### UNIT IV - TREATMENT TECHNOLOGIES

**Code: 200CIV472** 

### COMBINED TREATMENT OF INDUSTRIAL AND MUNICIPAL WASTES

- 1. Two major pieces of legislation establish as a national goal the elimination of the discharge of pollutants.
- 2. They provide for the development of definite guidelines for effluent discharge from all point sources, public and private.
- 3. They also provide for Federal financial assistance in the form of capital subsidies to communities attempting to achieve these guidelines.
- 4. Many communities are designing upgraded or new wastewater treatment facilities.
- 5. The magnitude of the public investment required in wastewater treatment during the next few years makes it imperative that relevant decision makers have a thorough understanding of the issues involved.
- 6. One particular issue is industrial participation in the municipal wastewater treatment system.
- 7. Industrial discharges often significantly alter the total flow and concentrations of various wastewater constituents, such as biochemical oxygen demand (BOD), suspended solids, and heavy metals, to be treated by municipal treatment facilities
- 8. These factors are important in deter- mining the size and type of treatment processes required to meet the increasingly stringent standards being imposed on communities, so specific attention must be paid to the expected level of industrial participation during the planning and design stages of the new construction
- 9. Planning for the joint treatment of domestic and industrial wastewater is a crucial element in the design of cost-effective treatment systems.
- 10. The impact of joint treatment on the various participants and their corresponding responses will be important in determining the type and size of facilities required.11. The municipality is required to provide joint treatment when certain conditions
- 11. The municipality is required to provide joint treatment when certain conditions are met, but it has considerable flexibility in making use of such policy instruments as pricing strategies and pretreatment requirements to encourage or discourage joint treatment.
- 12. The municipality will compare the additional benefits and costs of joint treatment in order to determine its policies.
- 13. Inclusion of industrial wastes in municipal wastewater treatment systems can, however, lead to additional system costs.
- 14. Many industrial wastewaters, while compatible with common treatment processes, are more highly concentrated, in terms of constituents such as BOD and suspended solids, than normal domestic sewage.
- 15. The inclusion of these wastes, therefore, may require longer detention times and/or equipment with larger capacities, resulting in higher per unit treatment costs.

# **Chart of a Poultry Processing Plant**

- Potable water
- Scalding
- Washing
- Final washing
- Grading, weighing & packing

- Product
- By-product
- Potable water
- Process water
- Wastewater
- Final product
- Final wastewater collection & control

#### RESIDUE MANAGEMENT

### What is residue management?

1. Pacific Island farmers use left-over plant materials (leaves, branches, stalks, etc.) called **residue** or slash on their fields to nourish and protect their topsoil.

**Code: 200CIV472** 

- 2. Leaving soil bare and uncovered in tropical climates often causes problems.
- 3. Instead of leaving the soil bare in your fields, arrange plant matter left over from the harvest in strips across the slope or beneath orchard trees.
- 4. Then plant the next crop into the plant matter, by hand either with a digging stick or tool, or with special machinery.
- 5. This is a very respected and traditional practice used by farmers around the Pacific.

### Why use residue management?

- 1. Pacific Island farmers can benefit from residue management on their farm. Using this practice can:
  - Save labor on collecting and burning slash.
  - Protect the soil surface and help preventraindrop erosion.
  - slow water down and let it to soak intothe soil
  - Fertilize the crops and increase the harvest, especially if using slash from nitrogen fixing crops (called legumes) that are rich innutrients.
  - Organic matter from plantmaterial helps the soil become more fertile
    - and easier to work.
  - Protect new plantings and smother outweeds.
  - Provide food and shelter for wildlife.

# Where and when is residue management used?

- Between rows in crops
- Under fruit trees
- Early in the growing season when newcrops are still small and filling in Between growing seasons when fields are left unplanted

### Where is residue management not used?

- 1. If your field is infected with certain plant diseases, crop residues may infect the next crop. Don't place residue directly against plant stems and trunks.
- Consider using crop rotations to break disease cycles. Consult with the Cooperative Extension Service about how to manage plant diseases.

# Plan for Residue Management

### Leave soil covered.

1. After the harvest, instead of cleaning the fields and burning slash, leave leftover plant material in place.

**Code: 200CIV472** 

- 2. Save time and labor by letting leaves, branches, and stalks break down on the ground until you are ready to plant again.
- 3. This will protect your valuable top soil fromerosion until you are ready to plow.

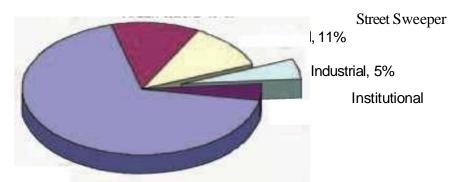
### Use strip cropping on sloping fields.

- 1. Leaving most of your field covered with slash, clear and cultivate small rows (or strips) of ground across the slope for planting.
- 2. Clear small areas with tilling or through careful applications of herbicide, and plant each section quickly.
- 3. Between rows, leave strips of soil covered with slash or much.

### **Weed Management**

- 1. Sometimes certain weeds can be used to protect the soil while your crop is growing.
- 2. Weed residue left in the field will provide ground cover between your crop plants.
- 3. Cut, pull or spot-spray weeds instead of using mechanical tillage, and leave plant material in place.
- 4. Do not do this with weeds that grow from cut pieces or that can escape from the farm and become problem weeds in natural areas or forests.
- 5. Remove these invasive weeds from your land.
- 6. Consult with your local Cooperative Extension Service about weed management options for your farm.

