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Evolution of Machine Learning: 

Machine learning (ML) is a powerful branch of artificial intelligence 

(AI) that allows computers to learn     without explicit programming. 

Instead of following a set of rigid instructions, ML algorithms can 

analyze data, identify patterns, and make predictions 

Teaching a computer to recognize your friends in photos without 

showing it every single picture is like training it to learn from 

examples. Imagine you have a bunch of photos where your friends are 

tagged with their names. The computer looks at these photos and tries 

to find patterns. For example, it might notice that one friend has blue 

eyes and curly hair, while another friend has brown eyes and wears 

glasses. 

Using these patterns, the computer starts to guess who’s who in new 

photos. If it sees someone with blue eyes and curly hair, it might say, 

“Hey, that looks like Arushi!” But the computer doesn’t always get it 

right at first. It needs lots of practice and feedback to improve, just like 

how we learn from our mistakes. 

This is where machine learning comes in. It’s like giving the computer 

a super smart brain that learns from experience. As the computer sees 

more and more photos and gets feedback on its guesses, it gets better 



at recognizing your friends. It’s like “teaching a robot” to be a 

detective, but instead of clues, it uses pictures! 

In the big world of artificial intelligence (AI), machine learning is like 

the secret sauce that helps AI systems become smarter over time. It’s 

what makes AI capable of doing amazing things like understanding 

speech, playing games, and yes, even recognizing your friends in 

photos. It’s pretty cool how technology can learn and improve, just like 

we do! 

The evolution of machine learning is a captivating story. Early ideas 

emerged in the 1943s, but limitations in computing power hampered 

significant progress. With the recent explosion of data and computing 

muscle, machine learning has taken center stage. Today, it’s used 

everywhere from spam filters in your email to recommending movies 

you might enjoy. Machine learning is constantly evolving, shaping the 

future of technology and impacting our lives in profound ways. 

Paradigms for ml: 

Machine learning (ML) is a dynamic field dedicated to developing 

methods that enable machines to learn from extensive datasets to 

enable machines to learn and make predictions. The learning 

paradigms in ML are categorized based on their resemblance to human 

interventions, each serving specific purposes and applications. This 
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dynamic field encompasses various learning paradigms, each with its 

unique approach to handling data. 

 

 

 

Supervised and Unsupervised learning 

 

Supervised Learning (SL) 

Supervised learning involves labelled datasets, where each data 

observation is paired with a corresponding class label. Algorithms in 

supervised learning aim to build a mathematical function that maps 



input features to desired output values based on these labeled 

examples. Common applications include classification and regression. 

 

Stages in Supervised Learning 

 

Understanding Supervised Learning pictorially 

Unsupervised Learning 

In unsupervised learning, algorithms work with unlabeled data to 

identify patterns and relationships. These methods uncover 

commonalities within the data without predefined categories. 

Techniques such as clustering and association rules fall under 

unsupervised learning. 



 

Stages in Unsupervised Learning 

 

Understanding Unsupervised Learning pictorially 

Semi-supervised Learning 

Semi-supervised learning strikes a balance by combining a small 

amount of labelled data with a larger pool of unlabeled data. This 

approach leverages the benefits of both supervised and unsupervised 

learning paradigms, making it a cost-effective and efficient method for 

training models when the labeled data is limited. 



 

Understanding Semi-supervised Learning pictorially 

Self-supervised Learning (SSL) 

In scenarios where obtaining high-quality labeled data is challenging, 

self-supervised learning emerges as a solution. In this paradigm, 

models are pre-trained using unlabeled data, and data labels are 

generated automatically during subsequent iterations. SSL transforms 

unsupervised ML problems into supervised ones, enhancing learning 

efficiency. This paradigm is particularly relevant with the rise of large 

language models. 



 

Reinforcement Learning 

Reinforcement learning focuses on enabling intelligent agents to learn 

tasks through trial-and-error interactions with dynamic environments. 

Without the need for labelled datasets, agents make decisions to 

maximize a reward function. This autonomous exploration and 

learning approach is crucial for tasks where explicit programming is 

challenging. 

 

 

Action-Reward feedback loop: an agent takes actions in an 

environment, which is interpreted into a reward and a representation 

of the state, which are fed back into the agent. 



Action-Reward Feedback Loop: 

Reinforcement learning operates on an action-reward feedback loop, 

where agents take actions, receive rewards, and interpret the 

environment’s state. This iterative process allows the agent to 

autonomously learn optimal actions to maximize positive feedback. 

 

Understanding these ML paradigms provides valuable insights into the 

diverse approaches used to address different types of problems. Each 

paradigm comes with its strengths and applications, contributing to 

the versatility of machine learning in various domains. 

Learning by Rote: 

The meaning of “rote” it self means learning by repetition. The process 

of repeating something over and over engages the short-term memory 

and allows us to quickly remember basic things like facts, dates,   



names, multiplication tables ,etc. It differs from other forms of 

learning in that it doesn’t require the learner to carefully think about 

something, and is rather dependent on the act of repetition itself 

 Even though complete and holistic learning is not dependent on rote 

learning techniques alone, they do allow students to quickly recall 

basic facts and laws and master foundational knowledge of a topic in 

students. Some examples of rote learning in schools can be found in 

the following:  

• Repeating words to instil them in your vocabulary. 

• Learning scales in music. 

• Memorizing the periodic table. 

• Learning the basic laws and formulae in physics and sundry 

sciences. 

Having to memorize the basic facts and principles of a field is an 

import prerequisite to later analyse and study them. This is where rote 

learning techniques come in handy and allow you to remember the 

building blocks of concepts without having to dive deep into them 

Rote learning techniques: 

Rote learning techniques are aplenty, and they all require time and 

effort in repetition. The more you repeat for longer periods, the easier 



it will be to recall. Even if you only have a few hours to memorize 

something, the following rote learning techniques will help you 

remember quickly: 

Read it aloud-Read the text out loud with understanding. You can 

even try it before a mirror, ask a friend to listen to you, or read it out 

just under your breath. You can experiment with how slow or fast you 

want to read, how expressive you want to be, and internalize the 

rhythm of the text. Auditory learners will greatly benefit from this rote 

learning technique. 

Write it down- Writing down the text information after reading is 

one of the best rote learning techniques. Doing so will help identity 

difficult passengers and areas that need more practice. If you’re 

preparing for a written exam, this kinesthetic rote technique will serve 

as a rehearsal and commit the information for easy retrieval 

Visualize - Humans are visual creatures and our brains are wired to 

remember things better with images. For every line and connected 

phrase, come up with ways to visualize it and remember it. The 

memory palace can be a useful trick for such rote learning techniques. 

Free association-Free association is one of the more intresting rote 

learning techniques, and a very useful way of remembering things 

quickly, especially if they are too messy for the traditional rote learning 



techniques. The main idea of this method is to combine new 

information with what you already know in a fun and personal way. 

For instance, if you’re learning the “Circle of Fifths” in music ,you can 

associate each node to the numbers on the clock, one for each of the 12 

notes in music. you are free to form your own associations as you see 

fit, as long as it helps you to recall the information 

Advantages of Rote Learning Techniques: 

Rote learning is considered as useful for a variety of reasons. Here are 

a few: 

• Rote learning requires very little analysis. 

• With rote, one can remember just about anything over little 

analysis 

• Rote learning allows one to recall information wholly, and even to 

retain it for life. 

• Rote learning makes it easier for people to score who find it 

difficult to understand or master reading and maths concepts. 

• Rote learning can help improve short-term memory. 

 

 



Disadvantages of rote learning techniques: 

On the other hand, there are a few drawbacks of rote learning that you 

need to be aware of as well 

• The repetitive nature of rote learning can become dull. 

• One can easily lose focus while rote learning. 

• Rote learning is not holistic. 

• There is no connection between new and old information with 

rote learning. 

• Rote learning doesn’t lead to a deeper understanding of the 

information. 

Learning by Induction: 

 

What is Inductive Learning Algorithm? 

Inductive Learning Algorithm (ILA) is an iterative and 

inductive machine learning algorithm that is used for generating a set 

of classification rules, which produces rules of the form “IF-THEN”, 

for a set of examples, producing rules at each iteration and appending 

to the set of rules. 

There are basically two methods for knowledge extraction firstly from 

domain experts and then with machine learning. For a very large 

amount of data, the domain experts are not very useful and reliable. 

So we move towards the machine learning approach for this work. To 
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use machine learning One method is to replicate the expert’s logic in 

the form of algorithms but this work is very tedious, time taking, and 

expensive. So we move towards the inductive algorithms which 

generate the strategy for performing a task and need not instruct 

separately at each step. 

Why you should use Inductive Learning? 

The ILA is a new algorithm that was needed even when other 

reinforcement learnings like ID3 and AQ were available. 

• The need was due to the pitfalls which were present in the previous 

algorithms, one of the major pitfalls was the lack of generalization 

of rules. 

• The ID3 and AQ used the decision tree production method which 

was too specific which were difficult to analyze and very slow to 

perform for basic short classification problems. 

• The decision tree-based algorithm was unable to work for a new 

problem if some attributes are missing. 

• The ILA uses the method of production of a general set of rules 

instead of decision trees, which overcomes the above problems 

Basic Requirements to Apply Inductive Learning Algorithm 

1. List the examples in the form of a table ‘T’ where each row 

corresponds to an example and each column contains an attribute 

value. 

https://www.geeksforgeeks.org/decision-tree/


2. Create a set of m training examples, each example composed of k 

attributes and a class attribute with n possible decisions. 

3. Create a rule set, R, having the initial value false. 

4. Initially, all rows in the table are unmarked. 

Necessary Steps for Implementation 

• Step 1: divide the table ‘T’ containing m examples into n sub-

tables (t1, t2,…..tn). One table for each possible value of the class 

attribute. (repeat steps 2-8 for each sub-table) 

• Step 2: Initialize the attribute combination count ‘ j ‘ = 1. 

• Step 3: For the sub-table on which work is going on, divide the 

attribute list into distinct combinations, each combination with ‘j ‘ 

distinct attributes. 

• Step 4: For each combination of attributes, count the number of 

occurrences of attribute values that appear under the same 

combination of attributes in unmarked rows of the sub-table under 

consideration, and at the same time, not appears under the same 

combination of attributes of other sub-tables. Call the first 

combination with the maximum number of occurrences the max-

combination ‘ MAX’. 

• Step 5: If ‘MAX’ == null, increase ‘ j ‘ by 1 and go to Step 3. 

• Step 6: Mark all rows of the sub-table where working, in which 

the values of ‘MAX’ appear, as classified. 

• Step 7: Add a rule (IF attribute = “XYZ” –> THEN decision is 

YES/ NO) to R whose left-hand side will have attribute names of 



the ‘MAX’ with their values separated by AND, and its right-hand 

side contains the decision attribute value associated with the sub-

table. 

• Step 8: If all rows are marked as classified, then move on to 

process another sub-table and go to Step 2. Else, go to Step 4. If no 

sub-tables are available, exit with the set of rules obtained till 

then.  

An example showing the use of ILA suppose an example set 

having attributes Place type, weather, location, decision, and seven 

examples, our task is to generate a set of rules that under what 

condition is the decision. 

Example no. Place type weather location decision 

1. hilly winter kullu Yes 

2. mountain windy Mumbai No 

3. mountain windy Shimla Yes 

4. beach windy Mumbai No 

5. beach warm goa Yes 



Example no. Place type weather location decision 

6. beach windy goa No 

7. beach warm Shimla Yes 

 

Subset – 1 

s.no place type weather location decision 

1. hilly winter kullu Yes 

2. mountain windy Shimla Yes 

3. beach warm goa Yes 

4. beach warm Shimla Yes 

Subset – 2 

s.no place type weather location decision 

5. mountain windy Mumbai No 



s.no place type weather location decision 

6. beach windy Mumbai No 

7. beach windy goa No 

• At iteration 1 rows 3 & 4 column weather is selected and rows 3 

& 4 are marked. the rule is added to R IF the weather is warm then 

a decision is yes.  

• At iteration 2 row 1 column place type is selected and row 1 is 

marked. the rule is added to R IF the place type is hilly then the 

decision is yes.  

• At iteration 3 row 2 column location is selected and row 2 is 

marked. the rule is added to R IF the location is Shimla then the 

decision is yes.  

• At iteration 4 row 5&6 column location is selected and row 5&6 

are marked. the rule is added to R IF the location is Mumbai then a 

decision is no.  

• At iteration 5 row 7 column place type & the weather is selected 

and row 7 is marked. the rule is added to R IF the place type is 

beach AND the weather is windy then the decision is no.  

Finally, we get the rule set:- Rule Set 

• Rule 1: IF the weather is warm THEN the decision is yes. 

• Rule 2: IF the place type is hilly THEN the decision is yes. 

• Rule 3: IF the location is Shimla THEN the decision is yes. 



• Rule 4: IF the location is Mumbai THEN the decision is no. 

• Rule 5: IF the place type is beach AND the weather is windy 

THEN the decision is no. 

Reinforcement Learning: 

• It tries to improve its performance of doing the task.  

• When a sub-task is accomplished successfully, a reward is given.  

• When a sub-task is not executed correctly, obviously no reward is 

given.  

• This continues till the machine is able to complete execution of the 

whole task.  

• This process of learning is known as reinforcement learning.  

 • One contemporary example of reinforcement learning is self-driving 

cars.  

• The critical information which it needs to take care of are speed and 

speed limit in different road segments, traffic conditions, road 

conditions, weather conditions, etc.  

• The tasks that have to be taken care of are start/stop, 

accelerate/decelerate, turn to left / right, etc.  

     

 



 

 

• This type of learning is used when there is no idea about the class 

or label of a particular data. The model has to do the 

classification it will get rewarded if the classification is correct, 

else get punished. 

• The model learns and updates itself through reward/punishment 

• Model is evaluated by means of the reward function ater it had 

some time to learn. 

• Most complex to understand and apply  

• Standard algorithms are  

➢ Q-Learning 

➢ Sarsa 

• Practical applications are 

➢ Self-driving cars 

➢ Intelligent robots 

➢ AlphaGo Zero[The latest version of DeepMind’s AI 

system playing Go] 



Types of Data Matching: 

 

Software tools have been developed to automate the process of data 

matching. 

Large enterprises have a lot of data. And with all that data comes the 

challenge of keeping it organized and accurate – or more 

specifically, making sure that their data is being leveraged to its full 

potential. 

One key way to do this is through record or data matching, which is 

the process of connecting data records that correspond to the 

same canonical (master) entity. 

Most enterprise databases, due to their breadth and depth of data, will 

have some degree of duplicates or inaccuracies (e.g. in a database of 

locations, “San Francisco” may be written as “SF”, “San Fran”, or 

“SFO”). Data matching tools help to standardize data and improve its 

quality by identifying these duplicates and linking them to a single, 

accurate record. 

Naturally, software tools have been developed to automate this 

process. Below, we’ll take a look at the various types of data matching 

tools available, how they work, and some use cases for each. 

Types of Data Matching Tools 

There are two main types of data matching tools: 

 1) probabilistic and  

 2) deterministic. 

https://en.wikipedia.org/wiki/Canonical_model
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Probabilistic Data Linkage Tools: 

Probabilistic data linkage tools use statistical methods to determine 

the likelihood that two records refer to the same entity. They work 

by comparing different fields in the records and assigning a similarity 

score for each field; the overall similarity score for the two records is 

then used to make a probabilistic determination of whether they 

should be linked. 

Today, most probabilistic tools employ machine learning algorithms to 

provide even more accurate results. Regression and natural language 

processing techniques are often used to automatically identify and 

extract important features from records, which are then used in the 

similarity scoring process. 

Advantages 

• Probabilistic record matching tools can be used on data of any 

type, including unstructured data. 

• Real world data tends to be unstructured, and often poorly 

maintained due to manual data entry. 

• They are able to handle many spelling/coding variants and 

exceptions that would not be easy to cover with a predefined 

rigid rule set or even a robust dictionary. 

• They are generally more accurate than their counterpart, 

deterministic data linkage tools (more on this below). 



Disadvantages: 

• They can be more difficult to configure and tune, since there are 

more parameters that need to be set. 

• They require a good amount of data in order to train the machine 

learning models used for feature extraction and similarity 

scoring. 

• Some of their results are difficult to interpret; since they are 

based on probabilistic methods, much of the process occurs 

behind-the-scenes. 

Deterministic Data Matching Tools: 

 

Deterministic data matching tools, on the other hand, use rule-based 

methods to connect records. That is, they compare different fields in 

the records using a system like RegEx and look for exact matches; if 

two fields match, then the records are linked. 

Since deterministic tools use a predetermined set of rules, they are 

generally much easier to configure than their probabilistic 

counterparts. However, this also means that they can be less accurate, 

since they may miss some relationships that don’t fit the rules. 

Deterministic data matching tools are often used in cases where data 

is highly structured and well-defined; for example, when linking 

records from two different databases that use the same schema. By 

contrast, probabilistic data linkage tools are better suited for data that 

is unstructured or has many different schemas. 

https://recordlinker.com/ml-vs-record-linkage-inflexibility/
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Advantages 

• They are much easier to configure and tune than probabilistic 

data linkage tools. 

• They can be used on data of any type, including unstructured 

data. 

• You don’t need much data in order to use them, since they don’t 

require training data for machine learning models. 

Disadvantages 

• They can be less accurate than probabilistic data matching tools, 

since they may miss some relationships that don’t fit the rules. 

• They are often less flexible than probabilistic data matching 

tools, since they can only compare fields in a predetermined way. 

• Some of their results are difficult to interpret; since they are 

based on deterministic methods, much of the process occurs 

behind-the-scenes. 

Uses of Data Matching Tools 

Record matching tools can be used for a variety of tasks, including: 

• Data deduplication – identifying and removing duplicate 

records from your database as a specific form of data quality 

assurance. 

• Data enrichment – combining your data with other data 

sources in order to enrich it. 



• Data integration – connecting different data sources that use 

different schemas. 

• Fraud detection – identifying records that are likely to be 

fraudulent, based on their similarity to other records in your 

database or specific features of known examples. 

• Building customer 360 profiles: connecting customer data 

from different sources (e.g. social media, website interactions, 

customer service interactions) in order to get a complete view of 

the customer. 

In addition to direct benefits to revenue, there are also longer-term 

benefits to be gained from using record matching tools. 

For example, by linking customer data across different channels, you 

can develop a deeper understanding of customer behavior. This, in 

turn, can lead to better targeted marketing campaigns and improved 

customer retention rates. Perhaps the company is gearing up to sell to 

a large acquirer. In this case, having accurate and up-to-date data is 

critical in order to get the best price for the business. 

 

Machine Learning in Data Matching Tools: 

Probabilitic reocrd linkage tools make use of machine learning trained 

for specific tasks. ML algorithms are what handles confidence scoring 

of records. In this case we are dealing with machine learning rather 

than the current wave of AI tools  



Machine learning employed for data matching does its task very well, 

making it a very reliable way of reducing manual work and improving 

the quality of your data. 

Stages in Machine Learning: 

The goal of the Seven Stages framework is to break down all necessary 

tasks in Machine Learning and organize them in a logical way. At the 

end, the framework acts as a general process that can be universally 

applied to any project independently of industry and type of business. 

Data-Driven Science (DDS) will also use that framework for its 

upcoming comprehensive Machine Learning online course published 

on Udemy — stay tuned. We will go deep into each stage and give you 

everything that is needed to complete Data Science projects 

successfully. 

The 7 Stages of Machine Learning are: 

1. Problem Definition 

2. Data Collection 

3. Data Preparation 

4. Data Visualization 

5. ML Modeling 



6. Feature Engineering 

7. Model Deployment 

 

These 7 stages are the key steps in our framework. We have categorized 

them additionally into groups to get a better understanding of the 

larger picture. 

The stages are grouped into 3 phases: 

1. Business Value 

2. Proof of Concept (POC) 

3. Production 



 

Phase 1 — Business Value 

It is absolutely crucial to adopt a business mindset when thinking 

sabout a problem that should be solved with Machine Learning — 

defining customer benefits and creating business impact is top priority. 

Domain expertise and knowledge is also essential as the true power of 

data can only be harnessed if the domain is well known and 

understood. 

Phase 2 — Proof of Concept (POC) 

Proof of Concept (POC) is the most comprehensive part of our 

framework. From Data Collection to Feature Engineering, 5 stages of 

our ML framework are included here. Core of any POC to test an idea 

in terms of its feasibility and value to the business. Also, questions 

around performance and evaluation metrics are answered in that 

phase. Only a strong POC that delivers business value and is feasible 

allows one putting the ML Model into production. 



Phase 3 — Production 

In the third phase, one is taking the ML model and scaling it. The goal 

is to integrate Machine Learning into a business process solving a 

problem with a superior solution compared to, for example, traditional 

programming. The process of taking a trained ML model and making 

its predictions available to users or other systems is known as model 

deployment. Lastly, it is also essential to iterate on the ML model over 

time to improve it. 

7 Stages of Machine Learning 

1. Problem Definition 

 

The first stage in the DDS Machine Learning Framework is to define 

and understand the problem that someone is going to solve. Start by 

analyzing the goals and the why behind a particular problem 

statement. Understand the power of data and how one can use it to 



make a change and drive results. And asking the right questions is 

always a great start. 

Few possible questions: 

• What is the business? 

• Why does the problem need to be solved? 

• Is a traditional solution available to solve the problem? 

• If probabilistic in nature, then does available data allow to model 

it? 

• What is a measurable business goal? 

2. Data Collection 

 

Once the goal is clearly defined, one has to start getting the data that is 

needed from various available data sources. 



At this stage, some of the questions worth considering are: 

• What data do I need for my project? 

• Where is that data available? 

• How can I obtain it? 

• What is the most efficient way to store and access all of it? 

There are many different ways to collect data that is used for Machine 

Learning. For example, focus groups, interviews, surveys, and internal 

usage & user data. Also, public data can be another source and is 

usually free. These include research and trade associations such as 

banks, publicly-traded corporations, and others. If data isn’t publicly 

available, one could also use web scraping to get it (however, there are 

some legal restrictions). 

3. Data Preparation 

 



The third stage is the most time-consuming and labor-intensive. Data 

Preparation can take up to 70% and sometimes even 90% of the overall 

project time. But what is the purpose of this stage? 

Well, the type and quality of data that is used in a Machine Learning 

model affects the output considerably. In Data Preparation one 

explores, pre-processes, conditions, and transforms data prior to 

modeling and analysis. It is absolutely essential to understand the data, 

learn about it, and become familiar before moving on to the next stage. 

Some of the steps involved in this stage are: 

• Data Filtering 

• Data Validation & Cleansing 

• Data Formatting 

• Data Aggregation & Reconciliation 

4. Data Visualization 



 

Data Visualization is used to perform Exploratory Data Analysis 

(EDA). When one is dealing with large volumes of data, building 

graphs is the best way to explore and communicate findings. 

Visualization is an incredibly helpful tool to identify patterns and 

trends in data, which leads to clearer understanding and reveals 

important insights. Data Visualization also helps for faster decision 

making through the graphical illustration. 

Here are some common ways of visualization: 

• Area Chart 

• Bar Chart 

• Box-and-whisker Plots 

• Bubble Cloud 

• Dot Distribution Map 



• Heat Map 

• Histogram 

• Network Diagram 

• Word Cloud 

5. ML Modeling 

 

Finally, this is where ‘the magic happens’. Machine Learning is finding 

patterns in data, and one can perform either supervised or 

unsupervised learning. ML tasks include regression, classification, 

forecasting, and clustering. 

In this stage of the process one has to apply mathematical, computer 

science, and business knowledge to train a Machine Learning 

algorithm that will make predictions based on the provided data. It is a 

crucial step that will determine the quality and accuracy of future 



predictions in new situations. Additionally, ML algorithms help to 

identify key features with high predictive value. 

6. Feature Engineering 

 

Machine Learning algorithms learn recurring patterns from data. 

Carefully engineered features are a robust representation of those 

patterns. 

Feature Engineering is a process to achieve a set of features by 

performing mathematical, statistical, and heuristic procedures. It is a 

collection of methods for identifying an optimal set of inputs to the 

Machine Learning algorithm. Feature Engineering is extremely 

important because well-engineered features make learning possible 

with simple models. 

Following are the characteristics of good features: 

• Represents data in an unambiguous way 



• Ability to captures linear and non-linear relationships among data 

points 

• Capable of capturing the precise meaning of input data 

• Capturing contextual details 

7. Model Deployment 

 

The last stage is about putting a Machine Learning model into a 

production environment to make data-driven decisions in a more 

automated way. Robustness, compatibility, and scaleability are 

important factors that should be tested and evaluated before deploying 

a model. There are various ways such as Platform as a Service (PaaS) 

or Infrastructure as a Service (IaaS). For containerized applications, 

one can use container orchestration platform such as Kubernetes to 

rapidly scale the number of containers as demand shifts. 

Another important part of the last stage is iteration and interpretation. 

It is critical to constantly optimize the model and pressure test the 



results. At the end, Machine Learning has to provide value to the 

business and make a positive impact. Therefore, monitoring the model 

in production is key. 

Conclusion 

This was an overview about ‘The 7 Stages of Machine Learning’ — 

a framework that helps to structure the typical process of a ML project. 

The idea is to equip practitioners with a template that can be 

universally applied and simplifies the process from idea to 

implementation. 

 

 

Data acquisition: 

Data acquisition, or DAQ, is the cornerstone of machine learning. It 

is essential for obtaining high-quality data for model training and 

optimizing performance. Data-centric techniques are becoming more 

and more important across a wide range of industries, and DAQ is 

now a vital tool for improving productivity, preserving quality, and 

stimulating innovation. 

What is Data Acquisition? 

“The process of collecting and storing data for machine 

learning from a variety of sources is known as data 

acquisition(DAQ).” 

The procedure entails gathering, examining, and using crucial data to 

guarantee precise measurements, instantaneous observation, and 



knowledgeable decision-making. Sensors, measuring devices, and a 

computer work together in DAQ systems to transform physical 

parameters into electrical signals, condition and amplify those 

signals, and then store them for analysis. 

What is Data Acquisition in Machine Learning? 

In machine learning, "data acquisition" refers to the 

procedure of obtaining and compiling data from diverse 

sources in order to test and train machine learning 

models. In order to enable computers and software to manipulate 

and modify signals from real-world occurrences, this technique 

entails digitizing such signals. Data Acquisition aims to get a 

complete and representative dataset that successfully captures the 

patterns and changes in the data that are crucial for productive 

machine learning results. 

The process of acquiring data also include taking the variable into 

account that affect its quality and utility, such as volume, velocity, 

anddiversity. 

 

Successful machine learning begins with data collecting, which 

supplies the raw information required to train models and make 

defensible conclusions. The gathering of high-quality data is essential 

for providing machine learning algorithms with the necessary input 

to enable them to learn and perform better. 

What Does a DAQ System Measure? 



A Data Acquisition (DAQ) system is capable of measuring several 

physical parameters, such as: 

• Temperature: Temperature can be measured using RTDs, 

thermistors, or thermocouples in DAQ systems. 

• Pressure: In a variety of settings, including industrial operations 

and medical equipment, pressure is measured using pressure 

sensors. 

• Voltage: Power systems, electronics, and electrical engineering all 

depend on the ability of DAQ devices to monitor the voltage levels 

in electrical circuits. 

• Current: DAQ systems can measure current flow using current 

sensors or shunts. Current measurement is essential in electrical 

systems. 

• Strain and Pressure: Deformation and pressure in materials 

are measured using strain gauges and pressure sensors, which is 

crucial for material science and structural health monitoring. 

• Shock and Vibration: In a variety of fields, including 

mechanical, aeronautical, and civil engineering, accelerometers 

and vibration sensors are used to monitor shock, vibration, and 

acceleration. 

• RPM, Angle, and Discrete Events: DAQ systems are crucial 

for robotics, automation, and mechanical systems because they 

can measure rotational speed, angle, and discrete events. 



• Distance and Displacement: Ultrasonic, laser, and encoder 

sensors are among the sensors that DAQ systems can use to detect 

distance and displacement. 

• Weight: Measuring weight is crucial for a number of applications, 

including quality control, logistics, and industrial automation. 

Components of Data Acquisition System 

To understand how data is selected and processed, a data acquisition 

system consists of below key basic components: sensors, measuring 

instruments, and a computer. 

1. Sensors: Sensors are devices that quantify and translate physical 

parameters like voltage, pressure, or temperature into electrical 

impulses. Later, these signals are sent to the measuring devices for 

additional analysis. 

2.Signal Conditioner: Signal conditioning is the process of 

improving raw sensor signals so they can be reliably understood. To 

make sure that the signals are dependable, clear, and compatible with 

the rest of the system, signal conditioning procedures include 

isolation, amplification, and filtering. 

• Amplification: It helps in improving accuracy by maximizing the 

signal strength 

• Filtering: Filters extra and unwanted noise from the signal 

• Isolation: Helps in separating sensor from DAQ system. 

3. Analog-to-digital Converter: After the signals are conditioned, 

they must be translated into a digital format that computers can 

comprehend using an analog-to-digital converter (ADC). The 



continuous analog signals are transformed into discrete digital values 

so that the system can process and store them. 

4. Data Logger: The data logger serves as the operation's central 

nervous system. A device or software program known as a data logger 

is responsible for managing incoming data, controlling the 

acquisition process, and storing it for subsequently analysis. 

5. Data Processing Unit: After receiving data from ADC, the 

system has dedicated card to process the signals like sampling, 

buffering and Data Transfer. 

6. Data Storage : Acquired data is stored in the computer’s 

memory for real-time monitoring. 

The physical parameters are measured using sensors, which convert 

the physical signals into electrical signals. The signals are then 

conditioned, amplified, and converted into digital data using 

analog-to-digital converters (ADCs). The digital data is then 

processed, analyzed, and stored using computers and software. 

What are the Major Purposes of Data Acquisition? 

Although there are many different and important reasons, some of 

the most important ones are as follows: 

• Long-term analysis and trend detection: Long-term analysis 

are made possible by data acquisition systems, which make it 

possible to log, capture, and store measurement of data over an 

extended period of time. 

• Measurement that is accurate and dependable: DAQ 

systems and equipment provide measurement that is accurate and 



dependable, enabling uses like optical analysis and light intensity 

monitoring. 

• Industry Leading devices: DAQ systems and devices are widely 

used, connecting to a variety of sensors and collaborating with 

contemporary computers, which makes them an excellent option 

for scientists and researchers looking for accurate data. 

• Enhanced productivity and dependability of 

machines: Data capture gives an organization more control over 

its operations and enables quicker reaction to potential 

breakdowns, maximizing procedure optimization. 

• Faster problem analysis and resolution: Real-time data 

acquisition systems allow measurements to be produced and 

shown instantly, which allows personnel to respond to issues more 

quickly and get the machine operating at peak efficiency in less 

time. 

• Reduction of data redundancy: DAQ systems let businesses 

operate without interference from extraneous data by making it 

easier to analyze the information they have collected. 

What are the Different Data Acquisition Options? 

Devices like sensors, transducers, and other devices can provide data, 

which data acquisition (DAQ) systems are made to measure, record, 

and analyze. Selecting the right DAQ system relies on the 

requirements and particular application. There are various types of 

DAQ systems, each with advantages and disadvantages of their own. 

The following are a few of the several options for acquiring data: 



• Data loggers: These are compact, lightweight gadgets with 

extended data recording capabilities. They are frequently 

employed in applications like industrial automation and 

environmental monitoring where data collection in the field is 

required. 

• Data acquisition devices: These are plug-and-play items that 

can be linked via USB or other interfaces to a computer. They are 

perfect for projects where requirements don't alter because they 

offer set functionality. 

• Data acquisition systems: These are modular systems that can 

be set up to accommodate certain measurement requirements. 

They are perfect for complex systems that need several channels 

and high-speed data gathering because of their tremendous 

versatility. 

• Computer-Connected DAQ Modules: These DAQ systems 

provide an affordable way to get data by connecting to a computer. 

Comparing them to stand-alone systems, they are frequently 

lighter and smaller. 

• Stand-Alone or Portable DAQ Systems: These are DAQ 

systems that record and analyze data without the need for extra 

hardware because they come with an integrated computer. They 

are frequently employed in situations when using a computer is 

either inconvenient or not possible. 

• Modular DAQ Systems: These systems are composed of a 

chassis and several modules that are movable and addable. They 



are very flexible and perfect for applications that need to acquire 

data quickly over several channels. 

• PXIe Modular DAQ Systems: These are high-performance 

DAQ systems that link several modules together via the PXIe (PCI 

Express) interface. They are perfect for applications that demand 

low latency and high channel counts because they provide fast data 

capture. 

Types of Data Acquisition Sources 

• Sensors: Convert physical parameters to electrical signals. 

• IoT devices: Collect data from remote sources using secure 

communication channels and encryption. 

• Network devices: Collect data from network devices using 

secure communication channels and encryption. 

• Manual data entry: Implement robust access control 

mechanisms, authentication, and authorization processes to 

increase the security of manual data entry. 

• Experiments: Collect primary data through experiments, such as 

wet lab experiments like gene sequencing. 

• Observations: Collect primary data through observations, such 

as surveys, sensors, or in situ collection. 

• Simulations: Collect primary data through simulations, such as 

theoretical models like climate models. 

• Scraping or compiling: Collect primary data through web 

scraping, text mining, or compiling data from various sources. 



• Institutionalized data banks: Collect secondary data from 

institutionalized data banks, such as census or gene sequences. 

• Published datasets: Collect secondary data from published 

datasets, such as those found on Kaggle, GitHub, or UCI Machine 

Learning Repository. 

• APIs: Collect secondary data through application programming 

interfaces (APIs), which allow clients to request data from a 

website's server. 

• Surveys: Collect primary data through surveys, which can be 

online or offline. 

Importance of Data Acquisition in Machine Learning 

Data Acquisition (DAQ) is definitely the most fundamental task that 

precedes any machine learning project and should not be overlooked. 

Here's why it holds such importance: 

• Fuel for Learning: In contrast to the biological organisms, 

which can sense the objects, the machine learning models are 

basically recognition-of-patterns technology. Information and 

intelligence of the model would not be valid if data quality is not 

up to standard and this affects the model’s ability to learn as well 

as make credible predictions. DAQ just thus guarantees that you 

have the right "fuel" to be the engine of your model's learning. 

• Quality In, Quality Out: The sentence "garbage in garbage 

out" illustrates this best. Just as if your model inherits data issues 

such as inaccuracy, incompleteness, or irrelevancy, it will transmit 

these flaws into your model unfortunately. DAQ that is successful, 



supplies you with data whose quality is great and leads to 

formation of powerful, and reliable machine learning models. 

• Relevance is Key: DAQ is what makes you gather data of that 

problem your model want to learn. The higher the relevance of the 

data, the greater your model will perceive the dependency between 

the essence and, therefore, will make precise conclusions. 

• Shaping Model Performance: You end up with the amount of 

data you collect for your model, which most often affects the 

model's performance. An important case in machine learning is 

when the algorithms need massive data sets in order to learn 

properly. Expert DAQ strategies allow to collect considerable 

amount of data for you to train your model so that you can just 

correctly generalize and answer the questions that it hasn’t seen. 

The Measurement Process 

The measurement process is determining how many units of a 

specific quantity or quality needs to be measured object. It is an 

essential procedure in many disciplines, such as science, engineering, 

building, and daily life. There are various steps to the measurement 

process, which include: 

• Define the quantity that has to be measured: The defining 

of the quantity to be measured is the first step in the measurement 

process, which also always includes a comparison with a known 

quantity of the same kind. Finding the physical quantity or 

attribute that has to be measured is part of this process. 



