categories in your data.



¢ Example: Counting how many students chose Science, Arts, or Commerce as their
stream. The plot will show which stream is most popular.

e Good for: Frequency analysis of categorical variables.

6. Pie Chart

A pie chart shows data as slices of a circle, where each slice represents the proportion of a
category relative to the whole.

¢ When to use: When you want to show percentage share of categories.

o Example: Showing the gender distribution in a classroom (Male, Female, Other).
Each slice shows what percentage of the class belongs to that category.

¢ Good for: Displaying proportions or parts of a whole.

¢ Note: Works best with 3—6 categories; too many slices make it confusing.

Box Plot

A Box Plot (or Whisker plot) display the summary of a data set, including

minimum, first quartile, median, third quartile and maximum. it consists of a
box from the first quartile to the third quartile, with a vertical line at the
median. the x-axis denotes the data to be plotted while the y-axis shows the
frequency distribution. The matplotlib.pyplot module of matplotlib library
provides boxplot() function with the help of which we can create box plots.

Syntax

matplotlib.pyplot.boxplot(data)

Example:



import matplotlib.pyplot as plt
import numpy as np
np.random.seed(10)

d = np.random.normal(100, 20, 200)

// generates 200 random values from a normal distribution with
mean = 100 and standard deviation = 20.

//Most values will lie within +20 of the mean

// ~68% of values between 80 and 120 (u  10)
// ~95% of values between 60 and 140 (u + 20)
//~99.7% of values between 40 and 160 (u + 30)
fig = plt.figure(figsize =(10, 7))

plt.boxplot(d)

plt.show()

140 1

120 1

100 1




KDE Plot

What is KDE Plot?

KDE Plot described as Kernel Density Estimate is used for visualizing the
Probability Density of a continuous variable. It depicts the probability density
at different values in a continuous variable. We can also plot a single graph for
multiple samples which helps in more efficient data visualization. It provides a
smoothed representation of the underlying distribution of a dataset.

The KDE plot visually represents the distribution of data, providing insights into
its shape, central tendency, and spread. It is particularly useful when dealing
with continuous data or when you want to explore the distribution without
making assumptions about a specific parametric form (e.g., assuming the data
follows a normal distribution). KDE plots are commonly used in statistical
software packages and libraries for data visualization, such as Seaborn and
Matplotlib in Python.
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Creating a Univariate Seaborn KDE Plot

To start our exploration, we delve into the creation of a Univariate Seaborn KDE
plot, visualizing the probability distribution of a single continuous attribute.




We can visualize the probability distribution of a sample against a single
continuous attribute.

from sklearn import datasets
import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt

# Setting up the Data Frame
iris = datasets.load _iris()
iris_df = pd.DataFrame(iris.data, columns=['Sepal_Length’,

'Sepal_Width', 'Petal_Length', 'Petal _Width'])
iris_df['Target'] = iris.target
iris_df['Target'].replace([0], 'lris_Setosa', inplace=True)
iris_df['Target'].replace([1], 'lris_Vercicolor', inplace=True)

iris_df['Target'].replace([2], 'lIris_Virginica', inplace=True)

# Plotting the KDE Plot
sns.kdeplot(iris_df.loc[(iris_df['Target']=="Iris_Virginica'),

'Sepal_Length'], color="b', shade=True, label="Iris_Virginica')

# Setting the X and Y Label
plt.xlabel('Sepal Length')

plt.ylabel('Probability Density')

Output:
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We can also visualize the probability distribution of multiple samples in a single
plot.

sns.kdeplot(iris_df.loc[(iris_df['Target']=="Iris_Setosa'),

'Sepal_Length'], color="r', shade=True, label="lris_Setosa')

sns.kdeplot(iris_df.loc[(iris_df['Target']=="Iris_Virginica'),

'Sepal_Length'], color="b', shade=True, label='Iris_Virginica')

plt.xlabel('Sepal Length')

plt.ylabel('Probability Density')

Output:
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Bivariate Analysis

Bivariate Analysis is the statistical technique used to study the relationship between two
variables in a dataset. It helps us understand whether the variables are related, how strongly
they are related, and in what direction.

¢ Understanding dependencies between features and target.
¢ Detecting patterns, trends, and correlations.

e Deciding which features are important for predictive modeling.

1. Scatter Plots
¢ Definition

A scatter plot is a type of data visualization that displays values for two numerical variables
as points on a two-dimensional graph. Each point represents an observation in the dataset,
with:

e The x-axis showing one variable
e The y-axis showing another variable

This helps to visually identify patterns, relationships, correlations, clusters, and outliers
between the two variables.

¢ When to Use

¢ To check if two variables are correlated (positive, negative, or no correlation).



¢ To observe linear or non-linear relationships.

e When you need to check for unusual data points that don’t follow the general
pattern

¢ Example
e Study Hours vs Exam Score - More study hours - Higher exam scores.
¢ Python Pseudo Code
import seaborn as sns
import matplotlib.pyplot as plt

import pandas as pd

# Sample data

data = pd.DataFrame({
"Study_Hours": [2,3,4,5,6,7,8,9],
"Exam_Score": [50, 55, 60, 65, 70, 78, 85, 90]

b

# Scatter Plot
sns.scatterplot(x="Study_Hours", y="Exam_Score", data=data)
plt.title("Study Hours vs Exam Score")

plt.show()
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2. Pair Plots
¢ Definition

A pair plot is a data visualization that shows the pairwise relationships between multiple
numerical variables in a dataset. It creates a grid of scatter plots for every combination of
variables, along with histograms (or KDE plots) on the diagonal to show the distribution of
each variable..