For the best results, combine **residue management** with other conservation practices:


- **Vegetative Barriers**: growing small strips of stiff plants across the slope
- **Hillside Ditch**: digging a small ditch across the slope to divert rainwater
- Contour Farming for Cropland : carrying out farm operations across the slope
- Contour Farming for Orchards: carrying out farm operations across the slope
- Alley Cropping & Hedgerow Planting: growing hedges of bushes and trees across the slope

#### DISPOSAL

- 1. Effective integrated solid waste management program must be capable of managing all types of solid waste.
- 2. The Egyptian National Environmental Action Plan defines the following five broad categories of solid waste:
  - Municipal waste from urban and rural areas.
  - Hazardous waste from hospitals.
  - Industrial non-hazardous waste.
  - Industrial hazardous waste.
  - Agricultural waste.

3. Two of the above solid waste categories are derived from Egyptian industrial plants that manufacture all types of goods for domestic use or export to other countries.

**Code: 200CIV472** 



- 4. Large scale industries are not the only generators of industrial waste. Small-scale industry, small workshops, garages, and very small production units collectively produce large quantities of industrial wastes.
- 5. Some of the common industrial waste sources in Egypt include:
  - Electric power generation.
  - Fertilizer and agricultural chemical production.
  - Food production and related by-products.
  - Chemical production.
  - Iron and steel manufacturing.
  - Leather and leather product manufacturing.
  - Nonferrous metal manufacturing and foundries
  - Plastics and resin manufacturing.
  - Pulp and paper manufacturing.
  - Rubber and miscellaneous rubber products manufacturing.
  - Stone, glass, clay, and concrete products production.
  - Textile manufacturing.
- 6. Manufacturing processes commonly generate all forms of waste including liquid and solid wastes.
- 7. Some of these waste products have particularly dangerous properties and can negatively impact human health and the environment.

#### Industrial Waste Characterization and Classification

- 1. Understanding the enormous diversity of characteristics of the solid waste generated by industry is important for the following reasons:
- 2. They define the potential hazards of handling the material.
- 3. They define the design of transportation, treatment, and disposal systems incorporated

into a solid waste management programto handle them.

- 4. They define the procedures and precautions that must be used in collection and disposal.
- 5. They determine how the material will be classified under Egyptian environmental regulations.
- 6. They may determine which of the industrial solid waste generated in any particular industry is actually managed in a private sec

#### DEWATERING

### What is Dewatering?

 Dewatering systems are routinely used in the construction industry to provide temporary reductions in ground water levels for structures which extend to below groundwater level.

**Code: 200CIV472** 

- A dewatering system generally comprises an array of wells or sumps which are continuously pumped so as to lower the water table to provide stable and dry conditions to facilitate excavation.
- 3. Dewatering systems may be used around open cut excavations or in conjunction with shoring or retaining walls used to support the excavation.
- 4. Where retaining walls are used the dewatering well array may be installed internally to exploit the cut-off effect of the shoring arrangements.
- 5. Alternatively an external well array may be deployed to reduce the hydrostatic loading on the shoring system or allow use of lower cost shoring arrangements such as contiguous piles as opposed to secant piles.

### **Purpose of Dewatering Containers**

- 1. Required when the waste product contains high water content and is not a strong candidate for pumping into a vacuum truck
- 2. This box will separate water from the sludge
- 3. Come in a standard 25 yard size

### **Benefits of Dewatering Containers (Boxes)**

- 1. Use to remove water content before transporting the waste
- 2. Dewatering reduces the waste volume, save cost and results in reduced transportation weight
- 3. T-Gasket door for exceptional sealing

## **Transportation of Dewatering Containers (Boxes)**

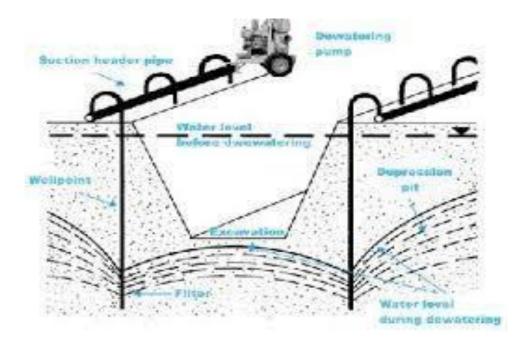
- 1. Extremely versatile and can be transported over the road using most standard rolloff frames and straight trucks
- 2. Single or double frame trucks can be used to transport vacuum rolloffs
- 3. Clean Harbors has the transportation resources available to service all of your container delivery and removal needs

### **Availability of Dewatering Containers (Boxes)**

• Typically found in Gulf and West Coast markets; however Clean Harbors can provide dewatering boxes in other areas as required

### **Industry Uses of Dewatering Containers (Boxes)**

- Waste Disposal
- Industrial Maintenance
- Field Services
- Refinery & Petrochemical
- Chemical & Specialty Chemical
- Utilities
- Engineering & Consulting


- Clean Harbors "Apollo" Program for On-Site Container Management
- Once the structure is completed or sufficiently complete to resist hydrostatic loads that the pumping can be stopped and groundwater levels allowed to recovery back to their natural levels. Very occasionally it can prove cost effective to provide long term or permanent groundwater control to avoid uplift pressures

# **Procedure**

1. Groundwater control extends this definition to encompass any pumping or recharge system used to manipulate groundwater levels for a range of purposes.

