INTRODUCTION TO QUANTUM TECHNOLOGIES AND APPLICATIONS

Question Bank (Part A - 2 Marks, Part B - 10 Marks)

UNIT 1: INTRODUCTION TO QUANTUM THEORY AND TECHNOLOGIES

Part A - 2 Marks Questions

- 1. Define superposition.
- 2. What is entanglement?
- 3. What is the uncertainty principle?
- 4. Explain wave-particle duality in simple terms.
- 5. Differentiate between classical and quantum mechanics.
- 6. What is meant by quantum state?
- 7. What is measurement in quantum mechanics?
- 8. Give examples of quantum systems.
- 9. What is meant by quantization?
- 10. Why are energy levels discrete in quantum theory?
- 11. Mention two strategic benefits of quantum technologies.
- 12. List any two quantum technologies.
- 13. What is India's Quantum Mission?
- 14. Name two other global quantum missions.
- 15. What is the significance of quantum mechanics in technology?

Part B – 10 Marks Questions

- 1. Explain the transition from classical to quantum physics with examples.
- 2. Discuss the fundamental principles of quantum theory: Superposition, Entanglement, and Uncertainty.
- 3. Explain wave-particle duality and its experimental evidence.
- 4. Compare classical and quantum mechanics in terms of theory and interpretation.
- 5. Explain the nature of quantum measurement and the observer's role.

- 6. Discuss the concept of quantization and discrete energy levels.
- 7. Describe various quantum systems like electrons, photons, and atoms.
- 8. Discuss the strategic and technological significance of quantum technologies.
- 9. Give an overview of quantum technologies in computing, communication, and sensing.
- 10. Write short notes on global quantum missions: India, EU, USA, China.

UNIT 2: THEORETICAL STRUCTURE OF QUANTUM INFORMATION SYSTEMS

Part A – 2 Marks Questions

- 1. What is a qubit?
- 2. Differentiate between classical bit and quantum bit.
- 3. What are trapped ions?
- 4. What is quantum coherence?
- 5. Define decoherence.
- 6. What is a Hilbert space?
- 7. What is the role of operators in quantum theory?
- 8. Define entanglement.
- 9. What is non-locality?
- 10. What is meant by quantum information?
- 11. What is classical information?
- 12. Mention one philosophical implication of quantum theory.
- 13. What is the significance of randomness in quantum physics?
- 14. Define determinism.
- 15. What is the observer's role in measurement?

Part B – 10 Marks Questions

- 1. Explain the concept of a qubit with examples using spin and polarization.
- 2. Compare classical bits and quantum bits theoretically.
- 3. Describe the working of quantum systems such as trapped ions and superconducting circuits.

- 4. Explain quantum coherence and decoherence with examples.
- 5. Describe Hilbert spaces, quantum states, and operators in simple terms.
- 6. Discuss the role of entanglement and non-locality in quantum systems.
- 7. Compare quantum information and classical information conceptually.
- 8. Explain the philosophical implications of randomness and determinism in quantum theory.
- 9. Describe how the observer affects the outcome in quantum systems.
- 10. Explain why quantum information is fundamentally different from classical information.

UNIT 3: BUILDING A QUANTUM COMPUTER – THEORETICAL CHALLENGES AND REQUIREMENTS

Part A – 2 Marks Questions

- 1. What is a quantum computer?
- 2. Define decoherence.
- 3. What is noise in quantum systems?
- 4. Mention one condition required for a functional quantum system.
- 5. What is scalability?
- 6. Define stability in a quantum context.
- 7. Why is maintaining entanglement difficult?
- 8. What is error correction?
- 9. Name two quantum hardware platforms.
- 10. What are trapped ions used for?
- 11. What is a superconducting circuit?
- 12. Mention one theoretical barrier in building quantum computers.
- 13. What is quantum software?
- 14. What is the role of control in quantum systems?
- 15. What is fragility in quantum computing?

Part B – 10 Marks Questions

- 1. Explain what is required to build a quantum computer.
- 2. Discuss the fragility of quantum systems and factors causing decoherence.
- 3. Explain the key conditions for a functional quantum computer isolation, stability, scalability.
- 4. Discuss the challenges in maintaining entanglement and coherence.
- 5. Explain the importance of quantum error correction and its necessity.
- 6. Compare various quantum hardware platforms trapped ions, superconducting circuits, photonics.
- 7. Describe how theoretical and practical barriers affect the progress of quantum computers.
- 8. Discuss the vision vs reality of quantum computer development.
- 9. Explain the role of quantum software in managing system complexities.
- 10. Discuss the theoretical challenges in scaling up quantum systems.

UNIT 4: QUANTUM COMMUNICATION AND COMPUTING – THEORETICAL PERSPECTIVE

Part A – 2 Marks Questions

- 1. Differentiate between quantum and classical information.
- 2. Define quantum communication.
- 3. What is Quantum Key Distribution (QKD)?
- 4. What is the role of entanglement in communication?
- 5. What is a quantum internet?
- 6. Define quantum parallelism.
- 7. What are quantum gates?
- 8. What is decoherence?
- 9. What is error correction?
- 10. What is the importance of quantum computing?
- 11. Mention one advantage of quantum communication.

- 12. Define classical gate.
- 13. Define quantum gate.
- 14. What is meant by quantum parallelism?
- 15. Mention one real-world challenge in quantum computing.

Part B – 10 Marks Questions

- 1. Explain the difference between quantum and classical information transfer.
- 2. Discuss the principles of quantum communication and QKD.
- 3. Explain the role of entanglement in quantum communication.
- 4. Describe the concept of the quantum internet and its potential.
- 5. Discuss the basics of quantum computing and its advantages.
- 6. Explain quantum parallelism and how it enables faster computation.
- 7. Compare classical and quantum gates theoretically.
- 8. Explain the challenges of decoherence and error correction in quantum systems.
- 9. Discuss the real-world importance and future potential of quantum computing.
- 10. Explain the theoretical principles behind secure quantum networking.

UNIT 5: APPLICATIONS, USE CASES, AND THE QUANTUM FUTURE

Part A - 2 Marks Questions

- 1. Mention one application of quantum technology in healthcare.
- 2. What is quantum sensing?
- 3. Define quantum optimization.
- 4. Give one industrial application of quantum computing.
- 5. What are the main challenges in quantum adoption?
- 6. What are ethical issues in quantum technology?
- 7. Mention one use of quantum computing in material science.
- 8. What is quantum precision timing?
- 9. List two companies working on quantum technologies.
- 10. What is PsiQuantum known for?

- 11. Define quantum logistics.
- 12. Mention one educational opportunity in quantum science.
- 13. What is India's role in global quantum research?
- 14. What are emerging careers in quantum domain?
- 15. Define standardization in the context of quantum technology.

Part B – 10 Marks Questions

- 1. Discuss real-world applications of quantum technology in healthcare, logistics, and materials.
- 2. Explain the role of quantum sensing and precision timing in industries.
- 3. Describe case studies of IBM, Google, Microsoft, and PsiQuantum in quantum development.
- 4. Discuss the ethical and societal considerations in quantum technology adoption.
- 5. Explain challenges to adoption such as cost, skill gap, and standardization.
- 6. Describe the emerging career paths in quantum technologies and the skills required.
- 7. Discuss the global educational and research landscape in quantum science.
- 8. Explain India's opportunity and progress in the global quantum race.
- 9. Discuss the future scope of quantum computing, communication, and sensing.
- 10. Explain how quantum technologies can transform scientific and industrial ecosystems.