¢ When to Use

¢ To analyze all pairwise relationships at once.

o To identify clusters, trends, or separations in data.

o To explore data with multiple features before modeling.
¢ Example

o Iris dataset - See how sepal and petal measurements are related for different
species.

¢ Python Pseudo Code

from sklearn.datasets import load_iris

# Load dataset
iris = load_iris()

Loads the Iris dataset from scikit-learn.



This dataset is widely used in ML tutorials.

It contains 150 flower samples from 3 species:
e Setosa
e \Versicolor

e Virginica

Iris Setosa Iris Versicolor Iris Virginica

Each sample has 4 features:
¢ Sepal length
¢ Sepal width
o Petal length

e Petal width

df = pd.DataFrame(iris.data, columns=iris.feature_names)

df["species"] = iris.target

# Pair Plot
sns.pairplot(df, hue="species") # hue adds color by class

plt.show()
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3. Heatmaps
¢ Definition

A heat map is a data visualization technique that represents values in a matrix or table using
colour gradients. The intensity of the colour shows the magnitude of the value, making it
easy to spot patterns, correlations, and outliers at a glance, it is often used to visualize
correlation values between features.

¢ When to Use
¢ To see correlation patterns among variables.
¢ To quickly detect which features are strongly related to the target.

¢ To identify multicollinearity (when two features are highly correlated).
¢ Example
e Correlation matrix of house features (size, price, number of rooms).

¢ Python Pseudo Code



# Correlation matrix

corr = df.corr()

# Heatmap
sns.heatmap(corr, annot=True, cmap="coolwarm", linewidths=0.5)
plt.title("Correlation Heatmap")

plt.show()
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4. Correlation Analysis

¢ Definition



Correlation Analysis is a statistical method used to measure the strength and direction of
the relationship between two variables. It tells us whether an increase (or decrease) in
one variable is associated with an increase or decrease in another variable.

e Values range from -1 to +1:
o +1 - Perfect positive relationship (as one increases, the other increases).
o -1 - Perfect negative relationship (as one increases, the other decreases).
o 0 - No relationship.
¢ When to Use
¢ To quantify the relationship strength between variables.
o To select features that are strongly related to the target variable.
¢ Example
o Height vs Weight - Strong positive correlation.
o« Temperature vs Sales of Ice Cream - Positive correlation.
¢ Python Pseudo Code
# Correlation value between two variables
correlation = data["Study_Hours"].corr(data["Exam_Score"])
print("Correlation:", correlation)
Output :

Correlation: 0.9966669694751458

5. Covariance Analysis
¢ Definition

Covariance Analysis is a statistical method that measures the degree to which two variables
change together. It indicates whether an increase in one variable corresponds to an increase
or decrease in another variable.

o Positive covariance - Variables increase together.
o Negative covariance - One increases while the other decreases.

e Unlike correlation, covariance is not standardized (depends on scale).

¢ When to Use



¢ To check the direction of relationship (but not strength).

e Used as a foundation for correlation (since correlation = normalized covariance).

¢ Example

e Height and Weight > Positive covariance (both increase together).

o Temperature and Heater Usage - Negative covariance (as temperature increases,

heater usage decreases).
¢ Python Pseudo Code
# Covariance matrix
cov_matrix = data.cov()

print(cov_matrix)
Study Hours Exam_Score

Study_Hours 6.000000 34.928571

Exam_Score 34.928571 204.696429

@ Summary Table

Technique Purpose When to Use
Scatter Visualize relationship between 2 Check correlation, trends,
Plot numeric variables outliers
. Visualize all pairwise Explore datasets with
Pair Plot ] ) ] )
relationships multiple numeric features
Identify strong/weak

Heatmap Show correlation matrix visually

feature relationships
. Strength + direction of Feature selection,
Correlation ) ]
relationship (-1 to +1) dependency check
) Direction of relationship Foundation for correlation
Covariance

(scale-dependent) analysis

Example

Study hours vs
Exam score

Iris dataset
features

House features
correlation

Height vs Weight

Temp vs Heater
usage



UNIT -4

Matplotlib

Matplotlib is a powerful and versatile open-source plotting library for Python, designed to
help users visualize data in a variety of formats. Developed by John D. Hunter in 2003, it
enables users to graphically represent data, facilitating easier analysis and understanding

e Matplotlib is a low level graph plotting library in python that serves as a visualization
utility.

e Matplotlib was created by John D. Hunter.

e Matplotlib is open source and we can use it freely.