**Code: 200CIV472** 

- 2. Recharge systems used to limit external drawdown and mitigate settlement risks.
- 3. Vacuum drainage systems for pore pressure control in fine soils.
- 4. Hydraulic barriers used to control migration of contaminate.
- 5. Groundwater lowering used to under-drain and consolidate weak soils; and groundwater lowering to facilitate pile construction.
- 6. The choice of pumping system used for dewatering or groundwater systems depends on the amount of drawdown required and the ground condition

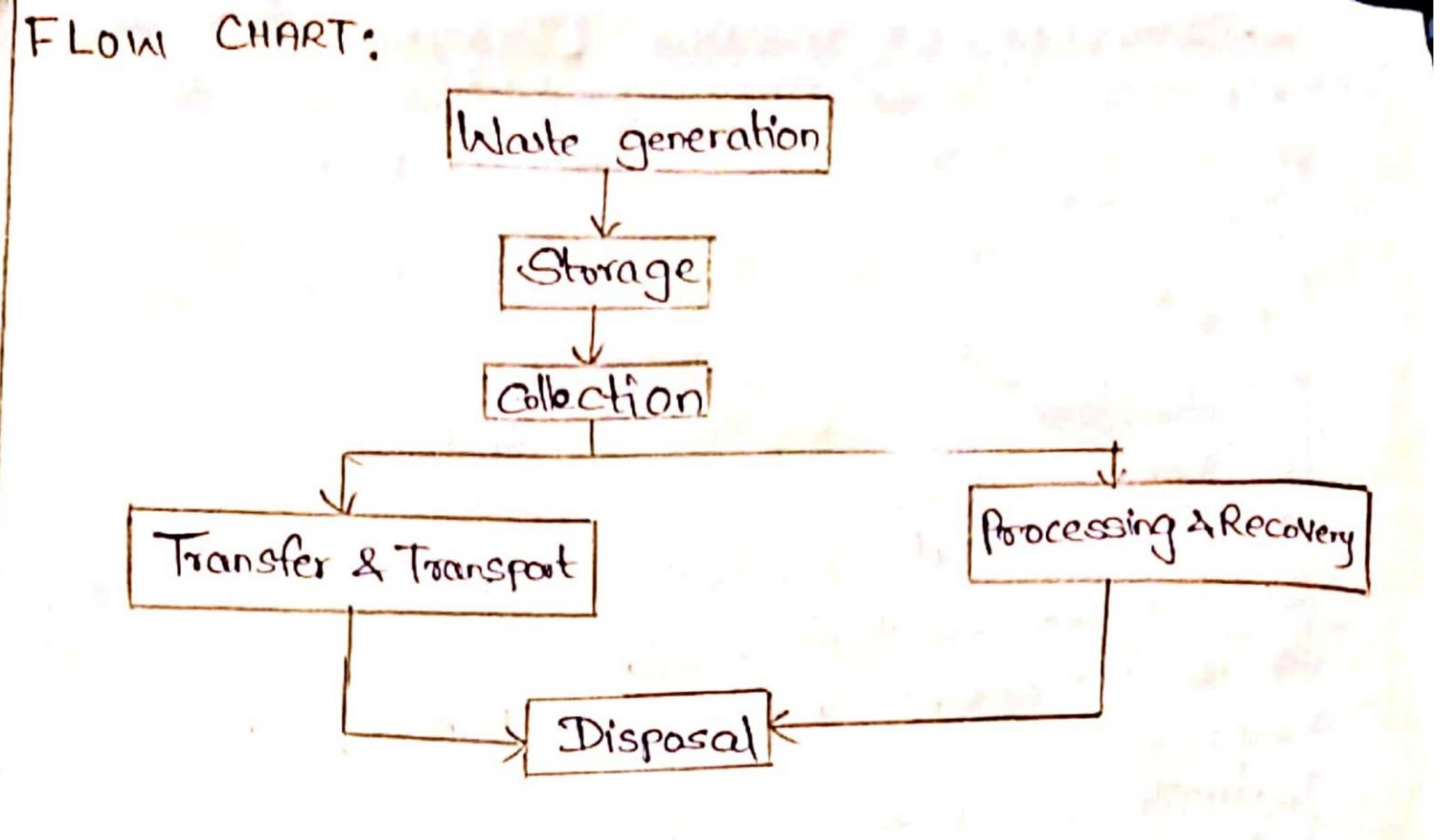


- \* EQUALIZATION METHODS IN WASTE MANAGEMENT
  - Equalization methods in Waste management are the techniques used to even out variations in the flow rate and pollutant Concentration of Incoming wastewater before it enters the main treatment units.
  - \* Especially used in treating Waste water.
  - \*Industries usually generate wastewater that is nonuniform - it may vary by hour, shift or process cycle. With this method we can reduce efficiency and equipment damage.
  - Equalization method can be achieved by using the following:
  - 1. FLOW EQUALIZATION:
  - \* This method will balance the fluctuations in waste water flow over time.
  - \*This method can be achieved by usage of equaliz -ation tanks (large basins or ponds) to store wantewarter during high-flow periods and release it slowly during low-flow periods.
  - \* It is used to Protect downstream biological or Chemical treatment units from hydraullic shock.
  - 2. LOAD (POLLUTANT) EQUALIZATION:
  - \* To balance Variations in Pollutant Concentration
    [BOD, COD, PH, toxic, chemicals]

- \* In this method, continuous mixing in equalization tanks using mechanical mixers or air diffusers will takes place in order to homogenize the waste water. \* Ensures Consistent quality of wastewater entering treatment units.
- 3. COMBINED FLOW AND LOAD EQUALIZATION: \* Handles both hydraulic and pollutant variations Simultaneoulsly.
- \* Specially designed aerated equalization tanks that provide both mixing and controlled pumping. \* Most effective in industries with highly
- 4. IN- PROCESS EQUALIZATION (SOURCE CONTROL): Minimize Variations before wastewater reaches the treatment plant.
- \* Scheduling production processes to avoid peak discharges.
- \* Recycling and Reusing process water.
- Reduces size/cost of equalization tanks.
- Two arrangements of equalization tanks are:

  1. On-line Equalization: [online Flow]

  . In this method, all wastewater flows directly


  through the equalization tank before entering the

treatment units.

effluents.

