
MACHINE LEARNING-23CSM241T

UNIT-1

Evolution of Machine Learning:

Machine learning (ML) is a powerful branch of artificial intelligence

(AI) that allows computers to learn without explicit programming.

Instead of following a set of rigid instructions, ML algorithms can

analyze data, identify patterns, and make predictions

Teaching a computer to recognize your friends in photos without

showing it every single picture is like training it to learn from

examples. Imagine you have a bunch of photos where your friends are

tagged with their names. The computer looks at these photos and tries

to find patterns. For example, it might notice that one friend has blue

eyes and curly hair, while another friend has brown eyes and wears

glasses.

Using these patterns, the computer starts to guess who’s who in new

photos. If it sees someone with blue eyes and curly hair, it might say,

“Hey, that looks like Arushi!” But the computer doesn’t always get it

right at first. It needs lots of practice and feedback to improve, just like

how we learn from our mistakes.

This is where machine learning comes in. It’s like giving the computer

a super smart brain that learns from experience. As the computer sees

more and more photos and gets feedback on its guesses, it gets better

at recognizing your friends. It’s like “teaching a robot” to be a

detective, but instead of clues, it uses pictures!

In the big world of artificial intelligence (AI), machine learning is like

the secret sauce that helps AI systems become smarter over time. It’s

what makes AI capable of doing amazing things like understanding

speech, playing games, and yes, even recognizing your friends in

photos. It’s pretty cool how technology can learn and improve, just like

we do!

The evolution of machine learning is a captivating story. Early ideas

emerged in the 1943s, but limitations in computing power hampered

significant progress. With the recent explosion of data and computing

muscle, machine learning has taken center stage. Today, it’s used

everywhere from spam filters in your email to recommending movies

you might enjoy. Machine learning is constantly evolving, shaping the

future of technology and impacting our lives in profound ways.

Paradigms for ml:

Machine learning (ML) is a dynamic field dedicated to developing

methods that enable machines to learn from extensive datasets to

enable machines to learn and make predictions. The learning

paradigms in ML are categorized based on their resemblance to human

interventions, each serving specific purposes and applications. This

https://emergingindiagroup.com/top-10-uses-of-data-analytics-in-agriculture-sector/

dynamic field encompasses various learning paradigms, each with its

unique approach to handling data.

Supervised and Unsupervised learning

Supervised Learning (SL)

Supervised learning involves labelled datasets, where each data

observation is paired with a corresponding class label. Algorithms in

supervised learning aim to build a mathematical function that maps

input features to desired output values based on these labeled

examples. Common applications include classification and regression.

Stages in Supervised Learning

Understanding Supervised Learning pictorially

Unsupervised Learning

In unsupervised learning, algorithms work with unlabeled data to

identify patterns and relationships. These methods uncover

commonalities within the data without predefined categories.

Techniques such as clustering and association rules fall under

unsupervised learning.

Stages in Unsupervised Learning

Understanding Unsupervised Learning pictorially

Semi-supervised Learning

Semi-supervised learning strikes a balance by combining a small

amount of labelled data with a larger pool of unlabeled data. This

approach leverages the benefits of both supervised and unsupervised

learning paradigms, making it a cost-effective and efficient method for

training models when the labeled data is limited.

Understanding Semi-supervised Learning pictorially

Self-supervised Learning (SSL)

In scenarios where obtaining high-quality labeled data is challenging,

self-supervised learning emerges as a solution. In this paradigm,

models are pre-trained using unlabeled data, and data labels are

generated automatically during subsequent iterations. SSL transforms

unsupervised ML problems into supervised ones, enhancing learning

efficiency. This paradigm is particularly relevant with the rise of large

language models.

Reinforcement Learning

Reinforcement learning focuses on enabling intelligent agents to learn

tasks through trial-and-error interactions with dynamic environments.

Without the need for labelled datasets, agents make decisions to

maximize a reward function. This autonomous exploration and

learning approach is crucial for tasks where explicit programming is

challenging.

Action-Reward feedback loop: an agent takes actions in an

environment, which is interpreted into a reward and a representation

of the state, which are fed back into the agent.

Action-Reward Feedback Loop:

Reinforcement learning operates on an action-reward feedback loop,

where agents take actions, receive rewards, and interpret the

environment’s state. This iterative process allows the agent to

autonomously learn optimal actions to maximize positive feedback.

Understanding these ML paradigms provides valuable insights into the

diverse approaches used to address different types of problems. Each

paradigm comes with its strengths and applications, contributing to

the versatility of machine learning in various domains.

Learning by Rote:

The meaning of “rote” it self means learning by repetition. The process

of repeating something over and over engages the short-term memory

and allows us to quickly remember basic things like facts, dates,

names, multiplication tables ,etc. It differs from other forms of

learning in that it doesn’t require the learner to carefully think about

something, and is rather dependent on the act of repetition itself

 Even though complete and holistic learning is not dependent on rote

learning techniques alone, they do allow students to quickly recall

basic facts and laws and master foundational knowledge of a topic in

students. Some examples of rote learning in schools can be found in

the following:

• Repeating words to instil them in your vocabulary.

• Learning scales in music.

• Memorizing the periodic table.

• Learning the basic laws and formulae in physics and sundry

sciences.

Having to memorize the basic facts and principles of a field is an

import prerequisite to later analyse and study them. This is where rote

learning techniques come in handy and allow you to remember the

building blocks of concepts without having to dive deep into them

Rote learning techniques:

Rote learning techniques are aplenty, and they all require time and

effort in repetition. The more you repeat for longer periods, the easier

it will be to recall. Even if you only have a few hours to memorize

something, the following rote learning techniques will help you

remember quickly:

Read it aloud-Read the text out loud with understanding. You can

even try it before a mirror, ask a friend to listen to you, or read it out

just under your breath. You can experiment with how slow or fast you

want to read, how expressive you want to be, and internalize the

rhythm of the text. Auditory learners will greatly benefit from this rote

learning technique.

Write it down- Writing down the text information after reading is

one of the best rote learning techniques. Doing so will help identity

difficult passengers and areas that need more practice. If you’re

preparing for a written exam, this kinesthetic rote technique will serve

as a rehearsal and commit the information for easy retrieval

Visualize - Humans are visual creatures and our brains are wired to

remember things better with images. For every line and connected

phrase, come up with ways to visualize it and remember it. The

memory palace can be a useful trick for such rote learning techniques.

Free association-Free association is one of the more intresting rote

learning techniques, and a very useful way of remembering things

quickly, especially if they are too messy for the traditional rote learning

techniques. The main idea of this method is to combine new

information with what you already know in a fun and personal way.

For instance, if you’re learning the “Circle of Fifths” in music ,you can

associate each node to the numbers on the clock, one for each of the 12

notes in music. you are free to form your own associations as you see

fit, as long as it helps you to recall the information

Advantages of Rote Learning Techniques:

Rote learning is considered as useful for a variety of reasons. Here are

a few:

• Rote learning requires very little analysis.

• With rote, one can remember just about anything over little

analysis

• Rote learning allows one to recall information wholly, and even to

retain it for life.

• Rote learning makes it easier for people to score who find it

difficult to understand or master reading and maths concepts.

• Rote learning can help improve short-term memory.

Disadvantages of rote learning techniques:

On the other hand, there are a few drawbacks of rote learning that you

need to be aware of as well

• The repetitive nature of rote learning can become dull.

• One can easily lose focus while rote learning.

• Rote learning is not holistic.

• There is no connection between new and old information with

rote learning.

• Rote learning doesn’t lead to a deeper understanding of the

information.

Learning by Induction:

What is Inductive Learning Algorithm?

Inductive Learning Algorithm (ILA) is an iterative and

inductive machine learning algorithm that is used for generating a set

of classification rules, which produces rules of the form “IF-THEN”,

for a set of examples, producing rules at each iteration and appending

to the set of rules.

There are basically two methods for knowledge extraction firstly from

domain experts and then with machine learning. For a very large

amount of data, the domain experts are not very useful and reliable.

So we move towards the machine learning approach for this work. To

https://www.geeksforgeeks.org/machine-learning/

use machine learning One method is to replicate the expert’s logic in

the form of algorithms but this work is very tedious, time taking, and

expensive. So we move towards the inductive algorithms which

generate the strategy for performing a task and need not instruct

separately at each step.

Why you should use Inductive Learning?

The ILA is a new algorithm that was needed even when other

reinforcement learnings like ID3 and AQ were available.

• The need was due to the pitfalls which were present in the previous

algorithms, one of the major pitfalls was the lack of generalization

of rules.

• The ID3 and AQ used the decision tree production method which

was too specific which were difficult to analyze and very slow to

perform for basic short classification problems.

• The decision tree-based algorithm was unable to work for a new

problem if some attributes are missing.

• The ILA uses the method of production of a general set of rules

instead of decision trees, which overcomes the above problems

Basic Requirements to Apply Inductive Learning Algorithm

1. List the examples in the form of a table ‘T’ where each row

corresponds to an example and each column contains an attribute

value.

https://www.geeksforgeeks.org/decision-tree/

2. Create a set of m training examples, each example composed of k

attributes and a class attribute with n possible decisions.

3. Create a rule set, R, having the initial value false.

4. Initially, all rows in the table are unmarked.

Necessary Steps for Implementation

• Step 1: divide the table ‘T’ containing m examples into n sub-

tables (t1, t2,…..tn). One table for each possible value of the class

attribute. (repeat steps 2-8 for each sub-table)

• Step 2: Initialize the attribute combination count ‘ j ‘ = 1.

• Step 3: For the sub-table on which work is going on, divide the

attribute list into distinct combinations, each combination with ‘j ‘

distinct attributes.

• Step 4: For each combination of attributes, count the number of

occurrences of attribute values that appear under the same

combination of attributes in unmarked rows of the sub-table under

consideration, and at the same time, not appears under the same

combination of attributes of other sub-tables. Call the first

combination with the maximum number of occurrences the max-

combination ‘ MAX’.

• Step 5: If ‘MAX’ == null, increase ‘ j ‘ by 1 and go to Step 3.

• Step 6: Mark all rows of the sub-table where working, in which

the values of ‘MAX’ appear, as classified.

• Step 7: Add a rule (IF attribute = “XYZ” –> THEN decision is

YES/ NO) to R whose left-hand side will have attribute names of

the ‘MAX’ with their values separated by AND, and its right-hand

side contains the decision attribute value associated with the sub-

table.

• Step 8: If all rows are marked as classified, then move on to

process another sub-table and go to Step 2. Else, go to Step 4. If no

sub-tables are available, exit with the set of rules obtained till

then.

An example showing the use of ILA suppose an example set

having attributes Place type, weather, location, decision, and seven

examples, our task is to generate a set of rules that under what

condition is the decision.

Example no. Place type weather location decision

1. hilly winter kullu Yes

2. mountain windy Mumbai No

3. mountain windy Shimla Yes

4. beach windy Mumbai No

5. beach warm goa Yes

Example no. Place type weather location decision

6. beach windy goa No

7. beach warm Shimla Yes

Subset – 1

s.no place type weather location decision

1. hilly winter kullu Yes

2. mountain windy Shimla Yes

3. beach warm goa Yes

4. beach warm Shimla Yes

Subset – 2

s.no place type weather location decision

5. mountain windy Mumbai No

s.no place type weather location decision

6. beach windy Mumbai No

7. beach windy goa No

• At iteration 1 rows 3 & 4 column weather is selected and rows 3

& 4 are marked. the rule is added to R IF the weather is warm then

a decision is yes.

• At iteration 2 row 1 column place type is selected and row 1 is

marked. the rule is added to R IF the place type is hilly then the

decision is yes.

• At iteration 3 row 2 column location is selected and row 2 is

marked. the rule is added to R IF the location is Shimla then the

decision is yes.

• At iteration 4 row 5&6 column location is selected and row 5&6

are marked. the rule is added to R IF the location is Mumbai then a

decision is no.

• At iteration 5 row 7 column place type & the weather is selected

and row 7 is marked. the rule is added to R IF the place type is

beach AND the weather is windy then the decision is no.

Finally, we get the rule set:- Rule Set

• Rule 1: IF the weather is warm THEN the decision is yes.

• Rule 2: IF the place type is hilly THEN the decision is yes.

• Rule 3: IF the location is Shimla THEN the decision is yes.

• Rule 4: IF the location is Mumbai THEN the decision is no.

• Rule 5: IF the place type is beach AND the weather is windy

THEN the decision is no.

Reinforcement Learning:

• It tries to improve its performance of doing the task.

• When a sub-task is accomplished successfully, a reward is given.

• When a sub-task is not executed correctly, obviously no reward is

given.

• This continues till the machine is able to complete execution of the

whole task.

• This process of learning is known as reinforcement learning.

 • One contemporary example of reinforcement learning is self-driving

cars.

• The critical information which it needs to take care of are speed and

speed limit in different road segments, traffic conditions, road

conditions, weather conditions, etc.

• The tasks that have to be taken care of are start/stop,

accelerate/decelerate, turn to left / right, etc.

• This type of learning is used when there is no idea about the class

or label of a particular data. The model has to do the

classification it will get rewarded if the classification is correct,

else get punished.

• The model learns and updates itself through reward/punishment

• Model is evaluated by means of the reward function ater it had

some time to learn.

• Most complex to understand and apply

• Standard algorithms are

➢ Q-Learning

➢ Sarsa

• Practical applications are

➢ Self-driving cars

➢ Intelligent robots

➢ AlphaGo Zero[The latest version of DeepMind’s AI

system playing Go]

Types of Data Matching:

Software tools have been developed to automate the process of data

matching.

Large enterprises have a lot of data. And with all that data comes the

challenge of keeping it organized and accurate – or more

specifically, making sure that their data is being leveraged to its full

potential.

One key way to do this is through record or data matching, which is

the process of connecting data records that correspond to the

same canonical (master) entity.

Most enterprise databases, due to their breadth and depth of data, will

have some degree of duplicates or inaccuracies (e.g. in a database of

locations, “San Francisco” may be written as “SF”, “San Fran”, or

“SFO”). Data matching tools help to standardize data and improve its

quality by identifying these duplicates and linking them to a single,

accurate record.

Naturally, software tools have been developed to automate this

process. Below, we’ll take a look at the various types of data matching

tools available, how they work, and some use cases for each.

Types of Data Matching Tools

There are two main types of data matching tools:

 1) probabilistic and

 2) deterministic.

https://en.wikipedia.org/wiki/Canonical_model
https://recordlinker.com/how-to-optimize-location-master-data-management/
https://recordlinker.com/how-to-optimize-location-master-data-management/

Probabilistic Data Linkage Tools:

Probabilistic data linkage tools use statistical methods to determine

the likelihood that two records refer to the same entity. They work

by comparing different fields in the records and assigning a similarity

score for each field; the overall similarity score for the two records is

then used to make a probabilistic determination of whether they

should be linked.

Today, most probabilistic tools employ machine learning algorithms to

provide even more accurate results. Regression and natural language

processing techniques are often used to automatically identify and

extract important features from records, which are then used in the

similarity scoring process.

Advantages

• Probabilistic record matching tools can be used on data of any

type, including unstructured data.

• Real world data tends to be unstructured, and often poorly

maintained due to manual data entry.

• They are able to handle many spelling/coding variants and

exceptions that would not be easy to cover with a predefined

rigid rule set or even a robust dictionary.

• They are generally more accurate than their counterpart,

deterministic data linkage tools (more on this below).

Disadvantages:

• They can be more difficult to configure and tune, since there are

more parameters that need to be set.

• They require a good amount of data in order to train the machine

learning models used for feature extraction and similarity

scoring.

• Some of their results are difficult to interpret; since they are

based on probabilistic methods, much of the process occurs

behind-the-scenes.

Deterministic Data Matching Tools:

Deterministic data matching tools, on the other hand, use rule-based

methods to connect records. That is, they compare different fields in

the records using a system like RegEx and look for exact matches; if

two fields match, then the records are linked.

Since deterministic tools use a predetermined set of rules, they are

generally much easier to configure than their probabilistic

counterparts. However, this also means that they can be less accurate,

since they may miss some relationships that don’t fit the rules.

Deterministic data matching tools are often used in cases where data

is highly structured and well-defined; for example, when linking

records from two different databases that use the same schema. By

contrast, probabilistic data linkage tools are better suited for data that

is unstructured or has many different schemas.

https://recordlinker.com/ml-vs-record-linkage-inflexibility/
https://recordlinker.com/ml-vs-record-linkage-inflexibility/

Advantages

• They are much easier to configure and tune than probabilistic

data linkage tools.

• They can be used on data of any type, including unstructured

data.

• You don’t need much data in order to use them, since they don’t

require training data for machine learning models.

Disadvantages

• They can be less accurate than probabilistic data matching tools,

since they may miss some relationships that don’t fit the rules.

• They are often less flexible than probabilistic data matching

tools, since they can only compare fields in a predetermined way.

• Some of their results are difficult to interpret; since they are

based on deterministic methods, much of the process occurs

behind-the-scenes.

Uses of Data Matching Tools

Record matching tools can be used for a variety of tasks, including:

• Data deduplication – identifying and removing duplicate

records from your database as a specific form of data quality

assurance.

• Data enrichment – combining your data with other data

sources in order to enrich it.

• Data integration – connecting different data sources that use

different schemas.

• Fraud detection – identifying records that are likely to be

fraudulent, based on their similarity to other records in your

database or specific features of known examples.

• Building customer 360 profiles: connecting customer data

from different sources (e.g. social media, website interactions,

customer service interactions) in order to get a complete view of

the customer.

In addition to direct benefits to revenue, there are also longer-term

benefits to be gained from using record matching tools.

For example, by linking customer data across different channels, you

can develop a deeper understanding of customer behavior. This, in

turn, can lead to better targeted marketing campaigns and improved

customer retention rates. Perhaps the company is gearing up to sell to

a large acquirer. In this case, having accurate and up-to-date data is

critical in order to get the best price for the business.

Machine Learning in Data Matching Tools:

Probabilitic reocrd linkage tools make use of machine learning trained

for specific tasks. ML algorithms are what handles confidence scoring

of records. In this case we are dealing with machine learning rather

than the current wave of AI tools

Machine learning employed for data matching does its task very well,

making it a very reliable way of reducing manual work and improving

the quality of your data.

Stages in Machine Learning:

The goal of the Seven Stages framework is to break down all necessary

tasks in Machine Learning and organize them in a logical way. At the

end, the framework acts as a general process that can be universally

applied to any project independently of industry and type of business.

Data-Driven Science (DDS) will also use that framework for its

upcoming comprehensive Machine Learning online course published

on Udemy — stay tuned. We will go deep into each stage and give you

everything that is needed to complete Data Science projects

successfully.

The 7 Stages of Machine Learning are:

1. Problem Definition

2. Data Collection

3. Data Preparation

4. Data Visualization

5. ML Modeling

6. Feature Engineering

7. Model Deployment

These 7 stages are the key steps in our framework. We have categorized

them additionally into groups to get a better understanding of the

larger picture.

The stages are grouped into 3 phases:

1. Business Value

2. Proof of Concept (POC)

3. Production

Phase 1 — Business Value

It is absolutely crucial to adopt a business mindset when thinking

sabout a problem that should be solved with Machine Learning —

defining customer benefits and creating business impact is top priority.

Domain expertise and knowledge is also essential as the true power of

data can only be harnessed if the domain is well known and

understood.

Phase 2 — Proof of Concept (POC)

Proof of Concept (POC) is the most comprehensive part of our

framework. From Data Collection to Feature Engineering, 5 stages of

our ML framework are included here. Core of any POC to test an idea

in terms of its feasibility and value to the business. Also, questions

around performance and evaluation metrics are answered in that

phase. Only a strong POC that delivers business value and is feasible

allows one putting the ML Model into production.

Phase 3 — Production

In the third phase, one is taking the ML model and scaling it. The goal

is to integrate Machine Learning into a business process solving a

problem with a superior solution compared to, for example, traditional

programming. The process of taking a trained ML model and making

its predictions available to users or other systems is known as model

deployment. Lastly, it is also essential to iterate on the ML model over

time to improve it.

7 Stages of Machine Learning

1. Problem Definition

The first stage in the DDS Machine Learning Framework is to define

and understand the problem that someone is going to solve. Start by

analyzing the goals and the why behind a particular problem

statement. Understand the power of data and how one can use it to

make a change and drive results. And asking the right questions is

always a great start.

Few possible questions:

• What is the business?

• Why does the problem need to be solved?

• Is a traditional solution available to solve the problem?

• If probabilistic in nature, then does available data allow to model

it?

• What is a measurable business goal?

2. Data Collection

Once the goal is clearly defined, one has to start getting the data that is

needed from various available data sources.

At this stage, some of the questions worth considering are:

• What data do I need for my project?

• Where is that data available?

• How can I obtain it?

• What is the most efficient way to store and access all of it?

There are many different ways to collect data that is used for Machine

Learning. For example, focus groups, interviews, surveys, and internal

usage & user data. Also, public data can be another source and is

usually free. These include research and trade associations such as

banks, publicly-traded corporations, and others. If data isn’t publicly

available, one could also use web scraping to get it (however, there are

some legal restrictions).

3. Data Preparation

The third stage is the most time-consuming and labor-intensive. Data

Preparation can take up to 70% and sometimes even 90% of the overall

project time. But what is the purpose of this stage?

Well, the type and quality of data that is used in a Machine Learning

model affects the output considerably. In Data Preparation one

explores, pre-processes, conditions, and transforms data prior to

modeling and analysis. It is absolutely essential to understand the data,

learn about it, and become familiar before moving on to the next stage.

Some of the steps involved in this stage are:

• Data Filtering

• Data Validation & Cleansing

• Data Formatting

• Data Aggregation & Reconciliation

4. Data Visualization

Data Visualization is used to perform Exploratory Data Analysis

(EDA). When one is dealing with large volumes of data, building

graphs is the best way to explore and communicate findings.

Visualization is an incredibly helpful tool to identify patterns and

trends in data, which leads to clearer understanding and reveals

important insights. Data Visualization also helps for faster decision

making through the graphical illustration.

Here are some common ways of visualization:

• Area Chart

• Bar Chart

• Box-and-whisker Plots

• Bubble Cloud

• Dot Distribution Map

• Heat Map

• Histogram

• Network Diagram

• Word Cloud

5. ML Modeling

Finally, this is where ‘the magic happens’. Machine Learning is finding

patterns in data, and one can perform either supervised or

unsupervised learning. ML tasks include regression, classification,

forecasting, and clustering.

In this stage of the process one has to apply mathematical, computer

science, and business knowledge to train a Machine Learning

algorithm that will make predictions based on the provided data. It is a

crucial step that will determine the quality and accuracy of future

predictions in new situations. Additionally, ML algorithms help to

identify key features with high predictive value.

6. Feature Engineering

Machine Learning algorithms learn recurring patterns from data.

Carefully engineered features are a robust representation of those

patterns.

Feature Engineering is a process to achieve a set of features by

performing mathematical, statistical, and heuristic procedures. It is a

collection of methods for identifying an optimal set of inputs to the

Machine Learning algorithm. Feature Engineering is extremely

important because well-engineered features make learning possible

with simple models.

Following are the characteristics of good features:

• Represents data in an unambiguous way

• Ability to captures linear and non-linear relationships among data

points

• Capable of capturing the precise meaning of input data

• Capturing contextual details

7. Model Deployment

The last stage is about putting a Machine Learning model into a

production environment to make data-driven decisions in a more

automated way. Robustness, compatibility, and scaleability are

important factors that should be tested and evaluated before deploying

a model. There are various ways such as Platform as a Service (PaaS)

or Infrastructure as a Service (IaaS). For containerized applications,

one can use container orchestration platform such as Kubernetes to

rapidly scale the number of containers as demand shifts.

Another important part of the last stage is iteration and interpretation.

It is critical to constantly optimize the model and pressure test the

results. At the end, Machine Learning has to provide value to the

business and make a positive impact. Therefore, monitoring the model

in production is key.

Conclusion

This was an overview about ‘The 7 Stages of Machine Learning’ —

a framework that helps to structure the typical process of a ML project.

The idea is to equip practitioners with a template that can be

universally applied and simplifies the process from idea to

implementation.

Data acquisition:

Data acquisition, or DAQ, is the cornerstone of machine learning. It

is essential for obtaining high-quality data for model training and

optimizing performance. Data-centric techniques are becoming more

and more important across a wide range of industries, and DAQ is

now a vital tool for improving productivity, preserving quality, and

stimulating innovation.

What is Data Acquisition?

“The process of collecting and storing data for machine

learning from a variety of sources is known as data

acquisition(DAQ).”

The procedure entails gathering, examining, and using crucial data to

guarantee precise measurements, instantaneous observation, and

knowledgeable decision-making. Sensors, measuring devices, and a

computer work together in DAQ systems to transform physical

parameters into electrical signals, condition and amplify those

signals, and then store them for analysis.

What is Data Acquisition in Machine Learning?

In machine learning, "data acquisition" refers to the

procedure of obtaining and compiling data from diverse

sources in order to test and train machine learning

models. In order to enable computers and software to manipulate

and modify signals from real-world occurrences, this technique

entails digitizing such signals. Data Acquisition aims to get a

complete and representative dataset that successfully captures the

patterns and changes in the data that are crucial for productive

machine learning results.

The process of acquiring data also include taking the variable into

account that affect its quality and utility, such as volume, velocity,

anddiversity.

Successful machine learning begins with data collecting, which

supplies the raw information required to train models and make

defensible conclusions. The gathering of high-quality data is essential

for providing machine learning algorithms with the necessary input

to enable them to learn and perform better.

What Does a DAQ System Measure?

A Data Acquisition (DAQ) system is capable of measuring several

physical parameters, such as:

• Temperature: Temperature can be measured using RTDs,

thermistors, or thermocouples in DAQ systems.

• Pressure: In a variety of settings, including industrial operations

and medical equipment, pressure is measured using pressure

sensors.

• Voltage: Power systems, electronics, and electrical engineering all

depend on the ability of DAQ devices to monitor the voltage levels

in electrical circuits.

• Current: DAQ systems can measure current flow using current

sensors or shunts. Current measurement is essential in electrical

systems.

• Strain and Pressure: Deformation and pressure in materials

are measured using strain gauges and pressure sensors, which is

crucial for material science and structural health monitoring.

• Shock and Vibration: In a variety of fields, including

mechanical, aeronautical, and civil engineering, accelerometers

and vibration sensors are used to monitor shock, vibration, and

acceleration.

• RPM, Angle, and Discrete Events: DAQ systems are crucial

for robotics, automation, and mechanical systems because they

can measure rotational speed, angle, and discrete events.

• Distance and Displacement: Ultrasonic, laser, and encoder

sensors are among the sensors that DAQ systems can use to detect

distance and displacement.

• Weight: Measuring weight is crucial for a number of applications,

including quality control, logistics, and industrial automation.

Components of Data Acquisition System

To understand how data is selected and processed, a data acquisition

system consists of below key basic components: sensors, measuring

instruments, and a computer.

1. Sensors: Sensors are devices that quantify and translate physical

parameters like voltage, pressure, or temperature into electrical

impulses. Later, these signals are sent to the measuring devices for

additional analysis.

2.Signal Conditioner: Signal conditioning is the process of

improving raw sensor signals so they can be reliably understood. To

make sure that the signals are dependable, clear, and compatible with

the rest of the system, signal conditioning procedures include

isolation, amplification, and filtering.

• Amplification: It helps in improving accuracy by maximizing the

signal strength

• Filtering: Filters extra and unwanted noise from the signal

• Isolation: Helps in separating sensor from DAQ system.

3. Analog-to-digital Converter: After the signals are conditioned,

they must be translated into a digital format that computers can

comprehend using an analog-to-digital converter (ADC). The

continuous analog signals are transformed into discrete digital values

so that the system can process and store them.

4. Data Logger: The data logger serves as the operation's central

nervous system. A device or software program known as a data logger

is responsible for managing incoming data, controlling the

acquisition process, and storing it for subsequently analysis.

5. Data Processing Unit: After receiving data from ADC, the

system has dedicated card to process the signals like sampling,

buffering and Data Transfer.

6. Data Storage : Acquired data is stored in the computer’s

memory for real-time monitoring.

The physical parameters are measured using sensors, which convert

the physical signals into electrical signals. The signals are then

conditioned, amplified, and converted into digital data using

analog-to-digital converters (ADCs). The digital data is then

processed, analyzed, and stored using computers and software.

What are the Major Purposes of Data Acquisition?

Although there are many different and important reasons, some of

the most important ones are as follows:

• Long-term analysis and trend detection: Long-term analysis

are made possible by data acquisition systems, which make it

possible to log, capture, and store measurement of data over an

extended period of time.

• Measurement that is accurate and dependable: DAQ

systems and equipment provide measurement that is accurate and

dependable, enabling uses like optical analysis and light intensity

monitoring.

• Industry Leading devices: DAQ systems and devices are widely

used, connecting to a variety of sensors and collaborating with

contemporary computers, which makes them an excellent option

for scientists and researchers looking for accurate data.

• Enhanced productivity and dependability of

machines: Data capture gives an organization more control over

its operations and enables quicker reaction to potential

breakdowns, maximizing procedure optimization.

• Faster problem analysis and resolution: Real-time data

acquisition systems allow measurements to be produced and

shown instantly, which allows personnel to respond to issues more

quickly and get the machine operating at peak efficiency in less

time.

• Reduction of data redundancy: DAQ systems let businesses

operate without interference from extraneous data by making it

easier to analyze the information they have collected.

What are the Different Data Acquisition Options?

Devices like sensors, transducers, and other devices can provide data,

which data acquisition (DAQ) systems are made to measure, record,

and analyze. Selecting the right DAQ system relies on the

requirements and particular application. There are various types of

DAQ systems, each with advantages and disadvantages of their own.

The following are a few of the several options for acquiring data:

• Data loggers: These are compact, lightweight gadgets with

extended data recording capabilities. They are frequently

employed in applications like industrial automation and

environmental monitoring where data collection in the field is

required.

• Data acquisition devices: These are plug-and-play items that

can be linked via USB or other interfaces to a computer. They are

perfect for projects where requirements don't alter because they

offer set functionality.

• Data acquisition systems: These are modular systems that can

be set up to accommodate certain measurement requirements.

They are perfect for complex systems that need several channels

and high-speed data gathering because of their tremendous

versatility.

• Computer-Connected DAQ Modules: These DAQ systems

provide an affordable way to get data by connecting to a computer.

Comparing them to stand-alone systems, they are frequently

lighter and smaller.

• Stand-Alone or Portable DAQ Systems: These are DAQ

systems that record and analyze data without the need for extra

hardware because they come with an integrated computer. They

are frequently employed in situations when using a computer is

either inconvenient or not possible.

• Modular DAQ Systems: These systems are composed of a

chassis and several modules that are movable and addable. They

are very flexible and perfect for applications that need to acquire

data quickly over several channels.

• PXIe Modular DAQ Systems: These are high-performance

DAQ systems that link several modules together via the PXIe (PCI

Express) interface. They are perfect for applications that demand

low latency and high channel counts because they provide fast data

capture.