Installation
Before you can start using Matplotlib, you need to install it. You can do this easily using

pip install matplotlib

Seaborn

is a high-level data visualization library in Python built on top of Matplotlib. It helps you
create stunning statistical graphics using just a few lines of code. Seaborn is especially useful
when you are working with datasets and want to explore relationships between variables.
The library comes with a variety of built-in themes and colour palettes, which means your
graphs will look professional without needing much customization

Installation

pip install seaborn

Visualization using Matplotlib

import matplotlib.pyplot as plt
x=[5,7,8,7,6,9,5]

y =[99, 86, 87, 88, 100, 86, 103]
plt.scatter(x, y, color="blue")
plt.title("Scatter Plot (Matplotlib)")

plt.xlabel("X-axis")



plt.ylabel("Y-axis")
plt.show()

Scatter Plot (Matplotlib)
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Using Seaborn
import seaborn as sns

import matplotlib.pyplot as plt

# Sample dataset

tips = sns.load_dataset("tips")

sns.scatterplot(x="total_bill", y="tip", hue="sex", data=tips)
plt.title("Scatter Plot (Seaborn)")

plt.show()



Scatter Plot (Seaborn)
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Another example

import matplotlib.pyplot as plt

# Sample data

students = ['Alice’, 'Bob', 'Charlie', 'David', 'Eva']
math_scores = [85, 90, 78, 92, 88]

english_scores = [80, 85, 82, 88, 90]

# Bar plot for Math and English scores

plt.bar(students, math_scores, color="skyblue', label='Math’)

plt.bar(students, english_scores, color='lightgreen’, label="English’, alpha=0.7)// alpha
ranges from 0 to 1:

// 0 = completely transparent (invisible)
//1 > completely opaque (solid color)
//0.7 > 70% opaque, 30% transparent

plt.title("Students' Scores")

plt.xlabel("Students")
plt.ylabel("Scores")

plt.legend()

plt.show()
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import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
# Create DataFrame
df = pd.DataFrame({
'Student': ['Alice’, 'Bob’, 'Charlie', 'David', 'Eva'],
'Math': [85, 90, 78, 92, 88],
‘English': [80, 85, 82, 88, 90]
})
# Melt DataFrame for seaborn
df_melt = df.melt(id_vars='Student’, var_name='Subject', value_name='Score')
# Bar plot
sns.barplot(x='Student', y="'Score', hue='Subject’, data=df_melt)
plt.title("Students' Scores (Seaborn)")

plt.show()



Students' Scores (Seaborn)

Subject
N Math
80 4 B English

60

20 4

Alice Bob Charlie David Eva
Student

What is df.melt()?

melt() converts a DataFrame from wide format to long format.
e Wide format: Each variable is in a separate column.
Student  Math English
Alice 85 80

Bob 90 85

Long format: All values of variables are stacked in one column, with another column

indicating the variable type

Student  Subject  Score

Alice Math 85
Alice English 80
Bob Math 90
Bob English 85

Customization in plotting refers to enhancing visual clarity and presentation by adding

titles, axis labels, legends, and themes.
These elements make a plot easier to understand and more professional.




1. Adding Titles

Definition

A title describes the purpose of the graph — what information it shows.
Syntax

plt.title("Your Title", fontsize=14, color='blue', loc='center")

Example

import matplotlib.pyplot as plt

plt.plot([1, 2, 3, 4], [10, 20, 25, 30])

plt.title("Sales Growth Over Time", fontsize=14, color='darkblue’,
fontweight="'bold',loc="left')

plt.show()
Sales Growth Over Time

30.0

15.0

125

10.0

Parameters
Parameter Description Example
label Title text "Sales Growth"
fontsize  Title size fontsize=14
color Title color color="red'
loc Location ('left', 'center’, 'right') loc="left’

2. Adding Axis Labels
Definition

Axis labels tell us what data each axis represents — like Time, Sales, etc.



Syntax
plt.xlabel("X-axis Label", fontsize=12)
plt.ylabel("Y-axis Label", fontsize=12)

Example
plt.plot([1, 2, 3, 4], [10, 20, 25, 30])
plt.xlabel("Quarter", fontsize=12, color="purple')
plt.ylabel("Sales (in $1000s)", fontsize=12, color='green’)
plt.title("Quarterly Sales Performance")

plt.show()

Quarterly Sales Performance

Sales (in $1000s)

1.0 15 2.0 25 30 35 40
Quarter

3. Adding Legends
Definition
A legend identifies different datasets or lines in a single plot.
Syntax
plt.legend(title="Legend Title", loc="upper right", fontsize=10)
Example
plt.plot([1, 2, 3, 4], [10, 20, 25, 30], label="Product A')
plt.plot([1, 2, 3, 4], [15, 18, 22, 28], label='Product B')
plt.title("Product Sales Comparison")
plt.xlabel("Quarter")
plt.ylabel("Sales (in $1000s)")
plt.legend(title="Products", loc="upper right’)

plt.show()
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4. Applying Themes (Styles)
Definition

Themes (also called styles) control the overall look of the plot — colors, gridlines,
backgrounds, and fonts.

Syntax

plt.style.use("stylename")

Example

plt.style.use("ggplot")

plt.plot([1, 2, 3, 4], [10, 20, 25, 30], label='Product A', marker='0")
plt.plot([1, 2, 3, 4], [15, 18, 22, 28], label="'Product B', linestyle="'--')
plt.title("Styled Sales Graph", fontsize=14)

plt.xlabel("Quarter")

plt.ylabel("Sales (in $1000s)")

plt.legend(title="Products", loc="upper left")

plt.grid(True)

plt.show()



Styled Sales Graph
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Violin Plots

A violin plot is a combination of a boxplot and a kernel density plot.