· Wastewater from various sources -> Equalization tank -> Treatment Plant.

- 2. Side-line Equalization: [Offline flow]
  In this method, only a portion of the constaction is diverted into the equalization tank.
  - · Only variable or shock load streams are diverted into the equalization tank.
  - > Objectives of Equalization Methods
  - 1. Stabilize Flow:
  - \* To even out fluctuations in wastewater flow
  - 2. Stabilize Pollutant Load:
  - \* To homogenize variations in Bod, cod, PH, colonitoxic chemicals.
  - 3. Improve Treatment Efficiency:
  - \*By maintaining uniform conditions, downstream process
    Can operate optimally.
  - 4. Facilitate pH . Control and Meutralization:
  - \*Equalization tanks allow for chemical dosing to adjust and maintain neutral PH.
  - 5. Enhance Settling and Ateration:
- 1 Provides opportunity for pre-aeration.
- 6. Reduce Treatment Costo:
- \* Avoids need for oversized units that can handle extreme peak loads.
- 7. Enable Representative Sampling & Monitoring:
- \*A well-mixed equalized flow gives a true average sample, useful for compliance.
- B. Provide Flexibility in Operations:
- \* Stores wastewater temporarily, allowing controlled discharge to treatment depending on plant capacity.



Example: TEXTILE DYEING INDUSTRY

Haste water comes from Bleaching, Dyeing, Printing and finishing

Methods:

1. Collection tank: Divert wortewater into Collection tank

2. Mixing:

Use mechanical mixers to homoginize waste water

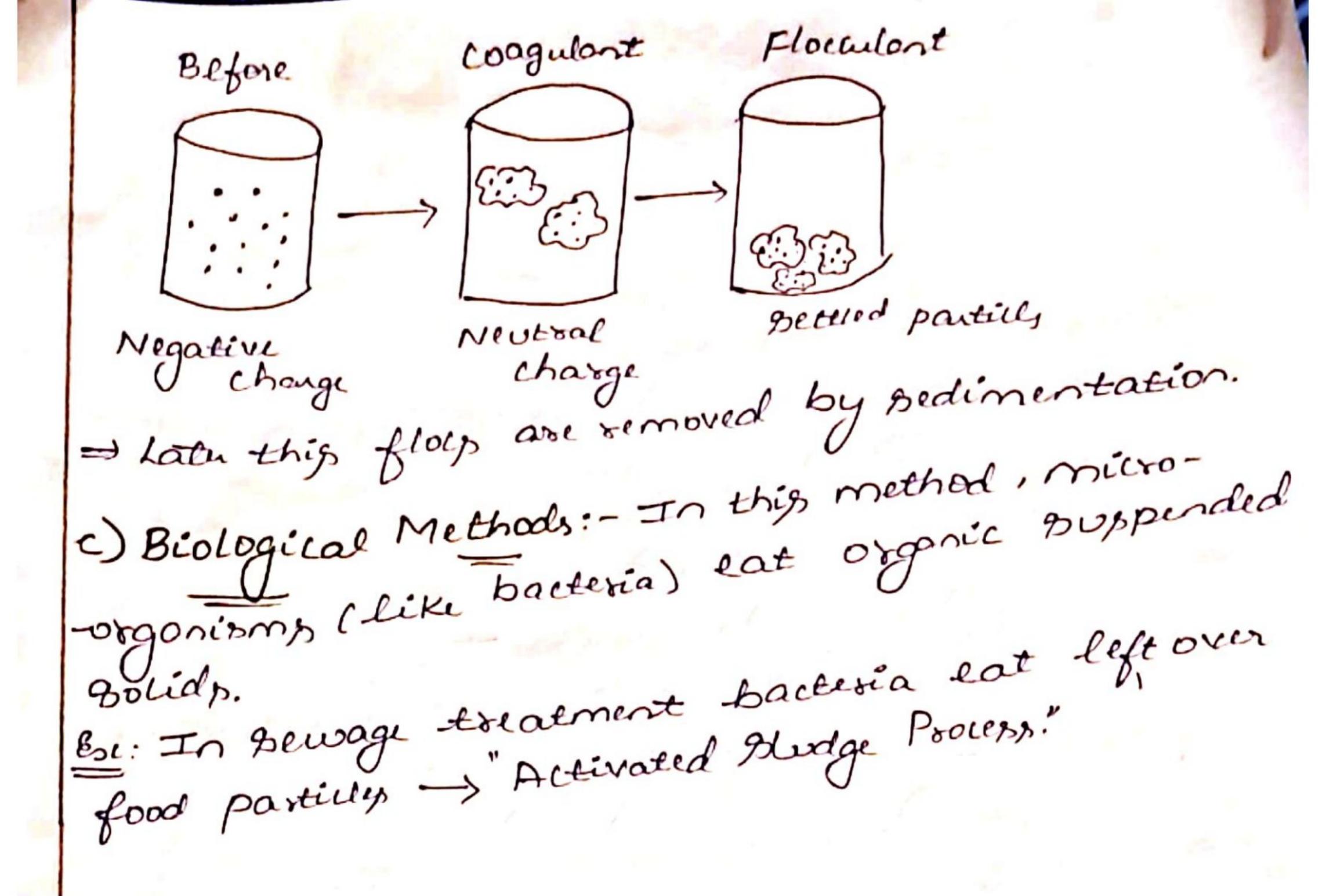
3.PH Adjustment:

Lime or acid is dosed into tank to maintain pH value to 6.5 - 7.5.