Types of Data Acquisition Sources

• Sensors: Convert physical parameters to electrical signals.

• IoT devices: Collect data from remote sources using secure

communication channels and encryption.

• Network devices: Collect data from network devices using

secure communication channels and encryption.

• Manual data entry: Implement robust access control

mechanisms, authentication, and authorization processes to

increase the security of manual data entry.

• Experiments: Collect primary data through experiments, such as

wet lab experiments like gene sequencing.

• Observations: Collect primary data through observations, such

as surveys, sensors, or in situ collection.

• Simulations: Collect primary data through simulations, such as

theoretical models like climate models.

• Scraping or compiling: Collect primary data through web

scraping, text mining, or compiling data from various sources.

• Institutionalized data banks: Collect secondary data from

institutionalized data banks, such as census or gene sequences.

• Published datasets: Collect secondary data from published

datasets, such as those found on Kaggle, GitHub, or UCI Machine

Learning Repository.

• APIs: Collect secondary data through application programming

interfaces (APIs), which allow clients to request data from a

website's server.

• Surveys: Collect primary data through surveys, which can be

online or offline.

Importance of Data Acquisition in Machine Learning

Data Acquisition (DAQ) is definitely the most fundamental task that

precedes any machine learning project and should not be overlooked.

Here's why it holds such importance:

• Fuel for Learning: In contrast to the biological organisms,

which can sense the objects, the machine learning models are

basically recognition-of-patterns technology. Information and

intelligence of the model would not be valid if data quality is not

up to standard and this affects the model’s ability to learn as well

as make credible predictions. DAQ just thus guarantees that you

have the right "fuel" to be the engine of your model's learning.

• Quality In, Quality Out: The sentence "garbage in garbage

out" illustrates this best. Just as if your model inherits data issues

such as inaccuracy, incompleteness, or irrelevancy, it will transmit

these flaws into your model unfortunately. DAQ that is successful,

supplies you with data whose quality is great and leads to

formation of powerful, and reliable machine learning models.

• Relevance is Key: DAQ is what makes you gather data of that

problem your model want to learn. The higher the relevance of the

data, the greater your model will perceive the dependency between

the essence and, therefore, will make precise conclusions.

• Shaping Model Performance: You end up with the amount of

data you collect for your model, which most often affects the

model's performance. An important case in machine learning is

when the algorithms need massive data sets in order to learn

properly. Expert DAQ strategies allow to collect considerable

amount of data for you to train your model so that you can just

correctly generalize and answer the questions that it hasn’t seen.

The Measurement Process

The measurement process is determining how many units of a

specific quantity or quality needs to be measured object. It is an

essential procedure in many disciplines, such as science, engineering,

building, and daily life. There are various steps to the measurement

process, which include:

• Define the quantity that has to be measured: The defining

of the quantity to be measured is the first step in the measurement

process, which also always includes a comparison with a known

quantity of the same kind. Finding the physical quantity or

attribute that has to be measured is part of this process.

• Comparing the object or quantity: The object is compared to

a known quantity of the same kind.

• Transduction: The quantity or item to be measured is

"transduced" into an analogous measurement signal if it cannot be

directly compared.

• Transmission and processing of the signal: To generate a

measurement reading, the physical signal is routed through the

system and subjected to processing.

• Calibration: The process of obtaining the reference signal from

items with known quantities is known as calibration.

• Quantization: The measurement is quantized by counting or

splitting the signal into equal and known-sized pieces, and the

physical signal is compared with the reference signal.

Data Acquisition Tools

Tools for gathering, analyzing, and recording data from a variety of

sensors, instruments, or devices are software and hardware systems

known as data acquisition tools. Data Acquisition Tools are useful

in scientific research, industrial automation, engineering, and other

domains where data gathering and processing are critical. Few Tools

for Acquiring Data are:

• DriveSpy: A data collection tool for Windows operating systems

created by Digital Intelligence Forensic Solutions.

• DewesoftX: A software suite for acquiring and analyzing data

that provides strong tools for these tasks.

• LabVIEW: A popular software program used in many different

industries that offers tools for data collection, processing, and

visualization.

• Catman: A data acquisition software package that offers tools for

data acquisition, analysis, and visualization, and is commonly used

in industrial automation and engineering.

• Matlab: A software package that provides tools for data

acquisition, analysis, and visualization, and is widely used in

various industries.

• FlexPro: A data acquisition software package that offers tools for

data acquisition, analysis, and visualization, and is commonly used

in industrial automation and engineering.

Conclusion

In conclusion, Data Acquisition (DAQ) is the crucial first step in

building successful machine learning models. It involves gathering

high-quality, relevant data to train your models and achieve optimal

performance. By following the best practices outlined above, you can

ensure your DAQ process is efficient and effective, laying a strong

foundation for your machine learning project.

Feature Engineering:

 Feature Engineering is the process of creating new features or

transforming existing features to improve the performance of a

machine-learning model. It involves selecting relevant information

from raw data and transforming it into a format that can be easily

understood by a model. The goal is to improve model accuracy by

providing more meaningful and relevant information.

What is Feature Engineering?

Feature engineering is the process of transforming raw data into

features that are suitable for machine learning models. In

other words, it is the process of selecting, extracting, and

transforming the most relevant features from the available data to

build more accurate and efficient machine learning models.

The success of machine learning models heavily depends on the

quality of the features used to train them. Feature engineering

involves a set of techniques that enable us to create new features by

combining or transforming the existing ones. These techniques help

to highlight the most important patterns and relationships in the

data, which in turn helps the machine learning model to learn from

the data more effectively.

What is a Feature?

In the context of machine learning, a feature (also known as a

variable or attribute) is an individual measurable property or

characteristic of a data point that is used as input for a machine

learning algorithm. Features can be numerical, categorical, or text-

based, and they represent different aspects of the data that are

relevant to the problem at hand.

• For example, in a dataset of housing prices, features could include

the number of bedrooms, the square footage, the location, and the

age of the property. In a dataset of customer demographics,

features could include age, gender, income level, and occupation.

• The choice and quality of features are critical in machine learning,

as they can greatly impact the accuracy and performance of the

model.

Need for Feature Engineering in Machine Learning?

We engineer features for various reasons, and some of the main

reasons include:

• Improve User Experience: The primary reason we engineer

features is to enhance the user experience of a product or service.

By adding new features, we can make the product more intuitive,

efficient, and user-friendly, which can increase user satisfaction

and engagement.

• Competitive Advantage: Another reason we engineer features

is to gain a competitive advantage in the marketplace. By offering

unique and innovative features, we can differentiate our product

from competitors and attract more customers.

• Meet Customer Needs: We engineer features to meet the

evolving needs of customers. By analyzing user feedback, market

trends, and customer behavior, we can identify areas where new

features could enhance the product’s value and meet customer

needs.

• Increase Revenue: Features can also be engineered to generate

more revenue. For example, a new feature that streamlines the

checkout process can increase sales, or a feature that provides

additional functionality could lead to more upsells or cross-sells.

• Future-Proofing: Engineering features can also be done to

future-proof a product or service. By anticipating future trends and

potential customer needs, we can develop features that ensure the

product remains relevant and useful in the long term.

Processes Involved in Feature Engineering

Feature engineering in Machine learning consists of mainly 5

processes: Feature Creation, Feature Transformation, Feature

Extraction, Feature Selection, and Feature Scaling. It is an iterative

process that requires experimentation and testing to find the best

combination of features for a given problem. The success of a

machine learning model largely depends on the quality of the

features used in the model.

1. Feature Creation

Feature Creation is the process of generating new features based on

domain knowledge or by observing patterns in the data. It is a form of

feature engineering that can significantly improve the performance of

a machine-learning model.

Types of Feature Creation:

1. Domain-Specific: Creating new features based on domain

knowledge, such as creating features based on business rules or

industry standards.

2. Data-Driven: Creating new features by observing patterns in the

data, such as calculating aggregations or creating interaction

features.

3. Synthetic: Generating new features by combining existing

features or synthesizing new data points.

Why Feature Creation?

1. Improves Model Performance: By providing additional and

more relevant information to the model, feature creation can

increase the accuracy and precision of the model.

2. Increases Model Robustness: By adding additional features,

the model can become more robust to outliers and other

anomalies.

3. Improves Model Interpretability: By creating new features, it

can be easier to understand the model’s predictions.

4. Increases Model Flexibility: By adding new features, the

model can be made more flexible to handle different types of data.

2. Feature Transformation

Feature Transformation is the process of transforming the features

into a more suitable representation for the machine learning model.

This is done to ensure that the model can effectively learn from the

data.

Types of Feature Transformation:

1. Normalization: Rescaling the features to have a similar range,

such as between 0 and 1, to prevent some features from

dominating others.

2. Scaling: Scaling is a technique used to transform numerical

variables to have a similar scale, so that they can be compared

more easily. Rescaling the features to have a similar scale, such as

having a standard deviation of 1, to make sure the model considers

all features equally.

3. Encoding: Transforming categorical features into a numerical

representation. Examples are one-hot encoding and label

encoding.

https://www.geeksforgeeks.org/feature-transformation-techniques-in-machine-learning/
https://www.geeksforgeeks.org/what-is-data-normalization/

4. Transformation: Transforming the features using mathematical

operations to change the distribution or scale of the features.

Examples are logarithmic, square root, and reciprocal

transformations.

Why Feature Transformation?

1. Improves Model Performance: By transforming the features

into a more suitable representation, the model can learn more

meaningful patterns in the data.

2. Increases Model Robustness: Transforming the features can

make the model more robust to outliers and other anomalies.

3. Improves Computational Efficiency: The transformed

features often require fewer computational resources.

4. Improves Model Interpretability: By transforming the

features, it can be easier to understand the model’s predictions.

3. Feature Extraction

Feature Extraction is the process of creating new features from

existing ones to provide more relevant information to the machine

learning model. This is done by transforming, combining, or

aggregating existing features.

Types of Feature Extraction:

1. Dimensionality Reduction: Reducing the number of features

by transforming the data into a lower-dimensional space while

retaining important information. Examples are PCA and t-SNE.

https://www.geeksforgeeks.org/principal-component-analysis-pca/
https://www.geeksforgeeks.org/ml-t-distributed-stochastic-neighbor-embedding-t-sne-algorithm/

2. Feature Combination: Combining two or more existing

features to create a new one. For example, the interaction between

two features.

3. Feature Aggregation: Aggregating features to create a new one.

For example, calculating the mean, sum, or count of a set of

features.

4. Feature Transformation: Transforming existing features into a

new representation. For example, log transformation of a feature

with a skewed distribution.

Why Feature Extraction?

1. Improves Model Performance: By creating new and more

relevant features, the model can learn more meaningful patterns in

the data.

2. Reduces Overfitting: By reducing the dimensionality of the

data, the model is less likely to overfit the training data.

3. Improves Computational Efficiency: The transformed

features often require fewer computational resources.

4. Improves Model Interpretability: By creating new features, it

can be easier to understand the model’s predictions.

4. Feature Selection

Feature Selection is the process of selecting a subset of relevant

features from the dataset to be used in a machine-learning model. It

is an important step in the feature engineering process as it can have

a significant impact on the model’s performance.

https://www.geeksforgeeks.org/feature-selection-techniques-in-machine-learning/

Types of Feature Selection:

1. Filter Method: Based on the statistical measure of the

relationship between the feature and the target variable. Features

with a high correlation are selected.

2. Wrapper Method: Based on the evaluation of the feature subset

using a specific machine learning algorithm. The feature subset

that results in the best performance is selected.

3. Embedded Method: Based on the feature selection as part of the

training process of the machine learning algorithm.

Why Feature Selection?

1. Reduces Overfitting: By using only the most relevant features,

the model can generalize better to new data.

2. Improves Model Performance: Selecting the right features

can improve the accuracy, precision, and recall of the model.

3. Decreases Computational Costs: A smaller number of

features requires less computation and storage resources.

4. Improves Interpretability: By reducing the number of

features, it is easier to understand and interpret the results of the

model.

5. Feature Scaling

Feature Scaling is the process of transforming the features so that

they have a similar scale. This is important in machine learning

because the scale of the features can affect the performance of the

model.

https://www.geeksforgeeks.org/ml-feature-scaling-part-1/

Types of Feature Scaling:

1. Min-Max Scaling: Rescaling the features to a specific range,

such as between 0 and 1, by subtracting the minimum value and

dividing by the range.

2. Standard Scaling: Rescaling the features to have a mean of 0

and a standard deviation of 1 by subtracting the mean and dividing

by the standard deviation.

3. Robust Scaling: Rescaling the features to be robust to outliers by

dividing them by the interquartile range.

Why Feature Scaling?

1. Improves Model Performance: By transforming the features

to have a similar scale, the model can learn from all features

equally and avoid being dominated by a few large features.

2. Increases Model Robustness: By transforming the features to

be robust to outliers, the model can become more robust to

anomalies.

3. Improves Computational Efficiency: Many machine learning

algorithms, such as k-nearest neighbors, are sensitive to the scale

of the features and perform better with scaled features.

4. Improves Model Interpretability: By transforming the

features to have a similar scale, it can be easier to understand the

model’s predictions.

https://www.geeksforgeeks.org/data-pre-processing-wit-sklearn-using-standard-and-minmax-scaler/

What are the Steps in Feature Engineering?

The steps for feature engineering vary per different Ml engineers and

data scientists. Some of the common steps that are involved in most

machine-learning algorithms are:

1. Data Cleansing

• Data cleansing (also known as data cleaning or data scrubbing)

involves identifying and removing or correcting any errors or

inconsistencies in the dataset. This step is important to ensure

that the data is accurate and reliable.

2. Data Transformation

3. Feature Extraction

4. Feature Selection

• Feature selection involves selecting the most relevant features

from the dataset for use in machine learning. This can include

techniques like correlation analysis, mutual information, and

stepwise regression.

5. Feature Iteration

• Feature iteration involves refining and improving the features

based on the performance of the machine learning model. This

can include techniques like adding new features, removing

redundant features and transforming features in different ways.

Overall, the goal of feature engineering is to create a set of

informative and relevant features that can be used to train a

machine learning model and improve its accuracy and

performance. The specific steps involved in the process may vary

depending on the type of data and the specific machine-learning

problem at hand.

Techniques Used in Feature Engineering

Feature engineering is the process of transforming raw data into

features that are suitable for machine learning models. There are

various techniques that can be used in feature engineering to create

new features by combining or transforming the existing ones. The

following are some of the commonly used feature engineering

techniques:

One-Hot Encoding

One-hot encoding is a technique used to transform categorical

variables into numerical values that can be used by machine learning

models. In this technique, each category is transformed into a binary

value indicating its presence or absence. For example, consider a

categorical variable “Colour” with three categories: Red, Green, and

Blue. One-hot encoding would transform this variable into three

binary variables: Colour_Red, Colour_Green, and Colour_Blue,

where the value of each variable would be 1 if the corresponding

category is present and 0 otherwise.

Binning

Binning is a technique used to transform continuous variables into

categorical variables. In this technique, the range of values of the

continuous variable is divided into several bins, and each bin is

assigned a categorical value. For example, consider a continuous

variable “Age” with values ranging from 18 to 80. Binning would

https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
https://www.geeksforgeeks.org/binning-in-data-mining/

divide this variable into several age groups such as 18-25, 26-35, 36-

50, and 51-80, and assign a categorical value to each age group.

Scaling

The most common scaling techniques are standardization and

normalization. Standardization scales the variable so that it has zero

mean and unit variance. Normalization scales the variable so that it

has a range of values between 0 and 1.

FeatureSplit

Feature splitting is a powerful technique used in feature engineering

to improve the performance of machine learning models. It involves

dividing single features into multiple sub-features or groups based on

specific criteria. This process unlocks valuable insights and enhances

the model’s ability to capture complex relationships and patterns

within the data.

TextDataPreprocessing

Text data requires special preprocessing techniques before it can be

used by machine learning models. Text preprocessing involves

removing stop words, stemming, lemmatization, and vectorization.

Stop words are common words that do not add much meaning to the

text, such as “the” and “and”. Stemming involves reducing words to

their root form, such as converting “running” to “run”.

Lemmatization is similar to stemming, but it reduces words to their

base form, such as converting “running” to “run”. Vectorization

involves transforming text data into numerical vectors that can be

used by machine learning models.

https://www.geeksforgeeks.org/splitting-data-for-machine-learning-models/

Feature Engineering Tools

There are several tools available for feature engineering. Here are

some popular ones:

1. Featuretools

Featuretools is a Python library that enables automatic feature

engineering for structured data. It can extract features from multiple

tables, including relational databases and CSV files, and generate new

features based on user-defined primitives. Some of its features

include:

• Automated feature engineering using machine learning

algorithms.

• Support for handling time-dependent data.

• Integration with popular Python libraries, such as pandas and

scikit-learn.

• Visualization tools for exploring and analyzing the generated

features.

• Extensive documentation and tutorials for getting started.

2. TPOT

TPOT (Tree-based Pipeline Optimization Tool) is an automated

machine learning tool that includes feature engineering as one of its

components. It uses genetic programming to search for the best

combination of features and machine learning algorithms for a given

dataset. Some of its features include:

• Automatic feature selection and transformation.

• Support for multiple types of machine learning models, including

regression, classification, and clustering.

• Ability to handle missing data and categorical variables.

• Integration with popular Python libraries, such as scikit-learn and

pandas.

• Interactive visualization of the generated pipelines.

3. DataRobot

DataRobot is a machine learning automation platform that includes

feature engineering as one of its capabilities. It uses automated

machine learning techniques to generate new features and select the

best combination of features and models for a given dataset. Some of

its features include:

• Automatic feature engineering using machine learning algorithms.

• Support for handling time-dependent and text data.

• Integration with popular Python libraries, such as pandas and

scikit-learn.

• Interactive visualization of the generated models and features.

• Collaboration tools for teams working on machine learning

projects.

4. Alteryx

Alteryx is a data preparation and automation tool that includes

feature engineering as one of its features. It provides a visual

interface for creating data pipelines that can extract, transform, and

generate features from multiple data sources. Some of its features

include:

• Support for handling structured and unstructured data.

• Integration with popular data sources, such as Excel and

databases.

• Pre-built tools for feature extraction and transformation.

• Support for custom scripting and code integration.

• Collaboration and sharing tools for teams working on data

projects.

5. H2O.ai

H2O.ai is an open-source machine learning platform that includes

feature engineering as one of its capabilities. It provides a range of

automated feature engineering techniques, such as feature scaling,

imputation, and encoding, as well as manual feature engineering

capabilities for more advanced users. Some of its features include:

• Automatic and manual feature engineering options.

• Support for structured and unstructured data, including text and

image data.

• Integration with popular data sources, such as CSV files and

databases.

• Interactive visualization of the generated features and models.

• Collaboration and sharing tools for teams working on machine

learning projects.

Overall, these tools can help streamline and automate the feature

engineering process, making it easier and faster to create informative

and relevant features for machine learning models

Data Representation:

Introduction:

In the realms of signal processing and machine learning, the
representation of data in a numerical format is crucial for analysis,
processing, and modeling. Depending on the dimensionality and
complexity of the data, it can be represented in different numerical
forms. The most common forms of data representation include scalar
values, vectors, matrices, and tensors.

Definitions:

▪ Scalar: A scalar is a single numerical value. It has magnitude
but no direction. For instance, in mathematical terms, the number 5
or -3.2 are scalar values.

▪ Vector: A vector is an ordered list of numbers. It can be
visualized as a line segment in space that has both magnitude and
direction. Mathematically, a vector is typically represented as a
column (or sometimes row) of numbers (aka 1-D data)

▪ Matrix: A matrix is a two-dimensional array of numbers.
It can be visualized as a rectangular grid of numbers. A matrix has
rows and columns, and its shape is often described by the number of
rows by the number of columns, e.g., a 3x2 matrix has 3 rows and 2
columns.

▪ Tensor: A tensor is a multi-dimensional array of
numbers. While a scalar is 0-dimensional, a vector is 1-
dimensional, and a matrix is 2-dimensional, a tensor can be 3-
dimensional or more. For instance, a 3-dimensional tensor can be
visualized as a cube of numbers.

Examples:

▪ Scalar: An example of a scalar is the current temperature. If
it's 22°C right now, that's a single numerical value.

▪ Vector: An example of a vector could be the average high
temperatures forecasted for the next week. For instance, if
the forecasted high temperatures for the next seven days are 22°C,
23°C, 24°C, 25°C, 26°C, 27°C, and 28°C, then the vector
representation might be: [22, 23, 24, 25, 26, 27, 28]

▪ Matrix: An example of a matrix is a grayscale image. The
pixels of the image are represented as values between 0 (black) and
255 (white). The image's resolution, say 100x100 pixels, will
determine the size of the matrix. Each entry in the matrix
corresponds to the grayscale value of a pixel.

▪ Tensor: A tensor example is a colored image. In the most
common format, an image has three color channels: Red, Green,
and Blue (RGB). Each channel can be thought of as a matrix (like
the grayscale image), and the three matrices combined form a 3-
dimensional tensor. If the image is of resolution 100x100 pixels, the
tensor's shape would be 100x100x3, with each slice of size 100x100
representing one of the RGB channels.

Summary & Conclusion

▪ Scalar: A single numerical value.

▪ Vector: A 1D array of values, often representing a series or
sequence of numbers.

▪ Matrix: A 2D array of values, typically visualized as a grid or
table of numbers.

▪ Tensor: An array of values with 3 or more dimensions,
commonly used in applications requiring multi-channel or multi-
modal data.

Data representation is crucial in domains like signal processing and
machine learning. Gaining a practical understanding of how these data
structures manifest in real-world engineering scenarios enables one to
look beyond the terminology. Rather than being daunted by the

jargon, professionals can leverage these data formats as powerful tools
for both analysis and synthesis in their respective fields.

Model Selection:

Introduction

Model selection is an essential phase in the development of powerful
and precise predictive models in the field of machine learning. Model
selection is the process of deciding which algorithm and model
architecture is best suited for a particular task or dataset. It entails
contrasting various models, assessing their efficacy, and choosing the
one that most effectively addresses the issue at hand.
The choice of an appropriate machine learning model is crucial since
there are various levels of complexity, underlying assumptions, and
capabilities among them. A model's ability to generalize to new,
untested data may not be as strong as its ability to perform effectively
on a single dataset or problem. Finding a perfect balance between the
complexity of models & generalization is therefore key to model
selection.
Choosing a model often entails a number of processes. The first step in
this process is to define a suitable evaluation metric that matches the
objectives of the particular situation. According to the nature of the
issue, this statistic may refer to precision, recall, accuracy, F1-score, or
any other relevant measure.
The selection of numerous candidate models is then made in
accordance with the problem at hand and the data that are accessible.
These models might be as straightforward as decision trees or linear
regression or as sophisticated as deep neural networks, random
forests, or support vector machines. During the selection process, it is
important to take into account the assumptions, constraints, and
hyperparameters that are unique to each model.
Using a suitable methodology, such as cross-validation, the candidate
models are trained and evaluated after being selected. To do this, the
available data must be divided into validation and training sets, with
each model fitting on the training set before being evaluated on the

validation set. The models are compared using their performance
metrics, then the model with the highest performance is chosen.
Model selection is a continuous process, though. In order to make wise
selections, it frequently calls for an iterative process that involves
testing several models and hyperparameters. The models are
improved through this iterative process, which also aids in choosing
the ideal mix of algorithms & hyperparameters.

Model Selection

In machine learning, the process of selecting the top model or
algorithm from a list of potential models to address a certain issue is
referred to as model selection. It entails assessing and contrasting
various models according to how well they function and choosing the
one that reaches the highest level of accuracy or prediction power.
Because different models have varied levels of complexity, underlying
assumptions, and capabilities, model selection is a crucial stage in the
machine-learning pipeline. Finding a model that fits the training set of
data well and generalizes well to new data is the objective. While a
model that is too complex may overfit the data and be unable to
generalize, a model that is too simple could underfit the data and do
poorly in terms of prediction.
The following steps are frequently included in the model selection
process:

• Problem formulation: Clearly express the issue at hand,
including the kind of predictions or task that you'd like the model
to carry out (for example, classification, regression, or
clustering).

• Candidate model selection: Pick a group of models that are
appropriate for the issue at hand. These models can include
straightforward methods like decision trees or linear regression
as well as more sophisticated ones like deep neural networks,
random forests, or support vector machines.

• Performance evaluation: Establish measures for measuring
how well each model performs. Common measurements include
area under the receiver's operating characteristic curve (AUC-

ROC), recall, F1-score, mean squared error, and accuracy,
precision, and recall. The type of problem and the particular
requirements will determine which metrics are used.

• Training and evaluation: Each candidate model should be
trained using a subset of the available data (the training set), and
its performance should be assessed using a different subset (the
validation set or via cross-validation). The established evaluation
measures are used to gauge the model's effectiveness.

• Model comparison: Evaluate the performance of various
models and determine which one performs best on the validation
set. Take into account elements like data handling capabilities,
interpretability, computational difficulty, and accuracy.

• Hyperparameter tuning: Before training, many models
require that certain hyperparameters, such as the learning rate,
regularisation strength, or the number of layers that are hidden
in a neural network, be configured. Use methods like grid search,
random search, and Bayesian optimization to identify these
hyperparameters' ideal values.

• Final model selection: After the models have been analyzed
and fine-tuned, pick the model that performs the best. Then, this
model can be used to make predictions based on fresh,
unforeseen data.

Model Selection in machine learning:

Model selection in machine learning is the process of selecting the best
algorithm and model architecture for a specific job or dataset. It
entails assessing and contrasting various models to identify the one
that best fits the data & produces the best results. Model complexity,
data handling capabilities, and generalizability to new examples are all
taken into account while choosing a model. Models are evaluated and
contrasted using methods like cross-validation, and grid search, as
well as indicators like accuracy and mean squared error. Finding a
model that balances complexity and performance to produce reliable
predictions and strong generalization abilities is the aim of model
selection.
There are numerous important considerations to bear in mind while
selecting a model for machine learning. These factors assist in

ensuring that the chosen model is effective in solving the issue at its
core and has an opportunity for outstanding performance. Here are
some crucial things to remember:

• The complexity of the issue: Determine how complex the
issue you're trying to resolve is. Simple models might effectively
solve some issues, but more complicated models can be
necessary to fully represent complex relationships in the data.
Take into account the size of the dataset, the complexity of the
input features, and any potential for non-linear connections.

• Data Availability & Quality: Consider the accessibility and
caliber of the data you already have. Using complicated models
with a lot of parameters on a limited dataset may result in
overfitting. Such situations may call for simpler models with
fewer parameters. Take into account missing data, outliers, and
noise as well as how various models respond to these difficulties.

• Interpretability: Consider whether the model's interpretability
is crucial in your particular setting. Some models, like decision
trees or linear regression, offer interpretability by giving precise
insights into the correlations between the input data and the
desired outcome. Complex models, such as neural networks, may
perform better but offer less interpretability.

• Model Assumptions: Recognise the presumptions that
various models make. For instance, although decision trees
assume piecewise constant relationships, linear regression
assumes a linear relationship between the input characteristics
and the target variable. Make sure the model you choose is
consistent with the fundamental presumptions underpinning the
data and the issue.

• Scalability and Efficiency: If you're working with massive
datasets or real-time applications, take the model's scalability
and computing efficiency into consideration. Deep neural
networks and support vector machines are two examples of
models that could need a lot of time and computing power to
train.

• Regularisation and Generalisation: Assess the model's
capacity to apply to fresh, untested data. By including penalty
terms to the objective function of the model, regularisation

approaches like L1 or L2 regularisation can help prevent
overfitting. When the training data is sparse, regularised models
may perform better in terms of generalization.

• Domain Expertise: Consider your expertise and domain
knowledge. On the basis of previous knowledge of the data or
particular features of the domain, consider if particular models
are appropriate for the task. Models that are more likely to
capture important patterns can be found by using domain
expertise to direct the selection process.

• Resource Constraints: Take into account any resource
limitations you may have, such as constrained memory space,
processing speed, or time. Make that the chosen model can be
successfully implemented using the resources at hand. Some
models require significant resources during training or inference.

• Ensemble Methods: Examine the potential advantages of
ensemble methods, which integrate the results of various models
in order to perform more effectively. By utilizing the diversity of
several models' predictions, ensemble approaches, such as
bagging, boosting, and stacking, frequently outperform
individual models.

• Evaluation and Experimentation: experimentation and
assessment of several models should be done thoroughly. Utilize
the right evaluation criteria and statistical tests to compare their
performance. To evaluate the models' performance on unknown
data and reduce the danger of overfitting, use hold-out or cross-
validation.

Model Selection Techniques

Model selection in machine learning can be done using a variety of
methods and tactics. These methods assist in comparing and assessing
many models to determine which is best suited to solve a certain issue.
Here are some methods for selecting models that are frequently used:

• Train-Test Split: With this strategy, the available data is
divided into two sets: a training set & a separate test set. The
models are evaluated using a predetermined evaluation metric
on the test set after being trained on the training set. This

method offers a quick and easy way to evaluate a model's
performance using hypothetical data.

• Cross-Validation: A resampling approach called cross-
validation divides the data into various groups or folds. Several
folds are used as the test set & the rest folds as the training set,
and the models undergo training and evaluation on each fold
separately. Lowering the variance in the evaluation makes it
easier to generate an accurate assessment of the model's
performance. Cross-validation techniques that are frequently
used include leave-one-out, stratified, and k-fold cross-
validation.

• Grid Search: Hyperparameter tuning is done using the grid
search technique. In order to do this, a grid containing
hyperparameter values must be defined, and all potential
hyperparameter combinations must be thoroughly searched. For
each combination, the models are trained, assessed, and their
performances are contrasted. Finding the ideal hyperparameter
settings to optimize the model's performance is made easier by
grid search.

• Random Search: A set distribution for hyperparameter values
is sampled at random as part of the random search
hyperparameter tuning technique. In contrast to grid search,
which considers every potential combination, random search
only investigates a portion of the hyperparameter field. When a
thorough search is not possible due to the size of the search
space, this strategy can be helpful.

• Bayesian optimization: A more sophisticated method of
hyperparameter tweaking, Bayesian optimization. It models the
relationship between the performance of the model and the
hyperparameters using a probabilistic model. It intelligently
chooses which set of hyperparameters to investigate next by
updating the probabilistic model and iteratively assessing the
model's performance. When the search space is big and
expensive to examine, Bayesian optimization is especially
effective.

• Model averaging: This technique combines forecasts from
various models to get a single prediction. For regression issues,
this can be accomplished by averaging the predictions, while for

classification problems, voting or weighted voting systems can be
used. Model averaging can increase overall prediction accuracy
by lowering the bias and variation of individual models.

• Information Criteria: Information criteria offer a numerical
assessment of the trade-off between model complexity and
goodness of fit. Examples include the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC).
These criteria discourage the use of too complicated models and
encourage the adoption of simpler models that adequately
explain the data.