• Comparing the object or quantity: The object is compared to 

a known quantity of the same kind. 

• Transduction: The quantity or item to be measured is 

"transduced" into an analogous measurement signal if it cannot be 

directly compared. 

• Transmission and processing of the signal: To generate a 

measurement reading, the physical signal is routed through the 

system and subjected to processing. 

• Calibration: The process of obtaining the reference signal from 

items with known quantities is known as calibration. 

• Quantization: The measurement is quantized by counting or 

splitting the signal into equal and known-sized pieces, and the 

physical signal is compared with the reference signal. 

 

Data Acquisition Tools 

Tools for gathering, analyzing, and recording data from a variety of 

sensors, instruments, or devices are software and hardware systems 

known as data acquisition tools. Data Acquisition Tools are useful 

in scientific research, industrial automation, engineering, and other 

domains where data gathering and processing are critical. Few Tools 

for Acquiring Data are: 

• DriveSpy: A data collection tool for Windows operating systems 

created by Digital Intelligence Forensic Solutions. 

• DewesoftX: A software suite for acquiring and analyzing data 

that provides strong tools for these tasks. 



• LabVIEW: A popular software program used in many different 

industries that offers tools for data collection, processing, and 

visualization. 

• Catman: A data acquisition software package that offers tools for 

data acquisition, analysis, and visualization, and is commonly used 

in industrial automation and engineering. 

• Matlab: A software package that provides tools for data 

acquisition, analysis, and visualization, and is widely used in 

various industries. 

• FlexPro: A data acquisition software package that offers tools for 

data acquisition, analysis, and visualization, and is commonly used 

in industrial automation and engineering. 

Conclusion 

In conclusion, Data Acquisition (DAQ) is the crucial first step in 

building successful machine learning models. It involves gathering 

high-quality, relevant data to train your models and achieve optimal 

performance. By following the best practices outlined above, you can 

ensure your DAQ process is efficient and effective, laying a strong 

foundation for your machine learning project. 

 

 

 

 

 

 



 

Feature Engineering: 

 

 Feature Engineering is the process of creating new features or 

transforming existing features to improve the performance of a 

machine-learning model. It involves selecting relevant information 

from raw data and transforming it into a format that can be easily 

understood by a model. The goal is to improve model accuracy by 

providing more meaningful and relevant information. 

What is Feature Engineering? 

Feature engineering is the process of transforming raw data into 

features that are suitable for machine learning models. In 

other words, it is the process of selecting, extracting, and 

transforming the most relevant features from the available data to 

build more accurate and efficient machine learning models. 

The success of machine learning models heavily depends on the 

quality of the features used to train them. Feature engineering 

involves a set of techniques that enable us to create new features by 

combining or transforming the existing ones. These techniques help 

to highlight the most important patterns and relationships in the 

data, which in turn helps the machine learning model to learn from 

the data more effectively. 



 

What is a Feature? 

In the context of machine learning, a feature (also known as a 

variable or attribute) is an individual measurable property or 

characteristic of a data point that is used as input for a machine 

learning algorithm. Features can be numerical, categorical, or text-

based, and they represent different aspects of the data that are 

relevant to the problem at hand. 

• For example, in a dataset of housing prices, features could include 

the number of bedrooms, the square footage, the location, and the 

age of the property. In a dataset of customer demographics, 

features could include age, gender, income level, and occupation. 

• The choice and quality of features are critical in machine learning, 

as they can greatly impact the accuracy and performance of the 

model. 

Need for Feature Engineering in Machine Learning? 

We engineer features for various reasons, and some of the main 

reasons include: 



• Improve User Experience: The primary reason we engineer 

features is to enhance the user experience of a product or service. 

By adding new features, we can make the product more intuitive, 

efficient, and user-friendly, which can increase user satisfaction 

and engagement. 

• Competitive Advantage: Another reason we engineer features 

is to gain a competitive advantage in the marketplace. By offering 

unique and innovative features, we can differentiate our product 

from competitors and attract more customers. 

• Meet Customer Needs: We engineer features to meet the 

evolving needs of customers. By analyzing user feedback, market 

trends, and customer behavior, we can identify areas where new 

features could enhance the product’s value and meet customer 

needs. 

• Increase Revenue: Features can also be engineered to generate 

more revenue. For example, a new feature that streamlines the 

checkout process can increase sales, or a feature that provides 

additional functionality could lead to more upsells or cross-sells. 

• Future-Proofing: Engineering features can also be done to 

future-proof a product or service. By anticipating future trends and 

potential customer needs, we can develop features that ensure the 

product remains relevant and useful in the long term. 

Processes Involved in Feature Engineering 

Feature engineering in Machine learning consists of mainly 5 

processes: Feature Creation, Feature Transformation, Feature 



Extraction, Feature Selection, and Feature Scaling. It is an iterative 

process that requires experimentation and testing to find the best 

combination of features for a given problem. The success of a 

machine learning model largely depends on the quality of the 

features used in the model. 

1. Feature Creation 

Feature Creation is the process of generating new features based on 

domain knowledge or by observing patterns in the data. It is a form of 

feature engineering that can significantly improve the performance of 

a machine-learning model. 

Types of Feature Creation: 

1. Domain-Specific: Creating new features based on domain 

knowledge, such as creating features based on business rules or 

industry standards. 

2. Data-Driven: Creating new features by observing patterns in the 

data, such as calculating aggregations or creating interaction 

features. 

3. Synthetic: Generating new features by combining existing 

features or synthesizing new data points. 

Why Feature Creation? 

1. Improves Model Performance: By providing additional and 

more relevant information to the model, feature creation can 

increase the accuracy and precision of the model. 



2. Increases Model Robustness: By adding additional features, 

the model can become more robust to outliers and other 

anomalies. 

3. Improves Model Interpretability: By creating new features, it 

can be easier to understand the model’s predictions. 

4. Increases Model Flexibility: By adding new features, the 

model can be made more flexible to handle different types of data. 

2. Feature Transformation 

Feature Transformation is the process of transforming the features 

into a more suitable representation for the machine learning model. 

This is done to ensure that the model can effectively learn from the 

data. 

Types of Feature Transformation: 

1. Normalization: Rescaling the features to have a similar range, 

such as between 0 and 1, to prevent some features from 

dominating others. 

2. Scaling: Scaling is a technique used to transform numerical 

variables to have a similar scale, so that they can be compared 

more easily. Rescaling the features to have a similar scale, such as 

having a standard deviation of 1, to make sure the model considers 

all features equally. 

3. Encoding: Transforming categorical features into a numerical 

representation. Examples are one-hot encoding and label 

encoding. 

https://www.geeksforgeeks.org/feature-transformation-techniques-in-machine-learning/
https://www.geeksforgeeks.org/what-is-data-normalization/


4. Transformation: Transforming the features using mathematical 

operations to change the distribution or scale of the features. 

Examples are logarithmic, square root, and reciprocal 

transformations. 

Why Feature Transformation? 

1. Improves Model Performance: By transforming the features 

into a more suitable representation, the model can learn more 

meaningful patterns in the data. 

2. Increases Model Robustness: Transforming the features can 

make the model more robust to outliers and other anomalies. 

3. Improves Computational Efficiency: The transformed 

features often require fewer computational resources. 

4. Improves Model Interpretability: By transforming the 

features, it can be easier to understand the model’s predictions. 

3. Feature Extraction 

Feature Extraction is the process of creating new features from 

existing ones to provide more relevant information to the machine 

learning model. This is done by transforming, combining, or 

aggregating existing features. 

Types of Feature Extraction: 

1. Dimensionality Reduction: Reducing the number of features 

by transforming the data into a lower-dimensional space while 

retaining important information. Examples are PCA and t-SNE. 

https://www.geeksforgeeks.org/principal-component-analysis-pca/
https://www.geeksforgeeks.org/ml-t-distributed-stochastic-neighbor-embedding-t-sne-algorithm/


2. Feature Combination: Combining two or more existing 

features to create a new one. For example, the interaction between 

two features. 

3. Feature Aggregation: Aggregating features to create a new one. 

For example, calculating the mean, sum, or count of a set of 

features. 

4. Feature Transformation: Transforming existing features into a 

new representation. For example, log transformation of a feature 

with a skewed distribution. 

Why Feature Extraction? 

1. Improves Model Performance: By creating new and more 

relevant features, the model can learn more meaningful patterns in 

the data. 

2. Reduces Overfitting: By reducing the dimensionality of the 

data, the model is less likely to overfit the training data. 

3. Improves Computational Efficiency: The transformed 

features often require fewer computational resources. 

4. Improves Model Interpretability: By creating new features, it 

can be easier to understand the model’s predictions. 

4. Feature Selection 

Feature Selection is the process of selecting a subset of relevant 

features from the dataset to be used in a machine-learning model. It 

is an important step in the feature engineering process as it can have 

a significant impact on the model’s performance. 

https://www.geeksforgeeks.org/feature-selection-techniques-in-machine-learning/


Types of Feature Selection: 

1. Filter Method: Based on the statistical measure of the 

relationship between the feature and the target variable. Features 

with a high correlation are selected. 

2. Wrapper Method: Based on the evaluation of the feature subset 

using a specific machine learning algorithm. The feature subset 

that results in the best performance is selected. 

3. Embedded Method: Based on the feature selection as part of the 

training process of the machine learning algorithm. 

Why Feature Selection? 

1. Reduces Overfitting: By using only the most relevant features, 

the model can generalize better to new data. 

2. Improves Model Performance: Selecting the right features 

can improve the accuracy, precision, and recall of the model. 

3. Decreases Computational Costs: A smaller number of 

features requires less computation and storage resources. 

4. Improves Interpretability: By reducing the number of 

features, it is easier to understand and interpret the results of the 

model. 

5. Feature Scaling  

Feature Scaling is the process of transforming the features so that 

they have a similar scale. This is important in machine learning 

because the scale of the features can affect the performance of the 

model. 

https://www.geeksforgeeks.org/ml-feature-scaling-part-1/


Types of Feature Scaling: 

1. Min-Max Scaling: Rescaling the features to a specific range, 

such as between 0 and 1, by subtracting the minimum value and 

dividing by the range. 

2. Standard Scaling: Rescaling the features to have a mean of 0 

and a standard deviation of 1 by subtracting the mean and dividing 

by the standard deviation. 

3. Robust Scaling: Rescaling the features to be robust to outliers by 

dividing them by the interquartile range. 

Why Feature Scaling? 

1. Improves Model Performance: By transforming the features 

to have a similar scale, the model can learn from all features 

equally and avoid being dominated by a few large features. 

2. Increases Model Robustness: By transforming the features to 

be robust to outliers, the model can become more robust to 

anomalies. 

3. Improves Computational Efficiency: Many machine learning 

algorithms, such as k-nearest neighbors, are sensitive to the scale 

of the features and perform better with scaled features. 

4. Improves Model Interpretability: By transforming the 

features to have a similar scale, it can be easier to understand the 

model’s predictions. 

https://www.geeksforgeeks.org/data-pre-processing-wit-sklearn-using-standard-and-minmax-scaler/


What are the Steps in Feature Engineering? 

The steps for feature engineering vary per different Ml engineers and 

data scientists. Some of the common steps that are involved in most 

machine-learning algorithms are: 

1. Data Cleansing 

• Data cleansing (also known as data cleaning or data scrubbing) 

involves identifying and removing or correcting any errors or 

inconsistencies in the dataset. This step is important to ensure 

that the data is accurate and reliable. 

2. Data Transformation 

3. Feature Extraction 

4. Feature Selection 

• Feature selection involves selecting the most relevant features 

from the dataset for use in machine learning. This can include 

techniques like correlation analysis, mutual information, and 

stepwise regression. 

5. Feature Iteration 

• Feature iteration involves refining and improving the features 

based on the performance of the machine learning model. This 

can include techniques like adding new features, removing 

redundant features and transforming features in different ways. 

Overall, the goal of feature engineering is to create a set of 

informative and relevant features that can be used to train a 

machine learning model and improve its accuracy and 

performance. The specific steps involved in the process may vary 



depending on the type of data and the specific machine-learning 

problem at hand. 

Techniques Used in Feature Engineering 

Feature engineering is the process of transforming raw data into 

features that are suitable for machine learning models. There are 

various techniques that can be used in feature engineering to create 

new features by combining or transforming the existing ones. The 

following are some of the commonly used feature engineering 

techniques: 

One-Hot Encoding 

One-hot encoding is a technique used to transform categorical 

variables into numerical values that can be used by machine learning 

models. In this technique, each category is transformed into a binary 

value indicating its presence or absence. For example, consider a 

categorical variable “Colour” with three categories: Red, Green, and 

Blue. One-hot encoding would transform this variable into three 

binary variables: Colour_Red, Colour_Green, and Colour_Blue, 

where the value of each variable would be 1 if the corresponding 

category is present and 0 otherwise. 

Binning 

Binning is a technique used to transform continuous variables into 

categorical variables. In this technique, the range of values of the 

continuous variable is divided into several bins, and each bin is 

assigned a categorical value. For example, consider a continuous 

variable “Age” with values ranging from 18 to 80. Binning would 

https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
https://www.geeksforgeeks.org/binning-in-data-mining/


divide this variable into several age groups such as 18-25, 26-35, 36-

50, and 51-80, and assign a categorical value to each age group. 

Scaling 

The most common scaling techniques are standardization and 

normalization. Standardization scales the variable so that it has zero 

mean and unit variance. Normalization scales the variable so that it 

has a range of values between 0 and 1. 

FeatureSplit 

Feature splitting is a powerful technique used in feature engineering 

to improve the performance of machine learning models. It involves 

dividing single features into multiple sub-features or groups based on 

specific criteria. This process unlocks valuable insights and enhances 

the model’s ability to capture complex relationships and patterns 

within the data. 

TextDataPreprocessing 

Text data requires special preprocessing techniques before it can be 

used by machine learning models. Text preprocessing involves 

removing stop words, stemming, lemmatization, and vectorization. 

Stop words are common words that do not add much meaning to the 

text, such as “the” and “and”. Stemming involves reducing words to 

their root form, such as converting “running” to “run”. 

Lemmatization is similar to stemming, but it reduces words to their 

base form, such as converting “running” to “run”. Vectorization 

involves transforming text data into numerical vectors that can be 

used by machine learning models. 

https://www.geeksforgeeks.org/splitting-data-for-machine-learning-models/


Feature Engineering Tools 

There are several tools available for feature engineering. Here are 

some popular ones: 

1. Featuretools 

Featuretools is a Python library that enables automatic feature 

engineering for structured data. It can extract features from multiple 

tables, including relational databases and CSV files, and generate new 

features based on user-defined primitives. Some of its features 

include: 

• Automated feature engineering using machine learning 

algorithms. 

• Support for handling time-dependent data. 

• Integration with popular Python libraries, such as pandas and 

scikit-learn. 

• Visualization tools for exploring and analyzing the generated 

features. 

• Extensive documentation and tutorials for getting started. 

2. TPOT 

TPOT (Tree-based Pipeline Optimization Tool) is an automated 

machine learning tool that includes feature engineering as one of its 

components. It uses genetic programming to search for the best 

combination of features and machine learning algorithms for a given 

dataset. Some of its features include: 

• Automatic feature selection and transformation.  



• Support for multiple types of machine learning models, including 

regression, classification, and clustering. 

• Ability to handle missing data and categorical variables. 

• Integration with popular Python libraries, such as scikit-learn and 

pandas. 

• Interactive visualization of the generated pipelines. 

3. DataRobot 

DataRobot is a machine learning automation platform that includes 

feature engineering as one of its capabilities. It uses automated 

machine learning techniques to generate new features and select the 

best combination of features and models for a given dataset. Some of 

its features include: 

• Automatic feature engineering using machine learning algorithms. 

• Support for handling time-dependent and text data. 

• Integration with popular Python libraries, such as pandas and 

scikit-learn. 

• Interactive visualization of the generated models and features. 

• Collaboration tools for teams working on machine learning 

projects. 

4. Alteryx 

Alteryx is a data preparation and automation tool that includes 

feature engineering as one of its features. It provides a visual 

interface for creating data pipelines that can extract, transform, and 

generate features from multiple data sources. Some of its features 

include: 



• Support for handling structured and unstructured data. 

• Integration with popular data sources, such as Excel and 

databases. 

• Pre-built tools for feature extraction and transformation. 

• Support for custom scripting and code integration. 

• Collaboration and sharing tools for teams working on data 

projects. 

5. H2O.ai 

H2O.ai is an open-source machine learning platform that includes 

feature engineering as one of its capabilities. It provides a range of 

automated feature engineering techniques, such as feature scaling, 

imputation, and encoding, as well as manual feature engineering 

capabilities for more advanced users. Some of its features include: 

• Automatic and manual feature engineering options. 

• Support for structured and unstructured data, including text and 

image data. 

• Integration with popular data sources, such as CSV files and 

databases. 

• Interactive visualization of the generated features and models. 

• Collaboration and sharing tools for teams working on machine 

learning projects. 

Overall, these tools can help streamline and automate the feature 

engineering process, making it easier and faster to create informative 

and relevant features for machine learning models 

 



Data Representation: 

Introduction: 

In the realms of signal processing and machine learning, the 
representation of data in a numerical format is crucial for analysis, 
processing, and modeling. Depending on the dimensionality and 
complexity of the data, it can be represented in different numerical 
forms. The most common forms of data representation include scalar 
values, vectors, matrices, and tensors.  

Definitions: 

▪ Scalar: A scalar is a single numerical value. It has magnitude 
but no direction. For instance, in mathematical terms, the number 5 
or -3.2 are scalar values. 

▪ Vector: A vector is an ordered list of numbers. It can be 
visualized as a line segment in space that has both magnitude and 
direction. Mathematically, a vector is typically represented as a 
column (or sometimes row) of numbers (aka 1-D data) 

▪ Matrix: A matrix is a two-dimensional array of numbers. 
It can be visualized as a rectangular grid of numbers. A matrix has 
rows and columns, and its shape is often described by the number of 
rows by the number of columns, e.g., a 3x2 matrix has 3 rows and 2 
columns. 

▪ Tensor: A tensor is a multi-dimensional array of 
numbers. While a scalar is 0-dimensional, a vector is 1-
dimensional, and a matrix is 2-dimensional, a tensor can be 3-
dimensional or more. For instance, a 3-dimensional tensor can be 
visualized as a cube of numbers. 

Examples: 

▪ Scalar: An example of a scalar is the current temperature. If 
it's 22°C right now, that's a single numerical value. 



▪ Vector: An example of a vector could be the average high 
temperatures forecasted for the next week. For instance, if 
the forecasted high temperatures for the next seven days are 22°C, 
23°C, 24°C, 25°C, 26°C, 27°C, and 28°C, then the vector 
representation might be: [22, 23, 24, 25, 26, 27, 28] 

▪ Matrix: An example of a matrix is a grayscale image. The 
pixels of the image are represented as values between 0 (black) and 
255 (white). The image's resolution, say 100x100 pixels, will 
determine the size of the matrix. Each entry in the matrix 
corresponds to the grayscale value of a pixel. 

▪ Tensor: A tensor example is a colored image. In the most 
common format, an image has three color channels: Red, Green, 
and Blue (RGB). Each channel can be thought of as a matrix (like 
the grayscale image), and the three matrices combined form a 3-
dimensional tensor. If the image is of resolution 100x100 pixels, the 
tensor's shape would be 100x100x3, with each slice of size 100x100 
representing one of the RGB channels. 

 

Summary & Conclusion 

▪ Scalar: A single numerical value. 

▪ Vector: A 1D array of values, often representing a series or 
sequence of numbers. 

▪ Matrix: A 2D array of values, typically visualized as a grid or 
table of numbers. 

▪ Tensor: An array of values with 3 or more dimensions, 
commonly used in applications requiring multi-channel or multi-
modal data. 

Data representation is crucial in domains like signal processing and 
machine learning. Gaining a practical understanding of how these data 
structures manifest in real-world engineering scenarios enables one to 
look beyond the terminology. Rather than being daunted by the 



jargon, professionals can leverage these data formats as powerful tools 
for both analysis and synthesis in their respective fields. 

 

Model Selection: 

Introduction 

Model selection is an essential phase in the development of powerful 
and precise predictive models in the field of machine learning. Model 
selection is the process of deciding which algorithm and model 
architecture is best suited for a particular task or dataset. It entails 
contrasting various models, assessing their efficacy, and choosing the 
one that most effectively addresses the issue at hand. 
The choice of an appropriate machine learning model is crucial since 
there are various levels of complexity, underlying assumptions, and 
capabilities among them. A model's ability to generalize to new, 
untested data may not be as strong as its ability to perform effectively 
on a single dataset or problem. Finding a perfect balance between the 
complexity of models & generalization is therefore key to model 
selection. 
Choosing a model often entails a number of processes. The first step in 
this process is to define a suitable evaluation metric that matches the 
objectives of the particular situation. According to the nature of the 
issue, this statistic may refer to precision, recall, accuracy, F1-score, or 
any other relevant measure. 
The selection of numerous candidate models is then made in 
accordance with the problem at hand and the data that are accessible. 
These models might be as straightforward as decision trees or linear 
regression or as sophisticated as deep neural networks, random 
forests, or support vector machines. During the selection process, it is 
important to take into account the assumptions, constraints, and 
hyperparameters that are unique to each model. 
Using a suitable methodology, such as cross-validation, the candidate 
models are trained and evaluated after being selected. To do this, the 
available data must be divided into validation and training sets, with 
each model fitting on the training set before being evaluated on the 



validation set. The models are compared using their performance 
metrics, then the model with the highest performance is chosen. 
Model selection is a continuous process, though. In order to make wise 
selections, it frequently calls for an iterative process that involves 
testing several models and hyperparameters. The models are 
improved through this iterative process, which also aids in choosing 
the ideal mix of algorithms & hyperparameters. 

Model Selection 

In machine learning, the process of selecting the top model or 
algorithm from a list of potential models to address a certain issue is 
referred to as model selection. It entails assessing and contrasting 
various models according to how well they function and choosing the 
one that reaches the highest level of accuracy or prediction power. 
Because different models have varied levels of complexity, underlying 
assumptions, and capabilities, model selection is a crucial stage in the 
machine-learning pipeline. Finding a model that fits the training set of 
data well and generalizes well to new data is the objective. While a 
model that is too complex may overfit the data and be unable to 
generalize, a model that is too simple could underfit the data and do 
poorly in terms of prediction. 
The following steps are frequently included in the model selection 
process: 

 

• Problem formulation: Clearly express the issue at hand, 
including the kind of predictions or task that you'd like the model 
to carry out (for example, classification, regression, or 
clustering). 

• Candidate model selection: Pick a group of models that are 
appropriate for the issue at hand. These models can include 
straightforward methods like decision trees or linear regression 
as well as more sophisticated ones like deep neural networks, 
random forests, or support vector machines. 

• Performance evaluation: Establish measures for measuring 
how well each model performs. Common measurements include 
area under the receiver's operating characteristic curve (AUC-



ROC), recall, F1-score, mean squared error, and accuracy, 
precision, and recall. The type of problem and the particular 
requirements will determine which metrics are used. 

• Training and evaluation: Each candidate model should be 
trained using a subset of the available data (the training set), and 
its performance should be assessed using a different subset (the 
validation set or via cross-validation). The established evaluation 
measures are used to gauge the model's effectiveness. 

• Model comparison: Evaluate the performance of various 
models and determine which one performs best on the validation 
set. Take into account elements like data handling capabilities, 
interpretability, computational difficulty, and accuracy. 

• Hyperparameter tuning: Before training, many models 
require that certain hyperparameters, such as the learning rate, 
regularisation strength, or the number of layers that are hidden 
in a neural network, be configured. Use methods like grid search, 
random search, and Bayesian optimization to identify these 
hyperparameters' ideal values. 

• Final model selection: After the models have been analyzed 
and fine-tuned, pick the model that performs the best. Then, this 
model can be used to make predictions based on fresh, 
unforeseen data. 

Model Selection in machine learning: 

Model selection in machine learning is the process of selecting the best 
algorithm and model architecture for a specific job or dataset. It 
entails assessing and contrasting various models to identify the one 
that best fits the data & produces the best results. Model complexity, 
data handling capabilities, and generalizability to new examples are all 
taken into account while choosing a model. Models are evaluated and 
contrasted using methods like cross-validation, and grid search, as 
well as indicators like accuracy and mean squared error. Finding a 
model that balances complexity and performance to produce reliable 
predictions and strong generalization abilities is the aim of model 
selection. 
There are numerous important considerations to bear in mind while 
selecting a model for machine learning. These factors assist in 



ensuring that the chosen model is effective in solving the issue at its 
core and has an opportunity for outstanding performance. Here are 
some crucial things to remember: 

• The complexity of the issue: Determine how complex the 
issue you're trying to resolve is. Simple models might effectively 
solve some issues, but more complicated models can be 
necessary to fully represent complex relationships in the data. 
Take into account the size of the dataset, the complexity of the 
input features, and any potential for non-linear connections. 

• Data Availability & Quality: Consider the accessibility and 
caliber of the data you already have. Using complicated models 
with a lot of parameters on a limited dataset may result in 
overfitting. Such situations may call for simpler models with 
fewer parameters. Take into account missing data, outliers, and 
noise as well as how various models respond to these difficulties. 

• Interpretability: Consider whether the model's interpretability 
is crucial in your particular setting. Some models, like decision 
trees or linear regression, offer interpretability by giving precise 
insights into the correlations between the input data and the 
desired outcome. Complex models, such as neural networks, may 
perform better but offer less interpretability. 

• Model Assumptions: Recognise the presumptions that 
various models make. For instance, although decision trees 
assume piecewise constant relationships, linear regression 
assumes a linear relationship between the input characteristics 
and the target variable. Make sure the model you choose is 
consistent with the fundamental presumptions underpinning the 
data and the issue. 

• Scalability and Efficiency: If you're working with massive 
datasets or real-time applications, take the model's scalability 
and computing efficiency into consideration. Deep neural 
networks and support vector machines are two examples of 
models that could need a lot of time and computing power to 
train. 

• Regularisation and Generalisation: Assess the model's 
capacity to apply to fresh, untested data. By including penalty 
terms to the objective function of the model, regularisation 



approaches like L1 or L2 regularisation can help prevent 
overfitting. When the training data is sparse, regularised models 
may perform better in terms of generalization. 

• Domain Expertise: Consider your expertise and domain 
knowledge. On the basis of previous knowledge of the data or 
particular features of the domain, consider if particular models 
are appropriate for the task. Models that are more likely to 
capture important patterns can be found by using domain 
expertise to direct the selection process. 

• Resource Constraints: Take into account any resource 
limitations you may have, such as constrained memory space, 
processing speed, or time. Make that the chosen model can be 
successfully implemented using the resources at hand. Some 
models require significant resources during training or inference. 

• Ensemble Methods: Examine the potential advantages of 
ensemble methods, which integrate the results of various models 
in order to perform more effectively. By utilizing the diversity of 
several models' predictions, ensemble approaches, such as 
bagging, boosting, and stacking, frequently outperform 
individual models. 

• Evaluation and Experimentation: experimentation and 
assessment of several models should be done thoroughly. Utilize 
the right evaluation criteria and statistical tests to compare their 
performance. To evaluate the models' performance on unknown 
data and reduce the danger of overfitting, use hold-out or cross-
validation. 

Model Selection Techniques 

Model selection in machine learning can be done using a variety of 
methods and tactics. These methods assist in comparing and assessing 
many models to determine which is best suited to solve a certain issue. 
Here are some methods for selecting models that are frequently used: 

• Train-Test Split: With this strategy, the available data is 
divided into two sets: a training set & a separate test set. The 
models are evaluated using a predetermined evaluation metric 
on the test set after being trained on the training set. This 



method offers a quick and easy way to evaluate a model's 
performance using hypothetical data. 

• Cross-Validation: A resampling approach called cross-
validation divides the data into various groups or folds. Several 
folds are used as the test set & the rest folds as the training set, 
and the models undergo training and evaluation on each fold 
separately. Lowering the variance in the evaluation makes it 
easier to generate an accurate assessment of the model's 
performance. Cross-validation techniques that are frequently 
used include leave-one-out, stratified, and k-fold cross-
validation. 

• Grid Search: Hyperparameter tuning is done using the grid 
search technique. In order to do this, a grid containing 
hyperparameter values must be defined, and all potential 
hyperparameter combinations must be thoroughly searched. For 
each combination, the models are trained, assessed, and their 
performances are contrasted. Finding the ideal hyperparameter 
settings to optimize the model's performance is made easier by 
grid search. 

• Random Search: A set distribution for hyperparameter values 
is sampled at random as part of the random search 
hyperparameter tuning technique. In contrast to grid search, 
which considers every potential combination, random search 
only investigates a portion of the hyperparameter field. When a 
thorough search is not possible due to the size of the search 
space, this strategy can be helpful. 

• Bayesian optimization: A more sophisticated method of 
hyperparameter tweaking, Bayesian optimization. It models the 
relationship between the performance of the model and the 
hyperparameters using a probabilistic model. It intelligently 
chooses which set of hyperparameters to investigate next by 
updating the probabilistic model and iteratively assessing the 
model's performance. When the search space is big and 
expensive to examine, Bayesian optimization is especially 
effective. 

• Model averaging: This technique combines forecasts from 
various models to get a single prediction. For regression issues, 
this can be accomplished by averaging the predictions, while for 



classification problems, voting or weighted voting systems can be 
used. Model averaging can increase overall prediction accuracy 
by lowering the bias and variation of individual models. 

• Information Criteria: Information criteria offer a numerical 
assessment of the trade-off between model complexity and 
goodness of fit. Examples include the Akaike Information 
Criterion (AIC) and the Bayesian Information Criterion (BIC). 
These criteria discourage the use of too complicated models and 
encourage the adoption of simpler models that adequately 
explain the data. 

• Domain Expertise & Prior Knowledge: Prior 
understanding of the problem and the data, as well as domain 
expertise, can have a significant impact on model choice. The 
models that are more suitable given the specifics of the problem 
and the details of the data may be known by subject matter 
experts. 

• Model Performance Comparison: Using the right 
assessment measures, it is vital to evaluate the performance of 
various models. Depending on the issue at hand, these 
measurements could include F1-score, mean squared error, 
accuracy, precision, recall, or the area beneath the receiver's 
operating characteristic curve (AUC-ROC). The best-performing 
model can be found by comparing many models. 

Summary 

The important machine learning stage of model selection entails 
selecting the best model and algorithm for a certain task. To make 
precise predictions on unknown data, it is crucial to find a balance 
between model complexity & generalization. Model selection involves 
selecting potential candidates, assessing each model's performance, 
and selecting the model with the best results. 
Assessing the problem's complexity, data quality and availability, 
interpretability, model assumptions, scalability, efficiency, 
regularisation, domain knowledge, resource restrictions, and the 
possible advantages of ensemble approaches are all factors that should 
be taken into account when choosing a model. These factors aid in 



ensuring that the chosen model complies with the limits and needs of 
the issue. 
There are many methods for choosing a model, such as train-test split, 
cross-validation, grid searches, random search, Bayesian optimization, 
model averaging, information criteria, expertise in the domain, and 
model performance comparison. These methods make it possible to 
thoroughly assess, tune hyperparameters, and compare various 
models to get the best fit. 
 

 

Model Learning: 

 

Machine learning models are very power powerful resources that 
automate tasks and make them more accurate and efficient.ML 
handles new data and scales the growing demand for technology with 
valuable insight .It improves the performance over time .This  cutting-
edge technology has various benefits such as faster processing or 
response ,enhancement of decision-making,and specialized services. 

 

A model of machine learning is a set of programs that can be used to 
find the pattern and make a decision from an unseen dataset .These 
days NLP[Natural language processing] uses the machine learning 
model to recognize the unstructured text into usable data and 
insights.You may have heared about image processing which is used to 



identify objects such as boy,girl,mirror,car,dog,etc.A model always 
requires a dataset to perform various tasks during training 
duration,We use a machine learning algorithm for the optimizing 
process to find certain patterns or outputs from the dataset based 
upon tasks 

Types of Machine Learning Models 

Machine learning models can be brodly categorized into four main 
paradigms based on the type of data and learning goals: 

1. Supervised Models 

Supervised learning is the study of algorithms that use labelled data in 
which each data instance has a known category or value to which it 
belongs.This results in the model to disciver the relationship between 
the input features and the target outcome. 

1.1 Classification 

The classifier algorithms are designed to indicate whether a new data 
point belongs to one or another among several predefined classes. 
Imagine when you are organising emails into spam or inbox, 
categorising images as cat or dog, or predicting whether a loan 
applicant is a credible borrower. In the classification models, there is 
a learning process by the use of labeled examples from each category. 
In this process, they discover the correlations and relations within 
the data that help to distinguish class one from the other classes. 
After learning these patterns, the model is then capable of assigning 
these class labels to unseen data points. 
 
Common Classification Algorithms: 
• Logistic Regression: A very efficient technique for the 

classification problems of binary nature (two types, for example, 
spam/not spam). 

• Support Vector Machine (SVM): Good for tasks like 
classification, especially when the data has a large number of 
features. 

https://www.geeksforgeeks.org/support-vector-machine-algorithm/


• Decision Tree: Constructs a decision tree having branches and 
proceeds to the class predictions through features. 

• Random Forest: The model generates an "ensemble" of decision 
trees that ultimately raise the accuracy and avoid overfitting 
(meaning that the model performs great on the training data but 
lousily on unseen data). 

• K-Nearest Neighbors (KNN): Assigns a label of the nearest 
neighbors for a given data point. 

 

1.2 Regression 

Regression algorithms are about forecasting of a continuous output 
variable using the input features as their basis. This value could be 
anything such as predicting real estate prices or stock market trends 
to anticipating customer churn (how likely customers stay) and sales 
forecasting. Regression models make the use of features to 
understand the relationship among the continuous features and the 
output variable. That is, they use the pattern that is learned to 
determine the value of the new data points. 
Common Regression Algorithms 
• Linear Regression: Fits depth of a line to the data to model for 

the relationship between features and the continuous output. 
• Polynomial Regression: Similiar to linear regression but uses 

more complex polynomial functions such as quadratic, cubic, etc, 
for accommodating non-linear relationships of the data. 

• Decision Tree Regression: Implements a decision tree-based 
algorithm that predicts a continuous output variable from a 
number of branching decisions. 

• Random Forest Regression: Creates one from several decision 
trees to guarantee error-free and robust regression prediction 
results. 

• Support Vector Regression (SVR): Adjusts the Support 
Vector Machine ideas for regression tasks, where we are trying to 
find one hyperplane that most closely reflects continuous output 
data. 