4. Pumps with - Flow Control:

Releaves the wastewater Steadily to treatment plants to avoid scho shocks.

1) Explain Removal of Buspended Golids. Suppended Bolida: Suppended Bolids are tiny particles that float in water but do not dispolve and the particles will not gettle down immediately. \* They are not dispolved like Balt or Bugain. Ex:- Soil particles - Clay, Bond Organic Matter - decaying Leaves Micro organisms - bacteria Industrial waste fibers from testile, paper particles industry, metal particles. Domestic Dewage - water from homes, goap particles and organic matter. why Do we need to Remove suppended Bolids: → To make water safe for drinking. => To protect machines ( pipes, filters). -> To protect fishes and diving. Methodo of Removal: 1) Physical Methods: These methods sumoire solids using physical processes without Using Chemicals. i) Screening:- Used to semove længe size suppended policle [ sticks, plastic, cloth] using with mesh Ex: A Kitchen Btrainer Beperates sice from water. i) Bedinertation: water is left in tanks a basins for a long time. Heavier particles will bettle at the


bottom by gravity.

Scanned with OKEN Scanner

\* Removes 60-701. suppended golids = Mud Bettless at the bottom of a bucket of pond (iii) Grift Chamber. Removes heavier inorganic partieles like Band, Beones, glass pieces and eggshells from wasternater. => This method is used to prevent domage to pumps, acways placed after screening.

i) Filtration: water passes through filters like gand or membrones and it trap small solids. Ex using a coffee filler to Erap powder. W Centrifugation: - water is spon sapidly in a machine. \* The duration when the water is & pinning erapidly the heavier solids go outwards and separace. to: working machine oppin separales water from to) Chemical Methods: - These methods use chemicals to help solids clump together so they can be moved \* some solids are so fine they don't settle easily. \* So, we add chemicals ( Alum, Ferric Chloride etc) to \* These Chemicals make Small particles Brick together and form bigger clumps called "flois" \* This process is called coaquilation & Flocculation. Es: when you add lemon joice to dirty water, fine particles Bornetine Clump and Bettle.