• Domain Expertise & Prior Knowledge: Prior
understanding of the problem and the data, as well as domain
expertise, can have a significant impact on model choice. The
models that are more suitable given the specifics of the problem
and the details of the data may be known by subject matter
experts.

• Model Performance Comparison: Using the right
assessment measures, it is vital to evaluate the performance of
various models. Depending on the issue at hand, these
measurements could include F1-score, mean squared error,
accuracy, precision, recall, or the area beneath the receiver's
operating characteristic curve (AUC-ROC). The best-performing
model can be found by comparing many models.

Summary

The important machine learning stage of model selection entails
selecting the best model and algorithm for a certain task. To make
precise predictions on unknown data, it is crucial to find a balance
between model complexity & generalization. Model selection involves
selecting potential candidates, assessing each model's performance,
and selecting the model with the best results.
Assessing the problem's complexity, data quality and availability,
interpretability, model assumptions, scalability, efficiency,
regularisation, domain knowledge, resource restrictions, and the
possible advantages of ensemble approaches are all factors that should
be taken into account when choosing a model. These factors aid in

ensuring that the chosen model complies with the limits and needs of
the issue.
There are many methods for choosing a model, such as train-test split,
cross-validation, grid searches, random search, Bayesian optimization,
model averaging, information criteria, expertise in the domain, and
model performance comparison. These methods make it possible to
thoroughly assess, tune hyperparameters, and compare various
models to get the best fit.

Model Learning:

Machine learning models are very power powerful resources that
automate tasks and make them more accurate and efficient.ML
handles new data and scales the growing demand for technology with
valuable insight .It improves the performance over time .This cutting-
edge technology has various benefits such as faster processing or
response ,enhancement of decision-making,and specialized services.

A model of machine learning is a set of programs that can be used to
find the pattern and make a decision from an unseen dataset .These
days NLP[Natural language processing] uses the machine learning
model to recognize the unstructured text into usable data and
insights.You may have heared about image processing which is used to

identify objects such as boy,girl,mirror,car,dog,etc.A model always
requires a dataset to perform various tasks during training
duration,We use a machine learning algorithm for the optimizing
process to find certain patterns or outputs from the dataset based
upon tasks

Types of Machine Learning Models

Machine learning models can be brodly categorized into four main
paradigms based on the type of data and learning goals:

1. Supervised Models

Supervised learning is the study of algorithms that use labelled data in
which each data instance has a known category or value to which it
belongs.This results in the model to disciver the relationship between
the input features and the target outcome.

1.1 Classification

The classifier algorithms are designed to indicate whether a new data
point belongs to one or another among several predefined classes.
Imagine when you are organising emails into spam or inbox,
categorising images as cat or dog, or predicting whether a loan
applicant is a credible borrower. In the classification models, there is
a learning process by the use of labeled examples from each category.
In this process, they discover the correlations and relations within
the data that help to distinguish class one from the other classes.
After learning these patterns, the model is then capable of assigning
these class labels to unseen data points.

Common Classification Algorithms:
• Logistic Regression: A very efficient technique for the

classification problems of binary nature (two types, for example,
spam/not spam).

• Support Vector Machine (SVM): Good for tasks like
classification, especially when the data has a large number of
features.

https://www.geeksforgeeks.org/support-vector-machine-algorithm/

• Decision Tree: Constructs a decision tree having branches and
proceeds to the class predictions through features.

• Random Forest: The model generates an "ensemble" of decision
trees that ultimately raise the accuracy and avoid overfitting
(meaning that the model performs great on the training data but
lousily on unseen data).

• K-Nearest Neighbors (KNN): Assigns a label of the nearest
neighbors for a given data point.

1.2 Regression

Regression algorithms are about forecasting of a continuous output
variable using the input features as their basis. This value could be
anything such as predicting real estate prices or stock market trends
to anticipating customer churn (how likely customers stay) and sales
forecasting. Regression models make the use of features to
understand the relationship among the continuous features and the
output variable. That is, they use the pattern that is learned to
determine the value of the new data points.
Common Regression Algorithms
• Linear Regression: Fits depth of a line to the data to model for

the relationship between features and the continuous output.
• Polynomial Regression: Similiar to linear regression but uses

more complex polynomial functions such as quadratic, cubic, etc,
for accommodating non-linear relationships of the data.

• Decision Tree Regression: Implements a decision tree-based
algorithm that predicts a continuous output variable from a
number of branching decisions.

• Random Forest Regression: Creates one from several decision
trees to guarantee error-free and robust regression prediction
results.

• Support Vector Regression (SVR): Adjusts the Support
Vector Machine ideas for regression tasks, where we are trying to
find one hyperplane that most closely reflects continuous output
data.

2. Unsupervised Models
Unsupervised learning involves a difficult task of working with data
which is not provided with pre-defined categories or label.

https://www.geeksforgeeks.org/random-forest-algorithm-in-machine-learning/
https://www.geeksforgeeks.org/k-nearest-neighbours/
https://www.geeksforgeeks.org/ml-linear-regression/
https://www.geeksforgeeks.org/python-decision-tree-regression-using-sklearn/
https://www.geeksforgeeks.org/random-forest-regression-in-python/
https://www.geeksforgeeks.org/support-vector-regression-svr-using-linear-and-non-linear-kernels-in-scikit-learn/

2.1 Clustering

Visualize being given a basket of fruits with no labels on them. The
fruits clustering algorithms are to group them according to the inbuilt
similarities. Techniques like K-means clustering are defined by exact
number of clusters ("red fruits" and "green fruits") and then each
data point (fruit) is assigned to the cluster with the highest similarity
within based on features (color, size, texture). Contrary to this,
hierarchical clustering features construction of hierarchy of clusters
which makes it more easy to study the system of groups. Spatial
clustering algorithm Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) detects groups of high-density data points,
even in those areas where there is a lack of data or outliers.
2.2 Dimensionality Reduction

Sometimes it is difficult to both visualize and analyze the data when
you have a large feature space (dimensions). The purpose of
dimensionality reduction methods is to decrease the dimensions
needed to maintain the key features. Dimensions of greatest
importance are identified by principal component analysis (PCA),
which is the reason why data is concentrated in fewer dimensions
with the highest variations. This speeds up model training as well as
offers a chance for more efficient visualization. LDA (Linear
Discriminant Analysis) also resembles PCA but it is made for
classification tasks where it concentrates on dimensions that can
differentiate the present classes in the dataset.
2.3 Anomaly Detection

Unsupervised learning can also be applied to find those data points
which greatly differ than the majorities. The statistics model may
identify these outliers, or anomalies as signaling of errors, fraud or
even something unusual. Local Outlier Factor (LOF) makes a
comparison of a given data point's local density with those
surrounding it. It then flags out the data points with significantly
lower densities as outliers or potential anomalies. Isolation Forest is
the one which uses different approach, which is to recursively isolate
data points according to their features. Anomalies usually are simple
to contemplate as they often necessitate fewer steps than an average
normal point.
3. Semi-Supervised Model

https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/dimensionality-reduction/
https://www.geeksforgeeks.org/principal-component-analysis-pca/
https://www.geeksforgeeks.org/machine-learning-for-anomaly-detection/

Besides, supervised learning is such a kind of learning with labeled
data that unsupervised learning, on the other hand, solves the task
where there is no labeled data. Lastly, semi-supervised learning fills
the gap between the two. It reveals the strengths of both approaches
by training using data sets labeled along with unlabeled one. This is
especially the case when labeled data might be sparse or prohibitively
expensive to acquire, while unlabeled data is undoubtedly available in
abundance.
3.1 Generative Semi-Supervised Learning

Envision having a few pictures of cats with labels and a universe of
unlabeled photos. The big advantage of generative semi-supervised
learning is its utilization of such a scenario. It exploits a generative
model to investigate the unlabeled pictures and discover the
orchestrating factors that characterize the data. This technique can
then be used to generate the new synthetic data points that have the
same features with the unlabeled data. The synthetic data is then
labeled with the pseudo-labels that the generative model has
interpreted from the data. This approach combines the existing
labeled data with the newly generated labeled data to train the final
model which is likely to perform better than the previous model that
was trained with only the limited amount of the original labeled data.
3.2 Graph-based Semi-Supervised Learning

This process makes use of the relationships between data points and
propagates labels to unmarked ones via labeled ones. Picture a social
network platform where some of the users have been marked as fans
of sports (labeled data). Cluster-based methods can analyze the links
between users (friendships) and even apply this information to infer
that if a user is connected to someone with a "sports" label then this
user might also be interested in sports (unbiased labels with
propagated label). While links and the entire structure of the network
are also important for the distribution of labels. This method is
beneficial when the data points are themselves connected to each
other and this connection can be exploiting during labelling of new
data.
4. Reinforcement learning Models
Reinforcement learning takes a dissimilar approach from supervised
learning and unsupervised learning. Different from supervised

https://www.geeksforgeeks.org/supervised-machine-learning/
https://www.geeksforgeeks.org/supervised-machine-learning/

learning or just plain discovery of hidden patterns, reinforcement
learning adopt an agent as it interacts with the surrounding and
learns. This agent is a learning one which develops via experiment
and error, getting rewarded for the desired actions and punished for
the undesired ones. The main purpose is to help players play the
game that can result in the highest rewards.
4.1 Value-based learning:

Visualize a robot trying to find its way through a maze. It has neither
a map nor instructions, but it gets points for consuming the cheese at
the end and fails with deduction of time when it runs into a wall.
Value learning is an offshoot of predicting the anticipated future
reward of taking a step in a particular state. For example, the
algorithm Q-learning will learn a Q-value for each state-action
combination. This Q-value is the expected reward for that action at
that specific state. Through a repetitive process of assessing the state,
gaining rewards, and updating the Q-values the agent manages to
determine that which actions are most valuable in each state and
eventually guides it to the most rewarding path. In contrast, SARSA
(State-Action-Reward-State-Action) looks at the value of the
succeeding state-action pair that influences the exploration strategy.
4.2 Policy-based learning:

In contrast to the value-based learning, where we are learning a
specific value for each state-action pair, in policy-based learning we
are trying to directly learn a policy which maps states to actions. This
policy in essence commands the agent to act in different situations as
specified by the way it is written. Actor-Critic is a common approach
that combines two models: an actor that retrains the policy and a
critic that retrains the value function (just like value-based methods).
The actor witnesses the critic's feedback which updates the policy
that the actor uses for better decision making. Proximal Policy
Optimization (PPO) is a specific policy-based method which focuses
on high variance issues that complicate early policy-based learning
methods.
Deep Learning
Deep learning is a subfield of machine learning that utilizes artificial
neural networks with multiple layers to achieve complex pattern
recognition. These networks are particularly effective for tasks

https://www.geeksforgeeks.org/sarsa-reinforcement-learning/
https://www.geeksforgeeks.org/sarsa-reinforcement-learning/

involving large amounts of data, such as image recognition and
natural language processing.
1. Artificial Neural Networks (ANNs) - This is a popular model

that refers to the structure and function of the human brain. It
consists of interconnected nodes based on various layers and is
used for various ML tasks.

2. Convolutional Neural Networks (CNNs) - A CNN is a deep
learning model that automates the spatial hierarchies of features
from input data. This model is commonly used in image
recognition and classification.

3. Recurrent Neural Networks (RNNs) - This model is designed
for the processing of sequential data. It enables the memory input
which is known for Neural network architectures.

4. Long Short-Term Memory Networks (LSTMs) - This model
is comparatively similar to Recurrent Neural Networks and allows
learners to learn the long-term dependencies from sequential data.

How Machine Learning Works?
1. Model Represntation: Machine Learning Models are

represented by mathematical functions that map input data to
output predictions. These functions can take various forms, such
as linear equations, decision trees , or complex neural networks.

2. Learning Algorithm: The learning algorithm is the main part of
behind the model's ability to learn from data. It adjusts the
parameters of the model's mathematical function iteratively during
the training phase to minimize the difference between the model's
prediction and the actual outcomes in the training data .

3. Training Data: Training data is used to teach the model to make
accurate predictions. It consists of input features(e.g variables,
attributes) and corresponding output labels(in supervised
learning) or is unalabeled(in supervised learning). During training
, the model analyzes the patterns in the training data to update its
parameters accordingly.

4. Objective Function: The objective function, also known as
the loss function, measures the difference between the model's
predictions and the actual outcomes in the training data. The goal
during training is to minimize this function, effectively reducing
the errors in the model's predictions.

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
https://www.geeksforgeeks.org/introduction-deep-learning/
https://www.geeksforgeeks.org/introduction-deep-learning/
https://www.geeksforgeeks.org/how-to-decide-neural-network-architecture/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/ml-common-loss-functions/

5. Optimization Process: Optimization is the process of finding
the set of model parameters that minimize the objective function.
This is typically achieved using optimization algorithms such as
gradient descent, which iteratively adjusts the model's parameters
in the direction that reduces the objective function.

6. Generalization: Once the model is trained, it is evaluated on a
separate set of data called the validation or test set to assess its
performance on new, unseen data. The model's ability to perform
well on data it hasn't seen before is known as generalization.

7. Final Output: After training and validation, the model can be
used to make predictions or decisions on new, unseen data. This
process, known as inference, involves applying the trained model
to new input data to generate predictions or classifications.

Advanced Machine Learning Models
• Neural Networks: You must have heard about deep neural

network which helps solve complex problems of data. It is made up
of interconnected nodes of multiple layers which we also call
neurons. Many things have been successful from this model such
as image recognition, NLP, and speech recognition.

• Convolutional Neural Networks (CNNs): This is a type of
model that is built in the framework of a neural network and it is
made to handle data that are of symbolic type, like images. From
this model, the hierarchy of spatial features can be determined.

• Recurrent Neural Networks (RNNs): These can be used to
process data that is sequentially ordered, such as reading
categories or critical language. These networks are built with loops
in their architectures that allow them to store information over
time.

• Long Short-Term Memory Networks (LSTMs): LSTMs,
which are a type of RNNs, recognize long-term correlation objects.
These models do a good job of incorporating information
organized into long categories.

• Generative Adversarial Networks (GANs): GANs are a type
of neural networks that generate data by studying two networks
over time. A product generates network data, while a
determination attempts to distinguish between real and fake
samples.

https://www.geeksforgeeks.org/natural-language-processing-nlp-tutorial/
https://www.geeksforgeeks.org/speech-recognition-in-python-using-google-speech-api/
https://www.geeksforgeeks.org/understanding-of-lstm-networks/
https://www.geeksforgeeks.org/generative-adversarial-network-gan/

• Transformer Models: This model become popular in natural
language processing. These models process input data over time
and capture long-range dependencies.

Real-world examples of ML Models
The ML model uses predictive analysis to maintain the growth of
various Industries-
• Financial Services: Banks and financial institutions are using

machine learning models to provide better services to their
customers. Using intelligent algorithms, they understand
customers' investment preferences, speed up the loan approval
process, and receive alerts for non-ordinary transactions.

• Healthcare: In medicine, ML models are helpful in disease
prediction, treatment recommendations, and prognosis. For
example, physicians can use a machine learning model to predict
the right cold medicine for a patient.

• Manufacturing Industry: In the manufacturing sector, ML has
made the production process more smooth and optimized. For
example, Machine Learning is being used in automated production
lines to increase production efficiency and ensure manufacturing
quality.

• Commercial Sector: In the marketing and marketing sector, ML
models analyze huge data and predict production trends. This
helps in understanding the marketing system and the products can
be customized for their target customers.

Future of Machine Learning Models
There are several important aspects to consider when considering the
challenges and future of machine learning models. One challenge is
that there are not enough resources and tools available to
contextualize large data sets. Additionally, machine learning models
need to be updated and restarted to understand new data patterns.
In the future, another challenge for machine learning may be to
collect and aggregate collections of data between different existing
technology versions. This can be important for scientific development
along with promoting the discovery of new possibilities. Finally, good
strategy, proper resources, and technological advancement are
important concepts for success in developing machine learning
models. To address all these challenges, appropriate time and
attention is required to further expand machine learning capabilities.

https://www.geeksforgeeks.org/natural-language-processing-overview/
https://www.geeksforgeeks.org/natural-language-processing-overview/
https://www.geeksforgeeks.org/machine-learning/

Conclusion
We first saw the introduction of machine learning in which we know
what a model is and what is the benefit of implementing it in our
system. Then look at the history and evolution of machine learning
along with the selection criteria to decide which model to use
specifically. Next, we read data preparation where you can read all
the steps. Then we researched advanced model that has future
benefits but some challenges can also be faced but the ML model is a
demand for the future.

Model evaluation:

What is Model Evaluation?

Model evaluation is the process of using different evaluation metrics to

understand a machine learning model’s performance, as well as its

strengths and weaknesses.

Why is Evaluation necessary for a successful model?

Evaluation is necessary for ensuring that machine learning models are

reliable, generalizable, and capable of making accurate predictions on

new, unseen data, which is crucial for their successful deployment in

real-world applications. Overfitting and underfitting are the two

biggest causes of poor performance of machine learning algorithms.

https://www.geeksforgeeks.org/what-is-data-preparation/

Overfitting: Occurs when the model is so closely aligned to the

training data that it does not know how to respond to new data.

Underfitting: Occurs when the model cannot adequately

capture the underlying structure of the data.

Right Fit: Occurs when both the training data error and the test

data are minimal

Error Risks in the models

Evaluation Metrics

There are different metrics for the tasks of classification, regression,

ranking, clustering, topic modeling, etc. Some of the metrics are as

follows:

1. Classification Metrics (accuracy, precision, recall, F1-score, ROC,

AUC, …)

2. Regression Metrics (MSE, MAE, R2)

3. Ranking Metrics (MRR, DCG, NDCG)

4. Statistical Metrics (Correlation)

5. Computer Vision Metrics (PSNR, SSIM, IoU)

6. NLP Metrics (Perplexity, BLEU score)

7. Deep Learning Related Metrics (Inception score, Frechet Inception

distance)

→ Today, we will talk about Classification Metrics.

1. Classification Metrics

When our target is categorical, we are dealing with a classification

problem. The choice of the most appropriate metrics depends on

different aspects, such as the characteristics of the dataset, whether it’s

imbalanced or not, and the goals of the analysis.

Confusion Matrix

A confusion matrix is a table that is often used to describe the

performance of a classification model (or “classifier”) on a set of

test data for which the true values are known.

I can summarize as before and after happenings. How?

As you see we have 2 main situations. Predicted (Before), Actual Values

(After).

Predicted and Actual Values

1. Predicted: Negative & Actual Value: Positive → Your predicted

False (FN)

2. Predicted: Negative & Actual Value: Negative → Your predicted

True(TN)

3. Predicted: Pozitive & Actual Value: Positive → Your predicted

True (TP)

4. Predicted: Pozitive & Actual Value: Negative→ Your predicted

False (FP)

These four scenarios are illustrated in the following figure.

Four possible combinations of reality and our binary pregnancy test
results

Example Label for Accuracy, Precision, and Recall

True Positive (TP) =10

True Negative (TN)=12

False Positive (FP)=1

False Negative (FN)=2

Accuracy

Accuracy is one metric for evaluating classification models. Formally

accuracy could be defined as the number of correct predictions to a

total number of predictions.

Precision

Precision is a measure of the accuracy.

Recall

Recall is the true positive rate

F1 Score

F1 score is a machine learning evaluation metric that measures a

model’s accuracy. It combines the precision and recall scores of a

model.

The accuracy metric computes how many times a model made a correct

prediction across the entire dataset.

In some scenarios, precision and recall may have varying levels of

importance depending on the specific requirements of the application.

The F1 score, which balances both precision and recall, may not

perfectly capture the relative importance of these metrics for a given

task. F1 score or seeing the PR or ROC curve can help.

ROC

ROC curve provides a comprehensive view of a model’s ability to

discriminate between classes, especially in binary classification tasks.

It helps in understanding the trade-offs between sensitivity and

specificity at different decision thresholds, and the AUC offers a single

metric for summarizing the overall performance of the model.

• True Positive Rate (Recall)

• False Positive Rate (FPR)

Model prediction:

What Is Predictive Modeling?

In short, predictive modeling is a statistical technique using machine
learning and data mining to predict and forecast likely future
outcomes with the aid of historical and existing data. It works by
analyzing current and historical data and projecting what it learns on a
model generated to forecast likely outcomes. Predictive modeling can
be used to predict just about anything, from TV ratings and a
customer’s next purchase to credit risks and corporate earnings.

A predictive model is not fixed; it is validated or revised regularly to
incorporate changes in the underlying data. In other words, it’s not a
one-and-done prediction. Predictive models make assumptions based

on what has happened in the past and what is happening now. If
incoming, new data shows changes in what is happening now, the
impact on the likely future outcome must be recalculated, too. For
example, a software company could model historical sales data against
marketing expenditures across multiple regions to create a model for
future revenue based on the impact of the marketing spend.

Most predictive models work fast and often complete their
calculations in real time. That’s why banks and retailers can, for
example, calculate the risk of an online mortgage or credit card
application and accept or decline the request almost instantly based
on that prediction.

Some predictive models are more complex, such as those used
in computational biology and quantum computing; the resulting
outputs take longer to compute than a credit card application but are
done much more quickly than was possible in the past thanks to
advances in technological capabilities, including computing power.

Top 5 Types of Predictive Models

Fortunately, predictive models don’t have to be created from scratch
for every application. Predictive analytics tools use a variety of vetted
models and algorithms that can be applied to a wide spread of use
cases.

Predictive modeling techniques have been perfected over time. As we
add more data, more muscular computing, AI and machine learning
and see overall advancements in analytics, we’re able to do more with
these models.

The top five predictive analytics models are:

1. Classification model: Considered the simplest model, it
categorizes data for simple and direct query response. An

https://miblab.bme.gatech.edu/research/bioinformatics/prediction/

example use case would be to answer the question “Is this a
fraudulent transaction?”

2. Clustering model: This model nests data together by common
attributes. It works by grouping things or people with shared
characteristics or behaviors and plans strategies for each group
at a larger scale. An example is in determining credit risk for a
loan applicant based on what other people in the same or a
similar situation did in the past.

3. Forecast model: This is a very popular model, and it works on
anything with a numerical value based on learning from
historical data. For example, in answering how much lettuce a
restaurant should order next week or how many calls a customer
support agent should be able to handle per day or week, the
system looks back to historical data.

4. Outliers model: This model works by analyzing abnormal or
outlying data points. For example, a bank might use an outlier
model to identify fraud by asking whether a transaction is
outside of the customer’s normal buying habits or whether an
expense in a given category is normal or not. For example, a
$1,000 credit card charge for a washer and dryer in the
cardholder’s preferred big box store would not be alarming, but
$1,000 spent on designer clothing in a location where the
customer has never charged other items might be indicative of a
breached account.

5. Time series model: This model evaluates a sequence of data
points based on time. For example, the number of stroke patients
admitted to the hospital in the last four months is used to predict
how many patients the hospital might expect to admit next week,
next month or the rest of the year. A single metric measured and
compared over time is thus more meaningful than a simple
average.

Common Predictive Algorithms

Predictive algorithms use one of two things: machine learning or deep
learning. Both are subsets of artificial intelligence (AI). Machine
learning (ML) involves structured data, such as spreadsheet or
machine data. Deep learning (DL) deals with unstructured data such
as video, audio, text, social media posts and images—essentially the
stuff that humans communicate with that are not numbers or metric
reads.

Some of the more common predictive algorithms are:

1. Random Forest: This algorithm is derived from a combination
of decision trees, none of which are related, and can use both
classification and regression to classify vast amounts of data.

2. Generalized Linear Model (GLM) for Two Values: This
algorithm narrows down the list of variables to find “best fit.” It
can work out tipping points and change data capture and other
influences, such as categorical predictors, to determine the “best
fit” outcome, thereby overcoming drawbacks in other models,
such as a regular linear regression.

3. Gradient Boosted Model: This algorithm also uses several
combined decision trees, but unlike Random Forest, the trees are
related. It builds out one tree at a time, thus enabling the next
tree to correct flaws in the previous tree. It’s often used in
rankings, such as on search engine outputs.

4. K-Means: A popular and fast algorithm, K-Means groups data
points by similarities and so is often used for the clustering
model. It can quickly render things like personalized retail offers
to individuals within a huge group, such as a million or more
customers with a similar liking of lined red wool coats.

5. Prophet: This algorithm is used in time-series or forecast
models for capacity planning, such as for inventory needs, sales
quotas and resource allocations. It is highly flexible and can
easily accommodate heuristics and an array of useful
assumptions.

https://www.merriam-webster.com/dictionary/tipping%20point
https://www.hvr-software.com/blog/change-data-capture/
https://online.stat.psu.edu/stat462/node/86/
https://en.wikipedia.org/wiki/Heuristic

Search and learning:

Whenever someone performs a search, they expect to be greeted with

results relevant to their requirements. However, traditional search

techniques like “BM25 retrieval” return results based on how many

times the phrase searched appears in a document.

While such techniques perform well to an extent, they fail to take into

account the users’ unique preferences. This is where machine learning

(ML) techniques come into play for helping deliver personalized

results, particularly within the realm of federated search.

Maximizing Federated Search Relevance with ML

Techniques

Unlike conventional methods, ML-driven federated search delves

deeper into the intricacies of user interactions, considering many

factors beyond keyword frequency.

This enables the system to discern patterns, user intent, and

contextual relevance, therefore delivering a more personalized and

tailored search experience. The following ML techniques help facilitate

this:

Vector and Semantic Search

Vector search is a technique that leverages mathematical

representations to understand and organize complex relationships

between words and concepts, enhancing search accuracy.

While semantic search focuses on interpreting the meaning of words

and phrases within the context, providing a nuanced understanding of

the users’ context.

These approaches excel in handling synonyms, misspellings, and

variations in language, contributing to a higher level of search

https://www.searchunify.com/blog/7-top-reasons-why-you-need-federated-search/
https://pages.searchunify.com/ebook-your-comprehensive-guide-to-semantic-search-engines
https://www.searchunify.com/blog/vector-search-bridging-the-gap-between-data-and-context-for-better-content-findability/
https://pages.searchunify.com/ebook-your-comprehensive-guide-to-semantic-search-engines.html?_gl=1*1c62wkw*_ga*MzY4MzI5MDYuMTcwNjA5NDAzMw..*_ga_STDRXBQS38*MTcwNzA3MTM1OS4xNC4xLjE3MDcwNzE1OTAuMC4wLjA.&_ga=2.56996650.1012029143.1707071360-36832906.1706094033

accuracy. They also boost personalization based on the users’ history

and preferences, something which we could see lacking in the

traditional approaches.

Query Understanding

Query Understanding involves analyzing user queries to grasp their

intent, context, and semantics. It employs natural language

processing (NLP) to interpret user input, discerning synonyms, and

user-specific language, thus enhancing search engines’ ability to

deliver more accurate and relevant results.

Using ML algorithms also enables the search engines to “Query

rephrasing,” which essentially refers to suggesting alternate queries

that would retrieve better results. Another technique, known as

“Query expansion” helps expand the query to add related terms to the

query and broadens its scope.

And voila! The search results powered by query understanding are

much more thorough.

Neural Reranking

“Ranking” is often done based on how many times the search keyword

appears in a document. However, neural reranking allows you to tune

the search results so the top result is the most relevant one instead.

This is done by leveraging algorithms like k-nearest-neighbor (k-NN)

for exact matches and approximate nearest-neighbor (ANN) for faster

but slightly less accurate matches. Another benefit of neural reranking

is that it can yield great results in zero-shot informational retrieval

(IR) models ,i.e., models without much training.

https://www.searchunify.com/blog/nlp-the-proverbial-cherry-on-top-of-your-customer-service-cake/
https://www.searchunify.com/blog/nlp-the-proverbial-cherry-on-top-of-your-customer-service-cake/

Now if you were to implement these ML-based techniques for better

search results, how would you determine if they’re performing as

expected? By finding out their impact on recall and precision. Let’s dig

deeper.

How do ML Techniques Enhance Recall & Precision in

Search Results?

Precision refers to how accurate the search results are, while recall

refers to the number of results returned. ML algorithms can ensure

that the no relevant results are skipped over, and simultaneously rank

the most relevant matches higher to reduce irrelevancy.

The following ML techniques help boost precision and recall:

• Word Embeddings: Embeddings are dense vector

representations that capture semantic relationships and

similarities between data points. They boost recall by capturing

nuanced similarities in the data, allowing models to return better

results.

• Cross-Encoders: These are neural networks that analyze pairs

of things, such as questions and answers to determine how

similar they are. The model gives a score to show how much the

two things are connected or similar. This helps boost precision.

• User History: Taking the users’ history into account helps

search engines narrow what they might be looking for. This

historical data can be used to fine-tune the search results and

provide more personalized and relevant answers.

Therefore, integrating ML techniques into your federated search

solutions is a great way to amp up search relevancy. SearchUnify has

been at it for quite some time! Keep reading to know more.

https://www.searchunify.com/sudo-technical-blogs/how-to-measure-the-efficacy-of-your-sentiment-analysis-model/
https://www.searchunify.com/sudo-technical-blogs/demystifying-contextual-query-embedding/
https://www.searchunify.com/products/cognitive-search/

Delivering Search Excellence with SearchUnify’s ML

Techniques

SearchUnify uses three types of ML-powered search techniques to

boost recall as explained below.

Lexical Search

Lexical refers to the vocabulary or words used in a language, such as

their structure and meaning. Lexical search involves searching for

specific words or terms within a dataset or a corpus of text. It focuses

on finding documents or information that contain the exact words or

phrases specified in the search query.

Neural Search

Neural search leverages ML models known as neural networks to

improve the efficiency and relevance of search results. It leverages

advanced NLP techniques to understand the context, semantics, and

relationships between words. This helps provide more accurate and

contextually relevant search results by understanding the meaning

behind the queries.

Hybrid Search

Hybrid search combines multiple search approaches or technologies to

enhance the overall search experience. It often involves integrating

traditional search methods with newer technologies like ML or

artificial intelligence (AI).

For example, it might use lexical search for precise keyword matching

and neural search for understanding context and providing more

nuanced results. Search Unify uses this combination to provide a more

comprehensive and accurate search experience.

To improve precision, Search Unify federated search leverages the

following techniques.

https://www.searchunify.com/sudo-technical-blogs/how-neural-search-is-redefining-enterprise-efficiency/

Auto Boosting

This helps optimize search precision by adjusting the importance of

different features, ensuring relevant information is prioritized based

on user interactions and feedback.

Persona-based Results

ML algorithms can track and take into account the user personas and

tailor the results to user-specific profiles, considering individual

preferences and behavior to deliver more accurate and personalized

information.

Cross Encoders

Cross encoders utilize neural networks to analyze relationships

between different pieces of content, facilitating a deeper

understanding of context and relevance for more accurate search

results.

 Data Set:

Mahine Learning is at the peak of its popularity today. Despite this, a

lot of decision-makers are in the dark about what exactly is needed to

design, train, and successfully deploy a machine learning algorithm.

The details about collecting the data, building a dataset, and

annotation specifics are neglected as supportive tasks.