2. Unsupervised Models 
Unsupervised learning involves a difficult task of working with data 
which is not provided with pre-defined categories or label. 
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2.1 Clustering 

Visualize being given a basket of fruits with no labels on them. The 
fruits clustering algorithms are to group them according to the inbuilt 
similarities. Techniques like K-means clustering are defined by exact 
number of clusters ("red fruits" and "green fruits") and then each 
data point (fruit) is assigned to the cluster with the highest similarity 
within based on features (color, size, texture). Contrary to this, 
hierarchical clustering features construction of hierarchy of clusters 
which makes it more easy to study the system of groups. Spatial 
clustering algorithm Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) detects groups of high-density data points, 
even in those areas where there is a lack of data or outliers. 
2.2 Dimensionality Reduction 

Sometimes it is difficult to both visualize and analyze the data when 
you have a large feature space (dimensions). The purpose of 
dimensionality reduction methods is to decrease the dimensions 
needed to maintain the key features. Dimensions of greatest 
importance are identified by principal component analysis (PCA), 
which is the reason why data is concentrated in fewer dimensions 
with the highest variations. This speeds up model training as well as 
offers a chance for more efficient visualization. LDA (Linear 
Discriminant Analysis) also resembles PCA but it is made for 
classification tasks where it concentrates on dimensions that can 
differentiate the present classes in the dataset. 
2.3 Anomaly Detection 

Unsupervised learning can also be applied to find those data points 
which greatly differ than the majorities. The statistics model may 
identify these outliers, or anomalies as signaling of errors, fraud or 
even something unusual. Local Outlier Factor (LOF) makes a 
comparison of a given data point's local density with those 
surrounding it. It then flags out the data points with significantly 
lower densities as outliers or potential anomalies. Isolation Forest is 
the one which uses different approach, which is to recursively isolate 
data points according to their features. Anomalies usually are simple 
to contemplate as they often necessitate fewer steps than an average 
normal point. 
3. Semi-Supervised Model 
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Besides, supervised learning is such a kind of learning with labeled 
data that unsupervised learning, on the other hand, solves the task 
where there is no labeled data. Lastly, semi-supervised learning fills 
the gap between the two. It reveals the strengths of both approaches 
by training using data sets labeled along with unlabeled one. This is 
especially the case when labeled data might be sparse or prohibitively 
expensive to acquire, while unlabeled data is undoubtedly available in 
abundance. 
3.1 Generative Semi-Supervised Learning 

Envision having a few pictures of cats with labels and a universe of 
unlabeled photos. The big advantage of generative semi-supervised 
learning is its utilization of such a scenario. It exploits a generative 
model to investigate the unlabeled pictures and discover the 
orchestrating factors that characterize the data. This technique can 
then be used to generate the new synthetic data points that have the 
same features with the unlabeled data. The synthetic data is then 
labeled with the pseudo-labels that the generative model has 
interpreted from the data. This approach combines the existing 
labeled data with the newly generated labeled data to train the final 
model which is likely to perform better than the previous model that 
was trained with only the limited amount of the original labeled data. 
3.2 Graph-based Semi-Supervised Learning 

This process makes use of the relationships between data points and 
propagates labels to unmarked ones via labeled ones. Picture a social 
network platform where some of the users have been marked as fans 
of sports (labeled data). Cluster-based methods can analyze the links 
between users (friendships) and even apply this information to infer 
that if a user is connected to someone with a "sports" label then this 
user might also be interested in sports (unbiased labels with 
propagated label). While links and the entire structure of the network 
are also important for the distribution of labels. This method is 
beneficial when the data points are themselves connected to each 
other and this connection can be exploiting during labelling of new 
data. 
4. Reinforcement learning Models 
Reinforcement learning takes a dissimilar approach from supervised 
learning and unsupervised learning. Different from supervised 

https://www.geeksforgeeks.org/supervised-machine-learning/
https://www.geeksforgeeks.org/supervised-machine-learning/


learning or just plain discovery of hidden patterns, reinforcement 
learning adopt an agent as it interacts with the surrounding and 
learns. This agent is a learning one which develops via experiment 
and error, getting rewarded for the desired actions and punished for 
the undesired ones. The main purpose is to help players play the 
game that can result in the highest rewards. 
4.1 Value-based learning: 

Visualize a robot trying to find its way through a maze. It has neither 
a map nor instructions, but it gets points for consuming the cheese at 
the end and fails with deduction of time when it runs into a wall. 
Value learning is an offshoot of predicting the anticipated future 
reward of taking a step in a particular state. For example, the 
algorithm Q-learning will learn a Q-value for each state-action 
combination. This Q-value is the expected reward for that action at 
that specific state. Through a repetitive process of assessing the state, 
gaining rewards, and updating the Q-values the agent manages to 
determine that which actions are most valuable in each state and 
eventually guides it to the most rewarding path. In contrast, SARSA 
(State-Action-Reward-State-Action) looks at the value of the 
succeeding state-action pair that influences the exploration strategy. 
4.2 Policy-based learning: 

In contrast to the value-based learning, where we are learning a 
specific value for each state-action pair, in policy-based learning we 
are trying to directly learn a policy which maps states to actions. This 
policy in essence commands the agent to act in different situations as 
specified by the way it is written. Actor-Critic is a common approach 
that combines two models: an actor that retrains the policy and a 
critic that retrains the value function (just like value-based methods). 
The actor witnesses the critic's feedback which updates the policy 
that the actor uses for better decision making. Proximal Policy 
Optimization (PPO) is a specific policy-based method which focuses 
on high variance issues that complicate early policy-based learning 
methods. 
Deep Learning 
Deep learning is a subfield of machine learning that utilizes artificial 
neural networks with multiple layers to achieve complex pattern 
recognition. These networks are particularly effective for tasks 
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involving large amounts of data, such as image recognition and 
natural language processing. 
1. Artificial Neural Networks (ANNs) - This is a popular model 

that refers to the structure and function of the human brain. It 
consists of interconnected nodes based on various layers and is 
used for various ML tasks. 

2. Convolutional Neural Networks (CNNs) - A CNN is a deep 
learning model that automates the spatial hierarchies of features 
from input data. This model is commonly used in image 
recognition and classification. 

3. Recurrent Neural Networks (RNNs) - This model is designed 
for the processing of sequential data. It enables the memory input 
which is known for Neural network architectures. 

4. Long Short-Term Memory Networks (LSTMs) - This model 
is comparatively similar to Recurrent Neural Networks and allows 
learners to learn the long-term dependencies from sequential data. 

How Machine Learning Works? 
1. Model Represntation: Machine Learning Models are 

represented by mathematical functions that map input data to 
output predictions. These functions can take various forms, such 
as linear equations, decision trees , or complex neural networks. 

2. Learning Algorithm: The learning algorithm is the main part of 
behind the model's ability to learn from data. It adjusts the 
parameters of the model's mathematical function iteratively during 
the training phase to minimize the difference between the model's 
prediction and the actual outcomes in the training data . 

3. Training Data: Training data is used to teach the model to make 
accurate predictions. It consists of input features(e.g variables, 
attributes) and corresponding output labels(in supervised 
learning) or is unalabeled(in supervised learning). During training 
, the model analyzes the patterns in the training data to update its 
parameters accordingly. 

4. Objective Function: The objective function, also known as 
the loss function, measures the difference between the model's 
predictions and the actual outcomes in the training data. The goal 
during training is to minimize this function, effectively reducing 
the errors in the model's predictions. 
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5. Optimization Process: Optimization is the process of finding 
the set of model parameters that minimize the objective function. 
This is typically achieved using optimization algorithms such as 
gradient descent, which iteratively adjusts the model's parameters 
in the direction that reduces the objective function. 

6. Generalization: Once the model is trained, it is evaluated on a 
separate set of data called the validation or test set to assess its 
performance on new, unseen data. The model's ability to perform 
well on data it hasn't seen before is known as generalization. 

7. Final Output: After training and validation, the model can be 
used to make predictions or decisions on new, unseen data. This 
process, known as inference, involves applying the trained model 
to new input data to generate predictions or classifications. 

Advanced Machine Learning Models 
• Neural Networks: You must have heard about deep neural 

network which helps solve complex problems of data. It is made up 
of interconnected nodes of multiple layers which we also call 
neurons. Many things have been successful from this model such 
as image recognition, NLP, and speech recognition. 

• Convolutional Neural Networks (CNNs): This is a type of 
model that is built in the framework of a neural network and it is 
made to handle data that are of symbolic type, like images. From 
this model, the hierarchy of spatial features can be determined. 

• Recurrent Neural Networks (RNNs): These can be used to 
process data that is sequentially ordered, such as reading 
categories or critical language. These networks are built with loops 
in their architectures that allow them to store information over 
time. 

• Long Short-Term Memory Networks (LSTMs): LSTMs, 
which are a type of RNNs, recognize long-term correlation objects. 
These models do a good job of incorporating information 
organized into long categories. 

• Generative Adversarial Networks (GANs): GANs are a type 
of neural networks that generate data by studying two networks 
over time. A product generates network data, while a 
determination attempts to distinguish between real and fake 
samples. 
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• Transformer Models: This model become popular in natural 
language processing. These models process input data over time 
and capture long-range dependencies. 

Real-world examples of ML Models 
The ML model uses predictive analysis to maintain the growth of 
various Industries- 
• Financial Services: Banks and financial institutions are using 

machine learning models to provide better services to their 
customers. Using intelligent algorithms, they understand 
customers' investment preferences, speed up the loan approval 
process, and receive alerts for non-ordinary transactions. 

• Healthcare: In medicine, ML models are helpful in disease 
prediction, treatment recommendations, and prognosis. For 
example, physicians can use a machine learning model to predict 
the right cold medicine for a patient. 

• Manufacturing Industry: In the manufacturing sector, ML has 
made the production process more smooth and optimized. For 
example, Machine Learning is being used in automated production 
lines to increase production efficiency and ensure manufacturing 
quality. 

• Commercial Sector: In the marketing and marketing sector, ML 
models analyze huge data and predict production trends. This 
helps in understanding the marketing system and the products can 
be customized for their target customers. 

Future of Machine Learning Models 
There are several important aspects to consider when considering the 
challenges and future of machine learning models. One challenge is 
that there are not enough resources and tools available to 
contextualize large data sets. Additionally, machine learning models 
need to be updated and restarted to understand new data patterns. 
In the future, another challenge for machine learning may be to 
collect and aggregate collections of data between different existing 
technology versions. This can be important for scientific development 
along with promoting the discovery of new possibilities. Finally, good 
strategy, proper resources, and technological advancement are 
important concepts for success in developing machine learning 
models. To address all these challenges, appropriate time and 
attention is required to further expand machine learning capabilities. 

https://www.geeksforgeeks.org/natural-language-processing-overview/
https://www.geeksforgeeks.org/natural-language-processing-overview/
https://www.geeksforgeeks.org/machine-learning/


Conclusion 
We first saw the introduction of machine learning in which we know 
what a model is and what is the benefit of implementing it in our 
system. Then look at the history and evolution of machine learning 
along with the selection criteria to decide which model to use 
specifically. Next, we read data preparation where you can read all 
the steps. Then we researched advanced model that has future 
benefits but some challenges can also be faced but the ML model is a 
demand for the future. 
 
Model evaluation: 
 

What is Model Evaluation? 

Model evaluation is the process of using different evaluation metrics to 

understand a machine learning model’s performance, as well as its 

strengths and weaknesses. 

Why is Evaluation necessary for a successful model? 

Evaluation is necessary for ensuring that machine learning models are 

reliable, generalizable, and capable of making accurate predictions on 

new, unseen data, which is crucial for their successful deployment in 

real-world applications. Overfitting and underfitting are the two 

biggest causes of poor performance of machine learning algorithms. 

https://www.geeksforgeeks.org/what-is-data-preparation/


 

Overfitting: Occurs when the model is so closely aligned to the 

training data that it does not know how to respond to new data. 

Underfitting: Occurs when the model cannot adequately 

capture the underlying structure of the data. 

Right Fit: Occurs when both the training data error and the test 

data are minimal 

 
Error Risks in the models 

 



Evaluation Metrics 

There are different metrics for the tasks of classification, regression, 

ranking, clustering, topic modeling, etc. Some of the metrics are as 

follows: 

1. Classification Metrics (accuracy, precision, recall, F1-score, ROC, 

AUC, …) 

2. Regression Metrics (MSE, MAE, R2) 

3. Ranking Metrics (MRR, DCG, NDCG) 

4. Statistical Metrics (Correlation) 

5. Computer Vision Metrics (PSNR, SSIM, IoU) 

6. NLP Metrics (Perplexity, BLEU score) 

7. Deep Learning Related Metrics (Inception score, Frechet Inception 

distance) 

→ Today, we will talk about Classification Metrics. 

1. Classification Metrics 

When our target is categorical, we are dealing with a classification 

problem. The choice of the most appropriate metrics depends on 

different aspects, such as the characteristics of the dataset, whether it’s 

imbalanced or not, and the goals of the analysis. 



Confusion Matrix 

A confusion matrix is a table that is often used to describe the 

performance of a classification model (or “classifier”) on a set of 

test data for which the true values are known. 

I can summarize as before and after happenings. How? 

As you see we have 2 main situations. Predicted (Before), Actual Values 

(After). 

 
Predicted and Actual Values 

1. Predicted: Negative & Actual Value: Positive → Your predicted 

False (FN) 

2. Predicted: Negative & Actual Value: Negative → Your predicted 

True(TN) 

3. Predicted: Pozitive & Actual Value: Positive → Your predicted 

True (TP) 



4. Predicted: Pozitive & Actual Value: Negative→ Your predicted 

False (FP) 

These four scenarios are illustrated in the following figure. 

 
Four possible combinations of reality and our binary pregnancy test 
results 

Example Label for Accuracy, Precision, and Recall 



 

True Positive (TP) =10 

True Negative (TN)=12 

False Positive (FP)=1 

False Negative (FN)=2 

Accuracy 

Accuracy is one metric for evaluating classification models. Formally 

accuracy could be defined as the number of correct predictions to a 

total number of predictions. 

 



 

 

Precision 

Precision is a measure of the accuracy. 

 

 

Recall 

Recall is the true positive rate 

 

 



F1 Score 

F1 score is a machine learning evaluation metric that measures a 

model’s accuracy. It combines the precision and recall scores of a 

model. 

The accuracy metric computes how many times a model made a correct 

prediction across the entire dataset. 

 

 

In some scenarios, precision and recall may have varying levels of 

importance depending on the specific requirements of the application. 

The F1 score, which balances both precision and recall, may not 

perfectly capture the relative importance of these metrics for a given 

task. F1 score or seeing the PR or ROC curve can help. 

ROC 

ROC curve provides a comprehensive view of a model’s ability to 

discriminate between classes, especially in binary classification tasks. 

It helps in understanding the trade-offs between sensitivity and 



specificity at different decision thresholds, and the AUC offers a single 

metric for summarizing the overall performance of the model. 

• True Positive Rate (Recall) 

• False Positive Rate (FPR) 

 

 
 
 

 
Model prediction: 

What Is Predictive Modeling? 

In short, predictive modeling is a statistical technique using machine 
learning and data mining to predict and forecast likely future 
outcomes with the aid of historical and existing data. It works by 
analyzing current and historical data and projecting what it learns on a 
model generated to forecast likely outcomes. Predictive modeling can 
be used to predict just about anything, from TV ratings and a 
customer’s next purchase to credit risks and corporate earnings. 

A predictive model is not fixed; it is validated or revised regularly to 
incorporate changes in the underlying data. In other words, it’s not a 
one-and-done prediction. Predictive models make assumptions based 



on what has happened in the past and what is happening now. If 
incoming, new data shows changes in what is happening now, the 
impact on the likely future outcome must be recalculated, too. For 
example, a software company could model historical sales data against 
marketing expenditures across multiple regions to create a model for 
future revenue based on the impact of the marketing spend. 

Most predictive models work fast and often complete their 
calculations in real time. That’s why banks and retailers can, for 
example, calculate the risk of an online mortgage or credit card 
application and accept or decline the request almost instantly based 
on that prediction. 

Some predictive models are more complex, such as those used 
in computational biology and quantum computing; the resulting 
outputs take longer to compute than a credit card application but are 
done much more quickly than was possible in the past thanks to 
advances in technological capabilities, including computing power. 

Top 5 Types of Predictive Models 

Fortunately, predictive models don’t have to be created from scratch 
for every application. Predictive analytics tools use a variety of vetted 
models and algorithms that can be applied to a wide spread of use 
cases. 

Predictive modeling techniques have been perfected over time. As we 
add more data, more muscular computing, AI and machine learning 
and see overall advancements in analytics, we’re able to do more with 
these models. 

The top five predictive analytics models are: 

1. Classification model: Considered the simplest model, it 
categorizes data for simple and direct query response. An 

https://miblab.bme.gatech.edu/research/bioinformatics/prediction/


example use case would be to answer the question “Is this a 
fraudulent transaction?” 

2. Clustering model: This model nests data together by common 
attributes. It works by grouping things or people with shared 
characteristics or behaviors and plans strategies for each group 
at a larger scale. An example is in determining credit risk for a 
loan applicant based on what other people in the same or a 
similar situation did in the past. 

3. Forecast model: This is a very popular model, and it works on 
anything with a numerical value based on learning from 
historical data. For example, in answering how much lettuce a 
restaurant should order next week or how many calls a customer 
support agent should be able to handle per day or week, the 
system looks back to historical data. 

4. Outliers model: This model works by analyzing abnormal or 
outlying data points. For example, a bank might use an outlier 
model to identify fraud by asking whether a transaction is 
outside of the customer’s normal buying habits or whether an 
expense in a given category is normal or not. For example, a 
$1,000 credit card charge for a washer and dryer in the 
cardholder’s preferred big box store would not be alarming, but 
$1,000 spent on designer clothing in a location where the 
customer has never charged other items might be indicative of a 
breached account. 

5. Time series model: This model evaluates a sequence of data 
points based on time. For example, the number of stroke patients 
admitted to the hospital in the last four months is used to predict 
how many patients the hospital might expect to admit next week, 
next month or the rest of the year. A single metric measured and 
compared over time is thus more meaningful than a simple 
average. 

Common Predictive Algorithms 



Predictive algorithms use one of two things: machine learning or deep 
learning. Both are subsets of artificial intelligence (AI). Machine 
learning (ML) involves structured data, such as spreadsheet or 
machine data. Deep learning (DL) deals with unstructured data such 
as video, audio, text, social media posts and images—essentially the 
stuff that humans communicate with that are not numbers or metric 
reads. 

Some of the more common predictive algorithms are: 

1. Random Forest: This algorithm is derived from a combination 
of decision trees, none of which are related, and can use both 
classification and regression to classify vast amounts of data. 

2. Generalized Linear Model (GLM) for Two Values: This 
algorithm narrows down the list of variables to find “best fit.” It 
can work out tipping points and change data capture and other 
influences, such as categorical predictors, to determine the “best 
fit” outcome, thereby overcoming drawbacks in other models, 
such as a regular linear regression. 

3. Gradient Boosted Model: This algorithm also uses several 
combined decision trees, but unlike Random Forest, the trees are 
related. It builds out one tree at a time, thus enabling the next 
tree to correct flaws in the previous tree. It’s often used in 
rankings, such as on search engine outputs. 

4. K-Means: A popular and fast algorithm, K-Means groups data 
points by similarities and so is often used for the clustering 
model. It can quickly render things like personalized retail offers 
to individuals within a huge group, such as a million or more 
customers with a similar liking of lined red wool coats. 

5. Prophet: This algorithm is used in time-series or forecast 
models for capacity planning, such as for inventory needs, sales 
quotas and resource allocations. It is highly flexible and can 
easily accommodate heuristics and an array of useful 
assumptions. 

 

https://www.merriam-webster.com/dictionary/tipping%20point
https://www.hvr-software.com/blog/change-data-capture/
https://online.stat.psu.edu/stat462/node/86/
https://en.wikipedia.org/wiki/Heuristic


Search and learning: 

Whenever someone performs a search, they expect to be greeted with 

results relevant to their requirements. However, traditional search 

techniques like “BM25 retrieval” return results based on how many 

times the phrase searched appears in a document. 

While such techniques perform well to an extent, they fail to take into 

account the users’ unique preferences. This is where machine learning 

(ML) techniques come into play for helping deliver personalized 

results, particularly within the realm of federated search. 

Maximizing Federated Search Relevance with ML 

Techniques 

Unlike conventional methods, ML-driven federated search delves 

deeper into the intricacies of user interactions, considering many 

factors beyond keyword frequency. 

This enables the system to discern patterns, user intent, and 

contextual relevance, therefore delivering a more personalized and 

tailored search experience. The following ML techniques help facilitate 

this: 

Vector and Semantic Search 

Vector search is a technique that leverages mathematical 

representations to understand and organize complex relationships 

between words and concepts, enhancing search accuracy. 

While semantic search focuses on interpreting the meaning of words 

and phrases within the context, providing a nuanced understanding of 

the users’ context. 

These approaches excel in handling synonyms, misspellings, and 

variations in language, contributing to a higher level of search 

https://www.searchunify.com/blog/7-top-reasons-why-you-need-federated-search/
https://pages.searchunify.com/ebook-your-comprehensive-guide-to-semantic-search-engines
https://www.searchunify.com/blog/vector-search-bridging-the-gap-between-data-and-context-for-better-content-findability/
https://pages.searchunify.com/ebook-your-comprehensive-guide-to-semantic-search-engines.html?_gl=1*1c62wkw*_ga*MzY4MzI5MDYuMTcwNjA5NDAzMw..*_ga_STDRXBQS38*MTcwNzA3MTM1OS4xNC4xLjE3MDcwNzE1OTAuMC4wLjA.&_ga=2.56996650.1012029143.1707071360-36832906.1706094033


accuracy. They also boost personalization based on the users’ history 

and preferences, something which we could see lacking in the 

traditional approaches. 

Query Understanding 

Query Understanding involves analyzing user queries to grasp their 

intent, context, and semantics. It employs natural language 

processing (NLP) to interpret user input, discerning synonyms, and 

user-specific language, thus enhancing search engines’ ability to 

deliver more accurate and relevant results. 

 

Using ML algorithms also enables the search engines to “Query 

rephrasing,” which essentially refers to suggesting alternate queries 

that would retrieve better results. Another technique, known as 

“Query expansion” helps expand the query to add related terms to the 

query and broadens its scope. 

And voila! The search results powered by query understanding are 

much more thorough. 

Neural Reranking 

“Ranking” is often done based on how many times the search keyword 

appears in a document. However, neural reranking allows you to tune 

the search results so the top result is the most relevant one instead. 

This is done by leveraging algorithms like k-nearest-neighbor (k-NN) 

for exact matches and approximate nearest-neighbor (ANN) for faster 

but slightly less accurate matches. Another benefit of neural reranking 

is that it can yield great results in zero-shot informational retrieval 

(IR) models ,i.e., models without much training. 

https://www.searchunify.com/blog/nlp-the-proverbial-cherry-on-top-of-your-customer-service-cake/
https://www.searchunify.com/blog/nlp-the-proverbial-cherry-on-top-of-your-customer-service-cake/


Now if you were to implement these ML-based techniques for better 

search results, how would you determine if they’re performing as 

expected? By finding out their impact on recall and precision. Let’s dig 

deeper. 

How do ML Techniques Enhance Recall & Precision in 

Search Results? 

Precision refers to how accurate the search results are, while recall 

refers to the number of results returned. ML algorithms can ensure 

that the no relevant results are skipped over, and simultaneously rank 

the most relevant matches higher to reduce irrelevancy. 

The following ML techniques help boost precision and recall: 

• Word Embeddings: Embeddings are dense vector 

representations that capture semantic relationships and 

similarities between data points. They boost recall by capturing 

nuanced similarities in the data, allowing models to return better 

results. 

• Cross-Encoders: These are neural networks that analyze pairs 

of things, such as questions and answers to determine how 

similar they are. The model gives a score to show how much the 

two things are connected or similar. This helps boost precision. 

• User History: Taking the users’ history into account helps 

search engines narrow what they might be looking for. This 

historical data can be used to fine-tune the search results and 

provide more personalized and relevant answers. 

Therefore, integrating ML techniques into your federated search 

solutions is a great way to amp up search relevancy. SearchUnify has 

been at it for quite some time! Keep reading to know more. 

https://www.searchunify.com/sudo-technical-blogs/how-to-measure-the-efficacy-of-your-sentiment-analysis-model/
https://www.searchunify.com/sudo-technical-blogs/demystifying-contextual-query-embedding/
https://www.searchunify.com/products/cognitive-search/


Delivering Search Excellence with SearchUnify’s  ML 

Techniques 

SearchUnify uses three types of ML-powered search techniques to 

boost recall as explained below. 

Lexical Search 

Lexical refers to the vocabulary or words used in a language, such as 

their structure and meaning. Lexical search involves searching for 

specific words or terms within a dataset or a corpus of text. It focuses 

on finding documents or information that contain the exact words or 

phrases specified in the search query. 

Neural Search 

Neural search leverages ML models known as neural networks to 

improve the efficiency and relevance of search results. It leverages 

advanced NLP techniques to understand the context, semantics, and 

relationships between words. This helps provide more accurate and 

contextually relevant search results by understanding the meaning 

behind the queries. 

Hybrid Search 

Hybrid search combines multiple search approaches or technologies to 

enhance the overall search experience. It often involves integrating 

traditional search methods with newer technologies like ML or 

artificial intelligence (AI). 

For example, it might use lexical search for precise keyword matching 

and neural search for understanding context and providing more 

nuanced results. Search Unify uses this combination to provide a more 

comprehensive and accurate search experience. 

To improve precision, Search Unify federated search leverages the 

following techniques. 

https://www.searchunify.com/sudo-technical-blogs/how-neural-search-is-redefining-enterprise-efficiency/


Auto Boosting 

This helps optimize search precision by adjusting the importance of 

different features, ensuring relevant information is prioritized based 

on user interactions and feedback. 

Persona-based Results 

ML algorithms can track and take into account the user personas and 

tailor the results to user-specific profiles, considering individual 

preferences and behavior to deliver more accurate and personalized 

information. 

Cross Encoders 

Cross encoders utilize neural networks to analyze relationships 

between different pieces of content, facilitating a deeper 

understanding of context and relevance for more accurate search 

results. 

 

 Data Set: 

Mahine Learning is at the peak of its popularity today. Despite this, a 

lot of decision-makers are in the dark about what exactly is needed to 

design, train, and successfully deploy a machine learning algorithm. 

The details about collecting the data, building a dataset, and 

annotation specifics are neglected as supportive tasks. 

However, reality shows that working with datasets is the most time-

consuming and laborious part of any AI project, sometimes taking up 

to 70% of the time overall. Moreover, building up a high-quality 

https://www.searchunify.com/sudo-technical-blogs/machine-learning-the-underlying-force-to-get-rich-search-results/
https://info.cruxinformatics.com/hubfs/Forrester-External-Data-Research-2023.pdf


machine learning dataset requires experienced, trained professionals 

who know what to do with the actual data that can be collected. 

Let’s start from the beginning by defining what a dataset for machine 

learning is and why you need to pay more attention to it. 

What Is a Dataset in Machine Learning and Why Is It 
Essential for Your AI Model? 

According to the Oxford Dictionary, a dataset definition in machine 

learning is “a collection of data that is treated as a single unit by a 

computer”. This means that a dataset contains a lot of separate pieces 

of data, but can be used to teach the machine learning algorithm to 

find predictable patterns inside the whole dataset. 

Data is an essential component of any AI model and, basically, the sole 

reason for the spike in popularity of machine learning that we witness 

today. Due to the availability of data, scalable ML algorithms became 

viable as actual products that can bring value to a business, rather 

than being a by-product of its main processes. 

Your business has always been based on data. Factors such as what the 

customer bought, the popularity of the products, seasonality of the 

customer flow have always been important in business making. 

However, with the advent of machine learning, now it’s important to 

collect this data into datasets. 

https://www.oxfordlearnersdictionaries.com/definition/english/data-set?q=data+set
https://labelyourdata.com/articles/how-to-choose-a-machine-learning-algorithm


Sufficient volumes of data allow you to analyze the trends and hidden 

patterns and make decisions based on the dataset you’ve built. 

However, while it may look rather simple, working with data is more 

complicated. It requires proper treatment of the data you have, from 

the purposes of using a dataset to the preparation of the raw data for it 

to be actually usable. 

Splitting Your Data: Training, Testing, and Validation Datasets in 

Machine Learning 

Usually, a dataset is used not only for training purposes. A single 

training set that has already been processed is usually split into several 

types of datasets in machine learning, which is needed to check how 

well the training of the model went. For this purpose, a testing dataset 

is typically separated from the data. Next, a validation dataset, while 

not strictly crucial, is quite helpful to avoid training your algorithm on 

the same type of data and making biased predictions. 



 

Splitting of a dataset into training, testing, and validation datasets 

If you want to know more about how to split a dataset, we’ve covered 

this topic in detail in our article on training data. 

Features of the Data: How to Build Yourself a Proper 
Dataset for a Machine Learning Project? 

Raw data is a good place to start, but you obviously cannot just shove 

it into a machine learning algorithm and hope it offers you valuable 

insights into your customers’ behaviors. There are quite a few steps 

you need to take before your dataset becomes usable. 

https://labelyourdata.com/articles/machine-learning-and-training-data/#splitting_your_data_set_training_data_vs_testing_data_in_machine_learning


 

Three steps of data processing in machine learning 

1. Collect. The first thing to do when you’re looking for a dataset is 

deciding on the sources you’ll be using for data collection in ML. 

Usually, there are three types of sources you can choose from: 

the freely available open-source datasets, the Internet, and the 

generators of artificial data. Each of these sources has its pros 

and cons and should be used for specific cases. We’ll talk about 

this step in more detail in the next section of this article. 

2. Preprocess. There’s a principle in data science that every 

experienced professional adheres to. Start by answering this 

question: has the dataset you’re using been used before? If not, 

assume this dataset is flawed. If yes, there’s still a high 

probability you’ll need to re-appropriate the set to fit your 

specific goals. After covering the sources, we’ll talk more about 

the features that constitute a proper dataset (you can click here 

to skip to that section now). 

https://labelyourdata.com/articles/data-collection-methods-AI


3. Annotate. After you’ve ensured your data is clean and relevant, 

you also need to make sure it’s understandable for a computer to 

process. Machines do not understand the data the same way as 

humans do (they aren’t able to assign the same meaning to the 

images or words as we). This step is where a lot of businesses 

often decide to outsource the task to experienced data tagging 

services, since keeping a trained annotation professional is not 

always viable. We have a great article on building an in-house 

labeling team vs. outsourcing this task to help you understand 

which way is the best for you. 

Quest for a Dataset in Machine Learning: Where to Find It and What 

Sources Fit Your Case Best? 

 

The three sources of the dataset collection 

https://labelyourdata.com/services/additional-data-services/data-tagging-services
https://labelyourdata.com/services/additional-data-services/data-tagging-services
https://labelyourdata.com/articles/in-house-vs-outsourced-data-labeling-pros-cons-best-options/
https://labelyourdata.com/articles/in-house-vs-outsourced-data-labeling-pros-cons-best-options/


The sources for collecting an AI/ML dataset vary and strongly depend 

on your project, budget, and size of your business. The best option is 

to get help from professional data collection services that directly 

correlate with your business goals. However, while this way you have 

the most control over the data that you collect, it may prove 

complicated and demanding in terms of financial, time, and human 

resources. 

Other ways like automatically generated datasets require significant 

computational powers and are not suitable for any project. For the 

purposes of this article, we’d like to specifically distinguish the free, 

ready-to-use datasets for machine learning. There are large, 

comprehensive repositories of public datasets that can be freely 

downloaded and used for the training of your machine learning 

algorithm. 

The obvious advantage of free datasets is that they’re, well, free. On 

the other hand, you’ll most likely need to tune any of such 

downloadable datasets to fit your project, since they were built for 

other purposes initially and won’t fit precisely into your custom-built 

ML model. Still, this is an option of choice for many startups, as well 

as small and medium-sized businesses, since it requires fewer 

resources to collect a proper dataset. 

 

https://labelyourdata.com/articles/machine-learning-datasets-feature-overview
https://labelyourdata.com/services/additional-data-services/data-collection-services
https://archive.ics.uci.edu/ml/datasets.php


The Features of a Proper, High-Quality Dataset in Machine Learning 

 

A good dataset combines high quality with sufficient quantity 

However, before you decide on what sources to use while collecting a 

dataset for your ML model, consider the following features of a good 

dataset. 

Quality of a Dataset: Relevance and Coverage 

High data quality is the essential thing to take into consideration when 

you collect a dataset for a machine learning project. But what does this 

mean in practice? First, the data pieces should be relevant to your 

goal. If you are designing an ML algorithm for an autonomous vehicle, 

you will have no need even for the best of datasets that consist of 

celebrity photos. 

https://labelyourdata.com/articles/data-quality-management
https://labelyourdata.com/articles/data-annotation-for-autonomous-driving


Furthermore, it’s important to ensure the pieces of data are of 

sufficient quality. While there are ways of cleaning the data and 

making it uniform and manageable before annotation and training 

processes, it’s best to have the data correspond to a list of required 

features. For example, when building a facial recognition model, you 

will need the training photos to be of good enough quality. 

In addition, even for relevant and high-quality datasets, there is a 

problem of blind spots and biases that any data can be subject to. An 

imbalanced dataset in ML poses the dangers of throwing off the 

prediction results of your carefully built ML model. Let’s say you’re 

planning to build a text classification model to arrange a database of 

texts by topic. But if you only use NLP datasets that don’t cover 

enough topics, your model will likely fail to recognize the rarer ones. 

Tip: try to use live data and expert text annotation services. Fake 

data might seem like a good idea when you’re building your model (it 

is cheaper, cleaner, and is available in large volumes). But if you try to 

cut costs by using a fake dataset, you might end up with a weirdly 

trained algorithm. Fake data might turn out to be too predictable or 

not predictable enough. Either way, it’s not a great start for your AI 

project. 

Sufficient Quantity of a Dataset in Machine Learning 

Not only quality but quantity matters, too. It’s important to have 

enough data to train your algorithm properly. There’s also a possibility 

https://labelyourdata.com/articles/bias-in-machine-learning
https://labelyourdata.com/services/nlp-services/text-annotation-services


of overtraining an algorithm (known as overfitting), but it’s more 

likely you won’t get enough high-quality data. 

There’s no perfect recipe for how much data you need. It’s always a 

good idea to get advice from a data scientist. Professionals with 

extensive experience usually can roughly estimate the volume of the 

dataset you’ll need for a specific AI project. 

 

Alas, it is not sufficient to collect your dataset and make sure it 

corresponds to all the features we’ve listed above. There is one more 

step you need to take before starting the training of your ML model: 

analysis of the dataset. 

There are cases that range from hilarious to horrifying about how 

strongly an ML algorithm depends on the exhaustive analysis of its 

dataset. One of such cases told by Martin Goodson, a guru of data 

science, shows the story of a hospital that decided to cut treatment 

costs for pneumonia patients. The highly accurate neural network that 

was built based on the clinic data could determine the patients with a 

low risk of developing complications. These patients could just take 

antibiotics at home without the need to visit the hospital. 

However, when the model was considered for practical use, it was 

found that it sent all patients with asthma home even though these 

patients were actually at high risk of developing fatal complications. 

https://labelyourdata.com/articles/lifecycle-of-an-ai-project-stages-breakdown/#mdash_training
https://www.martingoodson.com/ten-ways-your-data-project-is-going-to-fail/


The problem was that human doctors knew this and always sent such 

patients to intensive care. For this reason, the historic dataset of the 

hospital had no recorded deaths for asthmatics with pneumonia, 

which resulted in the algorithm deciding asthma was not an 

aggravating condition. If employed in a practical setting, the algorithm 

would potentially result in human deaths, even though the dataset was 

relevant, comprehensive, and of high quality. 

This case demonstrates that machines still cannot do the analytic work 

of humans and are merely tools that require supervision and control. 

When your dataset is collected, cleansed, annotated, and seems ready, 

analyze it before deploying the data as a training tool for your model. 

Collecting different types of datasets in machine learning might seem 

like an easy task that can be done in the background while you pour 

most of your time and resources into building the machine learning 

model. However, as practice shows, time and time again, dealing with 

data might take most of your time due to the sheer scale that this task 

might grow to. For this reason, it’s important to understand what a 

dataset in machine learning is, how to collect the data, and what 

features a proper dataset has. 