It displays the probability density of the data at different values (the width of the “violin”
shows how frequent values are) along with key summary statistics such as the median and
quartiles.

The symmetrical “violin” shape represents the distribution of the data — wider areas
indicate higher data density, while narrower parts show fewer observations. Violin plots are
especially useful for comparing multiple distributions side-by-side.

import seaborn as sns

import matplotlib.pyplot as plt

# Load example dataset

tips = sns.load_dataset("tips")

# Create a violin plot

sns.violinplot(x="day", y="total_bill", data=tips, palette="Set2")
plt.title("Distribution of Total Bill by Day")

plt.xlabel("Day of the Week")

plt.ylabel("Total Bill ($)")

plt.show()
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Strip Plots

Definition:
A Strip Plot is a categorical scatter plot where individual data points are plotted along a
single axis corresponding to a categorical variable.

e Each dot represents one observation.
e Dots may overlap, but adding jitter spreads them out for better visibility.
¢ Mainly used to visualize distribution and spread of data points across categories.
import seaborn as sns
import matplotlib.pyplot as plt
tips = sns.load_dataset("tips")
sns.stripplot(x="day", y="total_bill", data=tips, jitter=True)
plt.title("Strip Plot of Total Bill by Day")

plt.show()

Strip Plot of Total Bill by Day
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Swarm Plots

Definition:

A Swarm Plot is similar to a strip plot but automatically adjusts the position of points to

avoid overlapping.

Each dot represents one observation, but the points are spaced out horizontally or
vertically for clarity.

Provides a clear view of data distribution, especially when many points are
clustered.

Key Points:

Prevents overlapping of points (unlike strip plots).
Best for small to medium datasets (large datasets can be slow).

Can be combined with violin or boxplots for distribution + points visualization.

import seaborn as sns

import matplotlib.pyplot as plt

sns.swarmplot(x="day", y="total_bill", data=tips)

plt.title("Swarm Plot of Total Bill by Day and Gender")

plt.show()

Swarm Plot of Total Bill by Day and Gender
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adding palette and hue for the above graph

import seaborn as sns

import matplotlib.pyplot as plt

sns.swarmplot(x="day", y="total_bill", data=tips, hue="sex", palette="Set2")



plt.title("Swarm Plot of Total Bill by Day and Gender")

plt.show()

Swarm Plot of Total Bill by Day and Gender
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Note :

palette="Set2" means Use a set of light pastel colours to differentiate categories in the
plot.

Multivariate Visualization

Multivariate Visualization is the process of graphically
representing three or more variables in a dataset

simultaneously to understand how they relate, interact, and
influence each other.

It visualizing multiple variables together to discover
patterns, correlations, trends

Use

. To explore complex relationships among multiple features

. To detect interactions, clusters, or outliers



. To understand dependencies before building predictive
models

Example :
If you’re studying sales data with these columns:
. Sales Amount
. Advertising Spend
. Customer Age
. Region
Pair Plot — shows pairwise relationships between variables

Heatmap — shows correlations among many numeric
features

. 3D Scatter Plot — visualizes relationships among three
variables

. Parallel Coordinates Plot — compares several features
across samples

. Facet Grid — shows the effect of multiple categorical
variables

3D Scatter Plot

A 3D Scatter Plot is a type of data visualization that displays the
relationship among three numerical variables using a
three-dimensional coordinate system (X, Y, Z axes).

. Each point in the plot represents one observation, positioned
according to its values on those three variables.



Example :

Imagine a dataset of customers with:
. X-axis: Age
. Y-axis: Income
. Z-axis: Spending Score

A 3D scatter plot will show how customers of different ages and
incomes vary in spending behavior — helping in customer
segmentation.

import plotly.express as px

import pandas as pd

# Create a small dataset
data ={
'‘Age': [23, 45, 30, 55, 27, 38, 50, 22, 35, 48],

'‘Annual_Income': [35000, 70000, 60000, 90000, 40000, 65000,
85000, 30000, 58000, 75000],

'Spending_Score': [80, 40, 75, 20, 90, 60, 30, 85, 65, 45],

'Customer_Type': ['High', 'Low', 'High', 'Low', 'High', 'Medium’,
'Low’, 'High', 'Medium’, 'Low']

}

df = pd.DataFrame(data)

# Create 3D Scatter Plot

fig = px.scatter_3d(df,



x='Age’,
y='Annual_Income’,
z='Spending_Score’,
color="Customer_Type',
symbol='Customer_Type',
size='Spending_Score’,

title="Customer Segmentation in 3D: Age vs
Income vs Spending Score")

fig.show()

color

. color="Customer_Type' means the points will be colored
differently based on the customer type

symbol

. symbol='Customer_Type' means the marker shape changes
based on customer type.

size

. Size='Spending_Score' means the marker size varies according to
the spending score.
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Parallel Coordinates

A Parallel Coordinates Plot is a way to compare multiple
variables at the same time.

. Each variable has its own vertical line (axis).

. Each data point (like a student, customer, or car) is drawn as a
line connecting its values across all the vertical axes.