However, reality shows that working with datasets is the most time-

consuming and laborious part of any AI project, sometimes taking up

to 70% of the time overall. Moreover, building up a high-quality

https://www.searchunify.com/sudo-technical-blogs/machine-learning-the-underlying-force-to-get-rich-search-results/
https://info.cruxinformatics.com/hubfs/Forrester-External-Data-Research-2023.pdf

machine learning dataset requires experienced, trained professionals

who know what to do with the actual data that can be collected.

Let’s start from the beginning by defining what a dataset for machine

learning is and why you need to pay more attention to it.

What Is a Dataset in Machine Learning and Why Is It
Essential for Your AI Model?

According to the Oxford Dictionary, a dataset definition in machine

learning is “a collection of data that is treated as a single unit by a

computer”. This means that a dataset contains a lot of separate pieces

of data, but can be used to teach the machine learning algorithm to

find predictable patterns inside the whole dataset.

Data is an essential component of any AI model and, basically, the sole

reason for the spike in popularity of machine learning that we witness

today. Due to the availability of data, scalable ML algorithms became

viable as actual products that can bring value to a business, rather

than being a by-product of its main processes.

Your business has always been based on data. Factors such as what the

customer bought, the popularity of the products, seasonality of the

customer flow have always been important in business making.

However, with the advent of machine learning, now it’s important to

collect this data into datasets.

https://www.oxfordlearnersdictionaries.com/definition/english/data-set?q=data+set
https://labelyourdata.com/articles/how-to-choose-a-machine-learning-algorithm

Sufficient volumes of data allow you to analyze the trends and hidden

patterns and make decisions based on the dataset you’ve built.

However, while it may look rather simple, working with data is more

complicated. It requires proper treatment of the data you have, from

the purposes of using a dataset to the preparation of the raw data for it

to be actually usable.

Splitting Your Data: Training, Testing, and Validation Datasets in

Machine Learning

Usually, a dataset is used not only for training purposes. A single

training set that has already been processed is usually split into several

types of datasets in machine learning, which is needed to check how

well the training of the model went. For this purpose, a testing dataset

is typically separated from the data. Next, a validation dataset, while

not strictly crucial, is quite helpful to avoid training your algorithm on

the same type of data and making biased predictions.

Splitting of a dataset into training, testing, and validation datasets

If you want to know more about how to split a dataset, we’ve covered

this topic in detail in our article on training data.

Features of the Data: How to Build Yourself a Proper
Dataset for a Machine Learning Project?

Raw data is a good place to start, but you obviously cannot just shove

it into a machine learning algorithm and hope it offers you valuable

insights into your customers’ behaviors. There are quite a few steps

you need to take before your dataset becomes usable.

https://labelyourdata.com/articles/machine-learning-and-training-data/#splitting_your_data_set_training_data_vs_testing_data_in_machine_learning

Three steps of data processing in machine learning

1. Collect. The first thing to do when you’re looking for a dataset is

deciding on the sources you’ll be using for data collection in ML.

Usually, there are three types of sources you can choose from:

the freely available open-source datasets, the Internet, and the

generators of artificial data. Each of these sources has its pros

and cons and should be used for specific cases. We’ll talk about

this step in more detail in the next section of this article.

2. Preprocess. There’s a principle in data science that every

experienced professional adheres to. Start by answering this

question: has the dataset you’re using been used before? If not,

assume this dataset is flawed. If yes, there’s still a high

probability you’ll need to re-appropriate the set to fit your

specific goals. After covering the sources, we’ll talk more about

the features that constitute a proper dataset (you can click here

to skip to that section now).

https://labelyourdata.com/articles/data-collection-methods-AI

3. Annotate. After you’ve ensured your data is clean and relevant,

you also need to make sure it’s understandable for a computer to

process. Machines do not understand the data the same way as

humans do (they aren’t able to assign the same meaning to the

images or words as we). This step is where a lot of businesses

often decide to outsource the task to experienced data tagging

services, since keeping a trained annotation professional is not

always viable. We have a great article on building an in-house

labeling team vs. outsourcing this task to help you understand

which way is the best for you.

Quest for a Dataset in Machine Learning: Where to Find It and What

Sources Fit Your Case Best?

The three sources of the dataset collection

https://labelyourdata.com/services/additional-data-services/data-tagging-services
https://labelyourdata.com/services/additional-data-services/data-tagging-services
https://labelyourdata.com/articles/in-house-vs-outsourced-data-labeling-pros-cons-best-options/
https://labelyourdata.com/articles/in-house-vs-outsourced-data-labeling-pros-cons-best-options/

The sources for collecting an AI/ML dataset vary and strongly depend

on your project, budget, and size of your business. The best option is

to get help from professional data collection services that directly

correlate with your business goals. However, while this way you have

the most control over the data that you collect, it may prove

complicated and demanding in terms of financial, time, and human

resources.

Other ways like automatically generated datasets require significant

computational powers and are not suitable for any project. For the

purposes of this article, we’d like to specifically distinguish the free,

ready-to-use datasets for machine learning. There are large,

comprehensive repositories of public datasets that can be freely

downloaded and used for the training of your machine learning

algorithm.

The obvious advantage of free datasets is that they’re, well, free. On

the other hand, you’ll most likely need to tune any of such

downloadable datasets to fit your project, since they were built for

other purposes initially and won’t fit precisely into your custom-built

ML model. Still, this is an option of choice for many startups, as well

as small and medium-sized businesses, since it requires fewer

resources to collect a proper dataset.

https://labelyourdata.com/articles/machine-learning-datasets-feature-overview
https://labelyourdata.com/services/additional-data-services/data-collection-services
https://archive.ics.uci.edu/ml/datasets.php

The Features of a Proper, High-Quality Dataset in Machine Learning

A good dataset combines high quality with sufficient quantity

However, before you decide on what sources to use while collecting a

dataset for your ML model, consider the following features of a good

dataset.

Quality of a Dataset: Relevance and Coverage

High data quality is the essential thing to take into consideration when

you collect a dataset for a machine learning project. But what does this

mean in practice? First, the data pieces should be relevant to your

goal. If you are designing an ML algorithm for an autonomous vehicle,

you will have no need even for the best of datasets that consist of

celebrity photos.

https://labelyourdata.com/articles/data-quality-management
https://labelyourdata.com/articles/data-annotation-for-autonomous-driving

Furthermore, it’s important to ensure the pieces of data are of

sufficient quality. While there are ways of cleaning the data and

making it uniform and manageable before annotation and training

processes, it’s best to have the data correspond to a list of required

features. For example, when building a facial recognition model, you

will need the training photos to be of good enough quality.

In addition, even for relevant and high-quality datasets, there is a

problem of blind spots and biases that any data can be subject to. An

imbalanced dataset in ML poses the dangers of throwing off the

prediction results of your carefully built ML model. Let’s say you’re

planning to build a text classification model to arrange a database of

texts by topic. But if you only use NLP datasets that don’t cover

enough topics, your model will likely fail to recognize the rarer ones.

Tip: try to use live data and expert text annotation services. Fake

data might seem like a good idea when you’re building your model (it

is cheaper, cleaner, and is available in large volumes). But if you try to

cut costs by using a fake dataset, you might end up with a weirdly

trained algorithm. Fake data might turn out to be too predictable or

not predictable enough. Either way, it’s not a great start for your AI

project.

Sufficient Quantity of a Dataset in Machine Learning

Not only quality but quantity matters, too. It’s important to have

enough data to train your algorithm properly. There’s also a possibility

https://labelyourdata.com/articles/bias-in-machine-learning
https://labelyourdata.com/services/nlp-services/text-annotation-services

of overtraining an algorithm (known as overfitting), but it’s more

likely you won’t get enough high-quality data.

There’s no perfect recipe for how much data you need. It’s always a

good idea to get advice from a data scientist. Professionals with

extensive experience usually can roughly estimate the volume of the

dataset you’ll need for a specific AI project.

Alas, it is not sufficient to collect your dataset and make sure it

corresponds to all the features we’ve listed above. There is one more

step you need to take before starting the training of your ML model:

analysis of the dataset.

There are cases that range from hilarious to horrifying about how

strongly an ML algorithm depends on the exhaustive analysis of its

dataset. One of such cases told by Martin Goodson, a guru of data

science, shows the story of a hospital that decided to cut treatment

costs for pneumonia patients. The highly accurate neural network that

was built based on the clinic data could determine the patients with a

low risk of developing complications. These patients could just take

antibiotics at home without the need to visit the hospital.

However, when the model was considered for practical use, it was

found that it sent all patients with asthma home even though these

patients were actually at high risk of developing fatal complications.

https://labelyourdata.com/articles/lifecycle-of-an-ai-project-stages-breakdown/#mdash_training
https://www.martingoodson.com/ten-ways-your-data-project-is-going-to-fail/

The problem was that human doctors knew this and always sent such

patients to intensive care. For this reason, the historic dataset of the

hospital had no recorded deaths for asthmatics with pneumonia,

which resulted in the algorithm deciding asthma was not an

aggravating condition. If employed in a practical setting, the algorithm

would potentially result in human deaths, even though the dataset was

relevant, comprehensive, and of high quality.

This case demonstrates that machines still cannot do the analytic work

of humans and are merely tools that require supervision and control.

When your dataset is collected, cleansed, annotated, and seems ready,

analyze it before deploying the data as a training tool for your model.

Collecting different types of datasets in machine learning might seem

like an easy task that can be done in the background while you pour

most of your time and resources into building the machine learning

model. However, as practice shows, time and time again, dealing with

data might take most of your time due to the sheer scale that this task

might grow to. For this reason, it’s important to understand what a

dataset in machine learning is, how to collect the data, and what

features a proper dataset has.

A machine learning dataset is, quite simply, a collection of data pieces

that can be treated by a computer as a single unit for analytic and

prediction purposes. This means that the data collected should be

made uniform and understandable for a machine that doesn’t see data

the same way as humans do. For this, after collecting the data, it’s

important to preprocess it by cleaning and completing it, as well as

annotate the data by adding meaningful tags readable by a computer.

Moreover, a good dataset should correspond to certain quality and

quantity standards. For smooth and fast training, you should make

sure your dataset is relevant and well-balanced. Try to use live data

whenever possible and consult with experienced professionals about

the volume of the data and the source to collect it from.

Following these tips won’t guarantee you collect a perfect dataset for

your ML project. However, it will help you avoid some major pitfalls

on your way to success.

Introduction to Proximity Measures
Proximity-Based Method

Proximity-based methods are an important technique in data mining. They are
employed to find patterns in large databases by scanning documents for certain keywords
and phrases. They are highly prevalent because they do not require expensive hardware or
much storage space, and they scale up efficiently as the size of databases increases.

Advantages of Proximity-Based Methods:
1. Proximity-based methods make use of machine learning techniques, in which

algorithms are trained to respond to certain patterns.
2. Using a random sample of documents, the machine learning algorithm analyzes the

keywords and phrases used in them and makes predictions about the probability that
these words appear together across all documents.

3. Proximity can be calculated by calculating a similarity score between two collections of
training data and then comparing these scores. The algorithm then tries to compute the
maximum similarity score for two distinct sets of training items.

Disadvantages of Proximity-Based Methods:
1. Important words may not be as close in proximity as we expected.
2. Over-segmentation of documents into phrases. To counter these problems, a lexical

chain-based algorithm has been proposed.
Proximity-based methods perform very well for finding sets of documents that contain
certain words based on background knowledge. But performance is limited when the
background knowledge has not been pre-classified into categories.

To find sets of documents containing certain categories, one must assign categorical values
to each document and then run proximity-based methods on these documents as training
data, hoping for accurate representations of the categories.

One way to identify outliers is by calculating their distance from the rest of the data set in is
known as density-based outlier detection.

Types of Proximity-Based Outlier Detection Methods:
 Distance-based outlier detection methods: A distance-based outlier detection

method is a statistical technique. Such methods typically measure distances between
individual data points and the rest of their respective groups. Many approaches also
have a configurable error threshold for determining when a point is an outlier. Many
distance-based outliers methods have been developed. The methods use distance
statistics such as Euclidean, Manhattan, or Mahalanobis distance for calculating
distances between individual points and to detect outliers. The following three outlier
detection methods have been selected based on their performance:

o WLSMV (Weighted Least Squares Minimization) method
o SVM (Support Vector Machines) method,
o RMSProp method.

 Density-based Outlier detection methods: A density-based outlier detection method is
used for checking the density of an entity object and its closest objects. Key
applications of this method are used in many applications including Malware Detection,
Awareness, Behavior Analysis, and Network Intrusion Detection. There are some
limitations to density-based outlier detection methods that are effective until it is
determined that the outliers being detected are not necessarily outliers but just a part of
a much larger distribution of data. A limitation with using density-based outlier

detection methods is that the density function must be defined and clearly understood
before implementation and the proper value set.

Distance Measures
Measures of Distance
Clustering
consists of grouping certain objects that are similar to each other, it can be used to decide if
two items are similar or dissimilar in their properties. In a Data Mining sense, the similarity
measure is a distance with dimensions describing object features. That means if the distance
among two data points is small then there is a high degree of similarity among the objects
and vice versa. The similarity is subjective and depends heavily on the context and
application. For example, similarity among vegetables can be determined from their taste,
size, colour etc. Most clustering approaches use distance measures to assess the similarities or
differences between a pair of objects, the most popular distance measures used are:
1. Euclidean Distance:
Euclidean distance is considered the traditional metric for problems with geometry. It can be
simply explained as the ordinary distance between two points. It is one of the most used
algorithms in the cluster analysis. One of the algorithms that use this formula would be
K-mean. Mathematically it computes the root of squared differences between the
coordinates between two objects.
d(p,q)=d(q,p)=(q1−p1)2+(q2−p2)2+⋯+(qn−pn)2=∑i=1n(qi−pi)2d(p,q)=d(q,p)=(q1−p1
)2+(q2−p2)2+⋯+(qn−pn)2=i=1∑n(qi−pi)2

Figure –
Euclidean Distance
2. Manhattan Distance:
This determines the absolute difference among the pair of the coordinates. Suppose we have
two points P and Q to determine the distance between these points we simply have to
calculate the perpendicular distance of the points from X-Axis and Y-Axis. In a plane with P

at coordinate (x1, y1) and Q at (x2, y2). Manhattan distance between P and Q = |x1 – x2| +
|y1 – y2|

Here the total distance of the Red line gives the Manhattan distance between both the points.
3. Jaccard Index:
The Jaccard distance measures the similarity of the two data set items as the intersection
of those items divided by the union of the data items.
J(A,B)=∣A∩B∣∣A∪B∣=∣A∩B∣∣A∣+∣B∣−∣A∩B∣J(A,B)=∣A∪B∣∣A∩B∣=∣A∣+∣B∣−∣A∩B∣∣A∩B∣

Figure –
Jaccard Index
4. Minkowski distance:
It is the generalized form of the Euclidean and Manhattan Distance Measure. In an
N-dimensional space, a point is represented as,
(x1, x2, ..., xN)
Consider two points P1 and P2:

P1: (X1, X2, ..., XN)
P2: (Y1, Y2, ..., YN)
Then, the Minkowski distance between P1 and P2 is given as:
(x1−y1)p+(x2−y2)p+…+(xN−yN)ppp(x1−y1)p+(x2−y2)p+…+(xN−yN)p
 When p = 2, Minkowski distance is same as the Euclidean distance.
 When p = 1, Minkowski distance is same as the Manhattan distance.
5. Cosine Index:
Cosine distance measure for clustering determines the cosine of the angle between two
vectors given by the following formula.
sim (A,B)=cos (θ)=A⋅B∥A∥B∥sim(A,B)=cos(θ)=∥A∥B∥A⋅B
Here (theta) gives the angle between two vectors and A, B are n-dimensional vectors.

Non-Metric Similarity Functions:

 Definition:
These functions measure similarity or dissimilarity but do not necessarily
satisfy all the axioms of a metric space, particularly the triangle inequality.

 Examples:
 Cosine similarity: Measures the cosine of the angle between two vectors,

focusing on the direction rather than the magnitude.
 Jaccard index: Measures the similarity between two sets by calculating the

ratio of the size of their intersection to the size of their union.
 Squared Euclidean distance: The square of the Euclidean distance, which

is not a metric because it violates the triangle inequality.
 Edit distance: The minimum number of edits (insertions, deletions, or

substitutions) required to transform one string into another.

Cosine Similarity
Cosine similarity is the measure of similarity between two non-zero vectors widely
applied in many machine learning and data analysis applications. It actually
measures the cosine of the angle between two vectors. As a result, an idea is given
about how far the two vectors point in the same direction irrespective of their
magnitudes. It can be found in popular usage in tasks of text analysis, such as
comparison of similarity between documents, search queries, and even
recommendation systems so that user preferences can be matched.

Similarity measure refers to distance with dimensions representing features of the
data object, in a dataset. If this distance is less, there will be a high degree of
similarity, but when the distance is large, there will be a low degree of similarity.
Some of the popular similarity measures are given below:
1. Euclidean Distance
2. Manhattan Distance
3. Jaccard Similarity
4. Minkowski Distance
5. Cosine Similarity

What is Cosine Similarity?
Cosine similarity is a metric, helpful in determining, how similar the data objects
are irrespective of their size. We can measure the similarity between two sentences
in Python using Cosine Similarity. In cosine similarity, data objects in a dataset are
treated as a vector. The formula to find the cosine similarity between two vectors is
–
SCSC(x, y) = x . y / ||x|| ×× ||y||
where,
 x . y = product (dot) of the vectors ‘x’ and ‘y’.
 ||x|| and ||y|| = length (magnitude) of the two vectors ‘x’ and ‘y’.
 ||x|| ×× ||y|| = regular product of the two vectors ‘x’ and ‘y’.
Example
Consider an example to find the similarity between two vectors – ‘x’ and ‘y’, using
Cosine Similarity. The ‘x’ vector has values, x = { 3, 2, 0, 5 } The ‘y’ vector has
values, y = { 1, 0, 0, 0 } The formula for calculating the cosine similarity is : SCSC

(x, y) = x . y / ||x|| ×× ||y||
x . y = 3*1 + 2*0 + 0*0 + 5*0 = 3

||x|| = √ (3)^2 + (2)^2 + (0)^2 + (5)^2 = 6.16

||y|| = √ (1)^2 + (0)^2 + (0)^2 + (0)^2 = 1

∴ SCSC(x, y) = 3 / (6.16 * 1) = 0.49
The dissimilarity between the two vectors ‘x’ and ‘y’ is given by –
∴ DCDC(x, y) = 1 - SCSC(x, y) = 1 - 0.49 = 0.51
 The cosine similarity between two vectors is measured in ‘θ’.
 If θ = 0°, the ‘x’ and ‘y’ vectors overlap, thus proving they are similar.
 If θ = 90°, the ‘x’ and ‘y’ vectors are dissimilar.

Cosine Similarity between two vectors

Advantages
 The cosine similarity is beneficial because even if the two similar data objects

are far apart by the Euclidean distance because of the size, they could still have
a smaller angle between them. Smaller the angle, higher the similarity.

 When plotted on a multi-dimensional space, the cosine similarity captures the
orientation (the angle) of the data objects and not the magnitude.

Disadvantages
 Sensitive to Sparse Data: Cosine similarity may not be effective when applied

to the sparse data wherein many of its components are zero in the vectors. For
that, other similarities would work better.

 Does Not Account for Absolute Differences: Cosine similarity only considers
the angle between vectors and not their magnitude; hence, this may miss out on
differences in magnitude, which, in certain contexts, may well be relevant

 Symmetry: Cosine similarity is symmetric, which simply means that it cannot
differentiate between the order of comparison. For some tasks, this may not be
desirable since directionality may be relevant.

 Not Applicable for Negative Values: Cosine similarity may not generally be
applicable in datasets containing negative values, as misleading results can be
obtained, or the angle between vectors interpretation becomes problematic.

Conclusion
Cosine similarity is also one of the approaches that are widely used as vector
metrics in the field of text analysis and information retrieval. Cosine similarity has
many advantages over the other measures of similarities – it is simple and efficient
and can be treated with high-dimensional data.

How to Calculate Jaccard Similarity in
Python
In Data Science, Similarity measurements between the two sets are a crucial task.
Jaccard Similarity is one of the widely used techniques for similarity
measurements in machine learning, natural language processing and

recommendation systems. This article explains what Jaccard similarity is, why it is
important, and how to compute it with Python.

What is Jaccard Similarity?
Jaccard Similarity also known as Jaccard index, is a statistic to measure the
similarity between two data sets. It is measured as the size of the intersection of
two sets divided by the size of their union.
For example: Given two sets A and B, their Jaccard Similarity is provided by,

Jaccard Similarity

Where:
 is the cardinality (size) of the intersection of sets A and B.
 is the cardinality (size) of the union of sets A and B.
Jaccard Similarity is also known as the Jaccard index or Jaccard coefficient, its
values lie between 0 and 1. where 0 means no similarity and the values get closer
to 1 means increasing similarity 1 means the same datasets.

Euclidean Distance
Euclidean Distance is defined as the distance between two points in Euclidean
space. To find the distance between two points, the length of the line segment that
connects the two points should be measured.
In this article, we will explore what is Euclidean distance, the Euclidean
distance formula, its Euclidean distance formula derivation, Euclidean
distance examples, etc.

What is Euclidean Distance?
Euclidean distance is a measure of the straight-line distance between two points
in Euclidean space. It is the most common and familiar distance metric, often
referred to as the "ordinary" distance.
Euclidean Distance gives the distance between any two points in an n-
dimensional plane. Euclidean distance between two points in the Euclidean space
is defined as the length of the line segment joining the two points.
Euclidean distance is like measuring the straightest and shortest path between
two points. Imagine you have a string and you stretch it tight between two points
on a map; the length of that string is the Euclidean distance. It tells you how far

apart the two points are without any turns or bends, just like a bird would fly
directly from one spot to another. This metric is based on the Pythagorean
theorem and is widely utilized in various fields such as machine learning, data
analysis, computer vision, and more.
Table of Content
 What is Euclidean Distance?
 Euclidean Distance Formula

o Euclidean Distance in 3D
o Euclidean Distance in nD

 Euclidean Distance Formula Derivation
 Euclidean Distance and Manhattan Distance
 Solved Questions on Euclidean Distance
 Practice Problems on Euclidean Distance

Euclidean Distance Formula
Consider two points (x1, y1) and (x2, y2) in a 2-dimensional space; the Euclidean
Distance between them is given by using the formula:

d = √[(x2 - x1)2 + (y2 - y1)2]
Where,
 d is Euclidean Distance
 (x1, y1) is Coordinate of the first point
 (x2, y2) is Coordinate of the second point
Euclidean Distance in 3D
If the two points (x1, y1, z1) and (x2, y2, z2) are in a 3-dimensional space, the
Euclidean Distance between them is given by using the formula:

d = √[(x2 - x1)2 + (y2 - y1)2+ (z2 - z1)2]
where,
 d is Euclidean Distance
 (x1, y1, z1) is Coordinate of the first point
 (x2, y2, z2) is Coordinate of the second point
Euclidean Distance in nD
In general, the Euclidean Distance formula between two points (x11, x12, x13,,
x1n) and (x21, x22, x23,, x2n) in an n-dimensional space is given by the formula:

d = √[∑(x2i – x1i)2]
Where,
 i Ranges from 1 to n
 d is Euclidean distance
 (x11, x12, x13,, x1n) is Coordinate of First Point
 (x21, x22, x23,, x2n) is Coordinate of Second Point

Euclidean Distance Formula Derivation
Euclidean Distance Formula is derived by following the steps added below:
Step 1: Let us consider two points, A (x1, y1) and B (x2, y2), and d is the distance
between the two points.

Step 2: Join the points using a straight line (AB).
Step 3: Now, let us construct a right-angled triangle whose hypotenuse is AB, as
shown in the figure below.

Step4: Now, using Pythagoras theorem we know that,

(Hypotenuse)2 = (Base)2 + (Perpendicular)2
⇒ d2 = (x2 – x1)2 + (y2 – y1)2
Now, take the square root on both sides of the equation, we get

d = √(x2 – x1)2 + (y2 – y1)2

Proximity Between Binary Patterns
Proximity measures for binary attributes

Here’s the sequence of steps to calculate proximity measures for binary
attributes:

Step 1: Data representation

Suppose we have a table with the students’ names corresponding to their
end-semester results, showing whether they’ve passed or failed the specific
courses. We want to see similarities or dissimilarities among students. Pass
is represented by P, and the fail is represented by F.

Tabular Data
Student Name English Mathematics Physics Databases Chemistry Biology

John P P F P F P
David P P P F F P
Robert F P F P P F

Lisa P F P F P F
William F F F P F F

Step 2: Binary representation of data

Now, the next step is to convert the data into binary format. Since we have
two attributes: pass and fail. Our example represents pass (P) as 1 and fail
(F) as 0. The updated table looks like this:

Binary Data
Student Name English Mathematics Physics Databases Chemistry Biology

John 1 1 0 1 0 1
David 1 1 1 0 0 1
Robert 0 1 0 1 1 0

Lisa 1 0 1 0 1 0
William 0 0 0 1 0 0

Step 3: Proximity measure selection

We first have to see if our data is symmetric: attributes that treat 0s and 1s
equally, e.g., In our case, gender is a symmetric attribute because there’s no
inherent preference or value associated with one gender over the other;
both male and female are treated equally in the dataset. Conversely,
asymmetric attributes, where 0s and 1s hold different meanings, e.g.,
subjects and pass/fail outcomes, are asymmetric because ‘fail’ (0) often
holds greater significance than ‘pass’ (1) in contexts like academic grading.
We employ two distinct formulas for proximity measures for these
attributes.

Symmetric attributes

For symmetric attributes, we have two objects (students in our case) and
want to check the dissimilarity between their results. Let the two students
be student mm and student nn. We have the formula:
d(m,n)=b+ca+b+c+e.d(m,n)=a+b+c+eb+c.

where
a→{m:1,n:1}.a→{m:1,n:1}.

The value of aa equals the number of all the courses the
students mm and nn both have passed.
b→{m:1,n:0}b→{m:1,n:0}

The value of bb equals the number of all the courses where the
student mm has passed and nn has failed.
c→{m:0,n:1}c→{m:0,n:1}

The value of cc equals the number of all the courses where the
student mm has failed, and nn has passed.
e→{m:0,n:0}e→{m:0,n:0}

The value of ee equals the number of all the courses where the
students mm and nn both have failed.

Asymmetric attributes

Suppose we have student mm and student nn for asymmetric attributes.
Then the formula is:
d(m,n)=b+ca+b+c.d(m,n)=a+b+cb+c.

Step 4: Dissimilarity calculation

As in our case, we only have asymmetric attributes, so we’ll use that
formula.

Let’s calculate the dissimilarity for the pair, John and David.
 aa = 3 as both have passed English, Mathematics, and Biology

courses.
 bb = 1 as John has passed the Databases course, and David has failed

that.
 cc = 1 as John failed the Physics course, and David passed that.
 ee = 1 as both have failed in the Chemistry course.

So the dissimilarity is:
d(m,n)=1+13+1+1=25=0.4d(m,n)=3+1+11+1=52=0.4

Let’s calculate the dissimilarity for the pair, Robert and William.
 aa = 1 as both have passed the Databases course.
 bb = 2 as Robert has passed the Chemistry and Mathematics courses,

and William has failed those.
 cc = 0 (we have no such case here).
 ee = 3 as both have failed in the English, Physics, and Biology

courses.

So the dissimilarity is:
d(m,n)=2+01+2+0=23=0.667d(m,n)=1+2+02+0=32=0.667

Similarly, after calculating the dissimilarity between the rest of the pairs, we
get the following table:

Pair Dissimilarity
John, David 0.4
John, Robert 0.6

John, Lisa 0.83
John, William 0.75
David, Robert 0.83

David, Lisa 0.6

David, William 1.0
Robert, Lisa 0.8

Robert, William 0.67
Lisa, William 1.0

Most dissimilar pairs (highest dissimilarity scores)
 David and William (dissimilarity score: 1.0)
 Lisa and William (dissimilarity score: 1.0)

Moderately dissimilar pairs
 John and Lisa (dissimilarity score: 0.83)
 David and Robert (dissimilarity score: 0.83)
 Robert and Lisa (dissimilarity score: 0.8)
 John and William (dissimilarity score: 0.75)

Moderately similar pairs
 David and Lisa (dissimilarity score: 0.6)
 Robert and William (dissimilarity score: 0.67)
 John and Robert (dissimilarity score: 0.6)

Most similar pairs (lowest dissimilarity score)
 John and David (dissimilarity score: 0.4)

Let’s quickly test your understanding of proximity measures for binary
attributes.

Different Classification Algorithms Based on
the Distance Measures
Several classification algorithms rely on distance measures to determine
the similarity or dissimilarity between data points, aiding in the classification
process. These include K-Nearest Neighbors (KNN), which classifies data
based on the nearest neighbors, and Support Vector Machines (SVMs),
which aim to maximize the distance between classes. Other algorithms like
Naive Bayes also use distance metrics to find the closest feature.

Here's a more detailed look:

1. K-Nearest Neighbors (KNN):

 KNN is a simple algorithm that classifies new data based on its proximity to existing data

points in a training set.

 It calculates the distance between a new data point and all existing data points and selects

the k nearest neighbors.

 The new data point is then classified based on the majority class among its k nearest

neighbors.

 Common distance metrics used in KNN include Euclidean distance, Manhattan distance,

and Minkowski distance.

2. Support Vector Machines (SVMs):

 SVMs aim to find an optimal hyperplane that separates data points into different classes,

maximizing the margin between them.

 The distance between the hyperplane and the nearest data points (support vectors) is crucial

in SVM classification.

 SVMs can be used for both linear and non-linear classification problems.

3. Naive Bayes:

 Naive Bayes is a probabilistic classifier that uses Bayes' theorem to classify data.

 It relies on the assumption that the features are independent of each other.

 Distance metrics, like Euclidean distance or cosine similarity, can be used to find the closest

feature when calculating probabilities.

4. Other Distance-Based Algorithms:

 K-means clustering:

This algorithm is used for unsupervised learning, where it groups data points into clusters

based on their proximity to cluster centroids.

 Decision trees:

While not solely relying on distance, decision trees can use distance metrics to split data

based on features, contributing to the classification process.

 Random Forest:
This ensemble method combines multiple decision trees, and each tree can use distance

metrics for splitting data, according to a resource on Towards Data Science.

Common Distance Metrics:

 Euclidean distance: Calculates the straight-line distance between two points.

 Manhattan distance: Calculates the distance between two points by summing the absolute

differences of their coordinates.

 Minkowski distance: A generalization of Euclidean and Manhattan distances.

 Cosine similarity: Measures the similarity between two vectors by calculating the cosine of

the angle between them.

 Hamming distance: Measures the dissimilarity between two binary strings by counting the

number of positions where they differ.