Scanned with OKEN Scanner

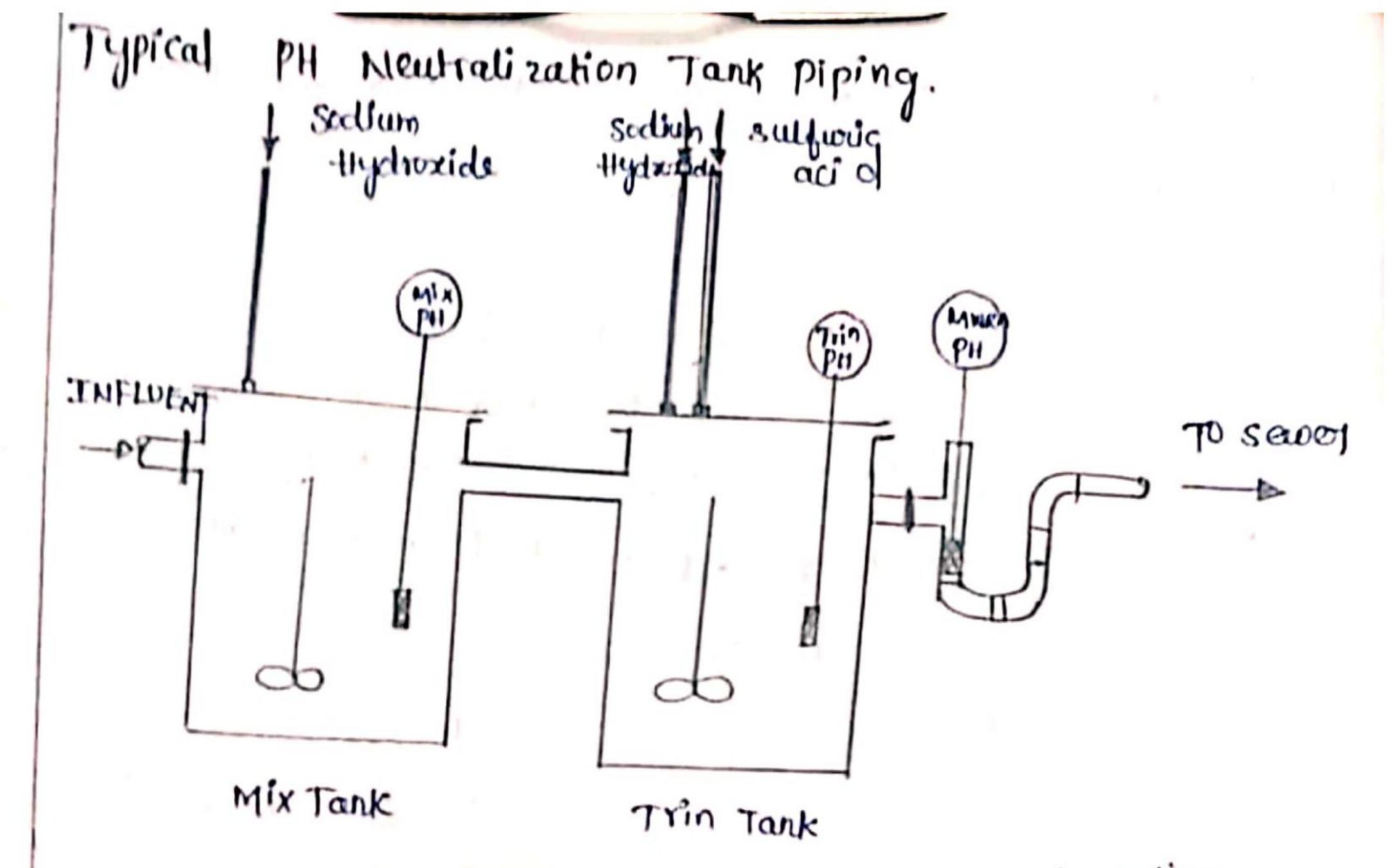


\* Neutralization Methods in Waste Management?

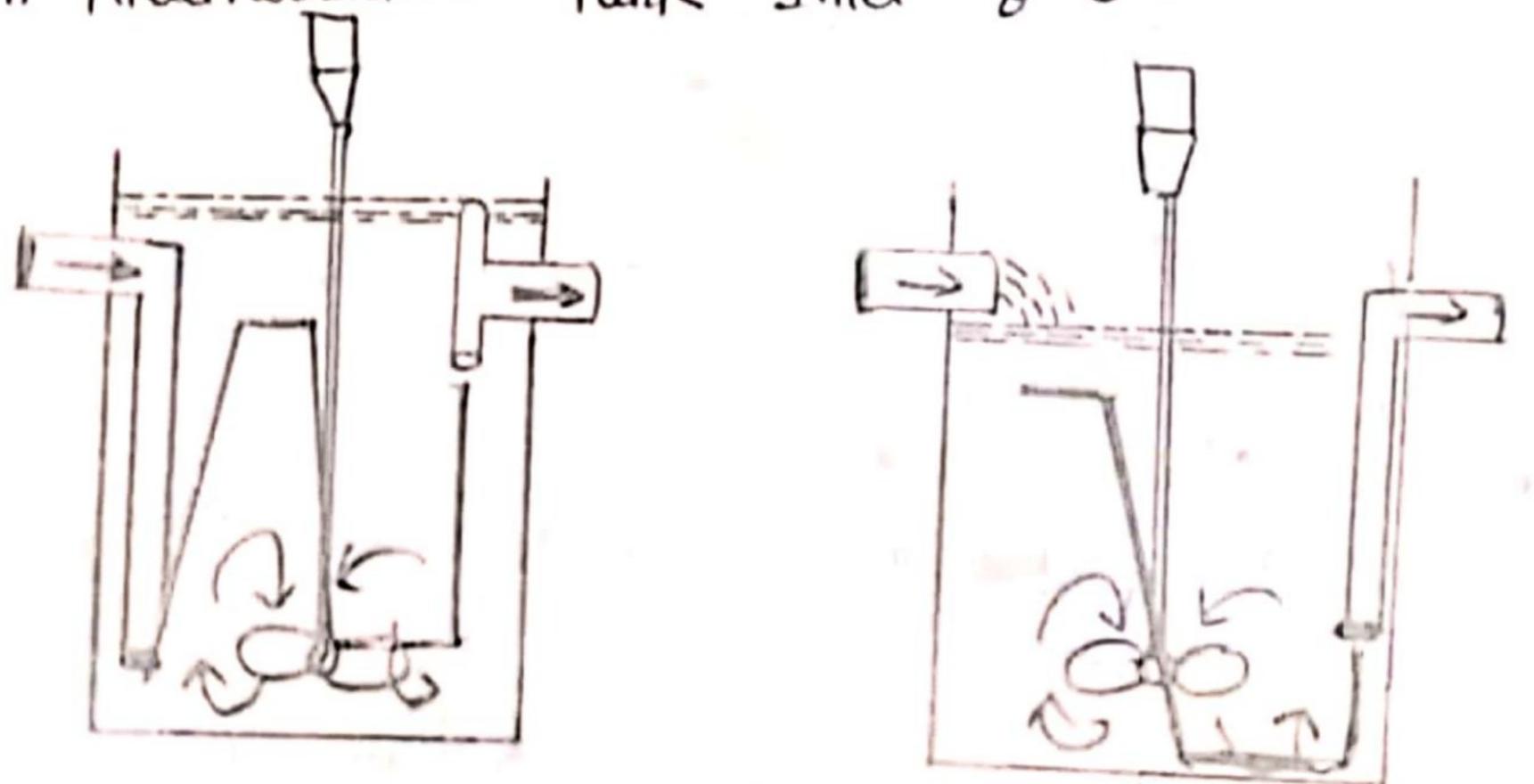
A. Neutralization in waste management refers to the process of treating acidic or alkaline wastes to bring their PH Closer to neutral (PH 7) before disposal, discharge, or further treatment. This helps protect the environment, Prevent corrosin of treatment equipment, and meet regulatory Standards. Neutralization methods used in waste management.

| Acids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Coustie  Soap  Soa |  |

\* Chemical Neutralization.