Example:

Imagine students have three scores:
Student Math Science English
Alice 90 85 70

Bob 60 75 80

Carol 80 90 95



Student Math Science English

Draw three vertical axes: Math, Science, English.

For Alice, put a dot at 90 on Math, 85 on Science, 70 on English,
and connect the dots with a line.

Repeat for Bob and Carol.

import pandas as pd
from pandas.plotting import parallel_coordinates
import matplotlib.pyplot as plt
# Simple dataset
data={

'Student’: ['Alice’, 'Bob’, 'Carol'],

'‘Math': [90, 60, 80],

'Science': [85, 75, 90],

'English'; [70, 80, 95]
by
df = pd.DataFrame(data)
# Parallel Coordinates Plot
plt.figure(figsize=(8,5))
parallel_coordinates(df, 'Student’, color=['r','g','b"])
plt.title("Parallel Coordinates Plot - Students")
plt.xlabel("Subjects")
plt.ylabel(*"Scores")



plt.show()

Parallel Coordinates Plot - Students
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Math Science English
Subjects

Patterns across subjects:
. Alice is strong in Math & Science, weaker in English.
. Carol is strong in all subjects.
Compare multiple students at once:
. See who has similar performance patterns.
Identify extremes/outliers:

. Lines that are very high or low stand out.

Subplots

Subplots are multiple plots displayed within a single figure.
Instead of creating separate figures for each graph, you can arrange
multiple plots in a grid (rows x columns) inside one figure



import matplotlib.pyplot as plt

import seaborn as sns

# Load dataset

tips = sns.load_dataset("tips")

# Create subplots: 2 rows x 2 columns

fig, axes = plt.subplots(2, 2, figsize=(10, 8))

# Top-left plot

sns.scatterplot(data=tips, x="total_bill", y="tip", ax=axes[0, 0])
# Top-right plot

sns.histplot(data=tips, x="total_bill", bins=20, ax=axes[0, 1])
# Bottom-left plot

sns.boxplot(data=tips, x="day", y="total_bill", ax=axes[1, 0])
# Bottom-right plot

sns.violinplot(data=tips, x="day", y="tip", ax=axes[1, 1])

plt.tight_layout() # Adjust spacing
plt.show()
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Plotly

Plotly is a Python library for interactive data visualization.

« Unlike Matplotlib or Seaborn, which produce static plots, Plotly allows
users to interact with plots.

« You can zoom, pan, hover, and rotate 3D plots.

o It works for both simple charts and complex dashboards, and integrates
easily with Pandas dataframes

Example :

import plotly.express as px



# Data in long format for Plotly
df long = pd.DataFrame({
'Student":
['Alice','Alice','Alice','Bob’,'Bob’,'Bob’,'Carol’,'Carol’,'Carol'],
'Subject': ['Math','Science’,'English']*3,
'Score': [90,85,70,60,75,80,80,90,95]
1

fig = px.line(df long, x="Subject', y='Score’, color="'Student’,
markers=True,

title="Student Scores - Plotly Interactive")

fig.show()

Student Scores - Plotly Interactive
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—e— Bob

—e— Carol
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What Are Interactive Visualizations?

Interactive visualizations are plots or charts that allow users to
interact with the data instead of just viewing it as a static image.

. Users can zoom, pan, filter, hover, or rotate to explore data.

. They make it easier to discover patterns, trends, and outliers
dynamically.

Uses :

Explore Data Dynamically
. Zoom into a specific region or filter categories
. Hover to see exact values for each data point
Handle Large Datasets
. Avoid clutter by exploring only the area you need
Better Presentations

. Makes charts more engaging for reports, dashboards, or web
apps

Multivariate Data

. Can visualize relationships between 3+ variables using color,
size, shape, or 3D axes



With 2D plot

import plotly.express as px

# Sample dataset

df = px.data.iris()

fig = px.scatter(df,
x='sepal_length’,
y='sepal_width',
color="species’,
size='petal_length’,
hover_name='species’,
title="Interactive 2D Scatter Plot")

fig.show()

Interactive 2D Scatter Plot
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With 3D



fig = px.scatter_3d(df,
x='sepal_length’,
y='sepal_width’,
z="petal_length’,
color="species’,
size='petal_width’,

title="Interactive 3D Scatter Plot")

fig.show()

Interactive 3D Scatter Plot

species
® setosa
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virginica




UNIT =5
Step-by-step EDA on Titanic Datasets

Overview of the Titanic Dataset Columns

Before diving into data visualization and feature engineering, it’s essential to
understand the context and meaning of each column in the Titanic dataset.
Here’s a brief overview of the columns:

1. Passengerld: A unique identifier for each passenger.
2. Survived: Indicates whether the passenger survived (1) or not (0).

3. Pclass: Passenger’s class (1 = 1st class, 2 = 2nd class, 3 = 3rd class). This is
a proxy for socio-economic status (SES).

4. Name: The full name of the passenger.
5. Sex: The gender of the passenger (male or female).

6. Age: The age of the passenger in years. Some entries contain fractional
values to represent ages less than one year. If the age is estimated, it is in
the form of xx.5.