K-Nearest Neighbor(KNN)

K-Nearest Neighbors (KNN) is a simple way to classify things by looking at
what’s nearby. Imagine a streaming service wants to predict if a new user is
likely to cancel their subscription (churn) based on their age. They checks the
ages of its existing users and whether they churned or stayed. If most of the “K”
closest users in age of new user canceled their subscription KNN will predict the
new user might churn too. The key idea is that users with similar ages tend to
have similar behaviors and KNN uses this closeness to make decisions.
Getting Started with K-Nearest Neighbors
K-Nearest Neighbors is also called as a lazy learner algorithm because it does not
learn from the training set immediately instead it stores the dataset and at the time
of classification it performs an action on the dataset.
As an example, consider the following table of data points containing two features:

KNN Algorithm working visualization

The new point is classified as Category 2 because most of its closest neighbors are
blue squares. KNN assigns the category based on the majority of nearby points.
The image shows how KNN predicts the category of a new data point based on its
closest neighbours.
 The red diamonds represent Category 1 and the blue

squares represent Category 2.
 The new data point checks its closest neighbours (circled points).
 Since the majority of its closest neighbours are blue squares (Category 2) KNN

predicts the new data point belongs to Category 2.
KNN works by using proximity and majority voting to make predictions.
What is ‘K’ in K Nearest Neighbour ?
In the k-Nearest Neighbours (k-NN) algorithm k is just a number that tells the
algorithm how many nearby points (neighbours) to look at when it makes a
decision.

Example:
Imagine you’re deciding which fruit it is based on its shape and size. You compare
it to fruits you already know.
 If k = 3, the algorithm looks at the 3 closest fruits to the new one.
 If 2 of those 3 fruits are apples and 1 is a banana, the algorithm says the new

fruit is an apple because most of its neighbours are apples.
How to choose the value of k for KNN Algorithm?
The value of k is critical in KNN as it determines the number of neighbors to
consider when making predictions. Selecting the optimal value of k depends on the
characteristics of the input data. If the dataset has significant outliers or noise a
higher k can help smooth out the predictions and reduce the influence of noisy
data. However choosing very high value can lead to underfitting where the
model becomes too simplistic.
Statistical Methods for Selecting k:
 Cross-Validation: A robust method for selecting the best k is to perform k-

fold cross-validation. This involves splitting the data into k subsets training the
model on some subsets and testing it on the remaining ones and repeating this
for each subset. The value of k that results in the highest average validation
accuracy is usually the best choice.

 Elbow Method: In the elbow method we plot the model’s error rate or
accuracy for different values of k. As we increase k the error usually decreases
initially. However after a certain point the error rate starts to decrease more
slowly. This point where the curve forms an “elbow” that point is considered as
best k.

 Odd Values for k: It’s also recommended to choose an odd value for k
especially in classification tasks to avoid ties when deciding the majority class.

Distance Metrics Used in KNN Algorithm
KNN uses distance metrics to identify nearest neighbour, these neighbours are
used for classification and regression task. To identify nearest neighbour we use
below distance metrics:
1. Euclidean Distance
Euclidean distance is defined as the straight-line distance between two points in a
plane or space. You can think of it like the shortest path you would walk if you
were to go directly from one point to another.
distance(x,Xi)=∑j=1d(xj–Xij)2]distance(x,Xi)=∑j=1d(xj–Xij)2]
2. Manhattan Distance
This is the total distance you would travel if you could only move along horizontal
and vertical lines (like a grid or city streets). It’s also called “taxicab distance”
because a taxi can only drive along the grid-like streets of a city.

d(x,y)=∑i=1n∣xi−yi∣d(x,y)=∑i=1n∣xi−yi∣
3. Minkowski Distance
Minkowski distance is like a family of distances, which includes
both Euclidean and Manhattan distances as special cases.

d(x,y)=(∑i=1n(xi−yi)p)1pd(x,y)=(∑i=1n(xi−yi)p)p1

From the formula above we can say that when p = 2 then it is the same as the
formula for the Euclidean distance and when p = 1 then we obtain the formula for
the Manhattan distance.
So, you can think of Minkowski as a flexible distance formula that can look like
either Manhattan or Euclidean distance depending on the value of p
Working of KNN algorithm
Thе K-Nearest Neighbors (KNN) algorithm operates on the principle of similarity
where it predicts the label or value of a new data point by considering the labels or
values of its K nearest neighbors in the training dataset.

Step-by-Step explanation of how KNN works is discussed below:
Step 1: Selecting the optimal value of K
 K represents the number of nearest neighbors that needs to be considered while

making prediction.
Step 2: Calculating distance
 To measure the similarity between target and training data points Euclidean

distance is used. Distance is calculated between data points in the dataset and
target point.

Step 3: Finding Nearest Neighbors
 The k data points with the smallest distances to the target point are nearest

neighbors.
Step 4: Voting for Classification or Taking Average for Regression
 When you want to classify a data point into a category (like spam or not spam),

the K-NN algorithm looks at the K closest points in the dataset. These closest
points are called neighbors. The algorithm then looks at which category the
neighbors belong to and picks the one that appears the most. This is
called majority voting.

 In regression, the algorithm still looks for the K closest points. But instead of
voting for a class in classification, it takes the average of the values of those K
neighbors. This average is the predicted value for the new point for the
algorithm.

Working of KNN Algorithm

It shows how a test point is classified based on its nearest neighbors. As the test
point moves the algorithm identifies the closest ‘k’ data points i.e 5 in this case and
assigns test point the majority class label that is grey label class here.
Applications of the KNN Algorithm
Here are some real life applications of KNN Algorithm.
 Recommendation Systems: Many recommendation systems, such as those

used by Netflix or Amazon, rely on KNN to suggest products or content. KNN
observes at user behavior and finds similar users. If user A and user B have
similar preferences, KNN might recommend movies that user A liked to user B.

 Spam Detection: KNN is widely used in filtering spam emails. By comparing
the features of a new email with those of previously labeled spam and non-
spam emails, KNN can predict whether a new email is spam or not.

 Customer Segmentation: In marketing firms, KNN is used to segment
customers based on their purchasing behavior . By comparing new customers to
existing customers, KNN can easily group customers into segments with similar
choices and preferences. This helps businesses target the right customers with
right products or advertisements.

 Speech Recognition: KNN is often used in speech recognition systems to
transcribe spoken words into text. The algorithm compares the features of the
spoken input with those of known speech patterns. It then predicts the most
likely word or command based on the closest matches.

Advantages and Disadvantages of the KNN Algorithm
Advantages:
 Easy to implement: The KNN algorithm is easy to implement because its

complexity is relatively low as compared to other machine learning algorithms.
 No training required: KNN stores all data in memory and doesn’t require any

training so when new data points are added it automatically adjusts and uses the
new data for future predictions.

 Few Hyperparameters: The only parameters which are required in the training
of a KNN algorithm are the value of k and the choice of the distance metric
which we would like to choose from our evaluation metric.

 Flexible: It works for Classification problem like is this email spam or
not? and also work for Regression task like predicting house prices based on
nearby similar houses.

Disadvantages:
 Doesn’t scale well: KNN is considered as a “lazy” algorithm as it is very slow

especially with large datasets
 Curse of Dimensionality: When the number of features increases KNN

struggles to classify data accurately a problem known as curse of
dimensionality.

 Prone to Overfitting: As the algorithm is affected due to the curse of
dimensionality it is prone to the problem of overfitting as well

r-Nearest neighbors
r-Nearest neighbors are a modified version of the k-nearest neighbors. The issue
with k-nearest neighbors is the choice of k. With a smaller k, the classifier would
be more sensitive to outliers. If the value of k is large, then the classifier would be
including many points from other classes. It is from this logic that we get the r near
neighbors algorithm.
Intuition:
Consider the following data, as the training set.

The green color points belong to class 0 and the red color points belong to class 1.
Consider the white point P as the query point whose

If we take the radius of the circle as 2.2 units and if a circle is drawn using the
point P as the center of the circle, the plot would be as follows

As the number of points in the circle belonging to class 1 (5 points) is greater than
the number of points belonging to class 0 (2 points)

Algorithm:
Step 1: Given the point P, determine the sub-set of data that lies in the ball of
radius r centered at P,

Br (P) = { Xi ∊ X | dist(P, Xi) ≤ r }

Step 2: If Br (P) is empty, then output the majority class of the entire data set.
Step 3: If Br (P) is not empty, output the majority class of the data points in it.

K-Nearest Neighbors (KNN) Regression with
Scikit-Learn

K-Nearest Neighbors (KNN) is one of the simplest and most intuitive
machine learning algorithms. While it is commonly associated with
classification tasks, KNN can also be used for regression.
This article will delve into the fundamentals of KNN regression, how
it works, and how to implement it using Scikit-Learn, a popular
machine learning library in Python.
What is KNN Regression?
KNN regression is a non-parametric method used for predicting
continuous values. The core idea is to predict the target value for a new
data point by averaging the target values of the K nearest neighbors in the
feature space. The distance between data points is typically measured
using Euclidean distance, although other distance metrics can be used.
How KNN Regression Works
1. Choosing the number of neighbors (K): The initial step involves

selecting the number of neighbors, K. This choice greatly affects the
model's performance. A smaller value of K makes the model more
prone to noise, whereas a larger value of K results in smoother
predictions.

2. Calculating distances: For a new data point, calculate the distance
between this point and all points in the training set.

3. Finding K nearest neighbors: Identify the K points in the training set
that are closest to the new data point.

4. Predicting the target value: Compute the average of the target values
of the K nearest neighbors and use this as the predicted value for the
new data point.

Implementing KNN Regression with Scikit-Learn using Synthetic
Dataset
Let's go through a practical example of implementing KNN regression
using Scikit-Learn. We will use a synthetic dataset for demonstration
purposes.
Step 1: Import Libraries
In this step, we import the necessary libraries for generating the dataset,
splitting the data, training the KNN model, evaluating the model, and
visualizing the results.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error, r2_score
Step 2: Generate Synthetic Dataset
Here, we generate a synthetic dataset using Scikit-
Learn's make_regression function. This function creates a regression
problem with a specified number of samples, features, and noise level.

Generate synthetic dataset
X, y = make_regression(n_samples=200, n_features=1, noise=0.1,
random_state=42)
Step 3: Split the Dataset
We split the dataset into training and testing sets using
the train_test_split function. This step ensures that we have separate
data for training the model and evaluating its performance.
Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
Step 4: Create and Train the KNN Regressor
In this step, we create an instance of the KNeighborsRegressor with a
specified number of neighbors (K=5). We then train the model using the
training data.
Create and train the KNN regressor
knn_regressor = KNeighborsRegressor(n_neighbors=5)
knn_regressor.fit(X_train, y_train)
Step 5: Make Predictions
We use the trained KNN regressor to make predictions on the test data.
Make predictions on the test data
y_pred = knn_regressor.predict(X_test)
Step 6: Evaluate the Model
Here, we evaluate the model's performance using the Mean Squared
Error (MSE) and R-squared (R²) metrics. These metrics help us
understand how well the model is performing.
Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')
Step 7: Visualize the Results
Finally, we visualize the actual and predicted values using a scatter plot.
This step helps us visually assess the model's performance.
Visualize the results
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.scatter(X_test, y_pred, color='red', label='Predicted')
plt.title('KNN Regression')
plt.xlabel('Feature')
plt.ylabel('Target')
plt.legend()
plt.show()
Complete Code
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error, r2_score

Generate synthetic dataset
X, y = make_regression(n_samples=200, n_features=1, noise=0.1,
random_state=42)

Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

Create and train the KNN regressor
knn_regressor = KNeighborsRegressor(n_neighbors=5)
knn_regressor.fit(X_train, y_train)

Make predictions on the test data
y_pred = knn_regressor.predict(X_test)

Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

Visualize the results
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.scatter(X_test, y_pred, color='red', label='Predicted')
plt.title('KNN Regression')
plt.xlabel('Feature')
plt.ylabel('Target')
plt.legend()
plt.show()
Output:
Mean Squared Error: 133.62045142000457
R-squared: 0.9817384115764595

KNN Regression

Implementing KNN Regression with Scikit-Learn using Diabetes
Dataset
Let's use the diabetes dataset to perform KNN regression using the
following steps:
Step 1: Import Libraries
In this step, we import the necessary libraries for loading the dataset,
splitting the data, training the KNN model, evaluating the model, and
visualizing the results.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
Step 2: Load the Dataset
Here, we load the Diabetes dataset using Scikit-
Learn's load_diabetes function. This dataset includes ten baseline
variables and a target variable representing the disease progression.
Load the Diabetes dataset
diabetes = load_diabetes()
X = diabetes.data
y = diabetes.target

Print dataset description
print(diabetes.DESCR)
Step 3: Split the Dataset

We split the dataset into training and testing sets using
the train_test_split function. This step ensures that we have separate
data for training the model and evaluating its performance.
Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
Step 4: Standardize the Features
In this step, we standardize the features using StandardScaler.
Standardization ensures that each feature has a mean of 0 and a
standard deviation of 1, which helps improve the performance of the KNN
algorithm.
Standardize the features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
Step 5: Create and Train the KNN Regressor
We create an instance of the KNeighborsRegressor with a specified
number of neighbors (K=5) and train the model using the training data.
Create and train the KNN regressor
knn_regressor = KNeighborsRegressor(n_neighbors=5)
knn_regressor.fit(X_train, y_train)
Step 6: Make Predictions
We use the trained KNN regressor to make predictions on the test data.
Make predictions on the test data
y_pred = knn_regressor.predict(X_test)
Step 7: Evaluate the Model
Here, we evaluate the model's performance using the Mean Squared
Error (MSE) and R-squared (R²) metrics. These metrics help us
understand how well the model is performing.
Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')
Step 8: Visualize the Results
Finally, we visualize the actual and predicted values using a scatter plot.
This step helps us visually assess the model's performance.
Visualize the results
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, color='blue', label='Predicted vs
Actual')
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)],
color='red', linewidth=2, label='Ideal fit')
plt.title('KNN Regression: Predicted vs Actual')
plt.xlabel('Actual Disease Progression')

plt.ylabel('Predicted Disease Progression')
plt.legend()
plt.show()
Complete Code
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler

Load the Diabetes dataset
diabetes = load_diabetes()
X = diabetes.data
y = diabetes.target

Print dataset description
print(diabetes.DESCR)

Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

Standardize the features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Create and train the KNN regressor
knn_regressor = KNeighborsRegressor(n_neighbors=5)
knn_regressor.fit(X_train, y_train)

Make predictions on the test data
y_pred = knn_regressor.predict(X_test)

Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

Visualize the results
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, color='blue', label='Predicted vs Actual')
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red',
linewidth=2, label='Ideal fit')
plt.title('KNN Regression: Predicted vs Actual')
plt.xlabel('Actual Disease Progression')
plt.ylabel('Predicted Disease Progression')

plt.legend()
plt.show()
Output:
Mean Squared Error: 3047.449887640449
R-squared: 0.42480887066066253

Regression in machine learning
Regression in machine learning refers to a supervised learning technique where
the goal is to predict a continuous numerical value based on one or more
independent features. It finds relationships between variables so that predictions
can be made. we have two types of variables present in regression:
 Dependent Variable (Target): The variable we are trying to predict e.g house

price.
 Independent Variables (Features): The input variables that influence the

prediction e.g locality, number of rooms.
Regression analysis problem works with if output variable is a real or
continuous value such as “salary” or “weight”. Many different regression
models can be used but the simplest model in them is linear regression.
Types of Regression
Regression can be classified into different types based on the number of
predictor variables and the nature of the relationship between variables:
1. Simple Linear Regression
Linear regression is one of the simplest and most widely used statistical models.
This assumes that there is a linear relationship between the independent and
dependent variables. This means that the change in the dependent variable is
proportional to the change in the independent variables. For example predicting
the price of a house based on its size.
2. Multiple Linear Regression

Multiple linear regression extends simple linear regression by using multiple
independent variables to predict target variable. For example predicting the
price of a house based on multiple features such as size, location, number of
rooms, etc.
3. Polynomial Regression
Polynomial regression is used to model with non-linear relationships between
the dependent variable and the independent variables. It adds polynomial terms
to the linear regression model to capture more complex relationships. For
example when we want to predict a non-linear trend like population growth over
time we use polynomial regression.
4. Ridge & Lasso Regression
Ridge & lasso regression are regularized versions of linear regression that help
avoid overfitting by penalizing large coefficients. When there’s a risk of
overfitting due to too many features we use these type of regression algorithms.
5. Support Vector Regression (SVR)
SVR is a type of regression algorithm that is based on the Support Vector
Machine (SVM) algorithm. SVM is a type of algorithm that is used for
classification tasks but it can also be used for regression tasks. SVR works by
finding a hyperplane that minimizes the sum of the squared residuals between
the predicted and actual values.
6. Decision Tree Regression
Decision tree Uses a tree-like structure to make decisions where each branch of
tree represents a decision and leaves represent outcomes. For example
predicting customer behavior based on features like age, income, etc there we
use decison tree regression.
7. Random Forest Regression
Random Forest is a ensemble method that builds multiple decision trees and
each tree is trained on a different subset of the training data. The final prediction
is made by averaging the predictions of all of the trees. For example customer
churn or sales data using this.
Regression Evaluation Metrics
Evaluation in machine learning measures the performance of a model. Here are
some popular evaluation metrics for regression:
 Mean Absolute Error (MAE): The average absolute difference between the

predicted and actual values of the target variable.
 Mean Squared Error (MSE): The average squared difference between the

predicted and actual values of the target variable.
 Root Mean Squared Error (RMSE): Square root of the mean squared error.
 Huber Loss: A hybrid loss function that transitions from MAE to MSE for

larger errors, providing balance between robustness and MSE’s sensitivity to
outliers.

 R2 – Score: Higher values indicate better fit ranging from 0 to 1.

Regression Model Machine Learning
Let's take an example of linear regression. We have a Housing data set and we
want to predict the price of the house. Following is the python code for it

1

import matplotlib
2

matplotlib.use('TkAgg') # General backend for plots
3

 import matplotlib.pyplot as plt
5

import numpy as np
6

from sklearn import datasets, linear_model
7

import pandas as pd
8

 # Load dataset
10

df = pd.read_csv("Housing.csv")
11

Extract features and target variable
13

Y = df['price']
14

X = df['lotsize']
15

Reshape for compatibility with scikit-learn
17

X = X.to_numpy().reshape(len(X), 1)
18

Y = Y.to_numpy().reshape(len(Y), 1)
19

Split data into training and testing sets
21

X_train = X[:-250]
22

X_test = X[-250:]
23

Y_train = Y[:-250]
24

Y_test = Y[-250:]
25

26

Plot the test data
27

plt.scatter(X_test, Y_test, color='black')
28

plt.title('Test Data')
29

plt.xlabel('Size')
30

plt.ylabel('Price')
31

plt.xticks(())
32

plt.yticks(())
33

Train linear regression model
35

regr = linear_model.LinearRegression()
36

regr.fit(X_train, Y_train)
37

Plot predictions
39

plt.plot(X_test, regr.predict(X_test), color='red', linewidth=3)
40

plt.show()

Output:

Here in this graph we plot the test data. The red line indicates the best fit line for
predicting the price.
To make an individual prediction using the linear regression model:
print("Predicted price for a lot size of 5000: " +
str(round(regr.predict([[5000]])[0][0])))
Applications of Regression
 Predicting prices: Used to predict the price of a house based on its size,

location and other features.
 Forecasting trends: Model to forecast the sales of a product based on

historical sales data.
 Identifying risk factors: Used to identify risk factors for heart patient based

on patient medical data.
 Making decisions: It could be used to recommend which stock to buy based

on market data.
Advantages of Regression
 Easy to understand and interpret.
 Robust to outliers.
 Can handle both linear relationships easily.
Disadvantages of Regression
 Assumes linearity.
 Sensitive to situation where two or more independent variables are highly

correlated with each other i.e multicollinearity.
 May not be suitable for highly complex relationships.
Conclusion
Regression in machine learning is a fundamental technique for predicting
continuous outcomes based on input features. It is used in many real-world
applications like price prediction, trend analysis and risk assessment. With its
simplicity and effectiveness regression is used to understand relationships in
data.

1

Decision Trees for Classification
Decision trees are a popular supervised machine learning algorithm used for both classification and regression, where
classification trees predict categorical outcomes by following a tree-like structure of decisions based on data features.
Here's a more detailed explanation:
Key Concepts:
Tree Structure:
Decision trees are visualized as a tree, with:

Root Node: The starting point of the tree.
Internal Nodes: Represent features or attributes used for making decisions.
Branches: Represent possible outcomes or values of the feature.
Leaf Nodes: Represent the final classification or prediction.

Classification:
In classification, each leaf node represents a class label, and the algorithm classifies an instance by following the
branches from the root to a leaf node.
Supervised Learning:
Decision trees are a type of supervised learning algorithm, meaning they learn from labeled data to make
predictions.
Recursive Partitioning:
Decision trees work by recursively partitioning the data into subsets based on feature values, creating a tree structure
that represents the decision rules.
Advantages:

Interpretability: Decision trees are relatively easy to understand and interpret, making them suitable for
explaining predictions.
Handles both numerical and categorical data: Decision trees can handle both types of data without
requiring much preprocessing.
Can handle high-dimensional data: Decision trees can handle a large number of features with good
accuracy.

Disadvantages:
Overfitting: Decision trees can be prone to overfitting, meaning they learn the training data too well and
perform poorly on new, unseen data.
Sensitivity to small variations in data: Small changes in the training data can lead to significant changes
in the tree structure.

Ensemble Methods:
To address the limitations of individual decision trees, ensemble methods like Random Forests and Gradient
Boosting are often used, which combine multiple trees to improve accuracy and robustness.
Scikit-learn:
The scikit-learn library provides a powerful implementation of decision tree algorithms, including
the DecisionTreeClassifier class for classification tasks.
1.10.1. Classification
DecisionTreeClassifier is a class capable of performing multi-class classification on a dataset.
As with other classifiers, DecisionTreeClassifier takes as input two arrays: an array X, sparse or dense, of
shape (n_samples, n_features) holding the training samples, and an array Y of integer values, shape (n_samples,),
holding the class labels for the training samples:
>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)
After being fitted, the model can then be used to predict the class of samples:
>>> clf.predict([[2., 2.]])
array([1])
In case that there are multiple classes with the same and highest probability, the classifier will predict the class with the
lowest index amongst those classes.
As an alternative to outputting a specific class, the probability of each class can be predicted, which is the fraction of
training samples of the class in a leaf:
>>> clf.predict_proba([[2., 2.]])
array([[0., 1.]])
DecisionTreeClassifier is capable of both binary (where the labels are [-1, 1]) classification and multiclass (where the
labels are [0, …, K-1]) classification.
Using the Iris dataset, we can construct a tree as follows:
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, y)

2

Once trained, you can plot the tree with the plot_tree function:
>>> tree.plot_tree(clf)
[...]

Impurity Measures
Impurity measures are used in Decision Trees just like squared loss function in linear regression. We try to arrive at as
lowest impurity as possible by the algorithm of our choice. Impurity is presence of more than one class in a subset of
data.
So all below mentioned measures differ in formula but align in goal. Watch till the end to know secret highlights of this
topic.
Remember this

Make sure you understand that impurity measure is calculated for each leaf node, and its weighted average is the
corresponding impurity measure for root node, based on which we say that this feature would become decision feature or
not.
Let’s take an example with Entropy and solve to see the exact formulation.
Entropy
The formula for impurity at leaf node is

After taking weighted average for a feature, we need to check if this feature brings the most reduction in impurity. While
using Entropy we do this by Information Gain

where
E(Y) should be Entropy before splitting the data over X
E(Y|X) is Weighted Entropy after split over X
Example: Consider the Contingency Table asdvv

3

This should be read as simply Horizontal division is of Liability class labels(Normal and High), while vertical division is
that of Credit Rating(Excellent, Good, Poor). So the number 3 in table implies, that out of total 14 companies there were
3 companies which got ‘Excellent rating’ and had ‘Normal Liability’.
Calculation of Entropy for deciding if Credit Rating should be the first split.
First calculate Entropy before splitting

Next entropy over each Leaf node and then weighted average over credit rating split

Note greater the entropy, worse is the current feature for split at present level.
We now calculate information gain(Higher the better, or lower the conditional entropy)

So we get 0.375 as the IG from Credit Rating as the metric for classification of data over liability status. If we had
suppose stock price as a independent feature, we would have done the same thing for it as well. Then we would have
compared the result for both, and one with higher information gain would have been our first decision variable for
splitting.
Now
Impurity Reduction = G(Y) — G(Y|X))
Gini Index
The formula for leaf node is

After weighted average just like above, we calculate

And one offering highest reduction is chosen as decision variable for splitting.

4

Classification Error
The formula of leaf node is

Often this is a rarely used one.
Another less heard used ones are
Gain Ratio
The gain ratio “normalizes” the information gain

Impurity measures such as entropy and Gini Index tend to favor attributes that have large number of distinct values.
Therefore Gain Ratio is computed which is used to determine the goodness of a split. Every splitting criterion has their
own significance and usage according to their characteristic and attributes type.
Twoing Criteria
The Gini Index may encounter problems when the domain of the target attribute is relatively wide. In this case it is
possible to employ binary criterion called twoing criteria. This criterion is defined as:

Where, p (i/t) denote the fraction of records belonging to class i at a given node t

Little less I could find about it, have a look at this for more understanding.
Highlights:
Binary classification: These are primarily used for Binary split, i.e. two leaf nodes, however when multilevel split is
there, we can convert them to Binary split like eg. for color(R, G, B) as R or G, B or G, R or B as splitting decision
Impurity Index(like Information Gain, Gini Index) are concave functions, and we need to maximize the reduction in
impurity. Note as below, graphically also they are Convex Functions.

5

3. Shapes of the above measures: Continuing from above figure the Impurity Index optimize the choice of feature for
splitting but following different paths. Note Classification Error gives a straight line curve as opposed to Entropy or Gini
Index.

From this figure, we are trying to compare Entropy(or Gini) method with Classification Error. We are trying to compare
Impurity before(Red mark)and after(Green dot) splitting. We want the vertical distance between these two points to
maximize, so graphically it is quite intuitive that Classification error being straight Line leaves no space between these
two points, however Entropy provides greater space over Gini Index.
4. Difference in use when numerical features instead of categorical: Categorical is easy to follow, while in Numerical
our work is just to find average of two corresponding observations(arranged in ascending) and then check the split’s
entropy reduction taking each such average as a cutoff. The one providing the max reduction in impurity is chosen as
cutoff value.

Regression Based on Decision Trees
Decision Tree Regression is a machine learning technique used to predict continuous numerical values by
constructing a tree-like model. It works by splitting data based on features, creating nodes and branching
paths until reaching leaf nodes that represent final predictions. These predictions can be the average value
of the target variable within that leaf or a function mapping from the feature space to the target value.

Key Concepts:
Tree-like Structure:
The model is structured like a tree, with internal nodes representing features and decision points, and leaf nodes
representing predictions.
Splitting Data:
The algorithm splits the data based on features, aiming to create subsets where the target variable has the least
variability.
Leaf Node Predictions:

6

Predictions are made at the leaf nodes, which can be the average target value within that leaf or a function of the
features.
How it Works:
1. Data Splitting:
The algorithm starts with a root node containing the entire dataset. It then iteratively splits the data based on the best
feature and split point, aiming to maximize the reduction in variance or other suitable impurity measures.
2. Node Creation:
Each split creates new nodes (child nodes) and branches, representing the split conditions.
3. Recursive Splitting:
This process continues recursively until a stopping criterion is met, such as reaching a maximum tree depth or when no
further splits significantly improve the model.
4. Leaf Node Predictions:
The final leaf nodes represent the predicted values for the corresponding data subsets.
Benefits:
Interpretability:
Decision trees are relatively easy to understand and interpret, making them useful for explaining prediction models.
Non-linear Relationships:
They can capture non-linear relationships in data, unlike linear regression models.
Feature Importance:
The algorithm can identify the importance of different features in making predictions.
Limitations:
Overfitting:
Decision trees can be prone to overfitting, especially if the tree is too deep or complex. Pruning or using ensemble
methods can help mitigate this.
Sensitivity to Data:
They can be sensitive to changes in the data, and the model can be unstable.
Discrete Output:
While decision trees can be used for regression, they are not ideal for continuous target variables.

Bias–Variance Trade-off
The bias-variance trade-off in machine learning refers to the inherent tension between a model's ability to fit
the training data (low bias) and its ability to generalize to unseen data (low variance). The goal is to find a
model that strikes a balance between these two, minimizing overall prediction error.
Here's a more detailed explanation:

Understanding Bias and Variance:
Bias:
Refers to the error introduced by making simplifying assumptions about the data or the model's structure. High bias
means the model is too simple and cannot capture the underlying patterns in the data, leading to underfitting.
Variance:
Refers to the model's sensitivity to variations in the training data. High variance means the model is too complex and
has learned the noise in the training data, leading to overfitting.
The Trade-off:
High Bias, Low Variance:
A model with high bias is simple and consistent, but it may not accurately represent the data.
Low Bias, High Variance:
A model with low bias is complex and can fit the training data well, but it may not generalize well to unseen data.
The Goal:

7

The goal is to find the sweet spot where the model is complex enough to capture the underlying patterns without
overfitting to the noise in the training data.
Why it matters:
Generalization:
The ability of a model to perform well on unseen data is crucial for real-world applications.
Overfitting and Underfitting:
Understanding the bias-variance trade-off helps avoid these common problems in machine learning.
Model Selection:
It guides the choice of model complexity and regularization techniques to achieve optimal performance.
Examples:
Underfitting:
A linear regression model might have high bias and low variance if the relationship between the variables is not linear.
Overfitting:
A complex polynomial regression model might have low bias and high variance if it perfectly fits the training data but
performs poorly on new data.
Finding the Balance:
Using techniques like regularization or cross-validation can help find the right balance between bias and variance.
In summary, the bias-variance trade-off is a fundamental concept in machine learning that helps us build
models that generalize well to unseen data by finding the optimal balance between model complexity and its
ability to fit the training data.

Random Forests for Classification and Regression

Random forests are an ensemble learning method used for both classification and regression tasks,
employing multiple decision trees to make predictions, with the final prediction being the mode of the classes
(classification) or the average of the predictions (regression).

Here's a more detailed explanation:
What are Random Forests?
Ensemble Method:
Random forests are an ensemble learning method, meaning they combine multiple individual models (decision trees)
to make predictions.
Decision Trees:
Each individual model in a random forest is a decision tree.
Randomness:
The "random" in "random forest" refers to the way the decision trees are constructed, with each tree being trained on a
random subset of the data and a random subset of the features.
Classification vs. Regression:
Random forests can be used for both classification (predicting categorical outcomes) and regression (predicting
continuous outcomes).
How Random Forests Work:
Training:

The algorithm constructs multiple decision trees during training.
Each tree is trained on a random subset of the training data (using bootstrapping) and a random subset of
the features.

Prediction:
Classification: For classification tasks, the final prediction is the class that is the mode (most frequent) of
the predictions from all the individual trees.
Regression: For regression tasks, the final prediction is the average of the predictions from all the individual
trees.