A machine learning dataset is, quite simply, a collection of data pieces 

that can be treated by a computer as a single unit for analytic and 

prediction purposes. This means that the data collected should be 

made uniform and understandable for a machine that doesn’t see data 

the same way as humans do. For this, after collecting the data, it’s 



important to preprocess it by cleaning and completing it, as well as 

annotate the data by adding meaningful tags readable by a computer. 

Moreover, a good dataset should correspond to certain quality and 

quantity standards. For smooth and fast training, you should make 

sure your dataset is relevant and well-balanced. Try to use live data 

whenever possible and consult with experienced professionals about 

the volume of the data and the source to collect it from. 

Following these tips won’t guarantee you collect a perfect dataset for 

your ML project. However, it will help you avoid some major pitfalls 

on your way to success. 

 



Introduction to Proximity Measures 
Proximity-Based Method 

Proximity-based methods are an important technique in data mining. They are 
employed to find patterns in large databases by scanning documents for certain keywords 
and phrases. They are highly prevalent because they do not require expensive hardware or 
much storage space, and they scale up efficiently as the size of databases increases.  

Advantages of Proximity-Based Methods: 
1. Proximity-based methods make use of machine learning techniques, in which 

algorithms are trained to respond to certain patterns.  
2. Using a random sample of documents, the machine learning algorithm analyzes the 

keywords and phrases used in them and makes predictions about the probability that 
these words appear together across all documents.  

3. Proximity can be calculated by calculating a similarity score between two collections of 
training data and then comparing these scores. The algorithm then tries to compute the 
maximum similarity score for two distinct sets of training items. 

Disadvantages of  Proximity-Based Methods: 
1. Important words may not be as close in proximity as we expected. 
2. Over-segmentation of documents into phrases. To counter these problems, a lexical 

chain-based algorithm has been proposed.  
Proximity-based methods perform very well for finding sets of documents that contain 
certain words based on background knowledge. But performance is limited when the 
background knowledge has not been pre-classified into categories.  

To find sets of documents containing certain categories, one must assign categorical values 
to each document and then run proximity-based methods on these documents as training 
data, hoping for accurate representations of the categories. 

One way to identify outliers is by calculating their distance from the rest of the data set in is 
known as density-based outlier detection.  
  

Types of Proximity-Based Outlier Detection Methods: 
 Distance-based outlier detection methods: A distance-based outlier detection 

method is a statistical technique. Such methods typically measure distances between 
individual data points and the rest of their respective groups. Many approaches also 
have a configurable error threshold for determining when a point is an outlier. Many 
distance-based outliers methods have been developed. The methods use distance 
statistics such as Euclidean, Manhattan, or Mahalanobis distance for calculating 
distances between individual points and to detect outliers. The following three outlier 
detection methods have been selected based on their performance: 

o WLSMV (Weighted Least Squares Minimization) method 
o  SVM (Support Vector Machines) method,  
o RMSProp method. 

 Density-based Outlier detection methods: A density-based outlier detection method is 
used for checking the density of an entity object and its closest objects. Key 
applications of this method are used in many applications including Malware Detection, 
Awareness, Behavior Analysis, and Network Intrusion Detection. There are some 
limitations to density-based outlier detection methods that are effective until it is 
determined that the outliers being detected are not necessarily outliers but just a part of 
a much larger distribution of data. A limitation with using density-based outlier 



detection methods is that the density function must be defined and clearly understood 
before implementation and the proper value set.  

 
Distance Measures  
Measures of Distance  
Clustering 
consists of grouping certain objects that are similar to each other, it can be used to decide if 
two items are similar or dissimilar in their properties. In a Data Mining sense, the similarity 
measure is a distance with dimensions describing object features. That means if the distance 
among two data points is small then there is a high degree of similarity among the objects 
and vice versa. The similarity is subjective and depends heavily on the context and 
application. For example, similarity among vegetables can be determined from their taste, 
size, colour etc. Most clustering approaches use distance measures to assess the similarities or 
differences between a pair of objects, the most popular distance measures used are: 
1. Euclidean Distance: 
Euclidean distance is considered the traditional metric for problems with geometry. It can be 
simply explained as the ordinary distance between two points. It is one of the most used 
algorithms in the cluster analysis. One of the algorithms that use this formula would be 
K-mean. Mathematically it computes the root of squared differences between the 
coordinates between two objects. 
d(p,q)=d(q,p)=(q1−p1)2+(q2−p2)2+⋯+(qn−pn)2=∑i=1n(qi−pi)2d(p,q)=d(q,p)=(q1−p1
)2+(q2−p2)2+⋯+(qn−pn)2=i=1∑n(qi−pi)2

 
Figure – 
Euclidean Distance 
2. Manhattan Distance: 
This determines the absolute difference among the pair of the coordinates. Suppose we have 
two points P and Q to determine the distance between these points we simply have to 
calculate the perpendicular distance of the points from X-Axis and Y-Axis. In a plane with P 



at coordinate (x1, y1) and Q at (x2, y2). Manhattan distance between P and Q = |x1 – x2| + 
|y1 – y2| 

 
Here the total distance of the Red line gives the Manhattan distance between both the points. 
3. Jaccard Index: 
The Jaccard distance measures the similarity of the two data set items as the intersection 
of those items divided by the union of the data items. 
J(A,B)=∣A∩B∣∣A∪B∣=∣A∩B∣∣A∣+∣B∣−∣A∩B∣J(A,B)=∣A∪B∣∣A∩B∣=∣A∣+∣B∣−∣A∩B∣∣A∩B∣

 
Figure – 
Jaccard Index 
4. Minkowski distance: 
It is the generalized form of the Euclidean and Manhattan Distance Measure. In an 
N-dimensional space, a point is represented as, 
(x1, x2, ..., xN)  
Consider two points P1 and P2: 



P1: (X1, X2, ..., XN) 
P2: (Y1, Y2, ..., YN)  
Then, the Minkowski distance between P1 and P2 is given as: 
(x1−y1)p+(x2−y2)p+…+(xN−yN)ppp(x1−y1)p+(x2−y2)p+…+(xN−yN)p 
 When p = 2, Minkowski distance is same as the Euclidean distance. 
 When p = 1, Minkowski distance is same as the Manhattan distance. 
5. Cosine Index: 
Cosine distance measure for clustering determines the cosine of the angle between two 
vectors given by the following formula. 
sim (A,B)=cos (θ)=A⋅B∥A∥B∥sim(A,B)=cos(θ)=∥A∥B∥A⋅B 
Here ( theta ) gives the angle between two vectors and A, B are n-dimensional vectors. 

 
Non-Metric Similarity Functions: 

 Definition: 
These functions measure similarity or dissimilarity but do not necessarily 
satisfy all the axioms of a metric space, particularly the triangle inequality.  

 Examples: 
 Cosine similarity: Measures the cosine of the angle between two vectors, 

focusing on the direction rather than the magnitude.  
 Jaccard index: Measures the similarity between two sets by calculating the 

ratio of the size of their intersection to the size of their union.  
 Squared Euclidean distance: The square of the Euclidean distance, which 

is not a metric because it violates the triangle inequality.  
 Edit distance: The minimum number of edits (insertions, deletions, or 

substitutions) required to transform one string into another.  

Cosine Similarity 
Cosine similarity is the measure of similarity between two non-zero vectors widely 
applied in many machine learning and data analysis applications. It actually 
measures the cosine of the angle between two vectors. As a result, an idea is given 
about how far the two vectors point in the same direction irrespective of their 
magnitudes. It can be found in popular usage in tasks of text analysis, such as 
comparison of similarity between documents, search queries, and even 
recommendation systems so that user preferences can be matched. 



Similarity measure refers to distance with dimensions representing features of the 
data object, in a dataset. If this distance is less, there will be a high degree of 
similarity, but when the distance is large, there will be a low degree of similarity. 
Some of the popular similarity measures are given below: 
1. Euclidean Distance 
2. Manhattan Distance 
3. Jaccard Similarity 
4. Minkowski Distance 
5. Cosine Similarity 

What is Cosine Similarity? 
Cosine similarity is a metric, helpful in determining, how similar the data objects 
are irrespective of their size. We can measure the similarity between two sentences 
in Python using Cosine Similarity. In cosine similarity, data objects in a dataset are 
treated as a vector. The formula to find the cosine similarity between two vectors is 
– 
SCSC(x, y) = x . y / ||x|| ×× ||y|| 
where, 
 x . y = product (dot) of the vectors ‘x’ and ‘y’. 
 ||x|| and ||y|| = length (magnitude) of the two vectors ‘x’ and ‘y’. 
 ||x|| ×× ||y|| = regular product of the two vectors ‘x’ and ‘y’. 
Example 
Consider an example to find the similarity between two vectors – ‘x’ and ‘y’, using 
Cosine Similarity. The ‘x’ vector has values, x = { 3, 2, 0, 5 } The ‘y’ vector has 
values, y = { 1, 0, 0, 0 } The formula for calculating the cosine similarity is : SCSC

(x, y) = x . y / ||x|| ×× ||y|| 
x . y = 3*1 + 2*0 + 0*0 + 5*0 = 3 
 
||x|| = √ (3)^2 + (2)^2 + (0)^2 + (5)^2 = 6.16 
 
||y|| = √ (1)^2 + (0)^2 + (0)^2 + (0)^2 = 1 
 
∴ SCSC(x, y) = 3 / (6.16 * 1) = 0.49  
The dissimilarity between the two vectors ‘x’ and ‘y’ is given by – 
∴ DCDC(x, y) = 1 - SCSC(x, y) = 1 - 0.49 = 0.51 
 The cosine similarity between two vectors is measured in ‘θ’. 
 If θ = 0°, the ‘x’ and ‘y’ vectors overlap, thus proving they are similar. 
 If θ = 90°, the ‘x’ and ‘y’ vectors are dissimilar. 



 
Cosine Similarity between two vectors 

Advantages 
 The cosine similarity is beneficial because even if the two similar data objects 

are far apart by the Euclidean distance because of the size, they could still have 
a smaller angle between them. Smaller the angle, higher the similarity. 

 When plotted on a multi-dimensional space, the cosine similarity captures the 
orientation (the angle) of the data objects and not the magnitude. 

Disadvantages 
 Sensitive to Sparse Data: Cosine similarity may not be effective when applied 

to the sparse data wherein many of its components are zero in the vectors. For 
that, other similarities would work better. 

 Does Not Account for Absolute Differences: Cosine similarity only considers 
the angle between vectors and not their magnitude; hence, this may miss out on 
differences in magnitude, which, in certain contexts, may well be relevant 

 Symmetry: Cosine similarity is symmetric, which simply means that it cannot 
differentiate between the order of comparison. For some tasks, this may not be 
desirable since directionality may be relevant. 

 Not Applicable for Negative Values: Cosine similarity may not generally be 
applicable in datasets containing negative values, as misleading results can be 
obtained, or the angle between vectors interpretation becomes problematic. 

Conclusion 
Cosine similarity is also one of the approaches that are widely used as vector 
metrics in the field of text analysis and information retrieval. Cosine similarity has 
many advantages over the other measures of similarities – it is simple and efficient 
and can be treated with high-dimensional data. 

How to Calculate Jaccard Similarity in 
Python 
In Data Science, Similarity measurements between the two sets are a crucial task. 
Jaccard Similarity is one of the widely used techniques for similarity 
measurements in machine learning, natural language processing and 



recommendation systems. This article explains what Jaccard similarity is, why it is 
important, and how to compute it with Python. 

What is Jaccard Similarity? 
Jaccard Similarity also known as Jaccard index, is a statistic to measure the 
similarity between two data sets. It is measured as the size of the intersection of 
two sets divided by the size of their union. 
For example: Given two sets A and B, their Jaccard Similarity is provided by, 
 

 
Jaccard Similarity 

 
Where: 
 is the cardinality (size) of the intersection of sets A and B. 
 is the cardinality (size) of the union of sets A and B. 
Jaccard Similarity is also known as the Jaccard index or Jaccard coefficient, its 
values lie between 0 and 1. where 0 means no similarity and the values get closer 
to 1 means increasing similarity 1 means the same datasets. 

Euclidean Distance 
Euclidean Distance is defined as the distance between two points in Euclidean 
space. To find the distance between two points, the length of the line segment that 
connects the two points should be measured. 
In this article, we will explore what is Euclidean distance, the Euclidean 
distance formula, its Euclidean distance formula derivation, Euclidean 
distance examples, etc. 

What is Euclidean Distance? 
Euclidean distance is a measure of the straight-line distance between two points 
in Euclidean space. It is the most common and familiar distance metric, often 
referred to as the "ordinary" distance. 
Euclidean Distance gives the distance between any two points in an n-
dimensional plane. Euclidean distance between two points in the Euclidean space 
is defined as the length of the line segment joining the two points. 
Euclidean distance is like measuring the straightest and shortest path between 
two points. Imagine you have a string and you stretch it tight between two points 
on a map; the length of that string is the Euclidean distance. It tells you how far 



apart the two points are without any turns or bends, just like a bird would fly 
directly from one spot to another. This metric is based on the Pythagorean 
theorem and is widely utilized in various fields such as machine learning, data 
analysis, computer vision, and more. 
Table of Content 
 What is Euclidean Distance? 
 Euclidean Distance Formula 

o Euclidean Distance in 3D 
o Euclidean Distance in nD 

 Euclidean Distance Formula Derivation 
 Euclidean Distance and Manhattan Distance 
 Solved Questions on Euclidean Distance 
 Practice Problems on Euclidean Distance 
 

Euclidean Distance Formula 
Consider two points (x1, y1) and (x2, y2) in a 2-dimensional space; the Euclidean 
Distance between them is given by using the formula: 

d = √[(x2 - x1)2 + (y2 - y1)2] 
Where, 
 d is Euclidean Distance 
 (x1, y1) is Coordinate of the first point 
 (x2, y2) is Coordinate of the second point 
Euclidean Distance in 3D 
If the two points (x1, y1, z1) and (x2, y2, z2) are in a 3-dimensional space, the 
Euclidean Distance between them is given by using the formula: 

d = √[(x2 - x1)2 + (y2 - y1)2+ (z2 - z1)2] 
where, 
 d is Euclidean Distance 
 (x1, y1, z1) is Coordinate of the first point 
 (x2, y2, z2) is Coordinate of the second point 
Euclidean Distance in nD 
In general, the Euclidean Distance formula between two points (x11, x12, x13, ...., 
x1n) and (x21, x22, x23, ...., x2n) in an n-dimensional space is given by the formula: 

d = √[∑(x2i – x1i)2] 
Where, 
 i Ranges from 1 to n 
 d is Euclidean distance 
 (x11, x12, x13, ...., x1n) is Coordinate of First Point 
 (x21, x22, x23, ...., x2n) is Coordinate of Second Point 

Euclidean Distance Formula Derivation 
Euclidean Distance Formula is derived by following the steps added below: 
Step 1: Let us consider two points, A (x1, y1) and B (x2, y2), and d is the distance 
between the two points. 



Step 2: Join the points using a straight line (AB). 
Step 3: Now, let us construct a right-angled triangle whose hypotenuse is AB, as 
shown in the figure below. 
 
 
Step4: Now, using Pythagoras theorem we know that, 

(Hypotenuse)2 = (Base)2 + (Perpendicular)2 
⇒ d2 = (x2 – x1)2 + (y2 – y1)2 
Now, take the square root on both sides of the equation, we get 

d = √(x2 – x1)2 + (y2 – y1)2 
 

 
Proximity Between Binary Patterns 
Proximity measures for binary attributes 

Here’s the sequence of steps to calculate proximity measures for binary 
attributes: 

Step 1: Data representation 

Suppose we have a table with the students’ names corresponding to their 
end-semester results, showing whether they’ve passed or failed the specific 
courses. We want to see similarities or dissimilarities among students. Pass 
is represented by P, and the fail is represented by F. 

Tabular Data 
Student Name English Mathematics Physics Databases Chemistry Biology 

John P P F P F P 
David P P P F F P 
Robert F P F P P F 

Lisa P F P F P F 
William F F F P F F 

Step 2: Binary representation of data 

Now, the next step is to convert the data into binary format. Since we have 
two attributes: pass and fail. Our example represents pass (P) as 1 and fail 
(F) as 0. The updated table looks like this: 

Binary Data 
Student Name English Mathematics Physics Databases Chemistry Biology 



John 1 1 0 1 0 1 
David 1 1 1 0 0 1 
Robert 0 1 0 1 1 0 

Lisa 1 0 1 0 1 0 
William 0 0 0 1 0 0 

Step 3: Proximity measure selection 

We first have to see if our data is symmetric: attributes that treat 0s and 1s 
equally, e.g., In our case, gender is a symmetric attribute because there’s no 
inherent preference or value associated with one gender over the other; 
both male and female are treated equally in the dataset. Conversely, 
asymmetric attributes, where 0s and 1s hold different meanings, e.g., 
subjects and pass/fail outcomes, are asymmetric because ‘fail’ (0) often 
holds greater significance than ‘pass’ (1) in contexts like academic grading. 
We employ two distinct formulas for proximity measures for these 
attributes. 

Symmetric attributes 

For symmetric attributes, we have two objects (students in our case) and 
want to check the dissimilarity between their results. Let the two students 
be student mm and student nn. We have the formula: 
d(m,n)=b+ca+b+c+e.d(m,n)=a+b+c+eb+c. 

where 
a→{m:1,n:1}.a→{m:1,n:1}. 

The value of aa equals the number of all the courses the 
students mm and nn both have passed. 
b→{m:1,n:0}b→{m:1,n:0} 

The value of bb equals the number of all the courses where the 
student mm has passed and nn has failed. 
c→{m:0,n:1}c→{m:0,n:1} 

The value of cc equals the number of all the courses where the 
student mm has failed, and nn has passed. 
e→{m:0,n:0}e→{m:0,n:0} 

The value of ee equals the number of all the courses where the 
students mm and nn both have failed. 



Asymmetric attributes 

Suppose we have student mm and student nn for asymmetric attributes. 
Then the formula is: 
d(m,n)=b+ca+b+c.d(m,n)=a+b+cb+c. 

Step 4: Dissimilarity calculation 

As in our case, we only have asymmetric attributes, so we’ll use that 
formula. 

Let’s calculate the dissimilarity for the pair, John and David. 
 aa = 3 as both have passed English, Mathematics, and Biology 

courses. 
 bb = 1 as John has passed the Databases course, and David has failed 

that. 
 cc = 1 as John failed the Physics course, and David passed that. 
 ee = 1 as both have failed in the Chemistry course. 

So the dissimilarity is: 
d(m,n)=1+13+1+1=25=0.4d(m,n)=3+1+11+1=52=0.4 

Let’s calculate the dissimilarity for the pair, Robert and William. 
 aa = 1 as both have passed the Databases course. 
 bb = 2 as Robert has passed the Chemistry and Mathematics courses, 

and William has failed those. 
 cc = 0 (we have no such case here). 
 ee = 3 as both have failed in the English, Physics, and Biology 

courses. 

So the dissimilarity is: 
d(m,n)=2+01+2+0=23=0.667d(m,n)=1+2+02+0=32=0.667 

Similarly, after calculating the dissimilarity between the rest of the pairs, we 
get the following table: 

Pair Dissimilarity 
John, David 0.4 
John, Robert 0.6 

John, Lisa 0.83 
John, William 0.75 
David, Robert 0.83 

David, Lisa 0.6 



David, William 1.0 
Robert, Lisa 0.8 

Robert, William 0.67 
Lisa, William 1.0 

Most dissimilar pairs (highest dissimilarity scores) 
 David and William (dissimilarity score: 1.0) 
 Lisa and William (dissimilarity score: 1.0) 

Moderately dissimilar pairs 
 John and Lisa (dissimilarity score: 0.83) 
 David and Robert (dissimilarity score: 0.83) 
 Robert and Lisa (dissimilarity score: 0.8) 
 John and William (dissimilarity score: 0.75) 

Moderately similar pairs 
 David and Lisa (dissimilarity score: 0.6) 
 Robert and William (dissimilarity score: 0.67) 
 John and Robert (dissimilarity score: 0.6) 

Most similar pairs (lowest dissimilarity score) 
 John and David (dissimilarity score: 0.4) 

Let’s quickly test your understanding of proximity measures for binary 
attributes. 

Different Classification Algorithms Based on 
the Distance Measures 
Several classification algorithms rely on distance measures to determine 
the similarity or dissimilarity between data points, aiding in the classification 
process. These include K-Nearest Neighbors (KNN), which classifies data 
based on the nearest neighbors, and Support Vector Machines (SVMs), 
which aim to maximize the distance between classes. Other algorithms like 
Naive Bayes also use distance metrics to find the closest feature.  

Here's a more detailed look: 

1. K-Nearest Neighbors (KNN): 

 KNN is a simple algorithm that classifies new data based on its proximity to existing data 

points in a training set.  

 It calculates the distance between a new data point and all existing data points and selects 

the k nearest neighbors.  



 The new data point is then classified based on the majority class among its k nearest 

neighbors.  

 Common distance metrics used in KNN include Euclidean distance, Manhattan distance, 

and Minkowski distance.  

2. Support Vector Machines (SVMs): 

 SVMs aim to find an optimal hyperplane that separates data points into different classes, 

maximizing the margin between them. 

 The distance between the hyperplane and the nearest data points (support vectors) is crucial 

in SVM classification. 

 SVMs can be used for both linear and non-linear classification problems.  

3. Naive Bayes: 

 Naive Bayes is a probabilistic classifier that uses Bayes' theorem to classify data. 

 It relies on the assumption that the features are independent of each other. 

 Distance metrics, like Euclidean distance or cosine similarity, can be used to find the closest 

feature when calculating probabilities.  

4. Other Distance-Based Algorithms: 

 K-means clustering: 

This algorithm is used for unsupervised learning, where it groups data points into clusters 

based on their proximity to cluster centroids.  

 Decision trees: 

While not solely relying on distance, decision trees can use distance metrics to split data 

based on features, contributing to the classification process.  

 Random Forest: 
This ensemble method combines multiple decision trees, and each tree can use distance 

metrics for splitting data, according to a resource on Towards Data Science.  

Common Distance Metrics: 

 Euclidean distance: Calculates the straight-line distance between two points.  

 Manhattan distance: Calculates the distance between two points by summing the absolute 

differences of their coordinates.  

 Minkowski distance: A generalization of Euclidean and Manhattan distances.  

 Cosine similarity: Measures the similarity between two vectors by calculating the cosine of 

the angle between them.  



 Hamming distance: Measures the dissimilarity between two binary strings by counting the 

number of positions where they differ.  

 
K-Nearest Neighbor(KNN)  

K-Nearest Neighbors (KNN) is a simple way to classify things by looking at 
what’s nearby. Imagine a streaming service wants to predict if a new user is 
likely to cancel their subscription (churn) based on their age. They checks the 
ages of its existing users and whether they churned or stayed. If most of the “K” 
closest users in age of new user canceled their subscription KNN will predict the 
new user might churn too. The key idea is that users with similar ages tend to 
have similar behaviors and KNN uses this closeness to make decisions. 
Getting Started with K-Nearest Neighbors 
K-Nearest Neighbors is also called as a lazy learner algorithm because it does not 
learn from the training set immediately instead it stores the dataset and at the time 
of classification it performs an action on the dataset. 
As an example, consider the following table of data points containing two features: 

 

KNN Algorithm working visualization 

The new point is classified as Category 2 because most of its closest neighbors are 
blue squares. KNN assigns the category based on the majority of nearby points. 
The image shows how KNN predicts the category of a new data point based on its 
closest neighbours. 
 The red diamonds represent Category 1 and the blue 

squares represent Category 2. 
 The new data point checks its closest neighbours (circled points). 
 Since the majority of its closest neighbours are blue squares (Category 2) KNN 

predicts the new data point belongs to Category 2. 
KNN works by using proximity and majority voting to make predictions. 
What is ‘K’ in K Nearest Neighbour ? 
In the k-Nearest Neighbours (k-NN) algorithm k is just a number that tells the 
algorithm how many nearby points (neighbours) to look at when it makes a 
decision. 



Example: 
Imagine you’re deciding which fruit it is based on its shape and size. You compare 
it to fruits you already know. 
 If k = 3, the algorithm looks at the 3 closest fruits to the new one. 
 If 2 of those 3 fruits are apples and 1 is a banana, the algorithm says the new 

fruit is an apple because most of its neighbours are apples. 
How to choose the value of k for KNN Algorithm? 
The value of k is critical in KNN as it determines the number of neighbors to 
consider when making predictions. Selecting the optimal value of k depends on the 
characteristics of the input data. If the dataset has significant outliers or noise a 
higher k can help smooth out the predictions and reduce the influence of noisy 
data. However choosing very high value can lead to underfitting where the 
model becomes too simplistic. 
Statistical Methods for Selecting k: 
 Cross-Validation: A robust method for selecting the best k is to perform k-

fold cross-validation. This involves splitting the data into k subsets training the 
model on some subsets and testing it on the remaining ones and repeating this 
for each subset. The value of k that results in the highest average validation 
accuracy is usually the best choice. 

 Elbow Method: In the elbow method we plot the model’s error rate or 
accuracy for different values of k. As we increase k the error usually decreases 
initially. However after a certain point the error rate starts to decrease more 
slowly. This point where the curve forms an “elbow” that point is considered as 
best k. 

 Odd Values for k: It’s also recommended to choose an odd value for k 
especially in classification tasks to avoid ties when deciding the majority class. 

Distance Metrics Used in KNN Algorithm 
KNN uses distance metrics to identify nearest neighbour, these neighbours are 
used for classification and regression task. To identify nearest neighbour we use 
below distance metrics: 
1. Euclidean Distance 
Euclidean distance is defined as the straight-line distance between two points in a 
plane or space. You can think of it like the shortest path you would walk if you 
were to go directly from one point to another. 
distance(x,Xi)=∑j=1d(xj–Xij)2]distance(x,Xi)=∑j=1d(xj–Xij)2] 
2. Manhattan Distance 
This is the total distance you would travel if you could only move along horizontal 
and vertical lines (like a grid or city streets). It’s also called “taxicab distance” 
because a taxi can only drive along the grid-like streets of a city. 

d(x,y)=∑i=1n∣xi−yi∣d(x,y)=∑i=1n∣xi−yi∣ 
3. Minkowski Distance 
Minkowski distance is like a family of distances, which includes 
both Euclidean and Manhattan distances as special cases. 

d(x,y)=(∑i=1n(xi−yi)p)1pd(x,y)=(∑i=1n(xi−yi)p)p1 



From the formula above we can say that when p = 2 then it is the same as the 
formula for the Euclidean distance and when p = 1 then we obtain the formula for 
the Manhattan distance. 
So, you can think of Minkowski as a flexible distance formula that can look like 
either Manhattan or Euclidean distance depending on the value of p 
Working of KNN algorithm 
Thе K-Nearest Neighbors (KNN) algorithm operates on the principle of similarity 
where it predicts the label or value of a new data point by considering the labels or 
values of its K nearest neighbors in the training dataset. 

 

Step-by-Step explanation of how KNN works is discussed below: 
Step 1: Selecting the optimal value of K 
 K represents the number of nearest neighbors that needs to be considered while 

making prediction. 
Step 2: Calculating distance 
 To measure the similarity between target and training data points Euclidean 

distance is used. Distance is calculated between data points in the dataset and 
target point. 

Step 3: Finding Nearest Neighbors 
 The k data points with the smallest distances to the target point are nearest 

neighbors. 
Step 4: Voting for Classification or Taking Average for Regression 
 When you want to classify a data point into a category (like spam or not spam), 

the K-NN algorithm looks at the K closest points in the dataset. These closest 
points are called neighbors. The algorithm then looks at which category the 
neighbors belong to and picks the one that appears the most. This is 
called majority voting. 

 In regression, the algorithm still looks for the K closest points. But instead of 
voting for a class in classification, it takes the average of the values of those K 
neighbors. This average is the predicted value for the new point for the 
algorithm. 

 
 



 

Working of KNN Algorithm 

It shows how a test point is classified based on its nearest neighbors. As the test 
point moves the algorithm identifies the closest ‘k’ data points i.e 5 in this case and 
assigns test point the majority class label that is grey label class here. 
Applications of the KNN Algorithm 
Here are some real life applications of KNN Algorithm. 
 Recommendation Systems: Many recommendation systems, such as those 

used by Netflix or Amazon, rely on KNN to suggest products or content. KNN 
observes at user behavior and finds similar users. If user A and user B have 
similar preferences, KNN might recommend movies that user A liked to user B. 

 Spam Detection: KNN is widely used in filtering spam emails. By comparing 
the features of a new email with those of previously labeled spam and non-
spam emails, KNN can predict whether a new email is spam or not. 

 Customer Segmentation: In marketing firms, KNN is used to segment 
customers based on their purchasing behavior . By comparing new customers to 
existing customers, KNN can easily group customers into segments with similar 
choices and preferences. This helps businesses target the right customers with 
right products or advertisements. 

 Speech Recognition: KNN is often used in speech recognition systems to 
transcribe spoken words into text. The algorithm compares the features of the 
spoken input with those of known speech patterns. It then predicts the most 
likely word or command based on the closest matches. 

Advantages and Disadvantages of the KNN Algorithm 
Advantages: 
 Easy to implement: The KNN algorithm is easy to implement because its 

complexity is relatively low as compared to other machine learning algorithms. 
 No training required: KNN stores all data in memory and doesn’t require any 

training so when new data points are added it automatically adjusts and uses the 
new data for future predictions. 

 Few Hyperparameters: The only parameters which are required in the training 
of a KNN algorithm are the value of k and the choice of the distance metric 
which we would like to choose from our evaluation metric. 



 Flexible: It works for Classification problem like is this email spam or 
not? and also work for Regression task like predicting house prices based on 
nearby similar houses. 

Disadvantages: 
 Doesn’t scale well: KNN is considered as a “lazy” algorithm as it is very slow 

especially with large datasets 
 Curse of Dimensionality: When the number of features increases KNN 

struggles to classify data accurately a problem known as curse of 
dimensionality. 

 Prone to Overfitting: As the algorithm is affected due to the curse of 
dimensionality it is prone to the problem of overfitting as well 

r-Nearest neighbors 
r-Nearest neighbors are a modified version of the k-nearest neighbors. The issue 
with k-nearest neighbors is the choice of k. With a smaller k, the classifier would 
be more sensitive to outliers. If the value of k is large, then the classifier would be 
including many points from other classes. It is from this logic that we get the r near 
neighbors algorithm.  
Intuition:  
Consider the following data, as the training set. 

   

The green color points belong to class 0 and the red color points belong to class 1. 
Consider the white point P as the query point whose 



  

If we take the radius of the circle as 2.2 units and if a circle is drawn using the 
point P as the center of the circle, the plot would be as follows 

   

As the number of points in the circle belonging to class 1 (5 points) is greater than 
the number of points belonging to class 0 (2 points)  

Algorithm: 
Step 1: Given the point P, determine the sub-set of data that lies in the ball of 
radius r centered at P, 

Br (P) = { Xi ∊ X | dist( P, Xi ) ≤ r } 

Step 2: If Br (P) is empty, then output the majority class of the entire data set.  
Step 3: If Br (P) is not empty, output the majority class of the data points in it. 

K-Nearest Neighbors (KNN) Regression with 
Scikit-Learn 



K-Nearest Neighbors (KNN) is one of the simplest and most intuitive 
machine learning algorithms. While it is commonly associated with 
classification tasks, KNN can also be used for regression. 
This article will delve into the fundamentals of KNN regression, how 
it works, and how to implement it using Scikit-Learn, a popular 
machine learning library in Python. 
What is KNN Regression? 
KNN regression is a non-parametric method used for predicting 
continuous values. The core idea is to predict the target value for a new 
data point by averaging the target values of the K nearest neighbors in the 
feature space. The distance between data points is typically measured 
using Euclidean distance, although other distance metrics can be used. 
How KNN Regression Works 
1. Choosing the number of neighbors (K): The initial step involves 

selecting the number of neighbors, K. This choice greatly affects the 
model's performance. A smaller value of K makes the model more 
prone to noise, whereas a larger value of K results in smoother 
predictions. 

2. Calculating distances: For a new data point, calculate the distance 
between this point and all points in the training set. 

3. Finding K nearest neighbors: Identify the K points in the training set 
that are closest to the new data point. 

4. Predicting the target value: Compute the average of the target values 
of the K nearest neighbors and use this as the predicted value for the 
new data point. 

Implementing KNN Regression with Scikit-Learn using Synthetic 
Dataset 
Let's go through a practical example of implementing KNN regression 
using Scikit-Learn. We will use a synthetic dataset for demonstration 
purposes. 
Step 1: Import Libraries 
In this step, we import the necessary libraries for generating the dataset, 
splitting the data, training the KNN model, evaluating the model, and 
visualizing the results. 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.datasets import make_regression 
from sklearn.model_selection import train_test_split 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.metrics import mean_squared_error, r2_score 
Step 2: Generate Synthetic Dataset 
Here, we generate a synthetic dataset using Scikit-
Learn's make_regression function. This function creates a regression 
problem with a specified number of samples, features, and noise level. 