7. SibSp: Number of siblings and spouses aboard the Titanic.

« Sibling = brother, sister, stepbrother, stepsister

« Spouse = husband, wife (mistresses and fiancés were ignored )
8. Parch: Number of parents and children aboard the Titanic.

« Parent = mother, father

o Child = daughter, son, stepdaughter, stepson

« Some children travelled only with a nanny, therefore Parch=0 for them.
9. Ticket: The ticket number.
10. Fare: The amount of money paid for the ticket.

11. Cabin: The cabin number where the passenger stayed.



12. Embarked: The port where the passenger boarded the ship (C = Cherbourg;
Q = Queenstown; S = Southampton).

Load the Data and show basic information about the data

1. titanic.head(): Provides top 5 rows in dataset,

2. titanic.info(): Offers a concise summary of the dataset, highlighting the
number of entries, non-null counts, data types, and memory usage. It acts as a
fact sheet for our DataFrame, outlining its structure and alerting us to potential
data quality issues. We note missing values in the Age, Cabin,

and Embarked columns, which need to be addressed before analysis.

3. titanic.describe(): Provides descriptive statistics that summarize the central
tendency, dispersion, and shape of a dataset’s distribution, excluding NaN
values. It offers a quick statistical summary of numerical columns which helps
in understanding the distribution, scale, and spread of data.

We can observe that about 38% of the passengers survived (the mean of
the Survived column is 0.38).

We can also observe the median of Fares is 14.454 but the mean is 32.2, thus
indicating a number of very high-paying passengers.

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

titanic = sns.load_dataset('titanic')

titanic.head()



survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive

:actions

male 220 0 7.2500 Third man True NaN Southampton no

female 380 0 712833 First woman False Cherbourg yes

female 26.0 0 79250 Third woman False Southampton

female 350 0 531000 5 First woman False Southampton

male 350 0 8.0500 Third man True Southampton

titanic.info()

<class 'pandas.core.frame._DataFrame" >
RangeIndex: 891 entries, © to 890
Data columns (total 15 columns):

# Column Non-Null Count

VB W@

6
7
8
9

13

dtypes: bool(2), category(2), float6d(2), int64(4), object(5s)

memory usage: 88.7+ KB

survived
pclass

Sex

age

sibsp
parch

fare
embarked
class

who

adult male
deck
embark town
alive
alone

titanic.describe())

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

object
floated
inte4
int6d
floathd
object
category
object
bool
category
object
object
bool




survived pclass age sibsp parch fare

count 891.000000 891.000000 714000000 891.000000 891.000000 891.000000
mean 0.383838 2308642 29699118 0.523008 0381594  32.204208
std 0.486592 0.83607/1  14.52649/7 1.102743 0.806057 49.693429
min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000
25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400
50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200

75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000

max 1.000000 3.000000  80.000000 8.000000 6.000000 512.329200

Now, let’s get an overview of missing values:

missing_values = titanic.isnull().sum()
print(missing_values)



survived
pclass
sex
age
sibsp
parch
fare
embarked
class
who
adult_male

deck

embark_town

alive

alone

dtype: int64

Filling in the Missing Values

When addressing the issue of missing values in the Titanic dataset, different
strategies can be applied to fill the data based on the nature of the data in each
column, let’s look at the basic approach:

1. Age:

The median can be used to fill missing values in the Age column because:



« The median is robust against outliers which means it preserves the
original distribution of ages without being skewed by outliers, which can
occur with the mean if outliers are present.

« Itis more representative of the central tendency of the dataset.

2. Embarked:

The mode is used to fill the two missing values in the Embarked column
because:

« The data is nominal, meaning no category inherently ranks above
another.

« Only two values are missing, making the mode a straightforward and
justifiable choice given its simplicity and the small number of
imputations needed.

3. Cabin:

o Due to the large number of missing values in the cabin column, (687 out
of 891), and very small sample data, we will drop this column.

« However, we will use predictive modelling for Cabin prediction and filling
the column in other articles of this series. (Surprise!)

median_age = titanic["age"].median()

o median _age = titanic["age"].median()

median_age

titanic["Age"].fillna(median_age,inplace = True)

mode_point = titanic["Embarked"].mode()[0]

titanic["embark town"].mode()[@]

"Southampton’

titanic["Embarked"].fillna(mode_point,inplace = True)



# Drop the original 'Cabin' column
titanic.drop(columns=['Cabin'], inplace=True)

Data Visualization

Before diving into feature engineering and scaling, it’s crucial to understand the
initial distribution and relationships within the data. First of all we will plot
histograms to see what the distribution of continuous numerical features(ie.
data from Age and Fare column) is like.

To see any outliers within the Age and Fare column, which will help us in
deciding what scaling algorithm to use, we also make boxplots.

We make count plots to view the distribution within our categorical variables.

You can make as many plots as you please and ask GPT to explain the code to

you line by line, hell, it will plot it for you and explain to you the visualizations,
what are we even doing, anyway, let’s keep this existential crisis away for now
and focus here.