Advantages of Random Forests:

8

High Accuracy: Random forests are known for their high accuracy and predictive power.
Robustness: They are relatively robust to overfitting and can handle noisy data well.
Feature Importance: Random forests can provide insights into the importance of different features in the data.
Handles Missing Values: Random forests can handle missing values in the data without requiring preprocessing.
Disadvantages of Random Forests:
Computational Cost:
Training random forests can be computationally expensive, especially for large datasets.
Interpretability:
Random forests are often considered "black box" models, meaning it can be difficult to understand why they make
certain predictions.
Parameter Tuning:
The performance of random forests can depend on the choice of hyperparameters, which may require tuning.
Applications:
Classification:

Spam detection.
Medical diagnosis.
Customer churn prediction.

Regression:
Predicting house prices.
Forecasting stock prices.
Estimating customer lifetime value.

Introduction to the Bayes Classifier

A Bayesian classifier, or more specifically a Naive Bayes classifier, is a type of probabilistic classifier based
on Bayes' theorem. It's a supervised machine learning algorithm used to classify data by assigning it to the
most likely class based on its features. The Naive Bayes classifier makes the simplifying assumption that
features are conditionally independent, meaning the presence of one feature doesn't affect the presence of
another.
Here's a more detailed breakdown:
Bayes' Theorem:
The foundation of this classifier is Bayes' theorem, which describes the probability of an event based on prior
knowledge of related conditions.
Probabilistic Approach:
Bayesian classifiers work by estimating the probability of a data point belonging to each class.
Naïve Assumption:
The term "naive" refers to the assumption that all features are independent of each other, given the class. This
simplification makes the calculations easier and faster, while still achieving good performance in many cases.
Classification Process:
The classifier calculates the probability of each class given the input data and then assigns the data point to the class
with the highest probability.
Applications:
Naive Bayes classifiers are widely used in various applications, including:

Text classification: Identifying the topic or sentiment of a piece of text.
Spam detection: Classifying emails as spam or not spam.
Medical diagnosis: Predicting the likelihood of a disease based on symptoms.
Weather prediction: Predicting the weather conditions based on various factors.

Advantages:
Simple to implement and understand.
Requires less training data compared to other classifiers.
Fast to train and predict.
Works well with both continuous and categorical data.

Limitations:
The independence assumption can be unrealistic in some cases.
Sensitive to irrelevant features.

The Bayes Classifier:

Introduction to the Bayes Classifier

Bayesian classifiers are statistical classifiers, based on Bayes' theorem. They can predict
class membership probabilities such as the probability that a given tuple belongs to a
particular class. Naive Bayesian classifiers assume that all features in are mutually
independent.

9

Bayes' Rule and Bayesian inference are fundamental concepts in probability and statistics, used to update
beliefs about an event based on new evidence. Bayes' Rule provides the mathematical framework for this
updating, while Bayesian inference is the process of applying that framework to draw conclusions about a
model or hypothesis given observed data.
Here's a more detailed explanation:

Bayes' Rule:
Bayes' Rule is a theorem that describes the probability of an event, given that another event has already occurred. It
essentially provides a way to revise your prior beliefs about an event in light of new information.
The formula for Bayes' Rule is: P(A|B) = [P(B|A) * P(A)] / P(B).

P(A|B): The posterior probability of event A, given that event B has occurred (your updated belief).
P(B|A): The likelihood of event B, given that event A is true (how likely the evidence is, assuming A is true).
P(A): The prior probability of event A (your initial belief about A).
P(B): The probability of event B (evidence).

In simpler terms, Bayes' Rule tells you how to combine your prior knowledge with the new evidence to arrive at a more
informed belief.
Bayesian Inference:
Bayesian inference is a statistical method that uses Bayes' Rule to update beliefs about parameters of a model given
observed data.
It involves assigning prior probabilities to possible models or hypotheses, then using the observed data (likelihood) to
update these probabilities to posterior probabilities.
The posterior probability distribution represents the updated belief about the model or hypothesis, given the data.
Bayesian inference is widely used in various fields, including machine learning, medical diagnosis, and scientific
modeling.
Key Differences:
Bayes' Rule is a mathematical formula. It's a specific equation that relates probabilities.
Bayesian inference is a statistical methodology. It's a process of using Bayes' Rule to draw conclusions from data.
In essence:
Bayes' Rule provides the mathematical framework for updating beliefs.
Bayesian inference is the practical application of that framework to make statistical inferences.

10

The Bayes Classifier and its Optimality
The Bayes Optimal Classifier (BOC) in machine learning is the theoretically best possible classifier for a given
classification problem. It makes the most probable prediction for a new input, minimizing the probability of
classification error. While practically unachievable due to unknown class-membership probabilities, it serves as
a benchmark for evaluating the performance of other learning algorithms.
Here's a more detailed explanation:
Key Concepts:

 Bayes Theorem:
The BOC is based on Bayes' Theorem, which relates the probabilities of events.

 Posterior Probability:
The BOC makes predictions based on the posterior probability of a class given the input features.

 Prior Probability:
The BOC also considers the prior probability of each class.

 Maximum A Posteriori (MAP):
The BOC is closely related to the MAP principle, where the class with the highest posterior probability is
selected.

 Bayes Error:
The BOC achieves the minimum possible error rate, known as the Bayes error.
How it works:

1. Determine Posterior Probabilities: For a new input, the BOC calculates the posterior probability of each class
(e.g., P(class A | input data)).

2. Select the Most Probable Class: The BOC predicts the class with the highest posterior probability.
3. Theoretical Optimality: By making predictions based on these probabilities, the BOC minimizes the overall

classification error rate.
Why it's important:

 Theoretical Benchmark:
The BOC provides a theoretical upper bound on the performance of any classifier.

 Evaluation Tool:
The BOC is used to evaluate the performance of other learning algorithms, comparing their error rates to the
Bayes error.

 Understanding Learning Algorithms:
The BOC helps understand the limitations and potential of different learning algorithms.
Limitations:

 Unknown Class Probabilities:
The BOC requires knowledge of the class-membership probabilities, which are often unknown in real-world
scenarios.

 Practical Unachievability:
Due to the need for perfect knowledge of class probabilities, the BOC is practically unachievable.
In essence, the Bayes Optimal Classifier is a theoretical ideal that helps us understand the limits of what can be
achieved in classification and serves as a benchmark for comparing the performance of different machine
learning algorithms.

Multi-Class Classification
Multiclass Classification vs Multi-label Classification
Multiclass classification is a machine learning task where the goal is to assign instances to one of multiple
predefined classes or categories, where each instance belongs to exactly one class. Whereas multilabel
classification is a machine learning task where each instance can be associated with multiple labels
simultaneously, allowing for the assignment of multiple binary labels to the instance. In this article we are going
to understand the multi-class classification and multi-label classification, how they are different, how they are
evaluated, how to choose the best method for your problem, and much more.

11

What is Multiclass Classification?
Multiclass classification is a machine learning challenge focused on categorizing data into more than two
classes. While binary classification involves distinguishing between only two classes, multiclass classification
expands this scope to involve distinguishing between multiple classes. In essence, the goal is to train a model
that can effectively sort instances into various predefined categories, providing a nuanced solution for scenarios
where items can belong to more than two exclusive groups. This approach is commonly employed in tasks such
as handwriting recognition, email categorization, and image classification involving more than two distinct
categories.
Multiclass classification is a type of machine learning task where the goal is to categorize instances into one of
several predefined classes. Unlike binary classification, where there are only two possible outcomes, multiclass
classification involves distinguishing between multiple classes or categories. The fundamental idea is to teach a
model to assign the most appropriate class label to each instance based on its features.
Multiclass classification finds application in a wide range of real-world scenarios. Consider email
categorization, where emails need to be sorted into categories like "spam," "ham" (non-spam), or "important."
Another classic example is handwritten digit recognition, where the task is to identify which digit (0 through 9)
is written in a given image. Other applications include speech recognition, sentiment analysis, and image
classification into multiple categories.
Model Training Techniques:
Training a multiclass classification model involves employing specific techniques to ensure accurate class
assignment. One common approach is to use softmax activation in the output layer of the neural
network. Softmax converts the raw model outputs into probabilities, assigning higher probabilities to the correct
classes. Additionally, categorical cross-entropy loss is often used as the objective function during training. This
loss function measures the dissimilarity between the predicted probabilities and the actual class labels, guiding
the model to minimize errors and improve accuracy.
Evaluation Metrics:
To assess the performance of a multiclass classification model, various evaluation metrics like
accuracy, precision, recall (sensitivity) and F1 score.
Understanding these concepts is crucial for practitioners working on multiclass classification problems, as they
form the foundation for designing effective models and assessing their accuracy in real-world applications.
What is Multi-label Classification?
Multi-label classification is a machine learning paradigm where instances can be associated with multiple labels
simultaneously. Unlike traditional classification tasks, where an instance is assigned a single exclusive label,

12

multi-label classification recognizes the possibility for instances to exhibit characteristics that span across
various categories. The goal is to develop models capable of accurately predicting and assigning a set of
relevant labels to each instance, reflecting the complex relationships and diversity inherent in real-world
datasets. This approach acknowledges the overlapping nature of labels, providing a more realistic representation
of the multifaceted attributes present in the data.
Multi-label classification is a machine learning task where instances can be associated with multiple labels
simultaneously. This differs from multiclass classification, where each instance is assigned to one and only one
class. In multi-label scenarios, an instance may exhibit characteristics that correspond to several different
categories, making the task more intricate and reflecting the complexity often found in real-world data.
Multi-label classification is highly applicable in diverse scenarios where instances can possess multiple
attributes or labels. Examples include:
 Document Tagging: Assigning multiple tags or topics to a document, such as labeling an article as both

"technology" and "business."
 Image Classification with Multiple Labels: Identifying and labeling multiple objects or features within an

image, like recognizing both "cat" and "outdoor" in a photograph.
Model Training Techniques:
Training models for multi-label classification involves specific techniques to accommodate the simultaneous
assignment of multiple labels to instances:
 Sigmoid Activation: In the output layer of the neural network, sigmoid activation is often used. Unlike

softmax in multiclass scenarios, sigmoid independently activates each output node, producing a value
between 0 and 1, representing the likelihood of the corresponding label being present.

 Binary Cross-Entropy Loss: This loss function is employed during training to measure the dissimilarity
between the predicted probabilities and the actual presence or absence of each label. It guides the model to
minimize errors in its multi-label predictions.

Evaluation Metrics:
Assessing the performance of a multi-label classification model requires specific metrics tailored to handle the
complexity of multiple labels per instance:
 Hamming Loss: This metric calculates the fraction of labels that are incorrectly predicted. It provides a

comprehensive measure of overall model performance in terms of label accuracy.
 Precision at k: Precision at k evaluates the precision of the top-k predicted labels, recognizing that not all

labels need to be considered. It accounts for scenarios where only the most relevant labels are of interest.
 Recall at k: Similar to precision at k, recall at k assesses the recall of the top-k predicted labels. It focuses

on capturing the relevant labels among the top predictions.
Understanding these nuances of multi-label classification is essential for practitioners working on tasks where
instances can belong to multiple categories simultaneously, ensuring effective model design and evaluation in
complex real-world scenarios.
Differences between Multi class and Multi label Classification

Features Multi class classification. Multi label classification

Output Structure:

The output is a single class label
assigned to each instance,

indicating the most probable or
correct class.

The output is a set of binary values
indicating the presence or absence

of each label for each instance.
Instances can be associated with
multiple labels simultaneously.

Model Output:

the model assigns a single class
label to each instance based on the
class with the highest probability

or confidence.

The model outputs a binary vector
for each instance, where each

element corresponds to a label,
indicating whether it is present or

not.

Training Techniques:

Techniques like softmax
activation and categorical cross-
entropy loss are commonly used

for training models to handle
multiple classes.

Techniques like sigmoid activation
and binary cross-entropy loss are

employed, treating each label
independently.

13

Features Multi class classification. Multi label classification

Class Assignment:

Each instance is assigned to one
and only one class, making the

classification mutually exclusive.

Instances can be associated with
multiple labels, allowing for

overlapping or shared
characteristics.

Evaluation Metrics:

Metrics such as accuracy,
precision, recall, and F1 score are

commonly used to assess the
overall performance of the model.

Metrics like Hamming loss,
precision at k, and recall at k are

more appropriate, as they account
for the presence of multiple labels

for each instance.

Model Complexity:

Generally considered simpler as it
involves assigning instances to

exclusive classes.

Can be more complex due to the
need to capture dependencies and

correlations between multiple
labels.

Problem Complexity:

Typically used for simpler
problems where instances belong
to mutually exclusive categories.

Suited for more complex scenarios
where instances can exhibit

characteristics of multiple labels
simultaneously.

Choosing Between Multi-Class and Multi-Label Classification
When embarking on a classification task, one of the foundational decisions is whether to opt for multi-class or
multi-label classification, and this choice significantly influences the model's performance and relevance to real-
world scenarios.
 Assess whether the instances in your dataset belong to mutually exclusive classes (Multi-Class) or if they

can have multiple labels simultaneously (Multi-Label). Understanding the nature of labels is fundamental in
choosing the appropriate classification approach.

 Examine the relationships between labels. If the labels are independent or weakly correlated, multi-class
classification may be suitable. For strong correlations or overlapping characteristics, multi-label
classification is more appropriate.

 Gauge the complexity of your classification problem. Multi-class classification is generally simpler as it
deals with exclusive categorization. If the problem is inherently complex and instances can have diverse
characteristics, opt for multi-label classification.

 Consider domain-specific requirements and constraints. Some domains naturally lend themselves to one
approach over the other based on the inherent characteristics of the data and the specific objectives of the
task.

In conclusion, the choice between multi-class and multi-label classification should be made considering the
intricacies of the problem, the nature of the data, and the specific requirements of the application. Each approach
has its merits, and selecting the most suitable classification method is pivotal for achieving optimal model
performance in diverse real-world scenarios.

Class Conditional Independence and Naive Bayes Classifier (NBC)
Naive Bayes Classifiers
Naive Bayes is a classification algorithm that uses probability to predict which category a data point belongs to,
assuming that all features are unrelated. This article will give you an overview as well as more advanced use and
implementation of Naive Bayes in machine learning.
Illustration behind the Naive Bayes algorithm. We estimate P(xα∣y)P(xα∣y) independently in each dimension
(middle two images) and then obtain an estimate of the full data distribution by assuming conditional
independence P(x∣y)=∏αP(xα∣y)P(x∣y)=∏αP(xα∣y)(very right image).

Key Features of Naive Bayes Classifiers

14

The main idea behind the Naive Bayes classifier is to use Bayes' Theorem to classify data based on the
probabilities of different classes given the features of the data. It is used mostly in high-dimensional text
classification
 The Naive Bayes Classifier is a simple probabilistic classifier and it has very few number of parameters

which are used to build the ML models that can predict at a faster speed than other classification
algorithms.

 It is a probabilistic classifier because it assumes that one feature in the model is independent of existence of
another feature. In other words, each feature contributes to the predictions with no relation between each
other.

 Naïve Bayes Algorithm is used in spam filtration, Sentimental analysis, classifying articles and many more.
Why it is Called Naive Bayes?
It is named as "Naive" because it assumes the presence of one feature does not affect other features. The
"Bayes" part of the name refers to its basis in Bayes’ Theorem.
Consider a fictional dataset that describes the weather conditions for playing a game of golf. Given the weather
conditions, each tuple classifies the conditions as fit(“Yes”) or unfit(“No”) for playing golf. Here is a tabular
representation of our dataset.

Outlook Temperature Humidity Windy
Play
Golf

0 Rainy Hot High False No

1 Rainy Hot High True No

2 Overcast Hot High False Yes

3 Sunny Mild High False Yes

4 Sunny Cool Normal False Yes

5 Sunny Cool Normal True No

6 Overcast Cool Normal True Yes

7 Rainy Mild High False No

8 Rainy Cool Normal False Yes

9 Sunny Mild Normal False Yes

15

Outlook Temperature Humidity Windy
Play
Golf

10 Rainy Mild Normal True Yes

11 Overcast Mild High True Yes

12 Overcast Hot Normal False Yes

13 Sunny Mild High True No

The dataset is divided into two parts, namely, feature matrix and the response vector.
 Feature matrix contains all the vectors(rows) of dataset in which each vector consists of the value

of dependent features. In above dataset, features are ‘Outlook’, ‘Temperature’, ‘Humidity’ and ‘Windy’.
 Response vector contains the value of class variable(prediction or output) for each row of feature matrix.

In above dataset, the class variable name is ‘Play golf’.
Assumption of Naive Bayes
The fundamental Naive Bayes assumption is that each feature makes an:
 Feature independence: This means that when we are trying to classify something, we assume that each

feature (or piece of information) in the data does not affect any other feature.
 Continuous features are normally distributed: If a feature is continuous, then it is assumed to be

normally distributed within each class.
 Discrete features have multinomial distributions: If a feature is discrete, then it is assumed to have a

multinomial distribution within each class.
 Features are equally important: All features are assumed to contribute equally to the prediction of the

class label.
 No missing data: The data should not contain any missing values.
Introduction to Bayes' Theorem
Bayes’ Theorem provides a principled way to reverse conditional probabilities. It is defined as:
P(y∣X)=P(X∣y)⋅P(y)P(X)P(y∣X)=P(X)P(X∣y)⋅P(y)
Where:
 P(y∣X)P(y∣X): Posterior probability, probability of class yy given features XX
 P(X∣y)P(X∣y): Likelihood, probability of features XX given class yy
 P(y)P(y): Prior probability of class yy
 P(X)P(X): Marginal likelihood or evidence
Naive Bayes Working
1. Terminology
Consider a classification problem (like predicting if someone plays golf based on weather). Then:
 yy is the class label (e.g. "Yes" or "No" for playing golf)
 X=(x1,x2,...,xn)X=(x1,x2,...,xn) is the feature vector (e.g. Outlook, Temperature, Humidity, Wind)
A sample row from the dataset:
X=(Rainy, Hot, High, False),y=NoX=(Rainy, Hot, High, False),y=No
This represents:
What is the probability that someone will not play golf given that the weather is Rainy, Hot, High humidity, and
No wind?
2. The Naive Assumption
The "naive" in Naive Bayes comes from the assumption that all features are independent given the class. That is:
P(x1,x2,...,xn∣y)=P(x1∣y)⋅P(x2∣y)⋯P(xn∣y)P(x1,x2,...,xn∣y)=P(x1∣y)⋅P(x2∣y)⋯P(xn∣y)
Thus, Bayes' theorem becomes:
P(y∣x1,...,xn)=P(y)⋅∏i=1nP(xi∣y)P(x1)P(x2)...P(xn)P(y∣x1,...,xn)=P(x1)P(x2)...P(xn)P(y)⋅∏i=1nP(xi∣y)

16

Since the denominator is constant for a given input, we can write:
P(y∣x1,...,xn)∝P(y)⋅∏i=1nP(xi∣y)P(y∣x1,...,xn)∝P(y)⋅∏i=1nP(xi∣y)
3. Constructing the Naive Bayes Classifier
We compute the posterior for each class yy and choose the class with the highest probability:
y^=arg max yP(y)⋅∏i=1nP(xi∣y)y^=argmaxyP(y)⋅∏i=1nP(xi∣y)
This becomes our Naive Bayes classifier.
4. Example: Weather Dataset
Let’s take a dataset used for predicting if golf is played based on:
 Outlook: Sunny, Rainy, Overcast
 Temperature: Hot, Mild, Cool
 Humidity: High, Normal
 Wind: True, False

Example
Tables for Naive Bayes

Example Input: X=(Sunny,Hot,Normal,False)X=(Sunny,Hot,Normal,False)
Goal: Predict if golf will be played (Yes or No).
5. Pre-computation from Dataset
Class Probabilities:

17

From dataset of 14 rows:
 P(Yes)=914P(Yes)=149
 P(No)=514P(No)=145
Conditional Probabilities (Tables 1–4):

Feature Value P (Value | Yes) P (Value | No)

Outlook Sunny 2/9 3/5

Temperature Hot 2/9 2/5

Humidity Normal 6/9 1/5

Wind False 6/9 2/5

6. Calculate Posterior Probabilities
For Class = Yes:
P(Yes | today)∝29⋅29⋅69⋅69⋅914P(Yes | today)∝92⋅92⋅96⋅96⋅149
P(Yes | today)≈0.02116P(Yes | today)≈0.02116
For Class = No:
P(No | today)∝35⋅25⋅15⋅25⋅514P(No | today)∝53⋅52⋅51⋅52⋅145
P(No | today)≈0.0068P(No | today)≈0.0068
7. Normalize Probabilities
To compare:
P(Yes | today)=0.021160.02116+0.0068≈0.756P(Yes | today)=0.02116+0.00680.02116≈0.756
P(No | today)=0.00680.02116+0.0068≈0.244P(No | today)=0.02116+0.00680.0068≈0.244
8. Final Prediction
Since:
P(Yes | today)>P(No | today)P(Yes | today)>P(No | today)
The model predicts: Yes (Play Golf)
Naive Bayes for Continuous Features
For continuous features, we assume a Gaussian distribution:
P(xi∣y)=12πσy2exp (−(xi−μy)22σy2)P(xi∣y)=2πσy21exp(−2σy2(xi−μy)2)
Where:
 μyμy is the mean of feature xixi for class yy
 σy2σy2 is the variance of feature xixi for class yy
This leads to what is called Gaussian Naive Bayes.
Types of Naive Bayes Model
There are three types of Naive Bayes Model :
1. Gaussian Naive Bayes
In Gaussian Naive Bayes, continuous values associated with each feature are assumed to be distributed
according to a Gaussian distribution. A Gaussian distribution is also called Normal distribution When plotted, it
gives a bell shaped curve which is symmetric about the mean of the feature values as shown below:
2. Multinomial Naive Bayes
Multinomial Naive Bayesis used when features represent the frequency of terms (such as word counts) in a
document. It is commonly applied in text classification, where term frequencies are important.
3. Bernoulli Naive Bayes
Bernoulli Naive Bayes deals with binary features, where each feature indicates whether a word appears or not
in a document. It is suited for scenarios where the presence or absence of terms is more relevant than their
frequency. Both models are widely used in document classification tasks
Advantages of Naive Bayes Classifier
 Easy to implement and computationally efficient.
 Effective in cases with a large number of features.
 Performs well even with limited training data.
 It performs well in the presence of categorical features.
 For numerical features data is assumed to come from normal distributions

18

Disadvantages of Naive Bayes Classifier
 Assumes that features are independent, which may not always hold in real-world data.
 Can be influenced by irrelevant attributes.
 May assign zero probability to unseen events, leading to poor generalization.
Applications of Naive Bayes Classifier
 Spam Email Filtering: Classifies emails as spam or non-spam based on features.
 Text Classification: Used in sentiment analysis, document categorization, and topic classification.
 Medical Diagnosis: Helps in predicting the likelihood of a disease based on symptoms.
 Credit Scoring: Evaluates creditworthiness of individuals for loan approval.
 Weather Prediction: Classifies weather conditions based on various factors.

Linear Discriminants for Machine Learning

 Introduction to Linear Discriminants

Linear Discriminants for Classification
When working with high-dimensional datasets it is important to apply dimensionality

reduction techniques to make data exploration and modeling more efficient. Linear
Discriminant Analysis (LDA) also known as Normal Discriminant Analysis is supervised
classification problem that helps separate two or more classes by converting higher-
dimensional data space into a lower-dimensional space. It is used to identify a linear
combination of features that best separates classes within a dataset.

2 Classes
overlapping
For example we have two classes that need to be separated efficiently. Each class may have
multiple features and using a single feature to classify them may result in overlapping. To
solve this LDA is used as it uses multiple features to improve classification
accuracy. LDA works by some assumptions and we are required to understand them so that
we have a better understanding of its working.
Key Assumptions of LDA
For LDA to perform effectively, certain assumptions are made:
 Gaussian Distribution: The data in each class should follow a normal bell-shaped

distribution.
 Equal Covariance Matrices: All classes should have the same covariance structure.
 Linear Separability: The data should be separable using a straight line or plane.
If these assumptions are met LDA can produce very good results. For example when data
points belonging to two classes are plotted if they are not linearly separable LDA will attempt
to find a projection that maximizes class separability.

Linearly Separable Dataset
Image shows an example where the classes (black and green circles) are not linearly
separable. LDA attempts to separate them using red dashed line. It uses both axes (X and Y)
to generate a new axis in such a way that it maximizes the distance between the means
of the two classes while minimizing the variation within each class. This transforms the

dataset into a space where the classes are better separated. After transforming the data points
along a new axis LDA maximizes the class separation. This new axis allows for clearer
classification by projecting the data along a line that enhance the distance between the means
of the two classes.

The perpendicular distance between the line and points
Perpendicular distance between the decision boundary and the data points helps us to isualize
how LDA works by reducing class variation and increasing separability. After generating this
new axis using the above-mentioned criteria all the data points of the classes are plotted on
this new axis and are shown in the figure given below.

LDA
It shows how LDA creates a new axis to project the data and separate the two classes
effectively along a linear path. But it fails when the mean of the distributions are shared as it
becomes impossible for LDA to find a new axis that makes both classes linearly separable. In
such cases we use non-linear discriminant analysis.
How does LDA work
LDA works by finding directions in the feature space that best separate the classes. It does
this by maximizing the difference between the class means while minimizing the spread
within each class.
Let’s assume we have two classes with d-dimensional samples such as x1,x2,...xnx1,x2,...xn
 where:
 n1n1 samples belong to class c1c1
 n2n2 samples belong to class c2c2.
If xixi represents a data point its projection onto the line represented by the unit vector v
is vTxivTxi. Let the means of class c1c1 and class c2c2 before projection be μ1 and μ2
respectively. After projection the new means are μ^1=vTμ1μ^1=vTμ1and μ^2=vTμ2μ^2
=vTμ2.
Our aim to normalize the difference ∣μ^1−μ^2∣∣μ^1−μ^2∣to maximize the class separation.
The scatter for samples of class c1c1 is calculated as:

s12=∑xi∈c1(xi−μ1)2s12=∑xi∈c1(xi−μ1)2
Similarly for class c2c2:

s22=∑xi∈c2(xi−μ2)2s22=∑xi∈c2(xi−μ2)2
The goal is to maximize the ratio of the between-class scatter to the within-class scatter,
which leads us to the following criteria:

J(v)=∣μ^1−μ^2∣s12+s22J(v)=s12+s22∣μ^1−μ^2∣
For the best separation we calculate the eigenvector corresponding to the highest eigenvalue
of the scatter matrices sw−1sbsw−1sb.
Extensions to LDA
1. Quadratic Discriminant Analysis (QDA): Each class uses its own estimate of variance

(or covariance) allowing it to handle more complex relationships.
2. Flexible Discriminant Analysis (FDA): Uses non-linear combinations of inputs such as

splines to handle non-linear separability.
3. Regularized Discriminant Analysis (RDA): Introduces regularization into the

covariance estimate to prevent overfitting.
Implementation of LDA using Python
In this implementation we will perform linear discriminant analysis using Scikit-learn library
on the Iris dataset.
 StandardScaler(): Standardizes the features to ensure they have a mean of 0 and a

standard deviation of 1 removing the influence of different scales.
 fit_transform(): Standardizes the feature data by applying the transformation learned

from the training data ensuring each feature contributes equally.
 LabelEncoder(): Converts categorical labels into numerical values that machine learning

models can process.
 fit_transform() on y: Transforms the target labels into numerical values for use in

classification models.
 LinearDiscriminantAnalysis(): Reduces the dimensionality of the data by projecting it

into a lower-dimensional space while maximizing the separation between classes.
 transform() on X_test: Applies the learned LDA transformation to the test data to

maintain consistency with the training data.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix

iris = load_iris()
dataset = pd.DataFrame(columns=iris.feature_names,
 data=iris.data)
dataset['target'] = iris.target

X = dataset.iloc[:, 0:4].values
y = dataset.iloc[:, 4].values

sc = StandardScaler()
X = sc.fit_transform(X)
le = LabelEncoder()
y = le.fit_transform(y)

X_train, X_test,\
 y_train, y_test = train_test_split(X, y,
 test_size=0.2)

lda = LinearDiscriminantAnalysis(n_components=2)
X_train = lda.fit_transform(X_train, y_train)
X_test = lda.transform(X_test)

plt.scatter(
 X_train[:, 0], X_train[:, 1],
 c=y_train,
 cmap='rainbow',
 alpha=0.7, edgecolors='b'
)

classifier = RandomForestClassifier(max_depth=2,
 random_state=0)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)

print('Accuracy : ' + str(accuracy_score(y_test, y_pred)))
conf_m = confusion_matrix(y_test, y_pred)
print(conf_m)
Output:
Accuracy : 0.9
[[8 0 0]
[0 8 2]
[0 1 11]]

Scatter plot of the iris data mapped into 2D
This scatter plot shows three distinct groups of data points, represented by different colors.
The group on the right (dark blue) is clearly separated from the others indicate it's very
different. The other two groups (red and light blue) are positioned closer together with some
overlap and suggest they are more similar and harder to separate.
Advantages of LDA
 Simple and computationally efficient.

 Works well even when the number of features is much larger than the number of training
samples.

 Can handle multicollinearity.
Disadvantages of LDA
 Assumes Gaussian distribution of data which may not always be the case.
 Assumes equal covariance matrices for different classes which may not hold in all

datasets.
 Assumes linear separability which is not always true.
 May not always perform well in high-dimensional feature spaces.
Applications of LDA
1. Face Recognition: It is used to reduce the high-dimensional feature space of pixel values

in face recognition applications helping to identify faces more efficiently.
2. Medical Diagnosis: It classifies disease severity in mild, moderate or severe based on

patient parameters helping in decision-making for treatment.
3. Customer Identification: It can help identify customer segments most likely to purchase

a specific product based on survey data.

Perceptron Classifier

A perceptron is a fundamental type of binary classifier in machine learning, particularly in
the context of artificial neural networks. It's a single-layer neural network that takes inputs,
applies weights to them, and then uses an activation function (like the step function) to
produce a binary output (usually 0 or 1). The perceptron algorithm is used for supervised
learning of binary classifiers, meaning it learns to classify data points into one of two classes.
Key Concepts:

 Binary Classification:
Perceptrons are designed to classify data into two distinct categories, often represented as 0 and 1,
or -1 and 1.

 Linear Separability:
Perceptrons are effective for data that can be separated by a straight line (or a hyperplane in higher
dimensions).

 Weights and Bias:
The algorithm learns weights associated with each input feature and a bias term to make
predictions.

 Activation Function:
The activation function (e.g., step function, sigmoid) transforms the weighted sum of inputs into the
final binary output.

 Perceptron Learning Rule:
The algorithm iteratively adjusts the weights and bias to minimize the error between the predicted
and actual outputs.
How it Works:

1. Input: The perceptron receives a vector of input features.
2. Weighted Sum: Each input is multiplied by its corresponding weight, and the products are summed

together.
3. Bias: A bias term is added to the weighted sum.
4. Activation Function: The sum (along with the bias) is passed through an activation function, which

produces a binary output (e.g., 0 or 1).
5. Learning: The perceptron compares its output with the desired output and adjusts the weights and

bias accordingly to minimize the error.
Limitations:

 Limited to Linear Boundaries:

Perceptrons can only separate data linearly, meaning they can't handle complex, non-linear
relationships.