# Generate synthetic dataset 
X, y = make_regression(n_samples=200, n_features=1, noise=0.1, 
random_state=42) 
Step 3: Split the Dataset 
We split the dataset into training and testing sets using 
the train_test_split function. This step ensures that we have separate 
data for training the model and evaluating its performance. 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.2, random_state=42) 
Step 4: Create and Train the KNN Regressor 
In this step, we create an instance of the KNeighborsRegressor with a 
specified number of neighbors (K=5). We then train the model using the 
training data. 
# Create and train the KNN regressor 
knn_regressor = KNeighborsRegressor(n_neighbors=5) 
knn_regressor.fit(X_train, y_train) 
Step 5: Make Predictions 
We use the trained KNN regressor to make predictions on the test data. 
# Make predictions on the test data 
y_pred = knn_regressor.predict(X_test) 
Step 6: Evaluate the Model 
Here, we evaluate the model's performance using the Mean Squared 
Error (MSE) and R-squared (R²) metrics. These metrics help us 
understand how well the model is performing. 
# Evaluate the model 
mse = mean_squared_error(y_test, y_pred) 
r2 = r2_score(y_test, y_pred) 
 
print(f'Mean Squared Error: {mse}') 
print(f'R-squared: {r2}') 
Step 7: Visualize the Results 
Finally, we visualize the actual and predicted values using a scatter plot. 
This step helps us visually assess the model's performance. 
# Visualize the results 
plt.scatter(X_test, y_test, color='blue', label='Actual') 
plt.scatter(X_test, y_pred, color='red', label='Predicted') 
plt.title('KNN Regression') 
plt.xlabel('Feature') 
plt.ylabel('Target') 
plt.legend() 
plt.show() 
Complete Code 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.datasets import make_regression 
from sklearn.model_selection import train_test_split 



from sklearn.neighbors import KNeighborsRegressor 
from sklearn.metrics import mean_squared_error, r2_score 
 
# Generate synthetic dataset 
X, y = make_regression(n_samples=200, n_features=1, noise=0.1, 
random_state=42) 
 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create and train the KNN regressor 
knn_regressor = KNeighborsRegressor(n_neighbors=5) 
knn_regressor.fit(X_train, y_train) 
 
# Make predictions on the test data 
y_pred = knn_regressor.predict(X_test) 
 
# Evaluate the model 
mse = mean_squared_error(y_test, y_pred) 
r2 = r2_score(y_test, y_pred) 
 
print(f'Mean Squared Error: {mse}') 
print(f'R-squared: {r2}') 
 
# Visualize the results 
plt.scatter(X_test, y_test, color='blue', label='Actual') 
plt.scatter(X_test, y_pred, color='red', label='Predicted') 
plt.title('KNN Regression') 
plt.xlabel('Feature') 
plt.ylabel('Target') 
plt.legend() 
plt.show() 
Output: 
Mean Squared Error: 133.62045142000457 
R-squared: 0.9817384115764595 



 

KNN Regression 

Implementing KNN Regression with Scikit-Learn using Diabetes 
Dataset 
Let's use the diabetes dataset to perform KNN regression using the 
following steps: 
Step 1: Import Libraries 
In this step, we import the necessary libraries for loading the dataset, 
splitting the data, training the KNN model, evaluating the model, and 
visualizing the results. 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.datasets import load_diabetes 
from sklearn.model_selection import train_test_split 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.metrics import mean_squared_error, r2_score 
from sklearn.preprocessing import StandardScaler 
Step 2: Load the Dataset 
Here, we load the Diabetes dataset using Scikit-
Learn's load_diabetes function. This dataset includes ten baseline 
variables and a target variable representing the disease progression. 
# Load the Diabetes dataset 
diabetes = load_diabetes() 
X = diabetes.data 
y = diabetes.target 
 
# Print dataset description 
print(diabetes.DESCR) 
Step 3: Split the Dataset 



We split the dataset into training and testing sets using 
the train_test_split function. This step ensures that we have separate 
data for training the model and evaluating its performance. 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.2, random_state=42) 
Step 4: Standardize the Features 
In this step, we standardize the features using StandardScaler. 
Standardization ensures that each feature has a mean of 0 and a 
standard deviation of 1, which helps improve the performance of the KNN 
algorithm. 
# Standardize the features 
scaler = StandardScaler() 
X_train = scaler.fit_transform(X_train) 
X_test = scaler.transform(X_test) 
Step 5: Create and Train the KNN Regressor 
We create an instance of the KNeighborsRegressor with a specified 
number of neighbors (K=5) and train the model using the training data. 
# Create and train the KNN regressor 
knn_regressor = KNeighborsRegressor(n_neighbors=5) 
knn_regressor.fit(X_train, y_train) 
Step 6: Make Predictions 
We use the trained KNN regressor to make predictions on the test data. 
# Make predictions on the test data 
y_pred = knn_regressor.predict(X_test) 
Step 7: Evaluate the Model 
Here, we evaluate the model's performance using the Mean Squared 
Error (MSE) and R-squared (R²) metrics. These metrics help us 
understand how well the model is performing. 
# Evaluate the model 
mse = mean_squared_error(y_test, y_pred) 
r2 = r2_score(y_test, y_pred) 
 
print(f'Mean Squared Error: {mse}') 
print(f'R-squared: {r2}') 
Step 8: Visualize the Results 
Finally, we visualize the actual and predicted values using a scatter plot. 
This step helps us visually assess the model's performance. 
# Visualize the results 
plt.figure(figsize=(10, 6)) 
plt.scatter(y_test, y_pred, color='blue', label='Predicted vs 
Actual') 
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 
color='red', linewidth=2, label='Ideal fit') 
plt.title('KNN Regression: Predicted vs Actual') 
plt.xlabel('Actual Disease Progression') 



plt.ylabel('Predicted Disease Progression') 
plt.legend() 
plt.show() 
Complete Code 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.datasets import load_diabetes 
from sklearn.model_selection import train_test_split 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.metrics import mean_squared_error, r2_score 
from sklearn.preprocessing import StandardScaler 
 
# Load the Diabetes dataset 
diabetes = load_diabetes() 
X = diabetes.data 
y = diabetes.target 
 
# Print dataset description 
print(diabetes.DESCR) 
 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Standardize the features 
scaler = StandardScaler() 
X_train = scaler.fit_transform(X_train) 
X_test = scaler.transform(X_test) 
 
# Create and train the KNN regressor 
knn_regressor = KNeighborsRegressor(n_neighbors=5) 
knn_regressor.fit(X_train, y_train) 
 
# Make predictions on the test data 
y_pred = knn_regressor.predict(X_test) 
 
# Evaluate the model 
mse = mean_squared_error(y_test, y_pred) 
r2 = r2_score(y_test, y_pred) 
 
print(f'Mean Squared Error: {mse}') 
print(f'R-squared: {r2}') 
 
# Visualize the results 
plt.figure(figsize=(10, 6)) 
plt.scatter(y_test, y_pred, color='blue', label='Predicted vs Actual') 
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red', 
linewidth=2, label='Ideal fit') 
plt.title('KNN Regression: Predicted vs Actual') 
plt.xlabel('Actual Disease Progression') 
plt.ylabel('Predicted Disease Progression') 



plt.legend() 
plt.show() 
Output: 
Mean Squared Error: 3047.449887640449 
R-squared: 0.42480887066066253 

 

Regression in machine learning 
Regression in machine learning refers to a supervised learning technique where 
the goal is to predict a continuous numerical value based on one or more 
independent features. It finds relationships between variables so that predictions 
can be made. we have two types of variables present in regression: 
 Dependent Variable (Target): The variable we are trying to predict e.g house 

price. 
 Independent Variables (Features): The input variables that influence the 

prediction e.g locality, number of rooms. 
Regression analysis problem works with if output variable is a real or 
continuous value such as “salary” or “weight”. Many different regression 
models can be used but the simplest model in them is linear regression. 
Types of Regression 
Regression can be classified into different types based on the number of 
predictor variables and the nature of the relationship between variables: 
1. Simple Linear Regression 
Linear regression is one of the simplest and most widely used statistical models. 
This assumes that there is a linear relationship between the independent and 
dependent variables. This means that the change in the dependent variable is 
proportional to the change in the independent variables. For example predicting 
the price of a house based on its size. 
2. Multiple Linear Regression 



Multiple linear regression extends simple linear regression by using multiple 
independent variables to predict target variable. For example predicting the 
price of a house based on multiple features such as size, location, number of 
rooms, etc. 
3. Polynomial Regression 
Polynomial regression is used to model with non-linear relationships between 
the dependent variable and the independent variables. It adds polynomial terms 
to the linear regression model to capture more complex relationships. For 
example when we want to predict a non-linear trend like population growth over 
time we use polynomial regression. 
4. Ridge & Lasso Regression 
Ridge & lasso regression are regularized versions of linear regression that help 
avoid overfitting by penalizing large coefficients. When there’s a risk of 
overfitting due to too many features we use these type of regression algorithms. 
5. Support Vector Regression (SVR) 
SVR is a type of regression algorithm that is based on the Support Vector 
Machine (SVM) algorithm. SVM is a type of algorithm that is used for 
classification tasks but it can also be used for regression tasks. SVR works by 
finding a hyperplane that minimizes the sum of the squared residuals between 
the predicted and actual values. 
6. Decision Tree Regression 
Decision tree Uses a tree-like structure to make decisions where each branch of 
tree represents a decision and leaves represent outcomes. For example 
predicting customer behavior based on features like age, income, etc there we 
use decison tree regression. 
7. Random Forest Regression 
Random Forest is a ensemble method that builds multiple decision trees and 
each tree is trained on a different subset of the training data. The final prediction 
is made by averaging the predictions of all of the trees. For example customer 
churn or sales data using this. 
Regression Evaluation Metrics 
Evaluation in machine learning measures the performance of a model. Here are 
some popular evaluation metrics for regression: 
 Mean Absolute Error (MAE): The average absolute difference between the 

predicted and actual values of the target variable. 
 Mean Squared Error (MSE): The average squared difference between the 

predicted and actual values of the target variable. 
 Root Mean Squared Error (RMSE): Square root of the mean squared error. 
 Huber Loss: A hybrid loss function that transitions from MAE to MSE for 

larger errors, providing balance between robustness and MSE’s sensitivity to 
outliers. 

 R2 – Score: Higher values indicate better fit ranging from 0 to 1. 



Regression Model Machine Learning 
Let's take an example of linear regression. We have a Housing data set and we 
want to predict the price of the house. Following is the python code for it

 
1 

import matplotlib 
2 

matplotlib.use('TkAgg')  # General backend for plots 
3 

 import matplotlib.pyplot as plt 
5 

import numpy as np 
6 

from sklearn import datasets, linear_model 
7 

import pandas as pd 
8 

 # Load dataset 
10 

df = pd.read_csv("Housing.csv") 
11 

# Extract features and target variable 
13 

Y = df['price'] 
14 

X = df['lotsize'] 
15 

# Reshape for compatibility with scikit-learn 
17 

X = X.to_numpy().reshape(len(X), 1) 
18 

Y = Y.to_numpy().reshape(len(Y), 1) 
19 

# Split data into training and testing sets 
21 

X_train = X[:-250] 
22 

X_test = X[-250:] 
23 



Y_train = Y[:-250] 
24 

Y_test = Y[-250:] 
25 

 
26 

# Plot the test data 
27 

plt.scatter(X_test, Y_test, color='black') 
28 

plt.title('Test Data') 
29 

plt.xlabel('Size') 
30 

plt.ylabel('Price') 
31 

plt.xticks(()) 
32 

plt.yticks(()) 
33 

# Train linear regression model 
35 

regr = linear_model.LinearRegression() 
36 

regr.fit(X_train, Y_train) 
37 

# Plot predictions 
39 

plt.plot(X_test, regr.predict(X_test), color='red', linewidth=3) 
40 

plt.show() 
 
Output:  

 



 
Here in this graph we plot the test data. The red line indicates the best fit line for 
predicting the price. 
To make an individual prediction using the linear regression model:  
print("Predicted price for a lot size of 5000: " + 
str(round(regr.predict([[5000]])[0][0]))) 
Applications of Regression 
 Predicting prices: Used to predict the price of a house based on its size, 

location and other features. 
 Forecasting trends: Model to forecast the sales of a product based on 

historical sales data. 
 Identifying risk factors: Used to identify risk factors for heart patient based 

on patient medical data. 
 Making decisions: It could be used to recommend which stock to buy based 

on market data. 
Advantages of Regression 
 Easy to understand and interpret. 
 Robust to outliers. 
 Can handle both linear relationships easily. 
Disadvantages of Regression 
 Assumes linearity. 
 Sensitive to situation where two or more independent variables are highly 

correlated with each other i.e multicollinearity. 
 May not be suitable for highly complex relationships. 
Conclusion 
Regression in machine learning is a fundamental technique for predicting 
continuous outcomes based on input features. It is used in many real-world 
applications like price prediction, trend analysis and risk assessment. With its 
simplicity and effectiveness regression is used to understand relationships in 
data. 
 
 



1 
 

Decision Trees for Classification  
Decision trees are a popular supervised machine learning algorithm used for both classification and regression, where 
classification trees predict categorical outcomes by following a tree-like structure of decisions based on data features.  
Here's a more detailed explanation: 
Key Concepts: 
Tree Structure: 
Decision trees are visualized as a tree, with: 

Root Node: The starting point of the tree.  
Internal Nodes: Represent features or attributes used for making decisions.  
Branches: Represent possible outcomes or values of the feature.  
Leaf Nodes: Represent the final classification or prediction.  

Classification: 
In classification, each leaf node represents a class label, and the algorithm classifies an instance by following the 
branches from the root to a leaf node.  
Supervised Learning: 
Decision trees are a type of supervised learning algorithm, meaning they learn from labeled data to make 
predictions.  
Recursive Partitioning: 
Decision trees work by recursively partitioning the data into subsets based on feature values, creating a tree structure 
that represents the decision rules.  
Advantages: 

Interpretability: Decision trees are relatively easy to understand and interpret, making them suitable for 
explaining predictions.  
Handles both numerical and categorical data: Decision trees can handle both types of data without 
requiring much preprocessing.  
Can handle high-dimensional data: Decision trees can handle a large number of features with good 
accuracy.  

Disadvantages: 
Overfitting: Decision trees can be prone to overfitting, meaning they learn the training data too well and 
perform poorly on new, unseen data.  
Sensitivity to small variations in data: Small changes in the training data can lead to significant changes 
in the tree structure.  

Ensemble Methods: 
To address the limitations of individual decision trees, ensemble methods like Random Forests and Gradient 
Boosting are often used, which combine multiple trees to improve accuracy and robustness.  
Scikit-learn: 
The scikit-learn library provides a powerful implementation of decision tree algorithms, including 
the DecisionTreeClassifier class for classification tasks.  
1.10.1. Classification 
DecisionTreeClassifier is a class capable of performing multi-class classification on a dataset. 
As with other classifiers, DecisionTreeClassifier takes as input two arrays: an array X, sparse or dense, of 
shape (n_samples, n_features) holding the training samples, and an array Y of integer values, shape (n_samples,), 
holding the class labels for the training samples: 
>>> from sklearn import tree 
>>> X = [[0, 0], [1, 1]] 
>>> Y = [0, 1] 
>>> clf = tree.DecisionTreeClassifier() 
>>> clf = clf.fit(X, Y) 
After being fitted, the model can then be used to predict the class of samples: 
>>> clf.predict([[2., 2.]]) 
array([1]) 
In case that there are multiple classes with the same and highest probability, the classifier will predict the class with the 
lowest index amongst those classes. 
As an alternative to outputting a specific class, the probability of each class can be predicted, which is the fraction of 
training samples of the class in a leaf: 
>>> clf.predict_proba([[2., 2.]]) 
array([[0., 1.]]) 
DecisionTreeClassifier is capable of both binary (where the labels are [-1, 1]) classification and multiclass (where the 
labels are [0, …, K-1]) classification. 
Using the Iris dataset, we can construct a tree as follows: 
>>> from sklearn.datasets import load_iris 
>>> from sklearn import tree 
>>> iris = load_iris() 
>>> X, y = iris.data, iris.target 
>>> clf = tree.DecisionTreeClassifier() 
>>> clf = clf.fit(X, y) 
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Once trained, you can plot the tree with the plot_tree function: 
>>> tree.plot_tree(clf) 
[...] 

 
 
 

Impurity Measures 
Impurity measures are used in Decision Trees just like squared loss function in linear regression. We try to arrive at as 
lowest impurity as possible by the algorithm of our choice. Impurity is presence of more than one class in a subset of 
data. 
So all below mentioned measures differ in formula but align in goal. Watch till the end to know secret highlights of this 
topic. 
Remember this 

 
Make sure you understand that impurity measure is calculated for each leaf node, and its weighted average is the 
corresponding impurity measure for root node, based on which we say that this feature would become decision feature or 
not. 
Let’s take an example with Entropy and solve to see the exact formulation. 
Entropy 
The formula for impurity at leaf node is 

 
After taking weighted average for a feature, we need to check if this feature brings the most reduction in impurity. While 
using Entropy we do this by Information Gain 

 
where 
E(Y) should be Entropy before splitting the data over X 
E(Y|X) is Weighted Entropy after split over X 
Example: Consider the Contingency Table asdvv 
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This should be read as simply Horizontal division is of Liability class labels(Normal and High), while vertical division is 
that of Credit Rating(Excellent, Good, Poor). So the number 3 in table implies, that out of total 14 companies there were 
3 companies which got ‘Excellent rating’ and had ‘Normal Liability’. 
Calculation of Entropy for deciding if Credit Rating should be the first split. 
First calculate Entropy before splitting 

 
Next entropy over each Leaf node and then weighted average over credit rating split 

 
Note greater the entropy, worse is the current feature for split at present level. 
We now calculate information gain(Higher the better, or lower the conditional entropy) 

 
So we get 0.375 as the IG from Credit Rating as the metric for classification of data over liability status. If we had 
suppose stock price as a independent feature, we would have done the same thing for it as well. Then we would have 
compared the result for both, and one with higher information gain would have been our first decision variable for 
splitting. 
Now 
Impurity Reduction = G(Y) — G(Y|X)) 
Gini Index 
The formula for leaf node is 

 
After weighted average just like above, we calculate 

 
And one offering highest reduction is chosen as decision variable for splitting. 
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Classification Error 
The formula of leaf node is 

 
Often this is a rarely used one. 
Another less heard used ones are 
Gain Ratio 
The gain ratio “normalizes” the information gain 

 
Impurity measures such as entropy and Gini Index tend to favor attributes that have large number of distinct values. 
Therefore Gain Ratio is computed which is used to determine the goodness of a split. Every splitting criterion has their 
own significance and usage according to their characteristic and attributes type. 
Twoing Criteria 
The Gini Index may encounter problems when the domain of the target attribute is relatively wide. In this case it is 
possible to employ binary criterion called twoing criteria. This criterion is defined as: 

 
Where, p (i/t) denote the fraction of records belonging to class i at a given node t 

 
Little less I could find about it, have a look at this for more understanding. 
Highlights: 
Binary classification: These are primarily used for Binary split, i.e. two leaf nodes, however when multilevel split is 
there, we can convert them to Binary split like eg. for color(R, G, B) as R or G, B or G, R or B as splitting decision 
Impurity Index(like Information Gain, Gini Index) are concave functions, and we need to maximize the reduction in 
impurity. Note as below, graphically also they are Convex Functions. 
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3. Shapes of the above measures: Continuing from above figure the Impurity Index optimize the choice of feature for 
splitting but following different paths. Note Classification Error gives a straight line curve as opposed to Entropy or Gini 
Index. 

 
From this figure, we are trying to compare Entropy(or Gini) method with Classification Error. We are trying to compare 
Impurity before(Red mark)and after(Green dot) splitting. We want the vertical distance between these two points to 
maximize, so graphically it is quite intuitive that Classification error being straight Line leaves no space between these 
two points, however Entropy provides greater space over Gini Index. 
4. Difference in use when numerical features instead of categorical: Categorical is easy to follow, while in Numerical 
our work is just to find average of two corresponding observations(arranged in ascending) and then check the split’s 
entropy reduction taking each such average as a cutoff. The one providing the max reduction in impurity is chosen as 
cutoff value. 

 
 

Regression Based on Decision Trees 
Decision Tree Regression is a machine learning technique used to predict continuous numerical values by 
constructing a tree-like model. It works by splitting data based on features, creating nodes and branching 
paths until reaching leaf nodes that represent final predictions. These predictions can be the average value 
of the target variable within that leaf or a function mapping from the feature space to the target value.  

 
Key Concepts: 
Tree-like Structure: 
The model is structured like a tree, with internal nodes representing features and decision points, and leaf nodes 
representing predictions.  
Splitting Data: 
The algorithm splits the data based on features, aiming to create subsets where the target variable has the least 
variability.  
Leaf Node Predictions: 
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Predictions are made at the leaf nodes, which can be the average target value within that leaf or a function of the 
features.  
How it Works: 
1. Data Splitting: 
The algorithm starts with a root node containing the entire dataset. It then iteratively splits the data based on the best 
feature and split point, aiming to maximize the reduction in variance or other suitable impurity measures.  
2. Node Creation: 
Each split creates new nodes (child nodes) and branches, representing the split conditions.  
3. Recursive Splitting: 
This process continues recursively until a stopping criterion is met, such as reaching a maximum tree depth or when no 
further splits significantly improve the model.  
4. Leaf Node Predictions: 
The final leaf nodes represent the predicted values for the corresponding data subsets.  
Benefits: 
Interpretability: 
Decision trees are relatively easy to understand and interpret, making them useful for explaining prediction models. 
Non-linear Relationships: 
They can capture non-linear relationships in data, unlike linear regression models. 
Feature Importance: 
The algorithm can identify the importance of different features in making predictions.  
Limitations: 
Overfitting: 
Decision trees can be prone to overfitting, especially if the tree is too deep or complex. Pruning or using ensemble 
methods can help mitigate this.  
Sensitivity to Data: 
They can be sensitive to changes in the data, and the model can be unstable.  
Discrete Output: 
While decision trees can be used for regression, they are not ideal for continuous target variables.  

 
 
 

Bias–Variance Trade-off 
The bias-variance trade-off in machine learning refers to the inherent tension between a model's ability to fit 
the training data (low bias) and its ability to generalize to unseen data (low variance). The goal is to find a 
model that strikes a balance between these two, minimizing overall prediction error.  
Here's a more detailed explanation: 

 
Understanding Bias and Variance: 
Bias: 
Refers to the error introduced by making simplifying assumptions about the data or the model's structure. High bias 
means the model is too simple and cannot capture the underlying patterns in the data, leading to underfitting.  
Variance: 
Refers to the model's sensitivity to variations in the training data. High variance means the model is too complex and 
has learned the noise in the training data, leading to overfitting.  
The Trade-off: 
High Bias, Low Variance: 
A model with high bias is simple and consistent, but it may not accurately represent the data.  
Low Bias, High Variance: 
A model with low bias is complex and can fit the training data well, but it may not generalize well to unseen data.  
The Goal: 
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The goal is to find the sweet spot where the model is complex enough to capture the underlying patterns without 
overfitting to the noise in the training data.  
Why it matters: 
Generalization: 
The ability of a model to perform well on unseen data is crucial for real-world applications.  
Overfitting and Underfitting: 
Understanding the bias-variance trade-off helps avoid these common problems in machine learning.  
Model Selection: 
It guides the choice of model complexity and regularization techniques to achieve optimal performance.  
Examples: 
Underfitting: 
A linear regression model might have high bias and low variance if the relationship between the variables is not linear.  
Overfitting: 
A complex polynomial regression model might have low bias and high variance if it perfectly fits the training data but 
performs poorly on new data.  
Finding the Balance: 
Using techniques like regularization or cross-validation can help find the right balance between bias and variance.  
In summary, the bias-variance trade-off is a fundamental concept in machine learning that helps us build 
models that generalize well to unseen data by finding the optimal balance between model complexity and its 
ability to fit the training data.  

 
Random Forests for Classification and Regression 
 
Random forests are an ensemble learning method used for both classification and regression tasks, 
employing multiple decision trees to make predictions, with the final prediction being the mode of the classes 
(classification) or the average of the predictions (regression).  

 

 
Here's a more detailed explanation: 
What are Random Forests? 
Ensemble Method: 
Random forests are an ensemble learning method, meaning they combine multiple individual models (decision trees) 
to make predictions. 
Decision Trees: 
Each individual model in a random forest is a decision tree. 
Randomness: 
The "random" in "random forest" refers to the way the decision trees are constructed, with each tree being trained on a 
random subset of the data and a random subset of the features. 
Classification vs. Regression: 
Random forests can be used for both classification (predicting categorical outcomes) and regression (predicting 
continuous outcomes).  
How Random Forests Work: 
Training: 

The algorithm constructs multiple decision trees during training. 
Each tree is trained on a random subset of the training data (using bootstrapping) and a random subset of 
the features. 

Prediction: 
Classification: For classification tasks, the final prediction is the class that is the mode (most frequent) of 
the predictions from all the individual trees. 
Regression: For regression tasks, the final prediction is the average of the predictions from all the individual 
trees.  

Advantages of Random Forests: 
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High Accuracy: Random forests are known for their high accuracy and predictive power.  
Robustness: They are relatively robust to overfitting and can handle noisy data well.  
Feature Importance: Random forests can provide insights into the importance of different features in the data.  
Handles Missing Values: Random forests can handle missing values in the data without requiring preprocessing.  
Disadvantages of Random Forests: 
Computational Cost: 
Training random forests can be computationally expensive, especially for large datasets. 
Interpretability: 
Random forests are often considered "black box" models, meaning it can be difficult to understand why they make 
certain predictions. 
Parameter Tuning: 
The performance of random forests can depend on the choice of hyperparameters, which may require tuning.  
Applications: 
Classification: 

Spam detection. 
Medical diagnosis. 
Customer churn prediction. 

Regression: 
Predicting house prices. 
Forecasting stock prices. 
Estimating customer lifetime value.  

 
 

Introduction to the Bayes Classifier 
 
A Bayesian classifier, or more specifically a Naive Bayes classifier, is a type of probabilistic classifier based 
on Bayes' theorem. It's a supervised machine learning algorithm used to classify data by assigning it to the 
most likely class based on its features. The Naive Bayes classifier makes the simplifying assumption that 
features are conditionally independent, meaning the presence of one feature doesn't affect the presence of 
another.  
Here's a more detailed breakdown: 
Bayes' Theorem: 
The foundation of this classifier is Bayes' theorem, which describes the probability of an event based on prior 
knowledge of related conditions.  
Probabilistic Approach: 
Bayesian classifiers work by estimating the probability of a data point belonging to each class.  
Naïve Assumption: 
The term "naive" refers to the assumption that all features are independent of each other, given the class. This 
simplification makes the calculations easier and faster, while still achieving good performance in many cases.  
Classification Process: 
The classifier calculates the probability of each class given the input data and then assigns the data point to the class 
with the highest probability.  
Applications: 
Naive Bayes classifiers are widely used in various applications, including: 

Text classification: Identifying the topic or sentiment of a piece of text.  
Spam detection: Classifying emails as spam or not spam.  
Medical diagnosis: Predicting the likelihood of a disease based on symptoms.  
Weather prediction: Predicting the weather conditions based on various factors.  

Advantages: 
Simple to implement and understand.  
Requires less training data compared to other classifiers.  
Fast to train and predict.  
Works well with both continuous and categorical data.  

Limitations: 
The independence assumption can be unrealistic in some cases.  
Sensitive to irrelevant features.  

 
The Bayes Classifier:  

 
Introduction to the Bayes Classifier  

Bayesian classifiers are statistical classifiers, based on Bayes' theorem. They can predict 
class membership probabilities such as the probability that a given tuple belongs to a 
particular class. Naive Bayesian classifiers assume that all features in are mutually 
independent. 
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Bayes' Rule and Bayesian inference are fundamental concepts in probability and statistics, used to update 
beliefs about an event based on new evidence. Bayes' Rule provides the mathematical framework for this 
updating, while Bayesian inference is the process of applying that framework to draw conclusions about a 
model or hypothesis given observed data.  
Here's a more detailed explanation: 
 
Bayes' Rule: 
Bayes' Rule is a theorem that describes the probability of an event, given that another event has already occurred. It 
essentially provides a way to revise your prior beliefs about an event in light of new information.  
The formula for Bayes' Rule is: P(A|B) = [P(B|A) * P(A)] / P(B).  

P(A|B): The posterior probability of event A, given that event B has occurred (your updated belief).  
P(B|A): The likelihood of event B, given that event A is true (how likely the evidence is, assuming A is true).  
P(A): The prior probability of event A (your initial belief about A).  
P(B): The probability of event B (evidence).  

In simpler terms, Bayes' Rule tells you how to combine your prior knowledge with the new evidence to arrive at a more 
informed belief.  
Bayesian Inference: 
Bayesian inference is a statistical method that uses Bayes' Rule to update beliefs about parameters of a model given 
observed data.  
It involves assigning prior probabilities to possible models or hypotheses, then using the observed data (likelihood) to 
update these probabilities to posterior probabilities.  
The posterior probability distribution represents the updated belief about the model or hypothesis, given the data.  
Bayesian inference is widely used in various fields, including machine learning, medical diagnosis, and scientific 
modeling.  
Key Differences: 
Bayes' Rule is a mathematical formula. It's a specific equation that relates probabilities.  
Bayesian inference is a statistical methodology. It's a process of using Bayes' Rule to draw conclusions from data.  
In essence: 
Bayes' Rule provides the mathematical framework for updating beliefs.  
Bayesian inference is the practical application of that framework to make statistical inferences.  
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The Bayes Classifier and its Optimality 
The Bayes Optimal Classifier (BOC) in machine learning is the theoretically best possible classifier for a given 
classification problem. It makes the most probable prediction for a new input, minimizing the probability of 
classification error. While practically unachievable due to unknown class-membership probabilities, it serves as 
a benchmark for evaluating the performance of other learning algorithms.  
Here's a more detailed explanation: 
Key Concepts: 

 Bayes Theorem: 
The BOC is based on Bayes' Theorem, which relates the probabilities of events.  

 Posterior Probability: 
The BOC makes predictions based on the posterior probability of a class given the input features.  

 Prior Probability: 
The BOC also considers the prior probability of each class.  

 Maximum A Posteriori (MAP): 
The BOC is closely related to the MAP principle, where the class with the highest posterior probability is 
selected.  

 Bayes Error: 
The BOC achieves the minimum possible error rate, known as the Bayes error.  
How it works: 

1. Determine Posterior Probabilities: For a new input, the BOC calculates the posterior probability of each class 
(e.g., P(class A | input data)).  

2. Select the Most Probable Class: The BOC predicts the class with the highest posterior probability.  
3. Theoretical Optimality: By making predictions based on these probabilities, the BOC minimizes the overall 

classification error rate.  
Why it's important: 

 Theoretical Benchmark: 
The BOC provides a theoretical upper bound on the performance of any classifier. 

 Evaluation Tool: 
The BOC is used to evaluate the performance of other learning algorithms, comparing their error rates to the 
Bayes error. 

 Understanding Learning Algorithms: 
The BOC helps understand the limitations and potential of different learning algorithms.  
Limitations: 

 Unknown Class Probabilities: 
The BOC requires knowledge of the class-membership probabilities, which are often unknown in real-world 
scenarios. 

 Practical Unachievability: 
Due to the need for perfect knowledge of class probabilities, the BOC is practically unachievable.  
In essence, the Bayes Optimal Classifier is a theoretical ideal that helps us understand the limits of what can be 
achieved in classification and serves as a benchmark for comparing the performance of different machine 
learning algorithms.  
 
Multi-Class Classification 
Multiclass Classification vs Multi-label Classification 
Multiclass classification is a machine learning task where the goal is to assign instances to one of multiple 
predefined classes or categories, where each instance belongs to exactly one class. Whereas multilabel 
classification is a machine learning task where each instance can be associated with multiple labels 
simultaneously, allowing for the assignment of multiple binary labels to the instance. In this article we are going 
to understand the multi-class classification and multi-label classification, how they are different, how they are 
evaluated, how to choose the best method for your problem, and much more. 
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What is Multiclass Classification? 
Multiclass classification is a machine learning challenge focused on categorizing data into more than two 
classes. While binary classification involves distinguishing between only two classes, multiclass classification 
expands this scope to involve distinguishing between multiple classes. In essence, the goal is to train a model 
that can effectively sort instances into various predefined categories, providing a nuanced solution for scenarios 
where items can belong to more than two exclusive groups. This approach is commonly employed in tasks such 
as handwriting recognition, email categorization, and image classification involving more than two distinct 
categories. 
Multiclass classification is a type of machine learning task where the goal is to categorize instances into one of 
several predefined classes. Unlike binary classification, where there are only two possible outcomes, multiclass 
classification involves distinguishing between multiple classes or categories. The fundamental idea is to teach a 
model to assign the most appropriate class label to each instance based on its features. 
Multiclass classification finds application in a wide range of real-world scenarios. Consider email 
categorization, where emails need to be sorted into categories like "spam," "ham" (non-spam), or "important." 
Another classic example is handwritten digit recognition, where the task is to identify which digit (0 through 9) 
is written in a given image. Other applications include speech recognition, sentiment analysis, and image 
classification into multiple categories. 
Model Training Techniques: 
Training a multiclass classification model involves employing specific techniques to ensure accurate class 
assignment. One common approach is to use softmax activation in the output layer of the neural 
network. Softmax converts the raw model outputs into probabilities, assigning higher probabilities to the correct 
classes. Additionally, categorical cross-entropy loss is often used as the objective function during training. This 
loss function measures the dissimilarity between the predicted probabilities and the actual class labels, guiding 
the model to minimize errors and improve accuracy. 
Evaluation Metrics: 
To assess the performance of a multiclass classification model, various evaluation metrics like 
accuracy, precision, recall (sensitivity) and F1 score. 
Understanding these concepts is crucial for practitioners working on multiclass classification problems, as they 
form the foundation for designing effective models and assessing their accuracy in real-world applications. 
What is Multi-label Classification? 
Multi-label classification is a machine learning paradigm where instances can be associated with multiple labels 
simultaneously. Unlike traditional classification tasks, where an instance is assigned a single exclusive label, 



12 
 

multi-label classification recognizes the possibility for instances to exhibit characteristics that span across 
various categories. The goal is to develop models capable of accurately predicting and assigning a set of 
relevant labels to each instance, reflecting the complex relationships and diversity inherent in real-world 
datasets. This approach acknowledges the overlapping nature of labels, providing a more realistic representation 
of the multifaceted attributes present in the data. 
Multi-label classification is a machine learning task where instances can be associated with multiple labels 
simultaneously. This differs from multiclass classification, where each instance is assigned to one and only one 
class. In multi-label scenarios, an instance may exhibit characteristics that correspond to several different 
categories, making the task more intricate and reflecting the complexity often found in real-world data. 
Multi-label classification is highly applicable in diverse scenarios where instances can possess multiple 
attributes or labels. Examples include: 
 Document Tagging: Assigning multiple tags or topics to a document, such as labeling an article as both 

"technology" and "business." 
 Image Classification with Multiple Labels: Identifying and labeling multiple objects or features within an 

image, like recognizing both "cat" and "outdoor" in a photograph. 
Model Training Techniques: 
Training models for multi-label classification involves specific techniques to accommodate the simultaneous 
assignment of multiple labels to instances: 
 Sigmoid Activation: In the output layer of the neural network, sigmoid activation is often used. Unlike 

softmax in multiclass scenarios, sigmoid independently activates each output node, producing a value 
between 0 and 1, representing the likelihood of the corresponding label being present. 

 Binary Cross-Entropy Loss: This loss function is employed during training to measure the dissimilarity 
between the predicted probabilities and the actual presence or absence of each label. It guides the model to 
minimize errors in its multi-label predictions. 

Evaluation Metrics: 
Assessing the performance of a multi-label classification model requires specific metrics tailored to handle the 
complexity of multiple labels per instance: 
 Hamming Loss: This metric calculates the fraction of labels that are incorrectly predicted. It provides a 

comprehensive measure of overall model performance in terms of label accuracy. 
 Precision at k: Precision at k evaluates the precision of the top-k predicted labels, recognizing that not all 

labels need to be considered. It accounts for scenarios where only the most relevant labels are of interest. 
 Recall at k: Similar to precision at k, recall at k assesses the recall of the top-k predicted labels. It focuses 

on capturing the relevant labels among the top predictions. 
Understanding these nuances of multi-label classification is essential for practitioners working on tasks where 
instances can belong to multiple categories simultaneously, ensuring effective model design and evaluation in 
complex real-world scenarios. 
Differences between Multi class and Multi label Classification 

Features Multi class classification. Multi label classification 

Output Structure: 

The output is a single class label 
assigned to each instance, 

indicating the most probable or 
correct class. 

The output is a set of binary values 
indicating the presence or absence 

of each label for each instance. 
Instances can be associated with 
multiple labels simultaneously. 

Model Output: 

the model assigns a single class 
label to each instance based on the 
class with the highest probability 

or confidence. 

The model outputs a binary vector 
for each instance, where each 

element corresponds to a label, 
indicating whether it is present or 

not. 

Training Techniques: 

Techniques like softmax 
activation and categorical cross-
entropy loss are commonly used 

for training models to handle 
multiple classes. 

Techniques like sigmoid activation 
and binary cross-entropy loss are 

employed, treating each label 
independently. 
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Features Multi class classification. Multi label classification 

Class Assignment: 

Each instance is assigned to one 
and only one class, making the 

classification mutually exclusive. 

Instances can be associated with 
multiple labels, allowing for 

overlapping or shared 
characteristics. 

Evaluation Metrics: 

Metrics such as accuracy, 
precision, recall, and F1 score are 

commonly used to assess the 
overall performance of the model. 