# 1. Histogram and KDE Plots
plt.figure(figsize=(12, 6))

# Age Distribution

plt.subplot(1, 2, 1)

sns.histplot(data=titanic, x="age', bins=30, kde=True, color="'skyblue')
plt.title('Histogram & KDE of Age', fontsize=14)

plt.xlabel('Age')

plt.ylabel('Frequency')

# Fare Distribution

plt.subplot(1, 2, 2)

sns.histplot(data=titanic, x="fare', bins=30, kde=True, color='lightcoral')
plt.title('Histogram & KDE of Fare', fontsize=14)

plt.xlabel('Fare’)



plt.ylabel('Frequency')
plt.tight_layout()#it fits to the screen
plt.show()
# plt.subplot(1, 2, 1)
# 1You want 1 row of plots.
#2You want 2 columns of plots (side by side).

#1This is the first plot in that grid.
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Histograms of Age and Fare, respectively
Histograms for ‘Age’ and ‘Fare’ features reveal their distributions.

The ‘Age’ histogram shows a roughly normal distribution (or is it ? More on it
at Feature Scaling Part) with a peak around 30 years old, slightly right-skewed,
indicating a few older passengers.

The ‘Fare’ histogram is highly right-skewed, with most values at the lower end
and significant outliers extending up to 500.



# 2. Box Plots
plt.figure(figsize=(12, 6))

# Age Boxplot

plt.subplot(1, 2, 1)

sns.boxplot(data=titanic, y="'age', color='lightgreen')

plt.title('Box Plot of Age', fontsize=14)

# Fare Boxplot

plt.subplot(1, 2, 2)

sns.boxplot(data=titanic, y='fare', color='lightblue’)

plt.title('Box Plot of Fare', fontsize=14)

plt.tight_layout()

plt.show()
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The ‘Age’ box plot shows a median around 30, with outliers beyond 60,
indicating elderly passengers.

The ‘Fare’ box plot highlights a low median fare with numerous outliers above
300. This confirms the presence of high-value outliers seen in the histogram,
underscoring the need for robust scaling, especially for ‘Fare’.

# 3. Count Plots for Categorical Features
plt.figure(figsize=(12, 6))

# Passenger Class Count

plt.subplot(1, 2, 1)

sns.countplot(data=titanic, x="'pclass', palette='Set2')
plt.title('Count Plot of Passenger Class (Pclass)', fontsize=14)
plt.xlabel('Pclass')

plt.ylabel('Count')

# Embarked Port Count

plt.subplot(1, 2, 2)

sns.countplot(data=titanic, x='"embarked', palette='Set3')
plt.title('Count Plot of Port of Embarkation (Embarked)', fontsize=14)
plt.xlabel('Embarked')

plt.ylabel('Count')

plt.tight_layout()

plt.show()



Count Plot of Passenger Class (Pclass) Count Plot of Port of Embarkation (Embarked)
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Count plot PClass(Passenger Class) and Embarked

Count plots for ‘Pclass’ and ‘Embarked’ reveal distributions in categorical
features.

Most passengers are in the third class, followed by the first and second classes,
indicating socio-economic disparities.

For ‘Embarked’, most passengers embarked from port ‘S’ (Southampton),
followed by ‘C’ (Cherbourg) and ‘Q’ (Queenstown). This shows Southampton
was the most common embarkation point, correlating with class distribution
and fare.

Feature Engineering

Feature engineering is a crucial step in preparing data for machine learning
models. It involves transforming raw data into features that better represent
the underlying problem to the predictive models(like Logistic Regression).

In this step, we’ll convert categorical variables into numerical values, which is
essential for most machine learning algorithms.

Mapping for binary value categorical data



First, we’ll convert the Sex column into numerical values. This is because many
machine learning algorithms require numerical input. We’ll map the values
‘male’ to 0 and ‘female’ to 1.

# Convert 'Sex' to numerical values
titanic['Sex'] = titanic['Sex'].map({'male': 0, 'female': 1})

One-hot encoding for multi-value categorical data

Next, we’ll convert the Embarked column into numerical values using a
technique called one-hot encoding.

# Convert 'Embarked' to numerical values using one-hot encoding
titanic = pd.get_dummies(titanic, columns=['Embarked'])

One-hot encoding is a method of converting categorical data into numerical
data by creating new columns for each unique category. Each column
corresponds to a category and contains binary values (0 or 1) indicating the
presence or absence of the category in a particular row.

One-hot encoding is used for nominal categorical data, where the categories do
not have an inherent order. Examples of such data include:

« Colours (e.g., ‘red’, ‘blue’, ‘green’)

« Cities (e.g., ‘New York’, ‘Los Angeles’, ‘Chicago’)

o Types of fruit (e.g., ‘apple’, ‘banana’, ‘cherry’)
Example of One-Hot Encoding
Let’s illustrate one-hot encoding with the Embarked column:
Original Embarked column:

| Embarked |



After one-hot encoding:

| Embarked C | Embarked_Q | Embarked_S |
| | | |

|1 | 0 | 0 |
| 0 | 1 | 0 I
| 0 | 0 | 1 I
|1 | 0 | 0 |
| 0 | 0 | 1 |

Feature Scaling

We through titanic.describe() saw that the Ages vary from 0 to 80 and the Fares
vary from £ 7 to £ 512.

All other columns do not have such variety, and we need to scale these
features to prevent dominance by these features and ensure equal
contribution by all features.