 Sensitivity to Data Noise:
The perceptron algorithm can be sensitive to noise in the training data, potentially leading to poor
generalization.

Perceptron Learning Algorithm

Perceptron Learning Algorithm is also understood as an Artificial Neuron or
neural network unit that helps to detect certain input data computations in business
intelligence. The perceptron learning algorithm is treated as the most
straightforward Artificial Neural network. It is a supervised learning algorithm of
binary classifiers. Hence, it is a single-layer neural network with four main
parameters, i.e., input values, weights and Bias, net sum, and an activation
function.

What is the Perceptron Learning Algorithm?

There are four significant steps in a perceptron learning algorithm:

1. First, multiply all input values with corresponding weight values and then
add them to determine the weighted sum. Mathematically, we can calculate
the weighted sum as
follows: ∑wi∗xi=x1∗w1+x2∗w2+…+wn∗xn∑wi∗xi=x1∗w1+x2

∗w2+…+wn∗xn. Add another essential term called bias 'b' to the weighted

sum to improve the model performance. ∑wi∗xi+b∑wi∗xi+b.
2. Next, an activation function is applied to this weighed sum, producing a

binary or a continuous-valued output. Y=f(∑wi∗xi+b)Y=f(∑wi∗xi+b)

3. Next, the difference between this output and the actual target value is
computed to get the error term, E, generally in terms of mean squared error.
The steps up to this form the forward propagation part of the
algorithm. E=(Y−Yactual)2E=(Y−Yactual)2

4. We optimize this error (loss function) using an optimization algorithm.
Generally, some form of gradient descent algorithm is used to find the
optimal values of the hyperparameters like learning rate, weight, Bias, etc.
This step forms the backward propagation part of the algorithm.

1. Input Nodes or Input Layer: Primary component of Perceptron learning
algorithm, which accepts the initial input data into the model. Each input
node contains an actual value.

2. Weight and Bias: The weight parameter represents the strength of the
connection between units. Bias can be considered as the line of intercept in a
linear equation.

3. Activation Function: Final and essential components help determine
whether the neuron will fire. The activation function can be primarily
considered a step function. There are various types of activation functions
used in a perceptron learning algorithm. Some of them are the sign function,
step function, sigmoid function, etc.

Types of Perceptron Models

Based on the number of layers, perceptrons are broadly classified into two
major categories:

1. Single Layer Perceptron Model:
It is the simplest Artificial Neural Network (ANN) model. A single-layer
perceptron model consists of a feed-forward network and includes a
threshold transfer function for thresholding on the Output. The main
objective of the single-layer perceptron model is to classify linearly
separable data with binary labels.

2. Multi-Layer Perceptron Model:
The multi-layer perceptron learning algorithm has the same structure as a
single-layer perceptron but consists of an additional one or more hidden
layers, unlike a single-layer perceptron, which consists of a single hidden
layer. The distinction between these two types of perceptron models is
shown in the Figure below.

Perceptron Function

Perceptron learning algorithm function f(x)f(x) is represented as the product of
the input vector (x) and the learned weight vector (w). In mathematical notion, it
can be described as:

f(x)=1,ifw.x+b>0f(x)=1,ifw.x+b>0 f(x)=0,otherwisef(x)=0,otherwise

Where–

 w represents the weight vector which consists of a set of real-valued
weights.

 b represents the bias vector.
 x represents the input vector which consists of the input feature values.

Geometry of the Solution Space

In the previous section, we learned about the weight update rules for the perceptron
learning algorithm. We have already established that when x belongs to P, we
want w.x > 0. That means that the angle between w and x should be less
than 90 because the cosine of the slope is proportional to the dot product.

cos α=wTx∥w∥∥x∥∣cos α∝wTxcosα=∥w∥∥x∥wTx∣cosα∝wTx

SoifwTx>0⇒cos α>0⇒α<90SoifwTx>0⇒cosα>0⇒α<90

Similarly,

ifwTx<0⇒cos α<0⇒α>90ifwTx<0⇒cosα<0⇒α>90

So whatever the w vector may be, as long as it makes an angle less

than 90 degrees with the positive example data vectors (x ∈∈ P) and an angle

more than 90 degrees with the negative example data vectors (x ∈∈ N), we are
cool. So ideally, it should look something like this:

So the angle between w and x should be less than 90 when x belongs to the P class,
and the angle between them should be more than 90 when x belongs to the N class.
Pause and convince yourself that the above statements are true and you believe
them.

Here's Why the Update Works:

(αnew) when wnew =w+xcos (αnew)∝wnew Tx∝(w+x)Tx∝wTx+xTx∝
cos α+xTxcos (αnew)>cos α(αnew) when wnew =w−xcos (αnew)∝
wnew Tx∝(w−x)Tx∝wTx−xTx∝cos α−xTxcos (αnew)<cos α(αnew

) when cos(αnew)cos(αnew)wnew =w+x∝wnew

Tx∝(w+x)Tx∝wTx+xTx∝cosα+xTx>cosα(αnew) when cos(αnew)cos(αnew)
wnew =w−x∝wnew Tx∝(w−x)Tx∝wTx−xTx∝cosα−xTx<cosα

So when we are adding x to w, which we do when x belongs to P and w.x <
0 (Case 1), we are essentially increasing the cos(alpha) value, which means we are
decreasing the alpha value, the angle between w and x, which is what we desire.
And the similar intuition works for the case when x belongs to N and w.x ≥
0 (Case 2).

Perceptron Learning Algorithm: Implementation of AND
Gate

The steps for this implementation are as follows:

1. Import all the required libraries:

#import required library
import tensorflow as tf

2. Define Vector Variables for Input and Output:

#input1, input2 and bias
train_in = [
 [1., 1.,1],
 [1., 0,1],
 [0, 1.,1],
 [0, 0,1]]

#output
train_out = [
[1.],
[0],
[0],
[0]]

3. Define the Weight Variable:

#weight variable initialized with random values using
random_normal()
w = tf.Variable(tf.random_normal([3, 1], seed=12))

4. Define placeholders for Input and Output:

#Placeholder for input and Output
x = tf.placeholder(tf.float32,[None,3])
y = tf.placeholder(tf.float32,[None,1])

5. Calculate Output and Activation Function:

#calculate output
output = tf.nn.relu(tf.matmul(x, w))

6. Calculate the Cost or Error:

#Mean Squared Loss or Error
loss = tf.reduce_sum(tf.square(output - y))

7. Minimize Error:

#Minimize loss using GradientDescentOptimizer with a learning
rate of 0.01
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

8. Initialize all the variables:

#Initialize all the global variables
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

9. Training Perceptron learning algorithm in Iterations:

training_epochs = 1000

#Compute cost w.r.t to input vector for 1000 epochs

for epoch in range(training_epochs):
 sess.run(train, {x:train_in,y:train_out})
 cost = sess.run(loss,feed_dict={x:train_in,y:train_out})
 if i > 990:
 print('Epoch--',epoch,'--loss--',cost)

Output:

Following is the final Output obtained after my perceptron model has been trained.

Epoch-- 991 --loss-- 0.0003835174
Epoch-- 992 --loss-- 0.00038088957
Epoch-- 993 --loss-- 0.0003782803
Epoch-- 994 --loss-- 0.0003756886
Epoch-- 995 --loss-- 0.0003731146
Epoch-- 996 --loss-- 0.00037055893
Epoch-- 997 --loss-- 0.00036801986
Epoch-- 998 --loss-- 0.00036549888
Epoch-- 999 --loss-- 0.00036299432

Support Vector Machine (SVM) Algorithm
Support Vector Machine (SVM) is a supervised machine learning algorithm used for
classification and regression tasks. While it can handle regression problems, SVM is
particularly well-suited for classification tasks.
SVM aims to find the optimal hyperplane in an N-dimensional space to separate data
points into different classes. The algorithm maximizes the margin between the
closest points of different classes.

Support Vector Machine (SVM) Terminology
 Hyperplane: A decision boundary separating different classes in feature space,

represented by the equation wx + b = 0 in linear classification.
 Support Vectors: The closest data points to the hyperplane, crucial for

determining the hyperplane and margin in SVM.
 Margin: The distance between the hyperplane and the support vectors. SVM

aims to maximize this margin for better classification performance.
 Kernel: A function that maps data to a higher-dimensional space, enabling SVM

to handle non-linearly separable data.
 Hard Margin: A maximum-margin hyperplane that perfectly separates the data

without misclassifications.
 Soft Margin: Allows some misclassifications by introducing slack variables,

balancing margin maximization and misclassification penalties when data is not
perfectly separable.

 C: A regularization term balancing margin maximization and misclassification
penalties. A higher C value enforces a stricter penalty for misclassifications.

 Hinge Loss: A loss function penalizing misclassified points or margin violations,
combined with regularization in SVM.

 Dual Problem: Involves solving for Lagrange multipliers associated with support
vectors, facilitating the kernel trick and efficient computation.

How does Support Vector Machine Algorithm Work?
The key idea behind the SVM algorithm is to find the hyperplane that best separates
two classes by maximizing the margin between them. This margin is the distance
from the hyperplane to the nearest data points (support vectors) on each side.

Multiple hyperplanes
separate the data from two classes

The best hyperplane, also known as the "hard margin," is the one that maximizes
the distance between the hyperplane and the nearest data points from both classes.
This ensures a clear separation between the classes. So, from the above figure, we
choose L2 as hard margin.
Let's consider a scenario like shown below:

Selecting hyperplane for data
with outlier

Here, we have one blue ball in the boundary of the red ball.
How does SVM classify the data?
It's simple! The blue ball in the boundary of red ones is an outlier of blue balls. The
SVM algorithm has the characteristics to ignore the outlier and finds the best
hyperplane that maximizes the margin. SVM is robust to outliers.

Hyperplane which is the most
optimized one

A soft margin allows for some misclassifications or violations of the margin to
improve generalization. The SVM optimizes the following equation to balance margin
maximization and penalty minimization:

Objective Function=(1margin)+λ∑penalty Objective Function=(margin1

)+λ∑penalty

The penalty used for violations is often hinge loss, which has the following behavior:
 If a data point is correctly classified and within the margin, there is no penalty

(loss = 0).
 If a point is incorrectly classified or violates the margin, the hinge loss increases

proportionally to the distance of the violation.
Till now, we were talking about linearly separable data(the group of blue balls and
red balls are separable by a straight line/linear line).
What to do if data are not linearly separable?
When data is not linearly separable (i.e., it can't be divided by a straight line), SVM
uses a technique called kernels to map the data into a higher-dimensional space
where it becomes separable. This transformation helps SVM find a decision
boundary even for non-linear data.

Original 1D dataset for classification

A kernel is a function that maps data points into a higher-dimensional space without
explicitly computing the coordinates in that space. This allows SVM to work
efficiently with non-linear data by implicitly performing the mapping.
For example, consider data points that are not linearly separable. By applying a
kernel function, SVM transforms the data points into a higher-dimensional space
where they become linearly separable.
 Linear Kernel: For linear separability.
 Polynomial Kernel: Maps data into a polynomial space.
 Radial Basis Function (RBF) Kernel: Transforms data into a space based on

distances between data points.

Mapping 1D
data to 2D to become able to separate the two classes

In this case, the new variable y is created as a function of distance from the origin.

Mathematical Computation: SVM
Consider a binary classification problem with two classes, labeled as +1 and -1. We
have a training dataset consisting of input feature vectors X and their corresponding
class labels Y.
The equation for the linear hyperplane can be written as:

wTx+b=0wTx+b=0
Where:
 ww is the normal vector to the hyperplane (the direction perpendicular to it).
 bb is the offset or bias term, representing the distance of the hyperplane from the

origin along the normal vector ww.
Distance from a Data Point to the Hyperplane
The distance between a data point x_i and the decision boundary can be calculated
as:

di=wTxi+b∣∣w∣∣di=∣∣w∣∣wTxi+b
where ||w|| represents the Euclidean norm of the weight vector w. Euclidean norm of
the normal vector W
Linear SVM Classifier
Distance from a Data Point to the Hyperplane:

y^={1: wTx+b≥00: wTx+b <0y^={10: wTx+b≥0: wTx+b <0
Where y^y^ is the predicted label of a data point.
Optimization Problem for SVM
For a linearly separable dataset, the goal is to find the hyperplane that maximizes
the margin between the two classes while ensuring that all data points are correctly
classified. This leads to the following optimization problem:

minimizew,b12∥w∥2w,bminimize21∥w∥2
Subject to the constraint:

yi(wTxi+b)≥1fori=1,2,3,⋯,myi(wTxi+b)≥1fori=1,2,3,⋯,m

Where:
 yiyi is the class label (+1 or -1) for each training instance.
 xixi is the feature vector for the ii-th training instance.
 mm is the total number of training instances.
The condition yi(wTxi+b)≥1yi(wTxi+b)≥1 ensures that each data point is correctly
classified and lies outside the margin.
Soft Margin Linear SVM Classifier
In the presence of outliers or non-separable data, the SVM allows some
misclassification by introducing slack variables ζiζi. The optimization problem is
modified as:

minimize w,b12∥w∥2+C∑i=1mζiw,bminimize 21∥w∥2+C∑i=1mζi
Subject to the constraints:

yi(wTxi+b)≥1−ζiandζi≥0for i=1,2,…,myi(wTxi+b)≥1−ζiandζi≥0for i=1,2,…,m
Where:
 CC is a regularization parameter that controls the trade-off between margin

maximization and penalty for misclassifications.
 ζiζi are slack variables that represent the degree of violation of the margin by each

data point.
Dual Problem for SVM
The dual problem involves maximizing the Lagrange multipliers associated with the
support vectors. This transformation allows solving the SVM optimization using
kernel functions for non-linear classification.
The dual objective function is given by:

maximize α12∑i=1m∑j=1mαiαjtitjK(xi,xj)−∑i=1mαiαmaximize 21∑i=1m∑j=1mαiαjtitjK(xi,xj

)−∑i=1mαi
Where:
 αiαi are the Lagrange multipliers associated with the ii-th training sample.
 titi is the class label for the iii-th training sample (+1+1+1 or −1-1−1).
 K(xi,xj)K(xi,xj) is the kernel function that computes the similarity between data

points xixi and xjxj. The kernel allows SVM to handle non-linear classification
problems by mapping data into a higher-dimensional space.

The dual formulation optimizes the Lagrange multipliers αiαi, and the support vectors
are those training samples where αi>0αi>0.
SVM Decision Boundary
Once the dual problem is solved, the decision boundary is given by:

w=∑i=1mαitiK(xi,x)+bw=∑i=1mαitiK(xi,x)+b
Where ww is the weight vector, xx is the test data point, and bb is the bias term.
Finally, the bias term bb is determined by the support vectors, which satisfy:

ti(wTxi−b)=1⇒b=wTxi−titi(wTxi−b)=1⇒b=wTxi−ti
Where xixi is any support vector.
This completes the mathematical framework of the Support Vector Machine
algorithm, which allows for both linear and non-linear classification using the dual
problem and kernel trick.

Types of Support Vector Machine
Based on the nature of the decision boundary, Support Vector Machines (SVM) can
be divided into two main parts:
 Linear SVM: Linear SVMs use a linear decision boundary to separate the data

points of different classes. When the data can be precisely linearly separated,
linear SVMs are very suitable. This means that a single straight line (in 2D) or a
hyperplane (in higher dimensions) can entirely divide the data points into their

respective classes. A hyperplane that maximizes the margin between the classes
is the decision boundary.

 Non-Linear SVM: Non-Linear SVM can be used to classify data when it cannot
be separated into two classes by a straight line (in the case of 2D). By using
kernel functions, nonlinear SVMs can handle nonlinearly separable data. The
original input data is transformed by these kernel functions into a higher-
dimensional feature space, where the data points can be linearly separated. A
linear SVM is used to locate a nonlinear decision boundary in this modified
space.

Implementing SVM Algorithm in Python
Predict if cancer is Benign or malignant. Using historical data about patients
diagnosed with cancer enables doctors to differentiate malignant cases and benign
ones are given independent attributes.
 Load the breast cancer dataset from sklearn.datasets
 Separate input features and target variables.
 Build and train the SVM classifiers using RBF kernel.
 Plot the scatter plot of the input features.
Load the important packages
from sklearn.datasets import load_breast_cancer
import matplotlib.pyplot as plt
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.svm import SVC

Load the datasets
cancer = load_breast_cancer()
X = cancer.data[:, :2]
y = cancer.target

#Build the model
svm = SVC(kernel="rbf", gamma=0.5, C=1.0)
Trained the model
svm.fit(X, y)

Plot Decision Boundary
DecisionBoundaryDisplay.from_estimator(
 svm,
 X,
 response_method="predict",
 cmap=plt.cm.Spectral,
 alpha=0.8,
 xlabel=cancer.feature_names[0],
 ylabel=cancer.feature_names[1],
)

Scatter plot
plt.scatter(X[:, 0], X[:, 1],
 c=y,
 s=20, edgecolors="k")
plt.show()
Output:

Breast Cancer Classifications with SVM RBF kernel

Advantages of Support Vector Machine (SVM)
1. High-Dimensional Performance: SVM excels in high-dimensional spaces,

making it suitable for image classification and gene expression analysis.
2. Nonlinear Capability: Utilizing kernel functions like RBF and polynomial, SVM

effectively handles nonlinear relationships.
3. Outlier Resilience: The soft margin feature allows SVM to ignore outliers,

enhancing robustness in spam detection and anomaly detection.
4. Binary and Multiclass Support: SVM is effective for both binary

classification and multiclass classification, suitable for applications in text
classification.

5. Memory Efficiency: SVM focuses on support vectors, making it memory
efficient compared to other algorithms.

Disadvantages of Support Vector Machine (SVM)
1. Slow Training: SVM can be slow for large datasets, affecting performance

in SVM in data mining tasks.
2. Parameter Tuning Difficulty: Selecting the right kernel and adjusting

parameters like C requires careful tuning, impacting SVM algorithms.
3. Noise Sensitivity: SVM struggles with noisy datasets and overlapping classes,

limiting effectiveness in real-world scenarios.
4. Limited Interpretability: The complexity of the hyperplane in higher dimensions

makes SVM less interpretable than other models.
5. Feature Scaling Sensitivity: Proper feature scaling is essential; otherwise,

SVM models may perform poorly.

KERNEL TRICK

The kernel trick is a powerful technique in machine learning that allows linear models to be
applied to nonlinear problems by implicitly mapping data into a higher-dimensional feature
space. This mapping is achieved using a kernel function, which calculates the dot product
between two data points in the higher-dimensional space without explicitly calculating the
coordinates. The kernel trick is particularly useful in Support Vector Machines (SVMs) to
handle non-linear data.

Here's a more detailed explanation:

 Implicit Mapping:

The kernel trick avoids explicitly calculating the transformation of data into a higher-
dimensional space, which can be computationally expensive. Instead, it uses a kernel
function to calculate the dot product between points in the higher-dimensional space.

 Kernel Functions:

Different kernel functions can be used, such as polynomial, radial basis function (RBF), or
sigmoid kernels, each offering different nonlinear transformations.

 Linear Separability:

By implicitly mapping data into a higher-dimensional space, the kernel trick enables linear
classifiers to find separating hyperplanes that would not be possible in the original, lower-
dimensional space.

 Computational Efficiency:

The kernel trick provides a way to perform computations in the higher-dimensional space
without needing to explicitly represent the transformed data, making it computationally
efficient.

 Applications:
The kernel trick is widely used in various machine learning applications, including
classification, regression, dimensionality reduction, and clustering.

Logistic Regression

What is Logistic Regression?
Logistic regression is a supervised machine learning algorithm used for classification
tasks where the goal is to predict the probability that an instance belongs to a given class or
not. Logistic regression is a statistical algorithm which analyze the relationship between two
data factors. The article explores the fundamentals of logistic regression, it's types and
implementations.
Logistic regression is used for binary classification where we use sigmoid function, that takes
input as independent variables and produces a probability value between 0 and 1.
For example, we have two classes Class 0 and Class 1 if the value of the logistic function for
an input is greater than 0.5 (threshold value) then it belongs to Class 1 otherwise it belongs to
Class 0. It's referred to as regression because it is the extension of linear regression but is
mainly used for classification problems.
Key Points:
 Logistic regression predicts the output of a categorical dependent variable. Therefore, the

outcome must be a categorical or discrete value.
 It can be either Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value

as 0 and 1, it gives the probabilistic values which lie between 0 and 1.
 In Logistic regression, instead of fitting a regression line, we fit an "S" shaped logistic

function, which predicts two maximum values (0 or 1).
Types of Logistic Regression
On the basis of the categories, Logistic Regression can be classified into three types:
1. Binomial: In binomial Logistic regression, there can be only two possible types of the

dependent variables, such as 0 or 1, Pass or Fail, etc.
2. Multinomial: In multinomial Logistic regression, there can be 3 or more possible

unordered types of the dependent variable, such as "cat", "dogs", or "sheep"
3. Ordinal: In ordinal Logistic regression, there can be 3 or more possible ordered types of

dependent variables, such as "low", "Medium", or "High".
Assumptions of Logistic Regression
We will explore the assumptions of logistic regression as understanding these assumptions is
important to ensure that we are using appropriate application of the model. The assumption
include:
1. Independent observations: Each observation is independent of the other. meaning there is

no correlation between any input variables.
2. Binary dependent variables: It takes the assumption that the dependent variable must be

binary or dichotomous, meaning it can take only two values. For more than two
categories SoftMax functions are used.

3. Linearity relationship between independent variables and log odds: The relationship
between the independent variables and the log odds of the dependent variable should be
linear.

4. No outliers: There should be no outliers in the dataset.
5. Large sample size: The sample size is sufficiently large
Understanding Sigmoid Function
So far, we've covered the basics of logistic regression, but now let's focus on the most
important function that forms the core of logistic regression.
 The sigmoid function is a mathematical function used to map the predicted values to

probabilities.

 It maps any real value into another value within a range of 0 and 1. The value of the
logistic regression must be between 0 and 1, which cannot go beyond this limit, so it
forms a curve like the "S" form.

 The S-form curve is called the Sigmoid function or the logistic function.
 In logistic regression, we use the concept of the threshold value, which defines the

probability of either 0 or 1. Such as values above the threshold value tends to 1, and a
value below the threshold values tends to 0.

How does Logistic Regression work?
The logistic regression model transforms the linear regression function continuous value
output into categorical value output using a sigmoid function, which maps any real-valued set
of independent variables input into a value between 0 and 1. This function is known as the
logistic function.
Let the independent input features be:

 X=[x11 ...x1mx21 ...x2m ⋮⋱ ⋮ xn1 ...xnm]X=⎣⎡x11 x21 ⋮xn1⋱ ...x1mx2m⋮ xnm⎦⎤
 and the dependent variable is Y having only binary value i.e. 0 or 1.

Y={0 if Class11 if Class2Y={01 if Class1 if Class2
then, apply the multi-linear function to the input variables X.

z=(∑i=1nwixi)+bz=(∑i=1nwixi)+b
Here xixi is the ith observation of X, wi=[w1,w2,w3,⋯,wm]wi=[w1,w2,w3,⋯,wm] is the
weights or Coefficient, and b is the bias term also known as intercept. simply this can be
represented as the dot product of weight and bias.

z=w⋅X+bz=w⋅X+b
whatever we discussed above is the linear regression.
Sigmoid Function
Now we use the sigmoid function where the input will be z and we find the probability
between 0 and 1. i.e. predicted y.

σ(z)=11+e−zσ(z)=1+e−z1

Sigmoid function
As shown above, the figure sigmoid function converts the continuous variable data into
the probability i.e. between 0 and 1.
 σ(z) σ(z) tends towards 1 as z→∞z→∞
 σ(z) σ(z) tends towards 0 as z→−∞z→−∞
 σ(z) σ(z) is always bounded between 0 and 1
where the probability of being a class can be measured as:

P(y=1)=σ(z)P(y=0)=1−σ(z)P(y=1)=σ(z)P(y=0)=1−σ(z)
Equation of Logistic Regression:
The odd is the ratio of something occurring to something not occurring. it is different from
probability as the probability is the ratio of something occurring to everything that could
possibly occur. so odd will be:

p(x)1−p(x) =ez1−p(x)p(x) =ez
Applying natural log on odd. then log odd will be:
log [p(x)1−p(x)]=zlog [p(x)1−p(x)]=w⋅X+bp(x)1−p(x)=ew⋅X+b⋯Exponentiate both side
sp(x)=ew⋅X+b⋅(1−p(x))p(x)=ew⋅X+b−ew⋅X+b⋅p(x))p(x)+ew⋅X+b⋅p(x))=ew⋅X+bp(x)(1+ew⋅

X+b)=ew⋅X+bp(x)=ew⋅X+b1+ew⋅X+blog[1−p(x)p(x)]log[1−p(x)p(x)]1−p(x)p(x)
p(x)p(x)p(x)+ew⋅X+b⋅p(x))p(x)(1+ew⋅X+b)p(x)

=z=w⋅X+b=ew⋅X+b⋯Exponentiate both sides=ew⋅X+b⋅(1−p(x))=ew⋅X+b−ew⋅X+b⋅p(x))=ew⋅X
+b=ew⋅X+b=1+ew⋅X+bew⋅X+b

then the final logistic regression equation will be:
p(X;b,w)=ew⋅X+b1+ew⋅X+b=11+e−w⋅X+bp(X;b,w)=1+ew⋅X+bew⋅X+b=1+e−w⋅X+b1

Likelihood Function for Logistic Regression
The predicted probabilities will be:
 for y=1 The predicted probabilities will be: p(X;b,w) = p(x)
 for y = 0 The predicted probabilities will be: 1-p(X;b,w) = 1-p(x)

L(b,w)=∏i=1np(xi)yi(1−p(xi))1−yiL(b,w)=∏i=1np(xi)yi(1−p(xi))1−yi
Taking natural logs on both sides
log (L(b,w))=∑i=1nyilog p(xi)+(1−yi)log (1−p(xi))=∑i=1nyilog p(xi)+log (1−p(xi))
−yilog (1−p(xi))=∑i=1nlog (1−p(xi))+∑i=1nyilog p(xi)1−p(xi=∑i=1n−log 1−e−(w⋅xi

+b)+∑i=1nyi(w⋅xi+b)=∑i=1n−log 1+ew⋅xi+b+∑i=1nyi(w⋅xi+b)log(L(b,w))=i=1∑nyi
logp(xi)+(1−yi)log(1−p(xi))=i=1∑nyilogp(xi)+log(1−p(xi))−yilog(1−p(xi))=i=1∑nlog(1−p(xi
))+i=1∑nyilog1−p(xip(xi)=i=1∑n−log1−e−(w⋅xi+b)+i=1∑nyi(w⋅xi+b)=i=1∑n−log1+ew⋅xi

+b+i=1∑nyi(w⋅xi+b)
Gradient of the log-likelihood function
To find the maximum likelihood estimates, we differentiate w.r.t w,
∂J(l(b,w)∂wj=−∑i=nn11+ew⋅xi+bew⋅xi+bxij+∑i=1nyixij=−∑i=nnp(xi;b,w)xij+∑i=1nyixij=
∑i=nn(yi−p(xi;b,w))xij∂wj∂J(l(b,w)=−i=n∑n1+ew⋅xi+b1ew⋅xi+bxij+i=1∑nyixij=−i=n∑np(xi

;b,w)xij+i=1∑nyixij=i=n∑n(yi−p(xi;b,w))xij
Terminologies involved in Logistic Regression
Here are some common terms involved in logistic regression:
 Independent variables: The input characteristics or predictor factors applied to the

dependent variable's predictions.
 Dependent variable: The target variable in a logistic regression model, which we are

trying to predict.
 Logistic function: The formula used to represent how the independent and dependent

variables relate to one another. The logistic function transforms the input variables into a
probability value between 0 and 1, which represents the likelihood of the dependent
variable being 1 or 0.

 Odds: It is the ratio of something occurring to something not occurring. it is different
from probability as the probability is the ratio of something occurring to everything that
could possibly occur.

 Log-odds: The log-odds, also known as the logit function, is the natural logarithm of the
odds. In logistic regression, the log odds of the dependent variable are modeled as a linear
combination of the independent variables and the intercept.

 Coefficient: The logistic regression model's estimated parameters, show how the
independent and dependent variables relate to one another.

 Intercept: A constant term in the logistic regression model, which represents the log odds
when all independent variables are equal to zero.

 Maximum likelihood estimation: The method used to estimate the coefficients of the
logistic regression model, which maximizes the likelihood of observing the data given the
model

Code Implementation for Logistic Regression
So far, we've covered the basics of logistic regression with all the theoritical concepts, but
now let's focus on the hands on code implementation part which makes you understand the

logistic regression more clearly. We will dicuss Binomial Logistic
regression and Multinomial Logistic Regression one by one.
Binomial Logistic regression:
Target variable can have only 2 possible types: “0” or “1” which may represent “win” vs
“loss”, “pass” vs “fail”, “dead” vs “alive”, etc., in this case, sigmoid functions are used,
which is already discussed above.
Importing necessary libraries based on the requirement of model. This Python code shows
how to use the breast cancer dataset to implement a Logistic Regression model for
classification.
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

#load the following dataset
X, y = load_breast_cancer(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=23)

clf = LogisticRegression(max_iter=10000, random_state=0)
clf.fit(X_train, y_train)

acc = accuracy_score(y_test, clf.predict(X_test)) * 100
print(f"Logistic Regression model accuracy: {acc:.2f}%")
Output:
Logistic Regression model accuracy (in %): 96.49%
This code loads the breast cancer dataset from scikit-learn, splits it into training and testing
sets, and then trains a Logistic Regression model on the training data. The model is used to
predict the labels for the test data, and the accuracy of these predictions is calculated by
comparing the predicted values with the actual labels from the test set. Finally, the accuracy
is printed as a percentage.
Multinomial Logistic Regression:
Target variable can have 3 or more possible types which are not ordered (i.e. types have no
quantitative significance) like “disease A” vs “disease B” vs “disease C”.
In this case, the softmax function is used in place of the sigmoid function. Softmax
function for K classes will be:

softmax(zi)=ezi∑j=1Kezjsoftmax(zi)=∑j=1Kezjezi
Here, K represents the number of elements in the vector z, and i, j iterates over all the
elements in the vector.
Then the probability for class c will be:

P(Y=c∣X→=x)=ewc⋅x+bc∑k=1Kewk⋅x+bkP(Y=c∣X=x)=∑k=1Kewk⋅x+bkewc⋅x+bc
In Multinomial Logistic Regression, the output variable can have more than two possible
discrete outputs. Consider the Digit Dataset.
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model, metrics

digits = datasets.load_digits()

X = digits.data
y = digits.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1)

reg = linear_model.LogisticRegression(max_iter=10000, random_state=0)
reg.fit(X_train, y_train)

y_pred = reg.predict(X_test)

print(f"Logistic Regression model accuracy: {metrics.accuracy_score(y_test, y_pred) *
100:.2f}%")
Output:
Logistic Regression model accuracy(in %): 96.66%
How to Evaluate Logistic Regression Model?
So far, we've covered the implementation of logistic regression. Now, let's dive into the
evaluation of logistic regression and understand why it's important
Evaluating the model helps us assess the model's performance and ensure it generalizes well
to new data
We can evaluate the logistic regression model using the following metrics:
 Accuracy: Accuracy provides the proportion of correctly classified instances.