Metrics like Hamming loss, 
precision at k, and recall at k are 

more appropriate, as they account 
for the presence of multiple labels 

for each instance. 

Model Complexity: 

Generally considered simpler as it 
involves assigning instances to 

exclusive classes. 

Can be more complex due to the 
need to capture dependencies and 

correlations between multiple 
labels. 

Problem Complexity: 

Typically used for simpler 
problems where instances belong 
to mutually exclusive categories. 

Suited for more complex scenarios 
where instances can exhibit 

characteristics of multiple labels 
simultaneously. 

Choosing Between Multi-Class and Multi-Label Classification 
When embarking on a classification task, one of the foundational decisions is whether to opt for multi-class or 
multi-label classification, and this choice significantly influences the model's performance and relevance to real-
world scenarios. 
 Assess whether the instances in your dataset belong to mutually exclusive classes (Multi-Class) or if they 

can have multiple labels simultaneously (Multi-Label). Understanding the nature of labels is fundamental in 
choosing the appropriate classification approach. 

 Examine the relationships between labels. If the labels are independent or weakly correlated, multi-class 
classification may be suitable. For strong correlations or overlapping characteristics, multi-label 
classification is more appropriate. 

 Gauge the complexity of your classification problem. Multi-class classification is generally simpler as it 
deals with exclusive categorization. If the problem is inherently complex and instances can have diverse 
characteristics, opt for multi-label classification. 

 Consider domain-specific requirements and constraints. Some domains naturally lend themselves to one 
approach over the other based on the inherent characteristics of the data and the specific objectives of the 
task. 

In conclusion, the choice between multi-class and multi-label classification should be made considering the 
intricacies of the problem, the nature of the data, and the specific requirements of the application. Each approach 
has its merits, and selecting the most suitable classification method is pivotal for achieving optimal model 
performance in diverse real-world scenarios. 

 

Class Conditional Independence and Naive Bayes Classifier (NBC) 
Naive Bayes Classifiers 
Naive Bayes is a classification algorithm that uses probability to predict which category a data point belongs to, 
assuming that all features are unrelated. This article will give you an overview as well as more advanced use and 
implementation of Naive Bayes in machine learning. 
Illustration behind the Naive Bayes algorithm. We estimate P(xα∣y)P(xα∣y) independently in each dimension 
(middle two images) and then obtain an estimate of the full data distribution by assuming conditional 
independence P(x∣y)=∏αP(xα∣y)P(x∣y)=∏αP(xα∣y)(very right image). 

Key Features of Naive Bayes Classifiers 
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The main idea behind the Naive Bayes classifier is to use Bayes' Theorem to classify data based on the 
probabilities of different classes given the features of the data. It is used mostly in high-dimensional text 
classification 
 The Naive Bayes Classifier is a simple probabilistic classifier and it has very few number of parameters 

which are used to build the ML models that can predict at a faster speed than other classification 
algorithms. 

 It is a probabilistic classifier because it assumes that one feature in the model is independent of existence of 
another feature. In other words, each feature contributes to the predictions with no relation between each 
other. 

 Naïve Bayes Algorithm is used in spam filtration, Sentimental analysis, classifying articles and many more. 
Why it is Called Naive Bayes? 
It is named as "Naive" because it assumes the presence of one feature does not affect other features. The 
"Bayes" part of the name refers to its basis in Bayes’ Theorem. 
Consider a fictional dataset that describes the weather conditions for playing a game of golf. Given the weather 
conditions, each tuple classifies the conditions as fit(“Yes”) or unfit(“No”) for playing golf. Here is a tabular 
representation of our dataset. 

Outlook Temperature Humidity Windy 
Play 
Golf 

0 Rainy Hot High False No 

1 Rainy Hot High True No 

2 Overcast Hot High False Yes 

3 Sunny Mild High False Yes 

4 Sunny Cool Normal False Yes 

5 Sunny Cool Normal True No 

6 Overcast Cool Normal True Yes 

7 Rainy Mild High False No 

8 Rainy Cool Normal False Yes 

9 Sunny Mild Normal False Yes 
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Outlook Temperature Humidity Windy 
Play 
Golf 

10 Rainy Mild Normal True Yes 

11 Overcast Mild High True Yes 

12 Overcast Hot Normal False Yes 

13 Sunny Mild High True No 

The dataset is divided into two parts, namely, feature matrix and the response vector. 
 Feature matrix contains all the vectors(rows) of dataset in which each vector consists of the value 

of dependent features. In above dataset, features are ‘Outlook’, ‘Temperature’, ‘Humidity’ and ‘Windy’. 
 Response vector contains the value of class variable(prediction or output) for each row of feature matrix. 

In above dataset, the class variable name is ‘Play golf’. 
Assumption of Naive Bayes 
The fundamental Naive Bayes assumption is that each feature makes an: 
 Feature independence: This means that when we are trying to classify something, we assume that each 

feature (or piece of information) in the data does not affect any other feature. 
 Continuous features are normally distributed: If a feature is continuous, then it is assumed to be 

normally distributed within each class. 
 Discrete features have multinomial distributions: If a feature is discrete, then it is assumed to have a 

multinomial distribution within each class. 
 Features are equally important: All features are assumed to contribute equally to the prediction of the 

class label. 
 No missing data: The data should not contain any missing values. 
Introduction to Bayes' Theorem 
Bayes’ Theorem provides a principled way to reverse conditional probabilities. It is defined as: 
P(y∣X)=P(X∣y)⋅P(y)P(X)P(y∣X)=P(X)P(X∣y)⋅P(y) 
Where: 
 P(y∣X)P(y∣X): Posterior probability, probability of class yy given features XX 
 P(X∣y)P(X∣y): Likelihood, probability of features XX given class yy 
 P(y)P(y): Prior probability of class yy 
 P(X)P(X): Marginal likelihood or evidence 
Naive Bayes Working 
1. Terminology 
Consider a classification problem (like predicting if someone plays golf based on weather). Then: 
 yy is the class label (e.g. "Yes" or "No" for playing golf) 
 X=(x1,x2,...,xn)X=(x1,x2,...,xn) is the feature vector (e.g. Outlook, Temperature, Humidity, Wind) 
A sample row from the dataset: 
X=(Rainy, Hot, High, False),y=NoX=(Rainy, Hot, High, False),y=No 
This represents: 
What is the probability that someone will not play golf given that the weather is Rainy, Hot, High humidity, and 
No wind? 
2. The Naive Assumption 
The "naive" in Naive Bayes comes from the assumption that all features are independent given the class. That is: 
P(x1,x2,...,xn∣y)=P(x1∣y)⋅P(x2∣y)⋯P(xn∣y)P(x1,x2,...,xn∣y)=P(x1∣y)⋅P(x2∣y)⋯P(xn∣y) 
Thus, Bayes' theorem becomes: 
P(y∣x1,...,xn)=P(y)⋅∏i=1nP(xi∣y)P(x1)P(x2)...P(xn)P(y∣x1,...,xn)=P(x1)P(x2)...P(xn)P(y)⋅∏i=1nP(xi∣y) 
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Since the denominator is constant for a given input, we can write: 
P(y∣x1,...,xn)∝P(y)⋅∏i=1nP(xi∣y)P(y∣x1,...,xn)∝P(y)⋅∏i=1nP(xi∣y) 
3. Constructing the Naive Bayes Classifier 
We compute the posterior for each class yy and choose the class with the highest probability: 
y^=arg max yP(y)⋅∏i=1nP(xi∣y)y^=argmaxyP(y)⋅∏i=1nP(xi∣y) 
This becomes our Naive Bayes classifier. 
4. Example: Weather Dataset 
Let’s take a dataset used for predicting if golf is played based on: 
 Outlook: Sunny, Rainy, Overcast 
 Temperature: Hot, Mild, Cool 
 Humidity: High, Normal 
 Wind: True, False 

Example 
Tables for Naive Bayes 

Example Input: X=(Sunny,Hot,Normal,False)X=(Sunny,Hot,Normal,False) 
Goal: Predict if golf will be played (Yes or No). 
5. Pre-computation from Dataset 
Class Probabilities: 
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From dataset of 14 rows: 
 P(Yes)=914P(Yes)=149 
 P(No)=514P(No)=145 
Conditional Probabilities (Tables 1–4): 

Feature Value P (Value | Yes) P (Value | No) 

Outlook Sunny 2/9 3/5 

Temperature Hot 2/9 2/5 

Humidity Normal 6/9 1/5 

Wind False 6/9 2/5 

6. Calculate Posterior Probabilities 
For Class = Yes: 
P(Yes | today)∝29⋅29⋅69⋅69⋅914P(Yes | today)∝92⋅92⋅96⋅96⋅149 
P(Yes | today)≈0.02116P(Yes | today)≈0.02116 
For Class = No: 
P(No | today)∝35⋅25⋅15⋅25⋅514P(No | today)∝53⋅52⋅51⋅52⋅145 
P(No | today)≈0.0068P(No | today)≈0.0068 
7. Normalize Probabilities 
To compare: 
P(Yes | today)=0.021160.02116+0.0068≈0.756P(Yes | today)=0.02116+0.00680.02116≈0.756 
P(No | today)=0.00680.02116+0.0068≈0.244P(No | today)=0.02116+0.00680.0068≈0.244 
8. Final Prediction 
Since: 
P(Yes | today)>P(No | today)P(Yes | today)>P(No | today) 
The model predicts: Yes (Play Golf) 
Naive Bayes for Continuous Features 
For continuous features, we assume a Gaussian distribution: 
P(xi∣y)=12πσy2exp (−(xi−μy)22σy2)P(xi∣y)=2πσy21exp(−2σy2(xi−μy)2) 
Where: 
 μyμy is the mean of feature xixi for class yy 
 σy2σy2 is the variance of feature xixi for class yy 
This leads to what is called Gaussian Naive Bayes. 
Types of Naive Bayes Model 
There are three types of Naive Bayes Model : 
1. Gaussian Naive Bayes 
In Gaussian Naive Bayes, continuous values associated with each feature are assumed to be distributed 
according to a Gaussian distribution. A Gaussian distribution is also called Normal distribution When plotted, it 
gives a bell shaped curve which is symmetric about the mean of the feature values as shown below: 
2. Multinomial Naive Bayes 
Multinomial Naive Bayesis used when features represent the frequency of terms (such as word counts) in a 
document. It is commonly applied in text classification, where term frequencies are important. 
3. Bernoulli Naive Bayes 
Bernoulli Naive Bayes deals with binary features, where each feature indicates whether a word appears or not 
in a document. It is suited for scenarios where the presence or absence of terms is more relevant than their 
frequency. Both models are widely used in document classification tasks 
Advantages of Naive Bayes Classifier 
 Easy to implement and computationally efficient. 
 Effective in cases with a large number of features. 
 Performs well even with limited training data. 
 It performs well in the presence of categorical features. 
 For numerical features data is assumed to come from normal distributions 
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Disadvantages of Naive Bayes Classifier 
 Assumes that features are independent, which may not always hold in real-world data. 
 Can be influenced by irrelevant attributes. 
 May assign zero probability to unseen events, leading to poor generalization. 
Applications of Naive Bayes Classifier 
 Spam Email Filtering: Classifies emails as spam or non-spam based on features. 
 Text Classification: Used in sentiment analysis, document categorization, and topic classification. 
 Medical Diagnosis: Helps in predicting the likelihood of a disease based on symptoms. 
 Credit Scoring: Evaluates creditworthiness of individuals for loan approval. 
 Weather Prediction: Classifies weather conditions based on various factors. 
 



Linear Discriminants for Machine Learning 

 Introduction to Linear Discriminants 

Linear Discriminants for Classification  
When working with high-dimensional datasets it is important to apply dimensionality 

reduction techniques to make data exploration and modeling more efficient. Linear 
Discriminant Analysis (LDA) also known as Normal Discriminant Analysis is supervised 
classification problem that helps separate two or more classes by converting higher-
dimensional data space into a lower-dimensional space. It is used to identify a linear 
combination of features that best separates classes within a dataset. 

2 Classes 
overlapping 
For example we have two classes that need to be separated efficiently. Each class may have 
multiple features and using a single feature to classify them may result in overlapping. To 
solve this LDA is used as it uses multiple features to improve classification 
accuracy. LDA works by some assumptions and we are required to understand them so that 
we have a better understanding of its working. 
Key Assumptions of LDA 
For LDA to perform effectively, certain assumptions are made: 
 Gaussian Distribution: The data in each class should follow a normal bell-shaped 

distribution. 
 Equal Covariance Matrices: All classes should have the same covariance structure. 
 Linear Separability: The data should be separable using a straight line or plane. 
If these assumptions are met LDA can produce very good results. For example when data 
points belonging to two classes are plotted if they are not linearly separable LDA will attempt 
to find a projection that maximizes class separability. 
  

 
Linearly Separable Dataset 
Image shows an example where the classes (black and green circles) are not linearly 
separable. LDA attempts to separate them using red dashed line. It uses both axes (X and Y) 
to generate a new axis in such a way that it maximizes the distance between the means 
of the two classes while minimizing the variation within each class. This transforms the 



dataset into a space where the classes are better separated. After transforming the data points 
along a new axis LDA maximizes the class separation. This new axis allows for clearer 
classification by projecting the data along a line that enhance the distance between the means 
of the two classes. 

 
The perpendicular distance between the line and points 
Perpendicular distance between the decision boundary and the data points helps us to isualize 
how LDA works by reducing class variation and increasing separability. After generating this 
new axis using the above-mentioned criteria all the data points of the classes are plotted on 
this new axis and are shown in the figure given below.  

LDA 
It shows how LDA creates a new axis to project the data and separate the two classes 
effectively along a linear path. But it fails when the mean of the distributions are shared as it 
becomes impossible for LDA to find a new axis that makes both classes linearly separable. In 
such cases we use non-linear discriminant analysis. 
How does LDA work 
LDA works by finding directions in the feature space that best separate the classes. It does 
this by maximizing the difference between the class means while minimizing the spread 
within each class. 
Let’s assume we have two classes with d-dimensional samples such as x1,x2,...xnx1,x2,...xn
 where: 
 n1n1 samples belong to class c1c1 
 n2n2 samples belong to class c2c2. 
If xixi represents a data point its projection onto the line represented by the unit vector v 
is vTxivTxi. Let the means of class c1c1 and class c2c2 before projection be μ1 and μ2 
respectively. After projection the new means are μ^1=vTμ1μ^1=vTμ1and μ^2=vTμ2μ^2
=vTμ2. 
Our aim to normalize the difference ∣μ^1−μ^2∣∣μ^1−μ^2∣to maximize the class separation. 
The scatter for samples of class c1c1 is calculated as: 

s12=∑xi∈c1(xi−μ1)2s12=∑xi∈c1(xi−μ1)2 
Similarly for class c2c2: 



s22=∑xi∈c2(xi−μ2)2s22=∑xi∈c2(xi−μ2)2 
The goal is to maximize the ratio of the between-class scatter to the within-class scatter, 
which leads us to the following criteria: 

J(v)=∣μ^1−μ^2∣s12+s22J(v)=s12+s22∣μ^1−μ^2∣ 
For the best separation we calculate the eigenvector corresponding to the highest eigenvalue 
of the scatter matrices sw−1sbsw−1sb. 
Extensions to LDA 
1. Quadratic Discriminant Analysis (QDA): Each class uses its own estimate of variance 

(or covariance) allowing it to handle more complex relationships. 
2. Flexible Discriminant Analysis (FDA): Uses non-linear combinations of inputs such as 

splines to handle non-linear separability. 
3. Regularized Discriminant Analysis (RDA): Introduces regularization into the 

covariance estimate to prevent overfitting. 
Implementation of LDA using Python 
In this implementation we will perform linear discriminant analysis using Scikit-learn library 
on the Iris dataset. 
 StandardScaler(): Standardizes the features to ensure they have a mean of 0 and a 

standard deviation of 1 removing the influence of different scales. 
 fit_transform(): Standardizes the feature data by applying the transformation learned 

from the training data ensuring each feature contributes equally. 
 LabelEncoder(): Converts categorical labels into numerical values that machine learning 

models can process. 
 fit_transform() on y: Transforms the target labels into numerical values for use in 

classification models. 
 LinearDiscriminantAnalysis(): Reduces the dimensionality of the data by projecting it 

into a lower-dimensional space while maximizing the separation between classes. 
 transform() on X_test: Applies the learned LDA transformation to the test data to 

maintain consistency with the training data. 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.datasets import load_iris 
from sklearn.preprocessing import StandardScaler, LabelEncoder 
from sklearn.model_selection import train_test_split 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import accuracy_score, confusion_matrix 
 
iris = load_iris() 
dataset = pd.DataFrame(columns=iris.feature_names, 
                       data=iris.data) 
dataset['target'] = iris.target 
 
X = dataset.iloc[:, 0:4].values 
y = dataset.iloc[:, 4].values 
 
sc = StandardScaler() 
X = sc.fit_transform(X) 
le = LabelEncoder() 
y = le.fit_transform(y) 



X_train, X_test,\ 
    y_train, y_test = train_test_split(X, y, 
                                       test_size=0.2) 
 
lda = LinearDiscriminantAnalysis(n_components=2) 
X_train = lda.fit_transform(X_train, y_train) 
X_test = lda.transform(X_test) 
 
plt.scatter( 
    X_train[:, 0], X_train[:, 1], 
    c=y_train, 
    cmap='rainbow', 
    alpha=0.7, edgecolors='b' 
) 
 
classifier = RandomForestClassifier(max_depth=2, 
                                    random_state=0) 
classifier.fit(X_train, y_train) 
y_pred = classifier.predict(X_test) 
 
print('Accuracy : ' + str(accuracy_score(y_test, y_pred))) 
conf_m = confusion_matrix(y_test, y_pred) 
print(conf_m) 
Output: 
Accuracy : 0.9  
[[ 8 0 0] 
[ 0 8 2] 
[ 0 1 11]] 

 
Scatter plot of the iris data mapped into 2D 
This scatter plot shows three distinct groups of data points, represented by different colors. 
The group on the right (dark blue) is clearly separated from the others indicate it's very 
different. The other two groups (red and light blue) are positioned closer together with some 
overlap and suggest they are more similar and harder to separate. 
Advantages of LDA 
 Simple and computationally efficient. 



 Works well even when the number of features is much larger than the number of training 
samples. 

 Can handle multicollinearity. 
Disadvantages of LDA 
 Assumes Gaussian distribution of data which may not always be the case. 
 Assumes equal covariance matrices for different classes which may not hold in all 

datasets. 
 Assumes linear separability which is not always true. 
 May not always perform well in high-dimensional feature spaces. 
Applications of LDA  
1. Face Recognition: It is used to reduce the high-dimensional feature space of pixel values 

in face recognition applications helping to identify faces more efficiently. 
2. Medical Diagnosis: It classifies disease severity in mild, moderate or severe based on 

patient parameters helping in decision-making for treatment. 
3. Customer Identification: It can help identify customer segments most likely to purchase 

a specific product based on survey data. 
 

Perceptron Classifier 

A perceptron is a fundamental type of binary classifier in machine learning, particularly in 
the context of artificial neural networks. It's a single-layer neural network that takes inputs, 
applies weights to them, and then uses an activation function (like the step function) to 
produce a binary output (usually 0 or 1). The perceptron algorithm is used for supervised 
learning of binary classifiers, meaning it learns to classify data points into one of two classes.  
Key Concepts: 

 Binary Classification: 
Perceptrons are designed to classify data into two distinct categories, often represented as 0 and 1, 
or -1 and 1.  

 Linear Separability: 
Perceptrons are effective for data that can be separated by a straight line (or a hyperplane in higher 
dimensions).  

 Weights and Bias: 
The algorithm learns weights associated with each input feature and a bias term to make 
predictions.  

 Activation Function: 
The activation function (e.g., step function, sigmoid) transforms the weighted sum of inputs into the 
final binary output.  

 Perceptron Learning Rule: 
The algorithm iteratively adjusts the weights and bias to minimize the error between the predicted 
and actual outputs.  
How it Works: 

1. Input: The perceptron receives a vector of input features.  
2. Weighted Sum: Each input is multiplied by its corresponding weight, and the products are summed 

together.  
3. Bias: A bias term is added to the weighted sum.  
4. Activation Function: The sum (along with the bias) is passed through an activation function, which 

produces a binary output (e.g., 0 or 1).  
5. Learning: The perceptron compares its output with the desired output and adjusts the weights and 

bias accordingly to minimize the error.  
Limitations: 

 Limited to Linear Boundaries: 



Perceptrons can only separate data linearly, meaning they can't handle complex, non-linear 
relationships.  

 Sensitivity to Data Noise: 
The perceptron algorithm can be sensitive to noise in the training data, potentially leading to poor 
generalization.  
 

 
 

Perceptron Learning Algorithm   

Perceptron Learning Algorithm is also understood as an Artificial Neuron or 
neural network unit that helps to detect certain input data computations in business 
intelligence. The perceptron learning algorithm is treated as the most 
straightforward Artificial Neural network. It is a supervised learning algorithm of 
binary classifiers. Hence, it is a single-layer neural network with four main 
parameters, i.e., input values, weights and Bias, net sum, and an activation 
function. 

What is the Perceptron Learning Algorithm? 

There are four significant steps in a perceptron learning algorithm: 

1. First, multiply all input values with corresponding weight values and then 
add them to determine the weighted sum. Mathematically, we can calculate 
the weighted sum as 
follows: ∑wi∗xi=x1∗w1+x2∗w2+…+wn∗xn∑wi∗xi=x1∗w1+x2

∗w2+…+wn∗xn. Add another essential term called bias 'b' to the weighted 

sum to improve the model performance. ∑wi∗xi+b∑wi∗xi+b. 
2. Next, an activation function is applied to this weighed sum, producing a 

binary or a continuous-valued output. Y=f(∑wi∗xi+b)Y=f(∑wi∗xi+b) 



3. Next, the difference between this output and the actual target value is 
computed to get the error term, E, generally in terms of mean squared error. 
The steps up to this form the forward propagation part of the 
algorithm. E=(Y−Yactual)2E=(Y−Yactual)2 

4. We optimize this error (loss function) using an optimization algorithm. 
Generally, some form of gradient descent algorithm is used to find the 
optimal values of the hyperparameters like learning rate, weight, Bias, etc. 
This step forms the backward propagation part of the algorithm. 

 

 

1. Input Nodes or Input Layer: Primary component of Perceptron learning 
algorithm, which accepts the initial input data into the model. Each input 
node contains an actual value. 

2. Weight and Bias: The weight parameter represents the strength of the 
connection between units. Bias can be considered as the line of intercept in a 
linear equation. 

3. Activation Function: Final and essential components help determine 
whether the neuron will fire. The activation function can be primarily 
considered a step function. There are various types of activation functions 
used in a perceptron learning algorithm. Some of them are the sign function, 
step function, sigmoid function, etc. 

 



Types of Perceptron Models 

Based on the number of layers, perceptrons are broadly classified into two 
major categories: 

1. Single Layer Perceptron Model: 
It is the simplest Artificial Neural Network (ANN) model. A single-layer 
perceptron model consists of a feed-forward network and includes a 
threshold transfer function for thresholding on the Output. The main 
objective of the single-layer perceptron model is to classify linearly 
separable data with binary labels. 

2. Multi-Layer Perceptron Model: 
The multi-layer perceptron learning algorithm has the same structure as a 
single-layer perceptron but consists of an additional one or more hidden 
layers, unlike a single-layer perceptron, which consists of a single hidden 
layer. The distinction between these two types of perceptron models is 
shown in the Figure below. 

 

Perceptron Function 

Perceptron learning algorithm function f(x)f(x) is represented as the product of 
the input vector (x) and the learned weight vector (w). In mathematical notion, it 
can be described as: 



f(x)=1,ifw.x+b>0f(x)=1,ifw.x+b>0 f(x)=0,otherwisef(x)=0,otherwise 

Where– 

 w represents the weight vector which consists of a set of real-valued 
weights. 

 b represents the bias vector. 
 x represents the input vector which consists of the input feature values. 

Geometry of the Solution Space 

In the previous section, we learned about the weight update rules for the perceptron 
learning algorithm. We have already established that when x belongs to P, we 
want w.x > 0. That means that the angle between w and x should be less 
than 90 because the cosine of the slope is proportional to the dot product. 

cos α=wTx∥w∥∥x∥∣cos α∝wTxcosα=∥w∥∥x∥wTx∣cosα∝wTx 

SoifwTx>0⇒cos α>0⇒α<90SoifwTx>0⇒cosα>0⇒α<90 

Similarly, 

ifwTx<0⇒cos α<0⇒α>90ifwTx<0⇒cosα<0⇒α>90 

So whatever the w vector may be, as long as it makes an angle less 

than 90 degrees with the positive example data vectors (x ∈∈ P) and an angle 

more than 90 degrees with the negative example data vectors (x ∈∈ N), we are 
cool. So ideally, it should look something like this: 

 



So the angle between w and x should be less than 90 when x belongs to the P class, 
and the angle between them should be more than 90 when x belongs to the N class. 
Pause and convince yourself that the above statements are true and you believe 
them. 

Here's Why the Update Works: 

(αnew ) when wnew =w+xcos (αnew )∝wnew Tx∝(w+x)Tx∝wTx+xTx∝
cos α+xTxcos (αnew )>cos α(αnew) when wnew =w−xcos (αnew )∝
wnew Tx∝(w−x)Tx∝wTx−xTx∝cos α−xTxcos (αnew )<cos α(αnew 

) when cos(αnew )cos(αnew )wnew =w+x∝wnew 

Tx∝(w+x)Tx∝wTx+xTx∝cosα+xTx>cosα(αnew) when cos(αnew )cos(αnew )
wnew =w−x∝wnew Tx∝(w−x)Tx∝wTx−xTx∝cosα−xTx<cosα 

So when we are adding x to w, which we do when x belongs to P and w.x < 
0 (Case 1), we are essentially increasing the cos(alpha) value, which means we are 
decreasing the alpha value, the angle between w and x, which is what we desire. 
And the similar intuition works for the case when x belongs to N and w.x ≥ 
0 (Case 2). 

Perceptron Learning Algorithm: Implementation of AND 
Gate 

The steps for this implementation are as follows: 

1. Import all the required libraries: 

#import required library 
import tensorflow as tf 

2. Define Vector Variables for Input and Output: 

#input1, input2 and bias 
train_in = [ 
    [1., 1.,1], 
    [1., 0,1], 
    [0, 1.,1], 
    [0, 0,1]] 
  
#output 
train_out = [ 
[1.], 
[0], 
[0], 
[0]] 



3. Define the Weight Variable: 

#weight variable initialized with random values using 
random_normal() 
w = tf.Variable(tf.random_normal([3, 1], seed=12)) 

4. Define placeholders for Input and Output: 

#Placeholder for input and Output 
x = tf.placeholder(tf.float32,[None,3]) 
y = tf.placeholder(tf.float32,[None,1]) 

5. Calculate Output and Activation Function: 

 

#calculate output  
output = tf.nn.relu(tf.matmul(x, w)) 

6. Calculate the Cost or Error: 

#Mean Squared Loss or Error 
loss = tf.reduce_sum(tf.square(output - y)) 

7. Minimize Error: 

#Minimize loss using GradientDescentOptimizer with a learning 
rate of 0.01 
optimizer = tf.train.GradientDescentOptimizer(0.01) 
train = optimizer.minimize(loss) 

8. Initialize all the variables: 

#Initialize all the global variables 
init = tf.global_variables_initializer() 
sess = tf.Session() 
sess.run(init) 

9. Training Perceptron learning algorithm in Iterations: 



training_epochs = 1000 
 
#Compute cost w.r.t to input vector for 1000 epochs 
  
for epoch in range(training_epochs): 
    sess.run(train, {x:train_in,y:train_out}) 
    cost = sess.run(loss,feed_dict={x:train_in,y:train_out}) 
    if i > 990: 
        print('Epoch--',epoch,'--loss--',cost) 
 

Output: 

Following is the final Output obtained after my perceptron model has been trained. 

Epoch-- 991 --loss-- 0.0003835174 
Epoch-- 992 --loss-- 0.00038088957 
Epoch-- 993 --loss-- 0.0003782803 
Epoch-- 994 --loss-- 0.0003756886 
Epoch-- 995 --loss-- 0.0003731146 
Epoch-- 996 --loss-- 0.00037055893 
Epoch-- 997 --loss-- 0.00036801986 
Epoch-- 998 --loss-- 0.00036549888 
Epoch-- 999 --loss-- 0.00036299432 
 

Support Vector Machine (SVM) Algorithm 
Support Vector Machine (SVM) is a supervised machine learning algorithm used for 
classification and regression tasks. While it can handle regression problems, SVM is 
particularly well-suited for classification tasks.  
SVM aims to find the optimal hyperplane in an N-dimensional space to separate data 
points into different classes. The algorithm maximizes the margin between the 
closest points of different classes. 

Support Vector Machine (SVM) Terminology 
 Hyperplane: A decision boundary separating different classes in feature space, 

represented by the equation wx + b = 0 in linear classification. 
 Support Vectors: The closest data points to the hyperplane, crucial for 

determining the hyperplane and margin in SVM. 
 Margin: The distance between the hyperplane and the support vectors. SVM 

aims to maximize this margin for better classification performance. 
 Kernel: A function that maps data to a higher-dimensional space, enabling SVM 

to handle non-linearly separable data. 
 Hard Margin: A maximum-margin hyperplane that perfectly separates the data 

without misclassifications. 
 Soft Margin: Allows some misclassifications by introducing slack variables, 

balancing margin maximization and misclassification penalties when data is not 
perfectly separable. 

 C: A regularization term balancing margin maximization and misclassification 
penalties. A higher C value enforces a stricter penalty for misclassifications. 



 Hinge Loss: A loss function penalizing misclassified points or margin violations, 
combined with regularization in SVM. 

 Dual Problem: Involves solving for Lagrange multipliers associated with support 
vectors, facilitating the kernel trick and efficient computation. 

How does Support Vector Machine Algorithm Work? 
The key idea behind the SVM algorithm is to find the hyperplane that best separates 
two classes by maximizing the margin between them. This margin is the distance 
from the hyperplane to the nearest data points (support vectors) on each side. 

Multiple hyperplanes 
separate the data from two classes 

The best hyperplane, also known as the "hard margin," is the one that maximizes 
the distance between the hyperplane and the nearest data points from both classes. 
This ensures a clear separation between the classes. So, from the above figure, we 
choose L2 as hard margin. 
Let's consider a scenario like shown below: 



Selecting hyperplane for data 
with outlier 

Here, we have one blue ball in the boundary of the red ball. 
How does SVM classify the data? 
It's simple! The blue ball in the boundary of red ones is an outlier of blue balls. The 
SVM algorithm has the characteristics to ignore the outlier and finds the best 
hyperplane that maximizes the margin. SVM is robust to outliers. 

Hyperplane which is the most 
optimized one 

A soft margin allows for some misclassifications or violations of the margin to 
improve generalization. The SVM optimizes the following equation to balance margin 
maximization and penalty minimization: 

Objective Function=(1margin)+λ∑penalty Objective Function=(margin1

)+λ∑penalty  



The penalty used for violations is often hinge loss, which has the following behavior: 
 If a data point is correctly classified and within the margin, there is no penalty 

(loss = 0). 
 If a point is incorrectly classified or violates the margin, the hinge loss increases 

proportionally to the distance of the violation. 
Till now, we were talking about linearly separable data(the group of blue balls and 
red balls are separable by a straight line/linear line). 
What to do if data are not linearly separable? 
When data is not linearly separable (i.e., it can't be divided by a straight line), SVM 
uses a technique called kernels to map the data into a higher-dimensional space 
where it becomes separable. This transformation helps SVM find a decision 
boundary even for non-linear data. 

Original 1D dataset for classification 

A kernel is a function that maps data points into a higher-dimensional space without 
explicitly computing the coordinates in that space. This allows SVM to work 
efficiently with non-linear data by implicitly performing the mapping. 
For example, consider data points that are not linearly separable. By applying a 
kernel function, SVM transforms the data points into a higher-dimensional space 
where they become linearly separable. 
 Linear Kernel: For linear separability. 
 Polynomial Kernel: Maps data into a polynomial space. 
 Radial Basis Function (RBF) Kernel: Transforms data into a space based on 

distances between data points. 



Mapping 1D 
data to 2D to become able to separate the two classes 

In this case, the new variable y is created as a function of distance from the origin. 

Mathematical Computation: SVM 
Consider a binary classification problem with two classes, labeled as +1 and -1. We 
have a training dataset consisting of input feature vectors X and their corresponding 
class labels Y. 
The equation for the linear hyperplane can be written as: 

wTx+b=0wTx+b=0 
Where: 
 ww is the normal vector to the hyperplane (the direction perpendicular to it). 
 bb is the offset or bias term, representing the distance of the hyperplane from the 

origin along the normal vector ww. 
Distance from a Data Point to the Hyperplane 
The distance between a data point x_i and the decision boundary can be calculated 
as: 

di=wTxi+b∣∣w∣∣di=∣∣w∣∣wTxi+b 
where ||w|| represents the Euclidean norm of the weight vector w. Euclidean norm of 
the normal vector W 
Linear SVM Classifier 
Distance from a Data Point to the Hyperplane: 

y^={1: wTx+b≥00:  wTx+b <0y^={10: wTx+b≥0:  wTx+b <0 
Where y^y^ is the predicted label of a data point. 
Optimization Problem for SVM 
For a linearly separable dataset, the goal is to find the hyperplane that maximizes 
the margin between the two classes while ensuring that all data points are correctly 
classified. This leads to the following optimization problem: 

minimizew,b12∥w∥2w,bminimize21∥w∥2 
Subject to the constraint: 

yi(wTxi+b)≥1fori=1,2,3,⋯,myi(wTxi+b)≥1fori=1,2,3,⋯,m 



Where: 
 yiyi is the class label (+1 or -1) for each training instance. 
 xixi is the feature vector for the ii-th training instance. 
 mm is the total number of training instances. 
The condition yi(wTxi+b)≥1yi(wTxi+b)≥1 ensures that each data point is correctly 
classified and lies outside the margin. 
Soft Margin Linear SVM Classifier 
In the presence of outliers or non-separable data, the SVM allows some 
misclassification by introducing slack variables ζiζi. The optimization problem is 
modified as: 

minimize w,b12∥w∥2+C∑i=1mζiw,bminimize 21∥w∥2+C∑i=1mζi 
Subject to the constraints: 

yi(wTxi+b)≥1−ζiandζi≥0for i=1,2,…,myi(wTxi+b)≥1−ζiandζi≥0for i=1,2,…,m 
Where: 
 CC is a regularization parameter that controls the trade-off between margin 

maximization and penalty for misclassifications. 
 ζiζi are slack variables that represent the degree of violation of the margin by each 

data point. 
Dual Problem for SVM 
The dual problem involves maximizing the Lagrange multipliers associated with the 
support vectors. This transformation allows solving the SVM optimization using 
kernel functions for non-linear classification. 
The dual objective function is given by: 

maximize α12∑i=1m∑j=1mαiαjtitjK(xi,xj)−∑i=1mαiαmaximize 21∑i=1m∑j=1mαiαjtitjK(xi,xj

)−∑i=1mαi 
Where: 
 αiαi are the Lagrange multipliers associated with the ii-th training sample. 
 titi is the class label for the iii-th training sample (+1+1+1 or −1-1−1). 
 K(xi,xj)K(xi,xj) is the kernel function that computes the similarity between data 

points xixi and xjxj. The kernel allows SVM to handle non-linear classification 
problems by mapping data into a higher-dimensional space. 