-> Acidic Wastes (low PH) one neutralized using alkaline agents.

\* Common agents: lime (ca(OH)2), sodium hydroxide (NaOH) calcium Carbonate (caco3), ammonia.


-> Alkaline Maste (high PH) are heutralized using acids

\* Common agents: Surfrois acid (H2504), hydrochloric acid (Hc1), Carbondioxide. (co2).

\* used in industrial effluent treatment, laboratories, Pharmaceutical Plants.



Inlet & outlet Location. PH Mentralization Tank



Top in - Bottom out configuration Bottom in - Top out configuration

X- Carbon Dioxide Neutralization.

\* Co2 is bubbled into alkaline waste water, faming Carbonic acid (41, co3) which lowers PH.

\* safor and easier to handle than strong mineral

acids.

\* often used in power plants, food industries and breweries.

\* Sulfwic acid neutralization: \* Neutralization of sculpoic acid (Huson) in waste management is a common treatment step because sufwire acid is widely used in industries (like metal binishing, fertilizer, Petroleum refining, batteries, etc) and often ends up in waste \* Using aucaline chemicals \* Lime (ca(oH)2/(a0)
Lime slurry is added to acidic wastewater. H2SO4+(a(OH)2 -> (a SO4+2H20 \* Sodium Hydroxide (MaOH) -> Strong base, neutralizer quickly. Reaction: Ho soy +2 NaOH -> Hazsoy +2+60 \* Soda Ash (Na 2 Co3) Reaction: H2 SQ1 + MQ2 CO3 -3 MQ2 SO4 + CO2 + +120 Sulfwic acid Neutralisation > PH Solution (H2.004) Filteration -> salt (N92 Say) Gravitational separation separation Exceporation -> methonal water

There are a number of heutralising agents available. selection Criteria should consider:

\* Reaction rate

\* sludge production and disposal

\* safety and ease of handling to addition and storage

\* Total oost including chemical beed and storage

It side reactions, including dissolved souts, scape

famation, and heat produced.

of the effect of overdosage.

Introduction to Adsorption Adsorption in a Surface Phenomenon where molecules from a Huid Phase adhere to the Surface of a solid.

It plays coucial role in removing Contaminants from liquids and gases.

understanding adsorption is essential -for designing effective treatment technologies for envisonmental cleanup.

Types of Adsorption

Two types of adsorption

Physical adsorption (physisorption) involves Went Van der words forces and i Reversible. Chemical adsorption (chemisorption) involves Stronger chemical bonds and il often

ineversible

7 gas molecules (a dromate

Charcoal atoms (adsorbent

Schematic representation of adsorption of gas molecules over the Surface of Charcoal The choice of adsorption type depends on the target pour utants & treatment process requirements.

Adsorbents used in Treatment Technologies
Common adsorbents include activated

Carbon, zeolites, and biochar due to

their high Surface area.

Activated Carbon is widely used for removing

organic Compounds and odors from water of

and air.

The Selection of an adsorbent depends on the Specific application and pollutant Characteristics.

APPlications

Adsorption is employed in water treatment tor removing dyes, heavy metals, and organic portutonts.

Systems to climinate volatile organice Compounds. (vocs).

Additionally, adsorption processes are integral to waste water treatment & environmental remediation effort.

Advantagy

thigh efficiency and thembility

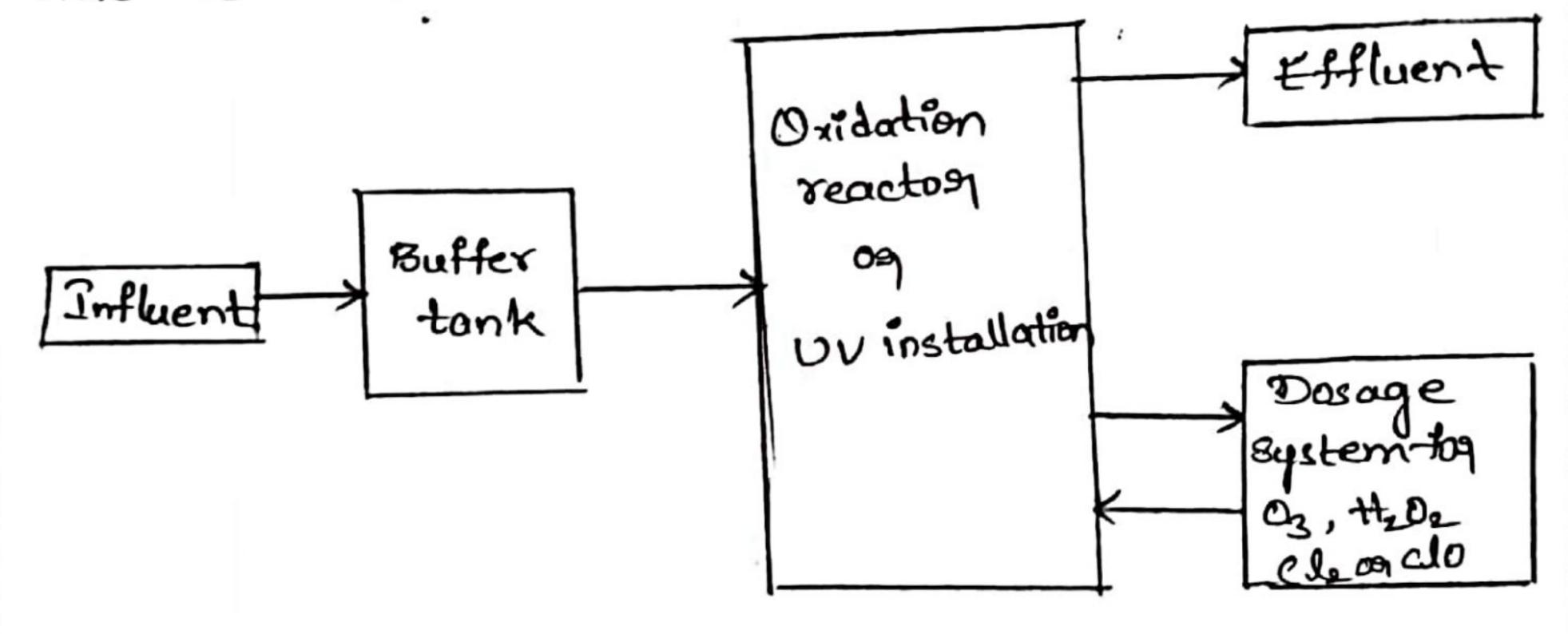
Cost-effectiveness in pollutaria removal