Here, comes the nice part, we have three kinds of feature scaling techniques:
Standardization (Z-score Normalization)

Standardization scales the features to have a mean of zero and a standard
deviation of one. It is useful when the features follow a Gaussian distribution.

MinMaxScaler (Normalization)

Min-Max scaling transforms the features to a fixed range, typically [0, 1]. It is
useful when the features are required to be within a specific range.

Robust Scaling

Robust scaling uses the median and the interquartile range (IQR) for scaling. It
is useful for datasets with outliers, as it reduces the impact of outliers.

# Fit and transform the selected features
from sklearn.preprocessing import StandardScaler

age_scaler = StandardScaler()



fare_scaler = StandardScaler()

titanic['Age'] = age_scaler.fit_transform(titanic[['Age']])
titanic['Fare'] = fare_scaler.fit_transform(titanic[['Fare']])

# Display the first few rows of the modified dataset
print(titanic.head())

survived pclass age sibsp parch fare
e 3 -538377 1 8 -8.582445
-571831 8.786845

-254825 -8.488854

-365167 8.420730

-365167 -8.486337

adult male deck alive alone embarked Q embarked 5 \
True NaN no False False True
False C yes False False False
False NaN yes True False True
False C vyes False False True
True NaN no True False True

embark town Queenstown embark town Southampton
False True
False False
False True
False True
False True

Correlation Analysis

Now, the insights from this will help us do predictive modelling on our dataset,
but with a ton of insight on why we do what we do.

So, to apply correlation analysis here we will first identify what kind of data is
within our columns, first, we observe that the data types are as follows:

o Numerical Continuous: Data that can take any value within a range and
has a meaningful order and interval (e.g., Age, Fare)

o Ordinal: Categorical data with a meaningful order but not necessarily
equidistant between categories (e.g., Pclass)

o Nominal: Categorical data without a meaningful order or ranking (e.g.,
Sex, Embarked, Survived)



« Binary (treated as nominal): A special case of nominal data with only
two categories, often represented as 0 and 1 (e.g., Sex, Survived).

Then we see what are some of the correlation measures we could use that are
appropriate to the above data types:

o Numerical Continuous: Pearson or Spearman correlation
e Ordinal: Spearman or Kendall’s Tau correlation
e Nominal: Cramer’s V, Chi-Square Test of Independence

Here is a brief overview of what these words mean because we are trying to
understand the fundamentals, here:

1. Pearson Correlation:

« Definition: Measures the linear relationship between two continuous
variables.

« Values: Range from -1 (perfect negative linear relationship) to 1 (perfect
positive linear relationship), with 0 indicating no linear relationship.

2. Spearman Rank Correlation:

« Definition: Measures the monotonic relationship between two
continuous or ordinal variables.

« Values: Range from -1 (perfect negative monotonic relationship) to 1
(perfect positive monotonic relationship), with 0 indicating no
monotonic relationship.

import seaborn as sns
import matplotlib.pyplot as plt

# Calculate Spearman correlation matrix for numerical continuous and ordinal
variables

spearman_corr = titanic[['survived', 'pclass’, 'age’, 'sibsp’, 'parch’,
'fare']].corr(method="'spearman’)

# Plot heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(spearman_corr, annot=True, fmt=".2f", cmap="'coolwarm’,



linewidths=0.5)

plt.title('Spearman Correlation Heatmap (Numerical Continuous and Ordinal
Data)')

plt.show()

Press enter or click to view image in full size

Spearman Correlation Heatmap (Numerical Continuous and Ordinal Data)

survived

Pclass

Parch Sibsp Age

Fare

Survived Pclass Age Sibsp Parch Fare

Spearman Coefficient based Heatmap for continuous and ordinal variables
Key Takeaways for the survival column we intend to predict:
« Positively Correlated with Fare (0.32):
« Passengers who paid higher fares tend to have higher survival rates.
o Negatively Correlated with Pclass (-0.34):

o Lower class passengers (higher Pclass value) tend to have lower survival
rates.



o Weak Positive Correlation with SibSp (0.09):

« Passengers with more siblings/spouses aboard have a slightly higher

chance of survival.

o Weak Positive Correlation with Parch (0.14):

« Passengers with more parents/children aboard also have a slightly higher

chance of survival.

Feature Selection

features = ['pclass’, 'sex’, 'age’, 'sibsp’, 'parch’, 'fare']

X = titanic[features]
y = titanic['survived']

print(X)

pclass sex

3 0
1 1

889

890 3

891 rows x 6 columns

age sibsp parch

-0.530377
0.571831
-0.254825
0.365167
0.365167

-0.185937
-0.737041

NaN
-0.254825

0.158503

Train-Test Split

Split the available data in to train and test dataset

.1
.1

fare
-0.502445
0.786845
-0.488654
0.420730
-0.486337

-0.3866171
-0.044381
-0.176263
-0.044381

-0.492378




from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(

X, v, test_size=0.2, random_state=42

X _train.shape

(712, 6)

X _test.shape

5y (179, 6)

Now we can use the model and train the model with our dataset here we are
using logisticregression model and train the model on our train data set

from sklearn.linear_model import LogisticRegression
model = LogisticRegression(random_state=42)

model.fit(X_train, y_train)

for validation we use the test dataset

y_pred = model.predict(X_test)