The dual formulation optimizes the Lagrange multipliers αiαi, and the support vectors 
are those training samples where αi>0αi>0. 
SVM Decision Boundary 
Once the dual problem is solved, the decision boundary is given by: 

w=∑i=1mαitiK(xi,x)+bw=∑i=1mαitiK(xi,x)+b 
Where ww is the weight vector, xx is the test data point, and bb is the bias term. 
Finally, the bias term bb is determined by the support vectors, which satisfy: 

ti(wTxi−b)=1⇒b=wTxi−titi(wTxi−b)=1⇒b=wTxi−ti 
Where xixi is any support vector. 
This completes the mathematical framework of the Support Vector Machine 
algorithm, which allows for both linear and non-linear classification using the dual 
problem and kernel trick. 

Types of Support Vector Machine 
Based on the nature of the decision boundary, Support Vector Machines (SVM) can 
be divided into two main parts: 
 Linear SVM: Linear SVMs use a linear decision boundary to separate the data 

points of different classes. When the data can be precisely linearly separated, 
linear SVMs are very suitable. This means that a single straight line (in 2D) or a 
hyperplane (in higher dimensions) can entirely divide the data points into their 



respective classes. A hyperplane that maximizes the margin between the classes 
is the decision boundary. 

 Non-Linear SVM: Non-Linear SVM can be used to classify data when it cannot 
be separated into two classes by a straight line (in the case of 2D). By using 
kernel functions, nonlinear SVMs can handle nonlinearly separable data. The 
original input data is transformed by these kernel functions into a higher-
dimensional feature space, where the data points can be linearly separated. A 
linear SVM is used to locate a nonlinear decision boundary in this modified 
space.  

Implementing SVM Algorithm in Python 
Predict if cancer is Benign or malignant. Using historical data about patients 
diagnosed with cancer enables doctors to differentiate malignant cases and benign 
ones are given independent attributes. 
 Load the breast cancer dataset from sklearn.datasets 
 Separate input features and target variables. 
 Build and train the SVM classifiers using RBF kernel. 
 Plot the scatter plot of the input features. 
# Load the important packages 
from sklearn.datasets import load_breast_cancer 
import matplotlib.pyplot as plt 
from sklearn.inspection import DecisionBoundaryDisplay 
from sklearn.svm import SVC 
 
# Load the datasets 
cancer = load_breast_cancer() 
X = cancer.data[:, :2] 
y = cancer.target 
 
#Build the model 
svm = SVC(kernel="rbf", gamma=0.5, C=1.0) 
# Trained the model 
svm.fit(X, y) 
 
# Plot Decision Boundary 
DecisionBoundaryDisplay.from_estimator( 
        svm, 
        X, 
        response_method="predict", 
        cmap=plt.cm.Spectral, 
        alpha=0.8, 
        xlabel=cancer.feature_names[0], 
        ylabel=cancer.feature_names[1], 
    ) 
 
# Scatter plot 
plt.scatter(X[:, 0], X[:, 1],  
            c=y,  
            s=20, edgecolors="k") 
plt.show() 
Output: 



Breast Cancer Classifications with SVM RBF kernel 

Advantages of Support Vector Machine (SVM) 
1. High-Dimensional Performance: SVM excels in high-dimensional spaces, 

making it suitable for image classification and gene expression analysis. 
2. Nonlinear Capability: Utilizing kernel functions like RBF and polynomial, SVM 

effectively handles nonlinear relationships. 
3. Outlier Resilience: The soft margin feature allows SVM to ignore outliers, 

enhancing robustness in spam detection and anomaly detection. 
4. Binary and Multiclass Support: SVM is effective for both binary 

classification and multiclass classification, suitable for applications in text 
classification. 

5. Memory Efficiency: SVM focuses on support vectors, making it memory 
efficient compared to other algorithms. 

Disadvantages of Support Vector Machine (SVM) 
1. Slow Training: SVM can be slow for large datasets, affecting performance 

in SVM in data mining tasks. 
2. Parameter Tuning Difficulty: Selecting the right kernel and adjusting 

parameters like C requires careful tuning, impacting SVM algorithms. 
3. Noise Sensitivity: SVM struggles with noisy datasets and overlapping classes, 

limiting effectiveness in real-world scenarios. 
4. Limited Interpretability: The complexity of the hyperplane in higher dimensions 

makes SVM less interpretable than other models. 
5. Feature Scaling Sensitivity: Proper feature scaling is essential; otherwise, 

SVM models may perform poorly. 
 



KERNEL TRICK  

The kernel trick is a powerful technique in machine learning that allows linear models to be 
applied to nonlinear problems by implicitly mapping data into a higher-dimensional feature 
space. This mapping is achieved using a kernel function, which calculates the dot product 
between two data points in the higher-dimensional space without explicitly calculating the 
coordinates. The kernel trick is particularly useful in Support Vector Machines (SVMs) to 
handle non-linear data.  

Here's a more detailed explanation: 

 Implicit Mapping: 

The kernel trick avoids explicitly calculating the transformation of data into a higher-
dimensional space, which can be computationally expensive. Instead, it uses a kernel 
function to calculate the dot product between points in the higher-dimensional space.  

 Kernel Functions: 

Different kernel functions can be used, such as polynomial, radial basis function (RBF), or 
sigmoid kernels, each offering different nonlinear transformations.  

 Linear Separability: 

By implicitly mapping data into a higher-dimensional space, the kernel trick enables linear 
classifiers to find separating hyperplanes that would not be possible in the original, lower-
dimensional space.  

 Computational Efficiency: 

The kernel trick provides a way to perform computations in the higher-dimensional space 
without needing to explicitly represent the transformed data, making it computationally 
efficient.  

 Applications: 
The kernel trick is widely used in various machine learning applications, including 
classification, regression, dimensionality reduction, and clustering.  
 

 



Logistic Regression 

What is Logistic Regression? 
Logistic regression is a supervised machine learning algorithm used for classification 
tasks where the goal is to predict the probability that an instance belongs to a given class or 
not. Logistic regression is a statistical algorithm which analyze the relationship between two 
data factors. The article explores the fundamentals of logistic regression, it's types and 
implementations. 
Logistic regression is used for binary classification where we use sigmoid function, that takes 
input as independent variables and produces a probability value between 0 and 1. 
For example, we have two classes Class 0 and Class 1 if the value of the logistic function for 
an input is greater than 0.5 (threshold value) then it belongs to Class 1 otherwise it belongs to 
Class 0. It's referred to as regression because it is the extension of linear regression but is 
mainly used for classification problems. 
Key Points: 
 Logistic regression predicts the output of a categorical dependent variable. Therefore, the 

outcome must be a categorical or discrete value. 
 It can be either Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value 

as 0 and 1, it gives the probabilistic values which lie between 0 and 1. 
 In Logistic regression, instead of fitting a regression line, we fit an "S" shaped logistic 

function, which predicts two maximum values (0 or 1). 
Types of Logistic Regression 
On the basis of the categories, Logistic Regression can be classified into three types: 
1. Binomial: In binomial Logistic regression, there can be only two possible types of the 

dependent variables, such as 0 or 1, Pass or Fail, etc. 
2. Multinomial: In multinomial Logistic regression, there can be 3 or more possible 

unordered types of the dependent variable, such as "cat", "dogs", or "sheep" 
3. Ordinal: In ordinal Logistic regression, there can be 3 or more possible ordered types of 

dependent variables, such as "low", "Medium", or "High". 
Assumptions of Logistic Regression 
We will explore the assumptions of logistic regression as understanding these assumptions is 
important to ensure that we are using appropriate application of the model. The assumption 
include: 
1. Independent observations: Each observation is independent of the other. meaning there is 

no correlation between any input variables. 
2. Binary dependent variables: It takes the assumption that the dependent variable must be 

binary or dichotomous, meaning it can take only two values. For more than two 
categories SoftMax functions are used. 

3. Linearity relationship between independent variables and log odds: The relationship 
between the independent variables and the log odds of the dependent variable should be 
linear. 

4. No outliers: There should be no outliers in the dataset. 
5. Large sample size: The sample size is sufficiently large 
Understanding Sigmoid Function 
So far, we've covered the basics of logistic regression, but now let's focus on the most 
important function that forms the core of logistic regression. 
 The sigmoid function is a mathematical function used to map the predicted values to 

probabilities. 



 It maps any real value into another value within a range of 0 and 1. The value of the 
logistic regression must be between 0 and 1, which cannot go beyond this limit, so it 
forms a curve like the "S" form. 

 The S-form curve is called the Sigmoid function or the logistic function. 
 In logistic regression, we use the concept of the threshold value, which defines the 

probability of either 0 or 1. Such as values above the threshold value tends to 1, and a 
value below the threshold values tends to 0. 

How does Logistic Regression work? 
The logistic regression model transforms the linear regression function continuous value 
output into categorical value output using a sigmoid function, which maps any real-valued set 
of independent variables input into a value between 0 and 1. This function is known as the 
logistic function. 
Let the independent input features be: 

 X=[x11 ...x1mx21 ...x2m ⋮⋱ ⋮ xn1 ...xnm]X=⎣⎡x11 x21  ⋮xn1 ......⋱ ...x1mx2m⋮ xnm⎦⎤  
 and the dependent variable is Y having only binary value i.e. 0 or 1.  

Y={0 if Class11 if Class2Y={01 if Class1 if Class2 
then, apply the multi-linear function to the input variables X. 

z=(∑i=1nwixi)+bz=(∑i=1nwixi)+b 
Here xixi is the ith observation of X, wi=[w1,w2,w3,⋯,wm]wi=[w1,w2,w3,⋯,wm] is the 
weights or Coefficient, and b is the bias term also known as intercept. simply this can be 
represented as the dot product of weight and bias. 

z=w⋅X+bz=w⋅X+b 
whatever we discussed above is the linear regression.  
Sigmoid Function 
Now we use the sigmoid function where the input will be z and we find the probability 
between 0 and 1. i.e. predicted y. 

σ(z)=11+e−zσ(z)=1+e−z1 

Sigmoid function 
As shown above, the figure sigmoid function converts the continuous variable data into 
the probability i.e. between 0 and 1.  
 σ(z)   σ(z)    tends towards 1 as z→∞z→∞ 
 σ(z)   σ(z)    tends towards 0 as z→−∞z→−∞ 
 σ(z)   σ(z)    is always bounded between 0 and 1 
where the probability of being a class can be measured as: 

P(y=1)=σ(z)P(y=0)=1−σ(z)P(y=1)=σ(z)P(y=0)=1−σ(z) 
Equation of Logistic Regression: 
The odd is the ratio of something occurring to something not occurring. it is different from 
probability as the probability is the ratio of something occurring to everything that could 
possibly occur. so odd will be: 

p(x)1−p(x) =ez1−p(x)p(x) =ez 
Applying natural log on odd. then log odd will be: 
log [p(x)1−p(x)]=zlog [p(x)1−p(x)]=w⋅X+bp(x)1−p(x)=ew⋅X+b⋯Exponentiate both side
sp(x)=ew⋅X+b⋅(1−p(x))p(x)=ew⋅X+b−ew⋅X+b⋅p(x))p(x)+ew⋅X+b⋅p(x))=ew⋅X+bp(x)(1+ew⋅



X+b)=ew⋅X+bp(x)=ew⋅X+b1+ew⋅X+blog[1−p(x)p(x)]log[1−p(x)p(x)]1−p(x)p(x)
p(x)p(x)p(x)+ew⋅X+b⋅p(x))p(x)(1+ew⋅X+b)p(x)

=z=w⋅X+b=ew⋅X+b⋯Exponentiate both sides=ew⋅X+b⋅(1−p(x))=ew⋅X+b−ew⋅X+b⋅p(x))=ew⋅X
+b=ew⋅X+b=1+ew⋅X+bew⋅X+b 

then the final logistic regression equation will be: 
p(X;b,w)=ew⋅X+b1+ew⋅X+b=11+e−w⋅X+bp(X;b,w)=1+ew⋅X+bew⋅X+b=1+e−w⋅X+b1 

Likelihood Function for Logistic Regression 
The predicted probabilities will be: 
 for y=1 The predicted probabilities will be: p(X;b,w) = p(x) 
 for y = 0 The predicted probabilities will be: 1-p(X;b,w) = 1-p(x) 

L(b,w)=∏i=1np(xi)yi(1−p(xi))1−yiL(b,w)=∏i=1np(xi)yi(1−p(xi))1−yi 
Taking natural logs on both sides 
log (L(b,w))=∑i=1nyilog p(xi)+(1−yi)log (1−p(xi))=∑i=1nyilog p(xi)+log (1−p(xi))
−yilog (1−p(xi))=∑i=1nlog (1−p(xi))+∑i=1nyilog p(xi)1−p(xi=∑i=1n−log 1−e−(w⋅xi

+b)+∑i=1nyi(w⋅xi+b)=∑i=1n−log 1+ew⋅xi+b+∑i=1nyi(w⋅xi+b)log(L(b,w))=i=1∑nyi
logp(xi)+(1−yi)log(1−p(xi))=i=1∑nyilogp(xi)+log(1−p(xi))−yilog(1−p(xi))=i=1∑nlog(1−p(xi
))+i=1∑nyilog1−p(xip(xi)=i=1∑n−log1−e−(w⋅xi+b)+i=1∑nyi(w⋅xi+b)=i=1∑n−log1+ew⋅xi

+b+i=1∑nyi(w⋅xi+b) 
Gradient of the log-likelihood function 
To find the maximum likelihood estimates, we differentiate w.r.t w, 
∂J(l(b,w)∂wj=−∑i=nn11+ew⋅xi+bew⋅xi+bxij+∑i=1nyixij=−∑i=nnp(xi;b,w)xij+∑i=1nyixij=
∑i=nn(yi−p(xi;b,w))xij∂wj∂J(l(b,w)=−i=n∑n1+ew⋅xi+b1ew⋅xi+bxij+i=1∑nyixij=−i=n∑np(xi

;b,w)xij+i=1∑nyixij=i=n∑n(yi−p(xi;b,w))xij 
Terminologies involved in Logistic Regression 
Here are some common terms involved in logistic regression: 
 Independent variables: The input characteristics or predictor factors applied to the 

dependent variable's predictions. 
 Dependent variable: The target variable in a logistic regression model, which we are 

trying to predict. 
 Logistic function: The formula used to represent how the independent and dependent 

variables relate to one another. The logistic function transforms the input variables into a 
probability value between 0 and 1, which represents the likelihood of the dependent 
variable being 1 or 0. 

 Odds: It is the ratio of something occurring to something not occurring. it is different 
from probability as the probability is the ratio of something occurring to everything that 
could possibly occur. 

 Log-odds: The log-odds, also known as the logit function, is the natural logarithm of the 
odds. In logistic regression, the log odds of the dependent variable are modeled as a linear 
combination of the independent variables and the intercept. 

 Coefficient: The logistic regression model's estimated parameters, show how the 
independent and dependent variables relate to one another. 

 Intercept: A constant term in the logistic regression model, which represents the log odds 
when all independent variables are equal to zero. 

 Maximum likelihood estimation: The method used to estimate the coefficients of the 
logistic regression model, which maximizes the likelihood of observing the data given the 
model 

Code Implementation for Logistic Regression 
So far, we've covered the basics of logistic regression with all the theoritical concepts, but 
now let's focus on the hands on code implementation part which makes you understand the 



logistic regression more clearly. We will dicuss Binomial Logistic 
regression and Multinomial Logistic Regression one by one. 
Binomial Logistic regression:  
Target variable can have only 2 possible types: “0” or “1” which may represent “win” vs 
“loss”, “pass” vs “fail”, “dead” vs “alive”, etc., in this case, sigmoid functions are used, 
which is already discussed above. 
Importing necessary libraries based on the requirement of model. This Python code shows 
how to use the breast cancer dataset to implement a Logistic Regression model for 
classification. 
from sklearn.datasets import load_breast_cancer 
from sklearn.linear_model import LogisticRegression 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
 
#load the following dataset  
X, y = load_breast_cancer(return_X_y=True) 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=23) 
 
clf = LogisticRegression(max_iter=10000, random_state=0) 
clf.fit(X_train, y_train) 
 
acc = accuracy_score(y_test, clf.predict(X_test)) * 100 
print(f"Logistic Regression model accuracy: {acc:.2f}%") 
Output: 
Logistic Regression model accuracy (in %): 96.49% 
This code loads the breast cancer dataset from scikit-learn, splits it into training and testing 
sets, and then trains a Logistic Regression model on the training data. The model is used to 
predict the labels for the test data, and the accuracy of these predictions is calculated by 
comparing the predicted values with the actual labels from the test set. Finally, the accuracy 
is printed as a percentage. 
Multinomial Logistic Regression: 
Target variable can have 3 or more possible types which are not ordered (i.e. types have no 
quantitative significance) like “disease A” vs “disease B” vs “disease C”. 
In this case, the softmax function is used in place of the sigmoid function. Softmax 
function for K classes will be: 

softmax(zi)=ezi∑j=1Kezjsoftmax(zi)=∑j=1Kezjezi 
Here, K represents the number of elements in the vector z, and i, j iterates over all the 
elements in the vector. 
Then the probability for class c will be: 

P(Y=c∣X→=x)=ewc⋅x+bc∑k=1Kewk⋅x+bkP(Y=c∣X=x)=∑k=1Kewk⋅x+bkewc⋅x+bc 
In Multinomial Logistic Regression, the output variable can have more than two possible 
discrete outputs. Consider the Digit Dataset.  
from sklearn.model_selection import train_test_split 
from sklearn import datasets, linear_model, metrics 
 
digits = datasets.load_digits() 
 
X = digits.data 
y = digits.target 



 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1) 
 
reg = linear_model.LogisticRegression(max_iter=10000, random_state=0) 
reg.fit(X_train, y_train) 
 
y_pred = reg.predict(X_test) 
 
print(f"Logistic Regression model accuracy: {metrics.accuracy_score(y_test, y_pred) * 
100:.2f}%") 
Output: 
Logistic Regression model accuracy(in %): 96.66% 
How to Evaluate Logistic Regression Model? 
So far, we've covered the implementation of logistic regression. Now, let's dive into the 
evaluation of logistic regression and understand why it's important 
Evaluating the model helps us assess the model's performance and ensure it generalizes well 
to new data 
We can evaluate the logistic regression model using the following metrics: 
 Accuracy: Accuracy provides the proportion of correctly classified instances. 

Accuracy=TruePositives+TrueNegativesTotalAccuracy=TotalTruePositives+TrueNegativ
es 

 Precision: Precision focuses on the accuracy of positive predictions. 
Precision=TruePositivesTruePositives+FalsePositivesPrecision=TruePositives+FalsePosi
tivesTruePositives 

 Recall (Sensitivity or True Positive Rate): Recall measures the proportion of correctly 
predicted positive instances among all actual positive instances. 
Recall=TruePositivesTruePositives+FalseNegativesRecall=TruePositives+FalseNegative
sTruePositives 

 F1 Score: F1 score is the harmonic mean of precision and recall. 
F1Score=2∗Precision∗RecallPrecision+RecallF1Score=2∗Precision+RecallPrecision∗Re
call 

 Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The ROC 
curve plots the true positive rate against the false positive rate at various 
thresholds. AUC-ROC measures the area under this curve, providing an aggregate 
measure of a model's performance across different classification thresholds. 

 Area Under the Precision-Recall Curve (AUC-PR): Similar to AUC-ROC, AUC-
PR measures the area under the precision-recall curve, providing a summary of a model's 
performance across different precision-recall trade-offs. 

Differences Between Linear and Logistic Regression 
Now lets dive into the key differences of Linear Regression and Logistic Regression and 
evaluate that how they are different from each other. 
The difference between linear regression and logistic regression is that linear regression 
output is the continuous value that can be anything while logistic regression predicts the 
probability that an instance belongs to a given class or not. 

Linear Regression Logistic Regression 

Linear regression is used to 
predict the continuous dependent 

Logistic regression is used to 
predict the categorical dependent 



Linear Regression Logistic Regression 

variable using a given set of 
independent variables. 

variable using a given set of 
independent variables. 

Linear regression is used for 
solving regression problem. 

It is used for solving 
classification problems. 

In this we predict the value of 
continuous variables 

In this we predict values of 
categorical variables 

In this we find best fit line. In this we find S-Curve. 

Least square estimation method 
is used for estimation of 

accuracy. 

Maximum likelihood estimation 
method is used for Estimation of 

accuracy. 

The output must be continuous 
value, such as price, age, etc. 

Output must be categorical value 
such as 0 or 1, Yes or no, etc. 

It required linear relationship 
between dependent and 
independent variables. 

It not required linear 
relationship. 

There may be collinearity 
between the independent 

variables. 

There should be little to no 
collinearity between independent 

variables. 

 
Linear Regression in Machine learning 

Linear regression is a type of supervised machine-learning algorithm that learns from 
the labelled datasets and maps the data points with most optimized linear functions which can 
be used for prediction on new datasets. It assumes that there is a linear relationship between 
the input and output, meaning the output changes at a constant rate as the input changes. This 
relationship is represented by a straight line. 
For example We want to predict a student's exam score based on how many hours they 
studied. We observe that as students study more hours, their scores go up. In the example of 
predicting exam scores based on hours studied. Here 
 Independent variable (input): Hours studied because it's the factor we control or observe. 
 Dependent variable (output): Exam score because it depends on how many hours were 

studied. 
We use the independent variable to predict the dependent variable. 
Why Linear Regression is Important? 
Here’s why linear regression is important: 



 Simplicity and Interpretability: It’s easy to understand and interpret, making it a starting 
point for learning about machine learning. 

 Predictive Ability: Helps predict future outcomes based on past data, making it useful in 
various fields like finance, healthcare and marketing. 

 Basis for Other Models: Many advanced algorithms, like logistic regression or neural 
networks, build on the concepts of linear regression. 

 Efficiency: It’s computationally efficient and works well for problems with a linear 
relationship. 

 Widely Used: It’s one of the most widely used techniques in both statistics and machine 
learning for regression tasks. 

 Analysis: It provides insights into relationships between variables (e.g., how much one 
variable influences another). 

Best Fit Line in Linear Regression 
In linear regression, the best-fit line is the straight line that most accurately represents the 
relationship between the independent variable (input) and the dependent variable (output). It 
is the line that minimizes the difference between the actual data points and the predicted 
values from the model. 
1. Goal of the Best-Fit Line 
The goal of linear regression is to find a straight line that minimizes the error (the difference) 
between the observed data points and the predicted values. This line helps us predict the 
dependent variable for new, unseen data. 

Linear 
Regression 

Here Y is called a dependent or target variable and X is called an independent variable also 
known as the predictor of Y. There are many types of functions or modules that can be used 
for regression. A linear function is the simplest type of function. Here, X may be a single 
feature or multiple features representing the problem. 
2. Equation of the Best-Fit Line 
For simple linear regression (with one independent variable), the best-fit line is represented 
by the equation 
y=mx+by=mx+b 
Where: 



 y is the predicted value (dependent variable) 
 x is the input (independent variable) 
 m is the slope of the line (how much y changes when x changes) 
 b is the intercept (the value of y when x = 0) 
The best-fit line will be the one that optimizes the values of m (slope) and b (intercept) so that 
the predicted y values are as close as possible to the actual data points. 
3. Minimizing the Error: The Least Squares Method 
To find the best-fit line, we use a method called Least Squares. The idea behind this method 
is to minimize the sum of squared differences between the actual values (data points) and the 
predicted values from the line. These differences are called residuals. 
The formula for residuals is: 
Residual=yᵢ−y^ᵢResidual=yᵢ−y^ᵢ 
Where: 
 yᵢyᵢ is the actual observed value 
 y^ᵢy^ᵢ is the predicted value from the line for that xᵢxᵢ 
The least squares method minimizes the sum of the squared residuals: 
Sumofsquarederrors(SSE)=Σ(yᵢ−y^ᵢ)²Sumofsquarederrors(SSE)=Σ(yᵢ−y^ᵢ)² 
This method ensures that the line best represents the data, where the sum of the squared 
differences between the predicted values and actual values is as small as possible. 
4. Interpretation of the Best-Fit Line 
 Slope (m): The slope of the best-fit line indicates how much the dependent variable (y) 

changes with each unit change in the independent variable (x). For example, if the slope 
is 5, it means that for every 1-unit increase in x, the value of y increases by 5 units. 

 Intercept (b): The intercept represents the predicted value of y when x = 0. It’s the point 
where the line crosses the y-axis. 

In linear regression some hypothesis are made to ensure reliability of the model's results. 
Limitations 
 Assumes Linearity: The method assumes the relationship between the variables is linear. 

If the relationship is non-linear, linear regression might not work well. 
 Sensitivity to Outliers: Outliers can significantly affect the slope and intercept, skewing 

the best-fit line. 
Hypothesis function in Linear Regression 
In linear regression, the hypothesis function is the equation used to make predictions about 
the dependent variable based on the independent variables. It represents the relationship 
between the input features and the target output. 
For a simple case with one independent variable, the hypothesis function is: 
h(x)=β₀+β₁xh(x)=β₀+β₁x 
Where: 
 h(x)(ory^)h(x)(ory^) is the predicted value of the dependent variable (y). 
 x is the independent variable. 
 β₀β₀ is the intercept, representing the value of y when x is 0. 
 β₁β₁ is the slope, indicating how much y changes for each unit change in x. 
For multiple linear regression (with more than one independent variable), the hypothesis 
function expands to: 
h(x₁,x₂,...,xₖ)=β₀+β₁x₁+β₂x₂+...+βₖxₖh(x₁,x₂,...,xₖ)=β₀+β₁x₁+β₂x₂+...+βₖxₖ 
Where: 
 x₁,x₂,...,xₖx₁,x₂,...,xₖ are the independent variables. 
 β₀β₀ is the intercept. 
 β₁,β₂,...,βₖβ₁,β₂,...,βₖ are the coefficients, representing the influence of each respective 

independent variable on the predicted output. 



Assumptions of the Linear Regression 
1. Linearity: The relationship between inputs (X) and the output (Y) is a straight line. 

Linearity 

2. Independence of Errors: The errors in predictions should not affect each other. 
3. Constant Variance (Homoscedasticity): The errors should have equal spread across all 

values of the input. If the spread changes (like fans out or shrinks), it's called 
heteroscedasticity and it's a problem for the model. 

 

Homoscedasticity 

4. Normality of Errors: The errors should follow a normal (bell-shaped) distribution. 
5. No Multicollinearity(for multiple regression): Input variables shouldn’t be too closely 

related to each other. 
6. No Autocorrelation: Errors shouldn't show repeating patterns, especially in time-based 

data. 
7. Additivity: The total effect on Y is just the sum of effects from each X, no mixing or 

interaction between them.' 
To understand Multicollinearity in detail refer to article: Multicollinearity. 
Types of Linear Regression 
When there is only one independent feature it is known as Simple Linear 
Regression or Univariate Linear Regression and when there are more than one feature it is 
known as Multiple Linear Regression orMultivariate Regression. 
1. Simple Linear Regression 
Simple linear regression is used when we want to predict a target value (dependent variable) 
using only one input feature (independent variable). It assumes a straight-line relationship 
between the two. 
Formula: 



y^=θ0+θ1xy^=θ0+θ1x 
Where: 
 y^y^ is the predicted value 
 x is the input (independent variable) 
 θ0θ0 is the intercept (value of y^y^ when x=0) 
 θ1θ1 is the slope or coefficient (how much y^y^ changes with one unit of x) 
Example: 
Predicting a person’s salary (y) based on their years of experience (x). 
2. Multiple Linear Regression 
Multiple linear regression involves more than one independent variable and one dependent 
variable. The equation for multiple linear regression is: 
y^=θ0+θ1x1+θ2x2+⋯+θnxny^=θ0+θ1x1+θ2x2+⋯+θnxn 
where: 
 y^y^ is the predicted value 
 x1,x2,…,xnx1,x2,…,xn are the independent variables 
 θ1,θ2,…,θnθ1,θ2,…,θn are the coefficients (weights) corresponding to each predictor. 
 θ0θ0 is the intercept. 
The goal of the algorithm is to find the best Fit Line equation that can predict the values 
based on the independent variables. 
In regression set of records are present with X and Y values and these values are used to learn 
a function so if you want to predict Y from an unknown X this learned function can be used. 
In regression we have to find the value of Y, So, a function is required that predicts 
continuous Y in the case of regression given X as independent features. 
Use Case of Multiple Linear Regression 
Multiple linear regression allows us to analyze relationship between multiple independent 
variables and a single dependent variable. Here are some use cases: 
 Real Estate Pricing: In real estate MLR is used to predict property prices based on 

multiple factors such as location, size, number of bedrooms, etc. This helps buyers and 
sellers understand market trends and set competitive prices. 

 Financial Forecasting: Financial analysts use MLR to predict stock prices or economic 
indicators based on multiple influencing factors such as interest rates, inflation rates and 
market trends. This enables better investment strategies and risk management24. 

 Agricultural Yield Prediction: Farmers can use MLR to estimate crop yields based on 
several variables like rainfall, temperature, soil quality and fertilizer usage. This 
information helps in planning agricultural practices for optimal productivity 

 E-commerce Sales Analysis: An e-commerce company can utilize MLR to assess how 
various factors such as product price, marketing promotions and seasonal trends impact 
sales. 

Now that we have understood about linear regression, its assumption and its type now we will 
learn how to make a linear regression model. 
Cost function for Linear Regression 
As we have discussed earlier about best fit line in linear regression, its not easy to get it easily 
in real life cases so we need to calculate errors that affects it. These errors need to be 
calculated to mitigate them. The difference between the predicted value Y^     Y^     and the 
true value Y and it is called cost function or the loss function. 
In Linear Regression, the Mean Squared Error (MSE) cost function is employed, which 
calculates the average of the squared errors between the predicted values y^iy^i and the actual 
values yiyi. The purpose is to determine the optimal values for the intercept θ1θ1 and the 
coefficient of the input feature θ2θ2 providing the best-fit line for the given data points. The 
linear equation expressing this relationship is y^i=θ1+θ2xiy^i=θ1+θ2xi. 



MSE function can be calculated as: 
Cost function(J)=1n∑ni(yi^−yi)2Cost function(J)=n1∑ni(yi^−yi)2 
Utilizing the MSE function, the iterative process of gradient descent is applied to update the 
values of \θ1&θ2θ1&θ2. This ensures that the MSE value converges to the global minima, 
signifying the most accurate fit of the linear regression line to the dataset. 
This process involves continuously adjusting the parameters \(\theta_1\) and \(\theta_2\) 
based on the gradients calculated from the MSE. The final result is a linear regression line 
that minimizes the overall squared differences between the predicted and actual values, 
providing an optimal representation of the underlying relationship in the data. 
Now we have calculated loss function we need to optimize model to mtigate this error and it 
is done through gradient descent. 
Gradient Descent for Linear Regression 
A linear regression model can be trained using the optimization algorithm gradient descent by 
iteratively modifying the model's parameters to reduce the mean squared error (MSE) of the 
model on a training dataset. To update θ1 and θ2 values in order to reduce the Cost function 
(minimizing RMSE value) and achieve the best-fit line the model uses Gradient Descent. The 
idea is to start with random θ1 and θ2 values and then iteratively update the values, reaching 
minimum cost.  
A gradient is nothing but a derivative that defines the effects on outputs of the function with a 
little bit of variation in inputs. 
Let's differentiate the cost function(J) with respect to θ1     θ1        
Jθ1′=∂J(θ1,θ2)∂θ1=∂∂θ1[1n(∑i=1n(y^i−yi)2)]=1n[∑i=1n2(y^i−yi)(∂∂θ1(y^i−yi))]=1n[∑i=
1n2(y^i−yi)(∂∂θ1(θ1+θ2xi−yi))]=1n[∑i=1n2(y^i−yi)(1+0−0)]=1n[∑i=1n(y^i−yi)(2)]=2n∑
i=1n(y^i−yi)Jθ1′=∂θ1∂J(θ1,θ2)=∂θ1∂[n1(i=1∑n(y^i−yi)2)]=n1[i=1∑n2(y^i−yi)(∂θ1∂(y^i
−yi))]=n1[i=1∑n2(y^i−yi)(∂θ1∂(θ1+θ2xi−yi))]=n1[i=1∑n2(y^i−yi)(1+0−0)]=n1[i=1∑n
(y^i−yi)(2)]=n2i=1∑n(y^i−yi) 
Let's differentiate the cost function(J) with respect to θ2θ2 
Jθ2′=∂J(θ1,θ2)∂θ2=∂∂θ2[1n(∑i=1n(y^i−yi)2)]=1n[∑i=1n2(y^i−yi)(∂∂θ2(y^i−yi))]=1n[∑i=
1n2(y^i−yi)(∂∂θ2(θ1+θ2xi−yi))]=1n[∑i=1n2(y^i−yi)(0+xi−0)]=1n[∑i=1n(y^i−yi)(2xi)]=2
n∑i=1n(y^i−yi)⋅xiJθ2′=∂θ2∂J(θ1,θ2)=∂θ2∂[n1(i=1∑n(y^i−yi)2)]=n1[i=1∑n2(y^i−yi)(∂θ2∂
(y^i−yi))]=n1[i=1∑n2(y^i−yi)(∂θ2∂(θ1+θ2xi−yi))]=n1[i=1∑n2(y^i−yi)(0+xi−0)]=n1
[i=1∑n(y^i−yi)(2xi)]=n2i=1∑n(y^i−yi)⋅xi 
Finding the coefficients of a linear equation that best fits the training data is the objective of 
linear regression. By moving in the direction of the Mean Squared Error negative gradient 
with respect to the coefficients, the coefficients can be changed. And the respective intercept 
and coefficient of X will be if α     α      is the learning rate. 
Gradient Descent 

θ1=θ1−α(Jθ1′)=θ1−α(2n∑i=1n(y^i−yi))θ2=θ2−α(Jθ2′)=θ2−α(2n∑i=1n(y^i−yi)⋅xi)θ1=θ1
−α(Jθ1′)=θ1−α(n2i=1∑n(y^i−yi))θ2=θ2−α(Jθ2′)=θ2−α(n2i=1∑n(y^i−yi)⋅xi) 
After optimizing our model, we evaluate our models accuracy to see how well it will perform 
in real world scenario. 
Evaluation Metrics for Linear Regression 
A variety of evaluation measures can be used to determine the strength of any linear 
regression model. These assessment metrics often give an indication of how well the model is 
producing the observed outputs. 
The most common measurements are: 
1. Mean Square Error (MSE) 



Mean Squared Error (MSE) is an evaluation metric that calculates the average of the squared 
differences between the actual and predicted values for all the data points. The difference is 
squared to ensure that negative and positive differences don't cancel each other out. 
MSE=1n∑i=1n(yi−yi^)2MSE=n1∑i=1n(yi−yi)2 
Here, 
 n is the number of data points. 
 yi is the actual or observed value for the ith data point. 
 yi^yi is the predicted value for the ith data point. 
MSE is a way to quantify the accuracy of a model's predictions. MSE is sensitive to outliers 
as large errors contribute significantly to the overall score. 
2. Mean Absolute Error (MAE) 
Mean Absolute Error is an evaluation metric used to calculate the accuracy of a regression 
model. MAE measures the average absolute difference between the predicted values and 
actual values. 
Mathematically, MAE is expressed as: 
MAE=1n∑i=1n∣Yi−Yi^∣MAE=n1∑i=1n∣Yi−Yi∣ 
Here, 
 n is the number of observations 
 Yi represents the actual values. 
 Yi^Yi represents the predicted values 
Lower MAE value indicates better model performance. It is not sensitive to the outliers as we 
consider absolute differences. 
3. Root Mean Squared Error (RMSE) 
The square root of the residuals' variance is the Root Mean Squared Error. It describes how 
well the observed data points match the expected values, or the model's absolute fit to the 
data. 
In mathematical notation, it can be expressed as: 
RMSE=RSSn=∑i=2n(yiactual−yipredicted)2nRMSE=nRSS=n∑i=2n(yiactual−yipredicted)2 
Rather than dividing the entire number of data points in the model by the number of degrees 
of freedom, one must divide the sum of the squared residuals to obtain an unbiased estimate. 
Then, this figure is referred to as the Residual Standard Error (RSE). 
In mathematical notation, it can be expressed as: 
RMSE=RSSn=∑i=2n(yiactual−yipredicted)2(n−2)RMSE=nRSS=(n−2)∑i=2n(yiactual
−yipredicted)2 
RSME is not as good of a metric as R-squared. Root Mean Squared Error can fluctuate when 
the units of the variables vary since its value is dependent on the variables' units (it is not a 
normalized measure). 
4. Coefficient of Determination (R-squared) 
R-Squared is a statistic that indicates how much variation the developed model can explain or 
capture. It is always in the range of 0 to 1. In general, the better the model matches the data, 
the greater the R-squared number. 
In mathematical notation, it can be expressed as: 
R2=1−(RSSTSS)R2=1−(TSSRSS) 
 Residual sum of Squares (RSS): The sum of squares of the residual for each data point in 

the plot or data is known as the residual sum of squares, or RSS. It is a measurement of 
the difference between the output that was observed and what was anticipated. 