Tunovations in advorbent materials aim

to improve Capacity selectivity, and

regeneration capabilities.

1. Removal of Dissolved inorganics: Introgration to grasplying Judisdavin -> Dessolved inorganics are inorganic substances prosent in water in ionic form. -> They include metals, salts, and minorals such as coloum, magnesseum, and allowides. Streek Presonce en water an affect quality and the treatment processes. Impostance of Removing discolved Inorganics: > Elevated levels of destalved inorganes can cause health Escues and antronmental concerns. > they can lead to saling, Connession, and fouling in unter treatment gyatams. > Effective econoval ensures moder safety, equipm -ent longerity, and Compilance with standards. Common Removal Techniques: > Ion exchange is widely used to replace undestrable sons with less hornetal ones. > Poverce ormosse effectively semoves a broad rande of suordanies grasolvag sollegs. > chemical precipitation an semone specific prosganic by forming prablable compounds. JOU Enchande DROCCENT: > For exchange uses seem brads that swap


ions in wooder withi cons on the vesen. I It is highly affective for softening water and semoving heavy metals. > Rosin xegenoration as necessary periodically to rostore et a exchange Capacity. Revose os moses (RO) method -> Ro employs a semi-permeable membrane to depor -ale décolved inoxganics from voiter. > It provides ligh semonal efficiency fox salts, -> pre-treatment is essential to prevent membrane tarpois and gamado. Jewson Describetation Lecpresons. \* chamical agents leve leme ox alum are added to convert desolved moveganes ento insoluble solid \* The mosthad 8s cost-affective Eargons Affective Bownery Efficience :-\* water PH, temperature, and concentration of ions Enfluence semoval effectiveness & brobos bro- frogment and shoton wolv-forance axe retal fox consistent yesult. \* combining multiple treatment methods can optimi conclusion and Future Trends: - se somonal of grosoned buoxdanes + Alvante an membrane technology and resion redeveration are subsaning ethicienta \* oudoing Respond owns to general more susta Inable and cost effective removal solutions.

Explain about the Chemical Oxidation

Chemical Oridation in wasternater treatment

Chemical Oxidation means using chemicals that release · Ozygen og Other reactive species to Oxidize (chemically break down) Organic and in Organic contaminants in watewater.

. The goal is to convert harmful compounds into Simpler, less toxic. 09 more biodegradable forms. How it woogks:



- 1. Pre-treatment (Screening & Primary Preatment)
  . Large solids, goet, and Oils age removed by physical
- · This ensures that Oxidation chemicals are not wasted on non-dissolved solids.
- 2. Chemical Addition
- · Selected Oxidizing agent (chlorine, Ozone, Hydrogen perozede, or permanganate) is added to wasternates.
- . Dosing is done based on pollutant concentration and type of treatment needed.

3. Reaction phase (oridation Reactions) The oxidant agent (cd2, 05, Hzo, 03) per reacts with Contaminants present in wasternater.

Electron Transfer

oxidation involves the transfer of electrons from the pollutarits to the Oxidant, which changes the chemical staucture of the pollutant into less toxic form Hydronyl Radicals

AOPS (-Advanced Oxidation processes), a subset of chemical onedation, generates entremely reactive hydrory radicals (.0+1) that sapidly break down complex contaminants into simpler, often non toxic Products.



4. Mining and contact Time

· proper mining ensures au worte water comes in contact with oxidant.

. contact tanks age used to allow enough reaction time (Usually minutes to hours)

5. By. product thandling

· Some reaction form by-products ( like studge, chlorinated Organice og precipitates).

· mele age removed by seclimentation og filtration

6. post-treatment/polishing

. If Oxidation was used tog disinfection, the treated water may go directly to discharge.

. If used for pollutant breakdown, the effluent often goes to biological treatment for final polishing.

common oxidixing Agents used

- 1. chlorine (cl2) & thypochlorite (Naoch) Kills pathogens, removes colon, Onidizes ammonia.
- 2. Ozone (03) strong Oridant, effective in breaking down Organic pollutants, removes odog and colog.

3. Hydrogen peronide (H2O2) - Often used with catalysts (tenton's reagent)

4. potassium permanganate (KMnO4) - used for iron, manganese, and odog removal.

· Effective fog removing resistant og toxic pollutants.

provides strong disinfection Reduces ados and improves clarity of water.

· High cost of chemicals and equipment.

· Formation of by-products.

· Requires careful control of chemical dosage.