RSS=∑i=1n(yi−b0−b1xi)2RSS=∑i=1n(yi−b0−b1xi)2 
 Total Sum of Squares (TSS): The sum of the data points' errors from the answer variable's 

mean is known as the total sum of squares, or TSS. 
TSS=∑i=1n(y−yi‾)2TSS=∑i=1n(y−yi)2. 



R squared metric is a measure of the proportion of variance in the dependent variable that is 
explained the independent variables in the model. 
5. Adjusted R-Squared Error 
Adjusted R2 measures the proportion of variance in the dependent variable that is explained 
by independent variables in a regression model. Adjusted R-square accounts the number of 
predictors in the model and penalizes the model for including irrelevant predictors that don't 
contribute significantly to explain the variance in the dependent variables. 
Mathematically, adjusted R2 is expressed as: 
AdjustedR2=1−((1−R2).(n−1)n−k−1)AdjustedR2=1−(n−k−1(1−R2).(n−1)) 
Here, 
 n is the number of observations 
 k is the number of predictors in the model 
 R2 is coeeficient of determination 
Adjusted R-square helps to prevent overfitting. It penalizes the model with additional 
predictors that do not contribute significantly to explain the variance in the dependent 
variable. 
While evaluation metrics help us measure the performance of a model, regularization helps in 
improving that performance by addressing overfitting and enhancing generalization. 
Regularization Techniques for Linear Models 
1. Lasso Regression (L1 Regularization) 
Lasso Regression is a technique used for regularizing a linear regression model, it adds a 
penalty term to the linear regression objective function to prevent overfitting. 
The objective function after applying lasso regression is: 
J(θ)=12m∑i=1m(yi^−yi)2+λ∑j=1n∣θj∣J(θ)=2m1∑i=1m(yi−yi)2+λ∑j=1n∣θj∣ 
 the first term is the least squares loss, representing the squared difference between 

predicted and actual values. 
 the second term is the L1 regularization term, it penalizes the sum of absolute values of 

the regression coefficient θj. 
2. Ridge Regression (L2 Regularization) 
Ridge regression is a linear regression technique that adds a regularization term to the 
standard linear objective. Again, the goal is to prevent overfitting by penalizing large 
coefficient in linear regression equation. It useful when the dataset 
has multicollinearity where predictor variables are highly correlated. 
The objective function after applying ridge regression is: 
J(θ)=12m∑i=1m(yi^−yi)2+λ∑j=1nθj2J(θ)=2m1∑i=1m(yi−yi)2+λ∑j=1nθj2 
 the first term is the least squares loss, representing the squared difference between 

predicted and actual values. 
 the second term is the L1 regularization term, it penalizes the sum of square of values of 

the regression coefficient θj. 
3. Elastic Net Regression 
Elastic Net Regression is a hybrid regularization technique that combines the power of both 
L1 and L2 regularization in linear regression objective. 
J(θ)=12m∑i=1m(yi^−yi)2+αλ∑j=1n∣θj∣+12(1−α)λ∑j=1nθj2J(θ)=2m1∑i=1m(yi−yi
)2+αλ∑j=1n∣θj∣+21(1−α)λ∑j=1nθj2 
 the first term is least square loss. 
 the second term is L1 regularization and third is ridge regression. 
 λ is the overall regularization strength. 
 α controls the mix between L1 and L2 regularization. 

 



The linear regression line provides valuable insights into the relationship between the two 
variables. It represents the best-fitting line that captures the overall trend of how a dependent 
variable (Y) changes in response to variations in an independent variable (X). 
 Positive Linear Regression Line: A positive linear regression line indicates a direct 

relationship between the independent variable (X) and the dependent variable (Y). This 
means that as the value of X increases, the value of Y also increases. The slope of a 
positive linear regression line is positive, meaning that the line slants upward from left to 
right. 

 Negative Linear Regression Line: A negative linear regression line indicates an inverse 
relationship between the independent variable (X) and the dependent variable (Y). This 
means that as the value of X increases, the value of Y decreases. The slope of a negative 
linear regression line is negative, meaning that the line slants downward from left to right. 

Applications of Linear Regression 
Linear regression is used in many different fields including finance, economics and 
psychology to understand and predict the behavior of a particular variable. 
For example linear regression is widely used in finance to analyze relationships and make 
predictions. It can model how a company's earnings per share (EPS) influence its stock price. 
If the model shows that a $1 increase in EPS results in a $15 rise in stock price, investors gain 
insights into the company's valuation. Similarly, linear regression can forecast currency 
values by analyzing historical exchange rates and economic indicators, helping financial 
professionals make informed decisions and manage risks effectively. 
Also read - Linear Regression - In Simple Words, with real-life Examples 
Advantages and Disadvantages of Linear regression 
Advantages of Linear Regression 
 Linear regression is a relatively simple algorithm, making it easy to understand and 

implement. The coefficients of the linear regression model can be interpreted as the 
change in the dependent variable for a one-unit change in the independent variable, 
providing insights into the relationships between variables. 

 Linear regression is computationally efficient and can handle large datasets effectively. It 
can be trained quickly on large datasets, making it suitable for real-time applications. 

 Linear regression is relatively robust to outliers compared to other machine learning 
algorithms. Outliers may have a smaller impact on the overall model performance. 

 Linear regression often serves as a good baseline model for comparison with more 
complex machine learning algorithms. 

 Linear regression is a well-established algorithm with a rich history and is widely 
available in various machine learning libraries and software packages. 

Disadvantages of Linear Regression 
 Linear regression assumes a linear relationship between the dependent and independent 

variables. If the relationship is not linear, the model may not perform well. 
 Linear regression is sensitive to multicollinearity, which occurs when there is a high 

correlation between independent variables. Multicollinearity can inflate the variance of 
the coefficients and lead to unstable model predictions. 

 Linear regression assumes that the features are already in a suitable form for the model. 
Feature engineering may be required to transform features into a format that can be 
effectively used by the model. 

 Linear regression is susceptible to both overfitting and underfitting. Overfitting occurs 
when the model learns the training data too well and fails to generalize to unseen data. 
Underfitting occurs when the model is too simple to capture the underlying relationships 
in the data. 



 Linear regression provides limited explanatory power for complex relationships between 
variables. More advanced machine learning techniques may be necessary for deeper 
insights. 

 

Multi-Layer Perceptron Learning in 
Tensorflow 

Multi-Layer Perceptron (MLP) is an artificial neural network widely used for 
solving classification and regression tasks. 
MLP consists of fully connected dense layers that transform input data from one dimension 
to another. It is called "multi-layer" because it contains an input layer, one or more hidden 
layers, and an output layer. The purpose of an MLP is to model complex relationships 
between inputs and outputs, making it a powerful tool for various machine learning tasks. 
Pre-requisites: Neural Network, Artificial Neural Network, Perceptron 
Key Components of Multi-Layer Perceptron (MLP) 
 Input Layer: Each neuron (or node) in this layer corresponds to an input feature. For 

instance, if you have three input features, the input layer will have three neurons. 
 Hidden Layers: An MLP can have any number of hidden layers, with each layer 

containing any number of nodes. These layers process the information received from 
the input layer. 

 Output Layer: The output layer generates the final prediction or result. If there are 
multiple outputs, the output layer will have a corresponding number of neurons. 

 
Every connection in the diagram is a representation of the fully connected nature of an 
MLP. This means that every node in one layer connects to every node in the next layer. As 
the data moves through the network, each layer transforms it until the final output is 
generated in the output layer. 
Working of Multi-Layer Perceptron 
Let's delve in to the working of the multi-layer perceptron. The key mechanisms such as 
forward propagation, loss function, backpropagation, and optimization. 
Step 1: Forward Propagation 
In forward propagation, the data flows from the input layer to the output layer, passing 
through any hidden layers. Each neuron in the hidden layers processes the input as follows: 
1. Weighted Sum: The neuron computes the weighted sum of the inputs: 

 z=∑iwixi+bz=∑iwixi+b 
o Where: 



o xixi is the input feature. 
o wiwi is the corresponding weight. 
o bb is the bias term. 

2. Activation Function: The weighted sum z is passed through an activation function to 
introduce non-linearity. Common activation functions include: 
 Sigmoid: σ(z)=11+e−zσ(z)=1+e−z1 
 ReLU (Rectified Linear Unit): f(z)=max (0,z)f(z)=max(0,z) 
 Tanh (Hyperbolic Tangent): tanh (z)=21+e−2z−1tanh(z)=1+e−2z2−1 

Step 2: Loss Function 
Once the network generates an output, the next step is to calculate the loss using a loss 
function. In supervised learning, this compares the predicted output to the actual label. 
For a classification problem, the commonly used binary cross-entropy loss function is: 

L=−1N∑i=1N[yilog (y^i)+(1−yi)log (1−y^i)]L=−N1∑i=1N[yilog(y^i
)+(1−yi)log(1−y^i)] 
Where: 
 yiyi is the actual label. 
 y^iy^i is the predicted label. 
 NN is the number of samples. 
For regression problems, the mean squared error (MSE) is often used: 

MSE=1N∑i=1N(yi−y^i)2MSE=N1∑i=1N(yi−y^i)2 
Step 3: Backpropagation 
The goal of training an MLP is to minimize the loss function by adjusting the network's 
weights and biases. This is achieved through backpropagation: 
1. Gradient Calculation: The gradients of the loss function with respect to each weight 

and bias are calculated using the chain rule of calculus. 
2. Error Propagation: The error is propagated back through the network, layer by layer. 
3. Gradient Descent: The network updates the weights and biases by moving in the 

opposite direction of the gradient to reduce the loss: w=w−η⋅∂L∂ww=w−η⋅∂w∂L 
 Where: 

o ww is the weight. 
o ηη is the learning rate. 
o ∂L∂w∂w∂L is the gradient of the loss function with respect to the weight. 

Step 4: Optimization 
MLPs rely on optimization algorithms to iteratively refine the weights and biases during 
training. Popular optimization methods include: 
 Stochastic Gradient Descent (SGD): Updates the weights based on a single sample or 

a small batch of data: w=w−η⋅∂L∂ww=w−η⋅∂w∂L 
 Adam Optimizer: An extension of SGD that incorporates momentum and adaptive 

learning rates for more efficient training: 
o mt=β1mt−1+(1−β1)⋅gtmt=β1mt−1+(1−β1)⋅gt 
o vt=β2vt−1+(1−β2)⋅gt2vt=β2vt−1+(1−β2)⋅gt2 

 Here, gtgt represents the gradient at time tt, and β1,β2β1,β2 are decay rates. 
Now that we are done with the theory part of multi-layer perception, let's go ahead and 
implement some code in python using the TensorFlow library. 
Advantages of Multi Layer Perceptron 
 Versatility: MLPs can be applied to a variety of problems, both classification and 

regression. 
 Non-linearity: Thanks to activation functions, MLPs can model complex, non-linear 

relationships in data. 



 Parallel Computation: With the help of GPUs, MLPs can be trained quickly by taking 
advantage of parallel computing. 

Disadvantages of Multi Layer Perceptron 
 Computationally Expensive: MLPs can be slow to train, especially on large datasets 

with many layers. 
 Prone to Overfitting: Without proper regularization techniques, MLPs can overfit the 

training data, leading to poor generalization. 
 Sensitivity to Data Scaling: MLPs require properly normalized or scaled data for 

optimal performance. 
The Multilayer Perceptron has the ability to learn complex patterns from data makes it a 
valuable tool in machine learning. Whether you're working with structured data, images, or 
text, understanding how MLP works can open doors to solving a wide range of problems. 

 

Backpropagation in Neural Network 
 
Backpropagation is also known as "Backward Propagation of Errors" and it is a 

method used to train neural network . Its goal is to reduce the difference between the 
model’s predicted output and the actual output by adjusting the weights and biases in the 
network. In this article we will explore what backpropagation is, why it is crucial in machine 
learning and how it works. 
What is Backpropagation? 
Backpropagation is a technique used in deep learning to train artificial neural networks 
particularly feed-forward networks. It works iteratively to adjust weights and bias to 
minimize the cost function. 
In each epoch the model adapts these parameters reducing loss by following the error 
gradient. Backpropagation often uses optimization algorithms like gradient 
descent or stochastic gradient descent. The algorithm computes the gradient using the chain 
rule from calculus allowing it to effectively navigate complex layers in the neural network to 
minimize the cost function. 



Fig(a) A simple illustration of how the backpropagation works by adjustments of weights 

Backpropagation plays a critical role in how neural networks improve over time. Here's why: 
1. Efficient Weight Update: It computes the gradient of the loss function with respect to 

each weight using the chain rule making it possible to update weights efficiently. 
2. Scalability: The backpropagation algorithm scales well to networks with multiple layers 

and complex architectures making deep learning feasible. 
3. Automated Learning: With backpropagation the learning process becomes automated 

and the model can adjust itself to optimize its performance. 
Working of Backpropagation Algorithm 
The Backpropagation algorithm involves two main steps: the Forward Pass and 
the Backward Pass. 
How Does Forward Pass Work? 
In forward pass the input data is fed into the input layer. These inputs combined with their 
respective weights are passed to hidden layers. For example in a network with two hidden 
layers (h1 and h2 as shown in Fig. (a)) the output from h1 serves as the input to h2. Before 
applying an activation function, a bias is added to the weighted inputs. 
Each hidden layer computes the weighted sum (`a`) of the inputs then applies an activation 
function like ReLU (Rectified Linear Unit) to obtain the output (`o`). The output is passed 
to the next layer where an activation function such as softmax converts the weighted outputs 
into probabilities for classification. 



The forward 
pass using weights and biases 

How Does the Backward Pass Work? 
In the backward pass the error (the difference between the predicted and actual output) is 
propagated back through the network to adjust the weights and biases. One common method 
for error calculation is the Mean Squared Error (MSE) given by: 
MSE=(Predicted Output−Actual Output)2MSE=(Predicted Output−Actual Output)2 
Once the error is calculated the network adjusts weights using gradients which are computed 
with the chain rule. These gradients indicate how much each weight and bias should be 
adjusted to minimize the error in the next iteration. The backward pass continues layer by 
layer ensuring that the network learns and improves its performance. The activation function 
through its derivative plays a crucial role in computing these gradients during 
backpropagation. 
Example of Backpropagation in Machine Learning 
Let’s walk through an example of backpropagation in machine learning. Assume the neurons 
use the sigmoid activation function for the forward and backward pass. The target output is 
0.5, and the learning rate is 1. 



Example (1) of backpropagation sum 

Forward Propagation 
1. Initial Calculation 
The weighted sum at each node is calculated using: 

aj=∑(wi,j∗xi)aj=∑(wi,j∗xi) 
Where, 
 ajaj is the weighted sum of all the inputs and weights at each node 
 wi,jwi,j represents the weights between the ithithinput and the jthjth neuron 
 xixi represents the value of the ithith input 
o (output): After applying the activation function to a, we get the output of the neuron: 

ojoj = activation function(ajaj) 
2. Sigmoid Function 
The sigmoid function returns a value between 0 and 1, introducing non-linearity into the 
model. 

yj=11+e−ajyj=1+e−aj1 



To find the outputs of y3, y4 and y5 

3. Computing Outputs 
At h1 node 

a1=(w1,1x1)+(w2,1x2)=(0.2∗0.35)+(0.2∗0.7)=0.21a1=(w1,1x1)+(w2,1x2
)=(0.2∗0.35)+(0.2∗0.7)=0.21 
Once we calculated the a1 value, we can now proceed to find the y3 value: 

yj=F(aj)=11+e−a1yj=F(aj)=1+e−a11 
y3=F(0.21)=11+e−0.21y3=F(0.21)=1+e−0.211 
y3=0.56y3=0.56 

Similarly find the values of y4 at h2 and y5 at O3 
a2=(w1,2∗x1)+(w2,2∗x2)=(0.3∗0.35)+(0.3∗0.7)=0.315a2=(w1,2∗x1)+(w2,2∗x2

)=(0.3∗0.35)+(0.3∗0.7)=0.315 
y4=F(0.315)=11+e−0.315y4=F(0.315)=1+e−0.3151 
a3=(w1,3∗y3)+(w2,3∗y4)=(0.3∗0.57)+(0.9∗0.59)=0.702a3=(w1,3∗y3)+(w2,3∗y4

)=(0.3∗0.57)+(0.9∗0.59)=0.702 
y5=F(0.702)=11+e−0.702=0.67y5=F(0.702)=1+e−0.7021=0.67 



Values of y3, y4 and y5 

4. Error Calculation 
Our actual output is 0.5 but we obtained 0.67. To calculate the error we can use the below 
formula: 

Errorj=ytarget−y5Errorj=ytarget−y5 
Error=0.5−0.67=−0.17Error=0.5−0.67=−0.17 

Using this error value we will be backpropagating. 
Backpropagation 
1. Calculating Gradients 
The change in each weight is calculated as: 
Δwij=η×δj×OjΔwij=η×δj×Oj 
Where: 
 δjδj is the error term for each unit, 
 ηη is the learning rate. 
2. Output Unit Error 
For O3: 

δ5=y5(1−y5)(ytarget−y5)δ5=y5(1−y5)(ytarget−y5) 
=0.67(1−0.67)(−0.17)=−0.0376=0.67(1−0.67)(−0.17)=−0.0376 

3. Hidden Unit Error 
For h1: 

δ3=y3(1−y3)(w1,3×δ5)δ3=y3(1−y3)(w1,3×δ5) 
=0.56(1−0.56)(0.3×−0.0376)=−0.0027=0.56(1−0.56)(0.3×−0.0376)=−0.00

27 
For h2: 

δ4=y4(1−y4)(w2,3×δ5)δ4=y4(1−y4)(w2,3×δ5) 
=0.59(1−0.59)(0.9×−0.0376)=−0.0819=0.59(1−0.59)(0.9×−0.0376)=−0.0819 

4. Weight Updates 
For the weights from hidden to output layer: 

Δw2,3=1×(−0.0376)×0.59=−0.022184Δw2,3
=1×(−0.0376)×0.59=−0.022184 
New weight: 



w2,3(new)=−0.022184+0.9=0.877816w2,3
(new)=−0.022184+0.9=0.877816 
For weights from input to hidden layer: 

Δw1,1=1×(−0.0027)×0.35=0.000945Δw1,1=1×(−0.0027)×0.35=0.000945 
New weight: 

w1,1(new)=0.000945+0.2=0.200945w1,1(new)=0.000945+0.2=0.200945 
Similarly other weights are updated: 
 w1,2(new)=0.273225w1,2(new)=0.273225 
 w1,3(new)=0.086615w1,3(new)=0.086615 
 w2,1(new)=0.269445w2,1(new)=0.269445 
 w2,2(new)=0.18534w2,2(new)=0.18534 
The updated weights are illustrated below 

Through backward pass the weights are updated 

 
After updating the weights the forward pass is repeated yielding: 
 y3=0.57y3=0.57 
 y4=0.56y4=0.56 
 y5=0.61y5=0.61 
Since y5=0.61y5=0.61 is still not the target output the process of calculating the error and 
backpropagating continues until the desired output is reached. 
This process demonstrates how backpropagation iteratively updates weights by minimizing 
errors until the network accurately predicts the output. 

Error=ytarget−y5Error=ytarget−y5 
=0.5−0.61=−0.11=0.5−0.61=−0.11 

This process is said to be continued until the actual output is gained by the neural network. 



UNIT-V 

 

Clustering: 

The task of grouping data points based on their similarity with each other is called Clustering or Cluster 

Analysis. This method is defined under the branch of unsupervised learning, which aims at gaining insights from 

unlabelled data points. 

Think of it as you have a dataset of customers shopping habits. Clustering can help you group customers with 

similar purchasing behaviors, which can then be used for targeted marketing, product recommendations, or 

customer segmentation 
 

 

Types of Clustering 

Broadly speaking, there are 2 types of clustering that can be performed to group similar data points: 

 Hard Clustering: In this type of clustering, each data point belongs to a cluster completely or not. For example, 

Let's say there are 4 data point and we have to cluster them into 2 clusters. So each data point will either belong to 

cluster 1 or cluster 2. 

Data Points Clusters 

A C1 

B C2 

C C2 

D C1 

 Soft Clustering: In this type of clustering, instead of assigning each data point into a separate cluster, a probability 

or likelihood of that point being that cluster is evaluated. For example, Let's say there are 4 data point and we have 

to cluster them into 2 clusters. So we will be evaluating a probability of a data point belonging to both clusters. This 

probability is calculated for all data points. 

Data Points Probability of C1 Probability of C2 

A 0.91 0.09 

B 0.3 0.7 

C 0.17 0.83 

D 1 0 

 

Partitioning of Data: 

Using data partitioning techniques, a huge dataset can be divided into smaller, easier-to-manage portions. These 

techniques are applied in a variety of fields, including distributed systems, parallel computing, and database 

administration. 

https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/what-is-a-distributed-system/


Why do we need Data Partitioning? 

Data partitioning is essential for several reasons: 

 Performance Improvement: By breaking data into smaller segments, systems can access only the relevant 

partitions, leading to faster query execution and reduced load times. 

 Scalability: As datasets grow, partitioning allows for easier management and distribution across multiple servers or 

storage systems, enabling horizontal scaling. 

 Efficient Resource Utilization: It helps optimize the use of resources by allowing systems to focus processing 

power on specific partitions rather than the entire dataset. 

 Enhanced Manageability: Smaller partitions are easier to back up, restore, and maintain, facilitating better data 

governance and maintenance practices. 

Methods of Data Partitioning 

Below are the main methods of Data Partitioning: 

1. Horizontal Partitioning/Sharding 

In this technique, the dataset is divided based on rows or records. Each partition contains a subset of rows, and the 

partitions are typically distributed across multiple servers or storage devices. Horizontal partitioning is often used in 

distributed databases or systems to improve parallelism and enable load balancing. Horizontal Partitioning 

 

 
 Advantages of Horizontal Partitioning/Sharding 

o Greater scalability: Large datasets can be processed in parallel thanks to horizontal partitioning, which 

divides data among multiple computers or storage devices. 

o Load balancing: Data partitioning allows for the equitable distribution of workload across multiple 

nodes, preventing bottlenecks and improving system performance. 

o Data separation: Data isolation and fault tolerance are enhanced since each partition can be controlled 

separately. Even if one partition fails, the others can continue to function. 

 Disadvantages of Horizontal Partitioning/Sharding 
o Join operations: Horizontal partitioning can make join operations across multiple partitions more 

complex and potentially slower, as data needs to be fetched from different nodes. 

o Data skew: If the distribution of data is uneven or if some partitions receive more queries or updates than 

others, it can result in data skew, impacting performance and load balancing. 

2. Vertical Partitioning 

Vertical partitioning separates the dataset according to columns or attributes, in contrast to horizontal partitioning. 

Each partition in this method has a subset of columns for every row. When certain columns are visited more frequently 

than others or when different columns have different access patterns, vertical partitioning might be helpful. 

https://www.geeksforgeeks.org/what-is-scalability/
https://www.geeksforgeeks.org/database-sharding-a-system-design-concept/
https://www.geeksforgeeks.org/what-is-scalability/
https://www.geeksforgeeks.org/what-is-load-balancer-system-design/


  
 

Matrix Factorization | Clustering of Patterns: 

This mathematical model helps the system split an entity into multiple smaller entries, through an ordered rectangular 

array of numbers or functions, to discover the features or information underlying the interactions between users and items. 

his approach recommends items based on user preferences. It matches the requirement, considering the past actions of the 

user, patterns detected, or any explicit feedback provided by the user, and accordingly, makes a recommendation. 

Example: If you prefer the chocolate flavor and purchase a chocolate ice cream, the next time you raise a query, the 

system shall scan for options related to chocolate, and then, recommend you to try a chocolate cake. 

 
How does the System make recommendations? 

Let us take an example. To purchase a car, in addition to the brand name, people check for features available in the car, 

most common ones being safety, mileage, or aesthetic value. Few buyers consider the automatic gearbox, while others opt 

for a combination of two or more features. To understand this concept, let us consider a two-dimensional vector with the 

features of safety and mileage. 



 
Divisive Clustering: 

Divisive clustering starts with one, all-inclusive cluster. At each step, it splits a cluster until each cluster contains a 

point (or there are k clusters).  

Divisive Clustering Example 

The following is an example of Divisive Clustering. 

Distance a b c d e 

a 0 2 6 10 9 

b 2 0 5 9 8 

c 6 5 0 4 5 

d 10 9 4 0 3 

e 9 8 5 3 0 

Step 1. Split whole data into 2 clusters 

1. Who hates other members the most? (in Average) 

o aa to others: mean(2,6,10,9)=6.75 →amean(2,6,10,9)=6.75 →a goes out! (Divide aa into a new cluster) 

o bb to others: mean(2,5,9,8)=6.0mean(2,5,9,8)=6.0 

o cc to others: mean(6,5,4,5)=5.0mean(6,5,4,5)=5.0 

o dd to others: mean(10,9,4,3)=6.5mean(10,9,4,3)=6.5 

o ee to others: mean(9,8,5,3)=6.25mean(9,8,5,3)=6.25 

2. Everyone in the old party asks himself: “In average, do I hate others in old party more than hating the members in the 

new party?” 

o If the answer is “Yes”, then he will also go to the new party. 

  α=α=distance to the old party β=β=distance to the new party α−βα−β 

b 5+9+83=7.335+9+83=7.33 2 >0>0 (bb also goes out!) 

c 5+4+53=4.675+4+53=4.67 6 <0<0 

d 9+4+33=5.339+4+33=5.33 10 <0<0 



  α=α=distance to the old party β=β=distance to the new party α−βα−β 

e 8+5+33=5.338+5+33=5.33 9 <0<0 

3. Everyone in the old party ask himself the same question as above again and again until everyone’s got the answer “No”. 

  α=α=distance to the old party β=β=distance to the new party α−βα−β 

c … … <0<0 

d … … <0<0 

e … … <0<0 

Step 2. Choose a current cluster and split it as in Step 1. 

1. Choose a current cluster 

o If split the cluster with the largest number of members, then the cluster {c,d,ec,d,e} will be split. 

o If split the cluster with the largest diameter, then the cluster {c,d,ec,d,e} will be split. 

cluster diameter 

{a,b} 2 

{c,d,e} 5 

2. Split the chosen cluster as in Step 1. 

Step 3. Repeat Step 2. until each cluster contains a point (or there are kk clusters) 

Agglomerative Clustering: 

Clustering is the broad set of techniques for finding subgroups or clusters on the basis of characterization of objects 

within dataset such that objects with groups are similar but different from the object of other groups. Primary 

guideline of clustering is that data inside a cluster should be very similar to each other but very different from those 

outside clusters. There are different types of clustering techniques like Partitioning Methods, Hierarchical Methods 

and Density Based Methods.  

Method Characteristics 

Partitioning Method 

 Uses mean/mediod to represent cluster centre 

 Adopts distance-based approach to refine clusters 

 Finds mutually exclusive clusters of spherical / nearly spherical shape 

 Effective for datasets of small - medium age 

Hierarchical Method 

 Creates tree-like structure through decomposition 

 Uses distance between nearest / furthest points in neighbouring clusters for 

refinement 

 Error can't be corrected at subsequent levels 

Density Based Method 
 Useful for identifying arbitrarily shaped clusters 

 May filter out outliers 



 

Partitional Clustering,K-means: 

Partitional clustering, also known as partitioning clustering, is a type of clustering algorithm that divides a dataset into a 

predefined number of clusters (k). 

Method: 
1. Randomly assign K objects from the dataset(D) as cluster centres(C) 

2. (Re) Assign each object to which object is most similar based upon mean values. 

3. Update Cluster means, i.e., Recalculate the mean of each cluster with the updated values. 

4. Repeat Step 2 until no change occurs. 

 

 

Example: Suppose we want to group the visitors to a website using just their age as follows: 

16, 16, 17, 20, 20, 21, 21, 22, 23, 29, 36, 41, 42, 43, 44, 45, 61, 62, 66  

Initial Cluster: 
K=2 

Centroid(C1) = 16 [16]  

Centroid(C2) = 22 [22]  

Note: These two points are chosen randomly from the dataset. 

Iteration-1: 
C1 = 16.33 [16, 16, 17] 

C2 = 37.25 [20, 20, 21, 21, 22, 23, 29, 36, 41, 42, 43, 44, 45, 61, 62, 66]  

Iteration-2: 
C1 = 19.55 [16, 16, 17, 20, 20, 21, 21, 22, 23] 

C2 = 46.90 [29, 36, 41, 42, 43, 44, 45, 61, 62, 66]  

Iteration-3: 
C1 = 20.50 [16, 16, 17, 20, 20, 21, 21, 22, 23, 29] 

C2 = 48.89 [36, 41, 42, 43, 44, 45, 61, 62, 66]  



Iteration-4: 
C1 = 20.50 [16, 16, 17, 20, 20, 21, 21, 22, 23, 29] 

C2 = 48.89 [36, 41, 42, 43, 44, 45, 61, 62, 66]  

No change Between Iteration 3 and 4, so we stop. Therefore we get the clusters (16-29) and (36-66) as 2 clusters we 

get using K Mean Algorithm. 

 

Expectation Maximization-Based Clustering: 

Expectation-Maximization (EM) algorithm is a iterative method used in unsupervised machine learning to find 

unknown values in statistical models. It helps to find the best values for unknown parameters especially when 

some data is missing or hidden. It works in two steps: 

 E-step (Expectation Step): Estimates missing or hidden values using current parameter estimates. 

 M-step (Maximization Step): Updates model parameters to maximize the likelihood based on the estimated values 

from the E-step. 

This process repeats until the model reaches a stable solution as it improve accuracy with each iteration. It is widely 

used in clustering like Gaussian Mixture Models and handling missing data. 

 

 

Key Terms in Expectation-Maximization (EM) Algorithm 

Lets understand about some of the most commonly used key terms in the Expectation-Maximization (EM) Algorithm: 

 Latent Variables: These are hidden parts of the data that we can’t see directly but they still affect what we do see. 

We try to guess their values using the visible data. 

 Likelihood: This refers to the probability of seeing the data we have based on certain assumptions or parameters. 

The EM algorithm tries to find the best parameters that make the data most likely. 

 Log-Likelihood: This is just the natural log of the likelihood function. It's used to make calculations easier and 

measure how well the model fits the data. The EM algorithm tries to maximize the log-likelihood to improve the 

model fit. 

 Maximum Likelihood Estimation (MLE): This is a method to find the best values for a model’s settings called 

parameters. It looks for the values that make the data we observed most likely to happen. 

 Posterior Probability: In Bayesian methods this is the probability of the parameters given both prior knowledge 

and the observed data. In EM it helps estimate the "best" parameters when there's uncertainty about the data. 

 Expectation (E) Step: In this step the algorithm estimates the missing or hidden information (latent variables) based 

on the observed data and current parameters. It calculates probabilities for the hidden values given what we can see. 

 Maximization (M) Step: This step update the parameters by finding the values that maximize the likelihood based 

on the estimates from the E-step. 

 Convergence: Convergence happens when the algorithm has reached a stable point. This is checked by seeing if the 

changes in the model's parameters or the log-likelihood are small enough to stop the process. 

 

Working of Expectation-Maximization (EM) Algorithm 

So far, we've discussed the key terms in the EM algorithm. Now, let's dive into how the EM algorithm works. Here's a 

step-by-step breakdown of the process: 

 

https://www.geeksforgeeks.org/gaussian-mixture-model/


 

1. Initialization: The algorithm starts with initial parameter values and assumes the observed data comes from a 

specific model. 

2. E-Step (Expectation Step): 
 Find the missing or hidden data based on the current parameters. 

 Calculate the posterior probability of each latent variable based on the observed data. 

 Compute the log-likelihood of the observed data using the current parameter estimates. 

3. M-Step (Maximization Step): 
 Update the model parameters by maximize the log-likelihood. 

 The better the model the higher this value. 

4. Convergence: 
 Check if the model parameters are stable and converging. 

 If the changes in log-likelihood or parameters are below a set threshold, stop. If not repeat the E-step and M-step 

until convergence is reached 

 

Fuzzy C-Means Clustering: 

It is an unsupervised clustering algorithm that permits us to build a fuzzy partition from data. The algorithm depends on a 
parameter m which corresponds to the degree of fuzziness of the solution. Large values of m will blur the classes and all 
elements tend to belong to all clusters. The solutions of the optimization problem depend on the parameter m. That is, 
different selections of m will typically lead to different partitions. Given below is a gif that shows the effect of the 
selection of m obtained from the fuzzy c-means. 

Steps: 

 
1. Assume a fixed number of clusters k. 

2. Initialization: Randomly initialize the k-means μk associated with the clusters and compute the probability that each 

data point xi is a member of a given cluster k, P(point xi has label k|xi, k). 



3. Iteration: Recalculate the centroid of the cluster as the weighted centroid given the probabilities of membership of all 

data points xi: 

 

4. Termination: Iterate until convergence or until a user-specified number of iterations has been reached (the 

iteration may be trapped at some local maxima or minima). 

 

K-Means Clustering Algorithm: 
K-Means Clustering is an Unsupervised Machine Learning algorithm which groups unlabeled dataset into different clusters. It is 
used to organize data into groups based on their similarity. 
We are given a data set of items with certain features and values for these features like a vector. The task is to categorize those 
items into groups. To achieve this we will use the K-means algorithm. 'K' in the name of the algorithm represents the number of 
groups/clusters we want to classify our items into. 

1.  

. First we randomly initialize k points called means or cluster centroids. 
2. We categorize each item to its closest mean and we update the mean's coordinates, which are the averages of the items categorized in 

that cluster so far. 
3. We repeat the process for a given number of iterations and at the end, we have our clusters. 

The "points" mentioned above are called means because they are the mean values of the items categorized in them. To initialize these 
means, we have a lot of options. An intuitive method is to initialize the means at random items in the data set. Another method is to initialize 
the means at random values between the boundaries of the data set. For example for a feature x the items have values in [0,3] we will 
initialize the means with values for x at [0,3]. 