Accuracy=TruePositives+TrueNegativesTotalAccuracy=TotalTruePositives+TrueNegativ
es

 Precision: Precision focuses on the accuracy of positive predictions.
Precision=TruePositivesTruePositives+FalsePositivesPrecision=TruePositives+FalsePosi
tivesTruePositives

 Recall (Sensitivity or True Positive Rate): Recall measures the proportion of correctly
predicted positive instances among all actual positive instances.
Recall=TruePositivesTruePositives+FalseNegativesRecall=TruePositives+FalseNegative
sTruePositives

 F1 Score: F1 score is the harmonic mean of precision and recall.
F1Score=2∗Precision∗RecallPrecision+RecallF1Score=2∗Precision+RecallPrecision∗Re
call

 Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The ROC
curve plots the true positive rate against the false positive rate at various
thresholds. AUC-ROC measures the area under this curve, providing an aggregate
measure of a model's performance across different classification thresholds.

 Area Under the Precision-Recall Curve (AUC-PR): Similar to AUC-ROC, AUC-
PR measures the area under the precision-recall curve, providing a summary of a model's
performance across different precision-recall trade-offs.

Differences Between Linear and Logistic Regression
Now lets dive into the key differences of Linear Regression and Logistic Regression and
evaluate that how they are different from each other.
The difference between linear regression and logistic regression is that linear regression
output is the continuous value that can be anything while logistic regression predicts the
probability that an instance belongs to a given class or not.

Linear Regression Logistic Regression

Linear regression is used to
predict the continuous dependent

Logistic regression is used to
predict the categorical dependent

Linear Regression Logistic Regression

variable using a given set of
independent variables.

variable using a given set of
independent variables.

Linear regression is used for
solving regression problem.

It is used for solving
classification problems.

In this we predict the value of
continuous variables

In this we predict values of
categorical variables

In this we find best fit line. In this we find S-Curve.

Least square estimation method
is used for estimation of

accuracy.

Maximum likelihood estimation
method is used for Estimation of

accuracy.

The output must be continuous
value, such as price, age, etc.

Output must be categorical value
such as 0 or 1, Yes or no, etc.

It required linear relationship
between dependent and
independent variables.

It not required linear
relationship.

There may be collinearity
between the independent

variables.

There should be little to no
collinearity between independent

variables.

Linear Regression in Machine learning

Linear regression is a type of supervised machine-learning algorithm that learns from
the labelled datasets and maps the data points with most optimized linear functions which can
be used for prediction on new datasets. It assumes that there is a linear relationship between
the input and output, meaning the output changes at a constant rate as the input changes. This
relationship is represented by a straight line.
For example We want to predict a student's exam score based on how many hours they
studied. We observe that as students study more hours, their scores go up. In the example of
predicting exam scores based on hours studied. Here
 Independent variable (input): Hours studied because it's the factor we control or observe.
 Dependent variable (output): Exam score because it depends on how many hours were

studied.
We use the independent variable to predict the dependent variable.
Why Linear Regression is Important?
Here’s why linear regression is important:

 Simplicity and Interpretability: It’s easy to understand and interpret, making it a starting
point for learning about machine learning.

 Predictive Ability: Helps predict future outcomes based on past data, making it useful in
various fields like finance, healthcare and marketing.

 Basis for Other Models: Many advanced algorithms, like logistic regression or neural
networks, build on the concepts of linear regression.

 Efficiency: It’s computationally efficient and works well for problems with a linear
relationship.

 Widely Used: It’s one of the most widely used techniques in both statistics and machine
learning for regression tasks.

 Analysis: It provides insights into relationships between variables (e.g., how much one
variable influences another).

Best Fit Line in Linear Regression
In linear regression, the best-fit line is the straight line that most accurately represents the
relationship between the independent variable (input) and the dependent variable (output). It
is the line that minimizes the difference between the actual data points and the predicted
values from the model.
1. Goal of the Best-Fit Line
The goal of linear regression is to find a straight line that minimizes the error (the difference)
between the observed data points and the predicted values. This line helps us predict the
dependent variable for new, unseen data.

Linear
Regression

Here Y is called a dependent or target variable and X is called an independent variable also
known as the predictor of Y. There are many types of functions or modules that can be used
for regression. A linear function is the simplest type of function. Here, X may be a single
feature or multiple features representing the problem.
2. Equation of the Best-Fit Line
For simple linear regression (with one independent variable), the best-fit line is represented
by the equation
y=mx+by=mx+b
Where:

 y is the predicted value (dependent variable)
 x is the input (independent variable)
 m is the slope of the line (how much y changes when x changes)
 b is the intercept (the value of y when x = 0)
The best-fit line will be the one that optimizes the values of m (slope) and b (intercept) so that
the predicted y values are as close as possible to the actual data points.
3. Minimizing the Error: The Least Squares Method
To find the best-fit line, we use a method called Least Squares. The idea behind this method
is to minimize the sum of squared differences between the actual values (data points) and the
predicted values from the line. These differences are called residuals.
The formula for residuals is:
Residual=yᵢ−y^ᵢResidual=yᵢ−y^ᵢ
Where:
 yᵢyᵢ is the actual observed value
 y^ᵢy^ᵢ is the predicted value from the line for that xᵢxᵢ
The least squares method minimizes the sum of the squared residuals:
Sumofsquarederrors(SSE)=Σ(yᵢ−y^ᵢ)²Sumofsquarederrors(SSE)=Σ(yᵢ−y^ᵢ)²
This method ensures that the line best represents the data, where the sum of the squared
differences between the predicted values and actual values is as small as possible.
4. Interpretation of the Best-Fit Line
 Slope (m): The slope of the best-fit line indicates how much the dependent variable (y)

changes with each unit change in the independent variable (x). For example, if the slope
is 5, it means that for every 1-unit increase in x, the value of y increases by 5 units.

 Intercept (b): The intercept represents the predicted value of y when x = 0. It’s the point
where the line crosses the y-axis.

In linear regression some hypothesis are made to ensure reliability of the model's results.
Limitations
 Assumes Linearity: The method assumes the relationship between the variables is linear.

If the relationship is non-linear, linear regression might not work well.
 Sensitivity to Outliers: Outliers can significantly affect the slope and intercept, skewing

the best-fit line.
Hypothesis function in Linear Regression
In linear regression, the hypothesis function is the equation used to make predictions about
the dependent variable based on the independent variables. It represents the relationship
between the input features and the target output.
For a simple case with one independent variable, the hypothesis function is:
h(x)=β₀+β₁xh(x)=β₀+β₁x
Where:
 h(x)(ory^)h(x)(ory^) is the predicted value of the dependent variable (y).
 x is the independent variable.
 β₀β₀ is the intercept, representing the value of y when x is 0.
 β₁β₁ is the slope, indicating how much y changes for each unit change in x.
For multiple linear regression (with more than one independent variable), the hypothesis
function expands to:
h(x₁,x₂,...,xₖ)=β₀+β₁x₁+β₂x₂+...+βₖxₖh(x₁,x₂,...,xₖ)=β₀+β₁x₁+β₂x₂+...+βₖxₖ
Where:
 x₁,x₂,...,xₖx₁,x₂,...,xₖ are the independent variables.
 β₀β₀ is the intercept.
 β₁,β₂,...,βₖβ₁,β₂,...,βₖ are the coefficients, representing the influence of each respective

independent variable on the predicted output.

Assumptions of the Linear Regression
1. Linearity: The relationship between inputs (X) and the output (Y) is a straight line.

Linearity

2. Independence of Errors: The errors in predictions should not affect each other.
3. Constant Variance (Homoscedasticity): The errors should have equal spread across all

values of the input. If the spread changes (like fans out or shrinks), it's called
heteroscedasticity and it's a problem for the model.

Homoscedasticity

4. Normality of Errors: The errors should follow a normal (bell-shaped) distribution.
5. No Multicollinearity(for multiple regression): Input variables shouldn’t be too closely

related to each other.
6. No Autocorrelation: Errors shouldn't show repeating patterns, especially in time-based

data.
7. Additivity: The total effect on Y is just the sum of effects from each X, no mixing or

interaction between them.'
To understand Multicollinearity in detail refer to article: Multicollinearity.
Types of Linear Regression
When there is only one independent feature it is known as Simple Linear
Regression or Univariate Linear Regression and when there are more than one feature it is
known as Multiple Linear Regression orMultivariate Regression.
1. Simple Linear Regression
Simple linear regression is used when we want to predict a target value (dependent variable)
using only one input feature (independent variable). It assumes a straight-line relationship
between the two.
Formula:

y^=θ0+θ1xy^=θ0+θ1x
Where:
 y^y^ is the predicted value
 x is the input (independent variable)
 θ0θ0 is the intercept (value of y^y^ when x=0)
 θ1θ1 is the slope or coefficient (how much y^y^ changes with one unit of x)
Example:
Predicting a person’s salary (y) based on their years of experience (x).
2. Multiple Linear Regression
Multiple linear regression involves more than one independent variable and one dependent
variable. The equation for multiple linear regression is:
y^=θ0+θ1x1+θ2x2+⋯+θnxny^=θ0+θ1x1+θ2x2+⋯+θnxn
where:
 y^y^ is the predicted value
 x1,x2,…,xnx1,x2,…,xn are the independent variables
 θ1,θ2,…,θnθ1,θ2,…,θn are the coefficients (weights) corresponding to each predictor.
 θ0θ0 is the intercept.
The goal of the algorithm is to find the best Fit Line equation that can predict the values
based on the independent variables.
In regression set of records are present with X and Y values and these values are used to learn
a function so if you want to predict Y from an unknown X this learned function can be used.
In regression we have to find the value of Y, So, a function is required that predicts
continuous Y in the case of regression given X as independent features.
Use Case of Multiple Linear Regression
Multiple linear regression allows us to analyze relationship between multiple independent
variables and a single dependent variable. Here are some use cases:
 Real Estate Pricing: In real estate MLR is used to predict property prices based on

multiple factors such as location, size, number of bedrooms, etc. This helps buyers and
sellers understand market trends and set competitive prices.

 Financial Forecasting: Financial analysts use MLR to predict stock prices or economic
indicators based on multiple influencing factors such as interest rates, inflation rates and
market trends. This enables better investment strategies and risk management24.

 Agricultural Yield Prediction: Farmers can use MLR to estimate crop yields based on
several variables like rainfall, temperature, soil quality and fertilizer usage. This
information helps in planning agricultural practices for optimal productivity

 E-commerce Sales Analysis: An e-commerce company can utilize MLR to assess how
various factors such as product price, marketing promotions and seasonal trends impact
sales.

Now that we have understood about linear regression, its assumption and its type now we will
learn how to make a linear regression model.
Cost function for Linear Regression
As we have discussed earlier about best fit line in linear regression, its not easy to get it easily
in real life cases so we need to calculate errors that affects it. These errors need to be
calculated to mitigate them. The difference between the predicted value Y^ Y^ and the
true value Y and it is called cost function or the loss function.
In Linear Regression, the Mean Squared Error (MSE) cost function is employed, which
calculates the average of the squared errors between the predicted values y^iy^i and the actual
values yiyi. The purpose is to determine the optimal values for the intercept θ1θ1 and the
coefficient of the input feature θ2θ2 providing the best-fit line for the given data points. The
linear equation expressing this relationship is y^i=θ1+θ2xiy^i=θ1+θ2xi.

MSE function can be calculated as:
Cost function(J)=1n∑ni(yi^−yi)2Cost function(J)=n1∑ni(yi^−yi)2
Utilizing the MSE function, the iterative process of gradient descent is applied to update the
values of \θ1&θ2θ1&θ2. This ensures that the MSE value converges to the global minima,
signifying the most accurate fit of the linear regression line to the dataset.
This process involves continuously adjusting the parameters \(\theta_1\) and \(\theta_2\)
based on the gradients calculated from the MSE. The final result is a linear regression line
that minimizes the overall squared differences between the predicted and actual values,
providing an optimal representation of the underlying relationship in the data.
Now we have calculated loss function we need to optimize model to mtigate this error and it
is done through gradient descent.
Gradient Descent for Linear Regression
A linear regression model can be trained using the optimization algorithm gradient descent by
iteratively modifying the model's parameters to reduce the mean squared error (MSE) of the
model on a training dataset. To update θ1 and θ2 values in order to reduce the Cost function
(minimizing RMSE value) and achieve the best-fit line the model uses Gradient Descent. The
idea is to start with random θ1 and θ2 values and then iteratively update the values, reaching
minimum cost.
A gradient is nothing but a derivative that defines the effects on outputs of the function with a
little bit of variation in inputs.
Let's differentiate the cost function(J) with respect to θ1 θ1
Jθ1′=∂J(θ1,θ2)∂θ1=∂∂θ1[1n(∑i=1n(y^i−yi)2)]=1n[∑i=1n2(y^i−yi)(∂∂θ1(y^i−yi))]=1n[∑i=
1n2(y^i−yi)(∂∂θ1(θ1+θ2xi−yi))]=1n[∑i=1n2(y^i−yi)(1+0−0)]=1n[∑i=1n(y^i−yi)(2)]=2n∑
i=1n(y^i−yi)Jθ1′=∂θ1∂J(θ1,θ2)=∂θ1∂[n1(i=1∑n(y^i−yi)2)]=n1[i=1∑n2(y^i−yi)(∂θ1∂(y^i
−yi))]=n1[i=1∑n2(y^i−yi)(∂θ1∂(θ1+θ2xi−yi))]=n1[i=1∑n2(y^i−yi)(1+0−0)]=n1[i=1∑n
(y^i−yi)(2)]=n2i=1∑n(y^i−yi)
Let's differentiate the cost function(J) with respect to θ2θ2
Jθ2′=∂J(θ1,θ2)∂θ2=∂∂θ2[1n(∑i=1n(y^i−yi)2)]=1n[∑i=1n2(y^i−yi)(∂∂θ2(y^i−yi))]=1n[∑i=
1n2(y^i−yi)(∂∂θ2(θ1+θ2xi−yi))]=1n[∑i=1n2(y^i−yi)(0+xi−0)]=1n[∑i=1n(y^i−yi)(2xi)]=2
n∑i=1n(y^i−yi)⋅xiJθ2′=∂θ2∂J(θ1,θ2)=∂θ2∂[n1(i=1∑n(y^i−yi)2)]=n1[i=1∑n2(y^i−yi)(∂θ2∂
(y^i−yi))]=n1[i=1∑n2(y^i−yi)(∂θ2∂(θ1+θ2xi−yi))]=n1[i=1∑n2(y^i−yi)(0+xi−0)]=n1
[i=1∑n(y^i−yi)(2xi)]=n2i=1∑n(y^i−yi)⋅xi
Finding the coefficients of a linear equation that best fits the training data is the objective of
linear regression. By moving in the direction of the Mean Squared Error negative gradient
with respect to the coefficients, the coefficients can be changed. And the respective intercept
and coefficient of X will be if α α is the learning rate.
Gradient Descent

θ1=θ1−α(Jθ1′)=θ1−α(2n∑i=1n(y^i−yi))θ2=θ2−α(Jθ2′)=θ2−α(2n∑i=1n(y^i−yi)⋅xi)θ1=θ1
−α(Jθ1′)=θ1−α(n2i=1∑n(y^i−yi))θ2=θ2−α(Jθ2′)=θ2−α(n2i=1∑n(y^i−yi)⋅xi)
After optimizing our model, we evaluate our models accuracy to see how well it will perform
in real world scenario.
Evaluation Metrics for Linear Regression
A variety of evaluation measures can be used to determine the strength of any linear
regression model. These assessment metrics often give an indication of how well the model is
producing the observed outputs.
The most common measurements are:
1. Mean Square Error (MSE)

Mean Squared Error (MSE) is an evaluation metric that calculates the average of the squared
differences between the actual and predicted values for all the data points. The difference is
squared to ensure that negative and positive differences don't cancel each other out.
MSE=1n∑i=1n(yi−yi^)2MSE=n1∑i=1n(yi−yi)2
Here,
 n is the number of data points.
 yi is the actual or observed value for the ith data point.
 yi^yi is the predicted value for the ith data point.
MSE is a way to quantify the accuracy of a model's predictions. MSE is sensitive to outliers
as large errors contribute significantly to the overall score.
2. Mean Absolute Error (MAE)
Mean Absolute Error is an evaluation metric used to calculate the accuracy of a regression
model. MAE measures the average absolute difference between the predicted values and
actual values.
Mathematically, MAE is expressed as:
MAE=1n∑i=1n∣Yi−Yi^∣MAE=n1∑i=1n∣Yi−Yi∣
Here,
 n is the number of observations
 Yi represents the actual values.
 Yi^Yi represents the predicted values
Lower MAE value indicates better model performance. It is not sensitive to the outliers as we
consider absolute differences.
3. Root Mean Squared Error (RMSE)
The square root of the residuals' variance is the Root Mean Squared Error. It describes how
well the observed data points match the expected values, or the model's absolute fit to the
data.
In mathematical notation, it can be expressed as:
RMSE=RSSn=∑i=2n(yiactual−yipredicted)2nRMSE=nRSS=n∑i=2n(yiactual−yipredicted)2
Rather than dividing the entire number of data points in the model by the number of degrees
of freedom, one must divide the sum of the squared residuals to obtain an unbiased estimate.
Then, this figure is referred to as the Residual Standard Error (RSE).
In mathematical notation, it can be expressed as:
RMSE=RSSn=∑i=2n(yiactual−yipredicted)2(n−2)RMSE=nRSS=(n−2)∑i=2n(yiactual
−yipredicted)2
RSME is not as good of a metric as R-squared. Root Mean Squared Error can fluctuate when
the units of the variables vary since its value is dependent on the variables' units (it is not a
normalized measure).
4. Coefficient of Determination (R-squared)
R-Squared is a statistic that indicates how much variation the developed model can explain or
capture. It is always in the range of 0 to 1. In general, the better the model matches the data,
the greater the R-squared number.
In mathematical notation, it can be expressed as:
R2=1−(RSSTSS)R2=1−(TSSRSS)
 Residual sum of Squares (RSS): The sum of squares of the residual for each data point in

the plot or data is known as the residual sum of squares, or RSS. It is a measurement of
the difference between the output that was observed and what was anticipated.

RSS=∑i=1n(yi−b0−b1xi)2RSS=∑i=1n(yi−b0−b1xi)2
 Total Sum of Squares (TSS): The sum of the data points' errors from the answer variable's

mean is known as the total sum of squares, or TSS.
TSS=∑i=1n(y−yi‾)2TSS=∑i=1n(y−yi)2.

R squared metric is a measure of the proportion of variance in the dependent variable that is
explained the independent variables in the model.
5. Adjusted R-Squared Error
Adjusted R2 measures the proportion of variance in the dependent variable that is explained
by independent variables in a regression model. Adjusted R-square accounts the number of
predictors in the model and penalizes the model for including irrelevant predictors that don't
contribute significantly to explain the variance in the dependent variables.
Mathematically, adjusted R2 is expressed as:
AdjustedR2=1−((1−R2).(n−1)n−k−1)AdjustedR2=1−(n−k−1(1−R2).(n−1))
Here,
 n is the number of observations
 k is the number of predictors in the model
 R2 is coeeficient of determination
Adjusted R-square helps to prevent overfitting. It penalizes the model with additional
predictors that do not contribute significantly to explain the variance in the dependent
variable.
While evaluation metrics help us measure the performance of a model, regularization helps in
improving that performance by addressing overfitting and enhancing generalization.
Regularization Techniques for Linear Models
1. Lasso Regression (L1 Regularization)
Lasso Regression is a technique used for regularizing a linear regression model, it adds a
penalty term to the linear regression objective function to prevent overfitting.
The objective function after applying lasso regression is:
J(θ)=12m∑i=1m(yi^−yi)2+λ∑j=1n∣θj∣J(θ)=2m1∑i=1m(yi−yi)2+λ∑j=1n∣θj∣
 the first term is the least squares loss, representing the squared difference between

predicted and actual values.
 the second term is the L1 regularization term, it penalizes the sum of absolute values of

the regression coefficient θj.
2. Ridge Regression (L2 Regularization)
Ridge regression is a linear regression technique that adds a regularization term to the
standard linear objective. Again, the goal is to prevent overfitting by penalizing large
coefficient in linear regression equation. It useful when the dataset
has multicollinearity where predictor variables are highly correlated.
The objective function after applying ridge regression is:
J(θ)=12m∑i=1m(yi^−yi)2+λ∑j=1nθj2J(θ)=2m1∑i=1m(yi−yi)2+λ∑j=1nθj2
 the first term is the least squares loss, representing the squared difference between

predicted and actual values.
 the second term is the L1 regularization term, it penalizes the sum of square of values of

the regression coefficient θj.
3. Elastic Net Regression
Elastic Net Regression is a hybrid regularization technique that combines the power of both
L1 and L2 regularization in linear regression objective.
J(θ)=12m∑i=1m(yi^−yi)2+αλ∑j=1n∣θj∣+12(1−α)λ∑j=1nθj2J(θ)=2m1∑i=1m(yi−yi
)2+αλ∑j=1n∣θj∣+21(1−α)λ∑j=1nθj2
 the first term is least square loss.
 the second term is L1 regularization and third is ridge regression.
 λ is the overall regularization strength.
 α controls the mix between L1 and L2 regularization.

The linear regression line provides valuable insights into the relationship between the two
variables. It represents the best-fitting line that captures the overall trend of how a dependent
variable (Y) changes in response to variations in an independent variable (X).
 Positive Linear Regression Line: A positive linear regression line indicates a direct

relationship between the independent variable (X) and the dependent variable (Y). This
means that as the value of X increases, the value of Y also increases. The slope of a
positive linear regression line is positive, meaning that the line slants upward from left to
right.

 Negative Linear Regression Line: A negative linear regression line indicates an inverse
relationship between the independent variable (X) and the dependent variable (Y). This
means that as the value of X increases, the value of Y decreases. The slope of a negative
linear regression line is negative, meaning that the line slants downward from left to right.

Applications of Linear Regression
Linear regression is used in many different fields including finance, economics and
psychology to understand and predict the behavior of a particular variable.
For example linear regression is widely used in finance to analyze relationships and make
predictions. It can model how a company's earnings per share (EPS) influence its stock price.
If the model shows that a $1 increase in EPS results in a $15 rise in stock price, investors gain
insights into the company's valuation. Similarly, linear regression can forecast currency
values by analyzing historical exchange rates and economic indicators, helping financial
professionals make informed decisions and manage risks effectively.
Also read - Linear Regression - In Simple Words, with real-life Examples
Advantages and Disadvantages of Linear regression
Advantages of Linear Regression
 Linear regression is a relatively simple algorithm, making it easy to understand and

implement. The coefficients of the linear regression model can be interpreted as the
change in the dependent variable for a one-unit change in the independent variable,
providing insights into the relationships between variables.

 Linear regression is computationally efficient and can handle large datasets effectively. It
can be trained quickly on large datasets, making it suitable for real-time applications.

 Linear regression is relatively robust to outliers compared to other machine learning
algorithms. Outliers may have a smaller impact on the overall model performance.

 Linear regression often serves as a good baseline model for comparison with more
complex machine learning algorithms.

 Linear regression is a well-established algorithm with a rich history and is widely
available in various machine learning libraries and software packages.

Disadvantages of Linear Regression
 Linear regression assumes a linear relationship between the dependent and independent

variables. If the relationship is not linear, the model may not perform well.
 Linear regression is sensitive to multicollinearity, which occurs when there is a high

correlation between independent variables. Multicollinearity can inflate the variance of
the coefficients and lead to unstable model predictions.

 Linear regression assumes that the features are already in a suitable form for the model.
Feature engineering may be required to transform features into a format that can be
effectively used by the model.

 Linear regression is susceptible to both overfitting and underfitting. Overfitting occurs
when the model learns the training data too well and fails to generalize to unseen data.
Underfitting occurs when the model is too simple to capture the underlying relationships
in the data.

 Linear regression provides limited explanatory power for complex relationships between
variables. More advanced machine learning techniques may be necessary for deeper
insights.

Multi-Layer Perceptron Learning in
Tensorflow

Multi-Layer Perceptron (MLP) is an artificial neural network widely used for
solving classification and regression tasks.
MLP consists of fully connected dense layers that transform input data from one dimension
to another. It is called "multi-layer" because it contains an input layer, one or more hidden
layers, and an output layer. The purpose of an MLP is to model complex relationships
between inputs and outputs, making it a powerful tool for various machine learning tasks.
Pre-requisites: Neural Network, Artificial Neural Network, Perceptron
Key Components of Multi-Layer Perceptron (MLP)
 Input Layer: Each neuron (or node) in this layer corresponds to an input feature. For

instance, if you have three input features, the input layer will have three neurons.
 Hidden Layers: An MLP can have any number of hidden layers, with each layer

containing any number of nodes. These layers process the information received from
the input layer.

 Output Layer: The output layer generates the final prediction or result. If there are
multiple outputs, the output layer will have a corresponding number of neurons.

Every connection in the diagram is a representation of the fully connected nature of an
MLP. This means that every node in one layer connects to every node in the next layer. As
the data moves through the network, each layer transforms it until the final output is
generated in the output layer.
Working of Multi-Layer Perceptron
Let's delve in to the working of the multi-layer perceptron. The key mechanisms such as
forward propagation, loss function, backpropagation, and optimization.
Step 1: Forward Propagation
In forward propagation, the data flows from the input layer to the output layer, passing
through any hidden layers. Each neuron in the hidden layers processes the input as follows:
1. Weighted Sum: The neuron computes the weighted sum of the inputs:

 z=∑iwixi+bz=∑iwixi+b
o Where:

o xixi is the input feature.
o wiwi is the corresponding weight.
o bb is the bias term.

2. Activation Function: The weighted sum z is passed through an activation function to
introduce non-linearity. Common activation functions include:
 Sigmoid: σ(z)=11+e−zσ(z)=1+e−z1
 ReLU (Rectified Linear Unit): f(z)=max (0,z)f(z)=max(0,z)
 Tanh (Hyperbolic Tangent): tanh (z)=21+e−2z−1tanh(z)=1+e−2z2−1

Step 2: Loss Function
Once the network generates an output, the next step is to calculate the loss using a loss
function. In supervised learning, this compares the predicted output to the actual label.
For a classification problem, the commonly used binary cross-entropy loss function is:

L=−1N∑i=1N[yilog (y^i)+(1−yi)log (1−y^i)]L=−N1∑i=1N[yilog(y^i
)+(1−yi)log(1−y^i)]
Where:
 yiyi is the actual label.
 y^iy^i is the predicted label.
 NN is the number of samples.
For regression problems, the mean squared error (MSE) is often used:

MSE=1N∑i=1N(yi−y^i)2MSE=N1∑i=1N(yi−y^i)2
Step 3: Backpropagation
The goal of training an MLP is to minimize the loss function by adjusting the network's
weights and biases. This is achieved through backpropagation:
1. Gradient Calculation: The gradients of the loss function with respect to each weight

and bias are calculated using the chain rule of calculus.
2. Error Propagation: The error is propagated back through the network, layer by layer.
3. Gradient Descent: The network updates the weights and biases by moving in the

opposite direction of the gradient to reduce the loss: w=w−η⋅∂L∂ww=w−η⋅∂w∂L
 Where:

o ww is the weight.
o ηη is the learning rate.
o ∂L∂w∂w∂L is the gradient of the loss function with respect to the weight.

Step 4: Optimization
MLPs rely on optimization algorithms to iteratively refine the weights and biases during
training. Popular optimization methods include:
 Stochastic Gradient Descent (SGD): Updates the weights based on a single sample or

a small batch of data: w=w−η⋅∂L∂ww=w−η⋅∂w∂L
 Adam Optimizer: An extension of SGD that incorporates momentum and adaptive

learning rates for more efficient training:
o mt=β1mt−1+(1−β1)⋅gtmt=β1mt−1+(1−β1)⋅gt
o vt=β2vt−1+(1−β2)⋅gt2vt=β2vt−1+(1−β2)⋅gt2

 Here, gtgt represents the gradient at time tt, and β1,β2β1,β2 are decay rates.
Now that we are done with the theory part of multi-layer perception, let's go ahead and
implement some code in python using the TensorFlow library.
Advantages of Multi Layer Perceptron
 Versatility: MLPs can be applied to a variety of problems, both classification and

regression.
 Non-linearity: Thanks to activation functions, MLPs can model complex, non-linear

relationships in data.

 Parallel Computation: With the help of GPUs, MLPs can be trained quickly by taking
advantage of parallel computing.

Disadvantages of Multi Layer Perceptron
 Computationally Expensive: MLPs can be slow to train, especially on large datasets

with many layers.
 Prone to Overfitting: Without proper regularization techniques, MLPs can overfit the

training data, leading to poor generalization.
 Sensitivity to Data Scaling: MLPs require properly normalized or scaled data for

optimal performance.
The Multilayer Perceptron has the ability to learn complex patterns from data makes it a
valuable tool in machine learning. Whether you're working with structured data, images, or
text, understanding how MLP works can open doors to solving a wide range of problems.

Backpropagation in Neural Network

Backpropagation is also known as "Backward Propagation of Errors" and it is a

method used to train neural network . Its goal is to reduce the difference between the
model’s predicted output and the actual output by adjusting the weights and biases in the
network. In this article we will explore what backpropagation is, why it is crucial in machine
learning and how it works.
What is Backpropagation?
Backpropagation is a technique used in deep learning to train artificial neural networks
particularly feed-forward networks. It works iteratively to adjust weights and bias to
minimize the cost function.
In each epoch the model adapts these parameters reducing loss by following the error
gradient. Backpropagation often uses optimization algorithms like gradient
descent or stochastic gradient descent. The algorithm computes the gradient using the chain
rule from calculus allowing it to effectively navigate complex layers in the neural network to
minimize the cost function.

Fig(a) A simple illustration of how the backpropagation works by adjustments of weights

Backpropagation plays a critical role in how neural networks improve over time. Here's why:
1. Efficient Weight Update: It computes the gradient of the loss function with respect to

each weight using the chain rule making it possible to update weights efficiently.
2. Scalability: The backpropagation algorithm scales well to networks with multiple layers

and complex architectures making deep learning feasible.
3. Automated Learning: With backpropagation the learning process becomes automated

and the model can adjust itself to optimize its performance.
Working of Backpropagation Algorithm
The Backpropagation algorithm involves two main steps: the Forward Pass and
the Backward Pass.
How Does Forward Pass Work?
In forward pass the input data is fed into the input layer. These inputs combined with their
respective weights are passed to hidden layers. For example in a network with two hidden
layers (h1 and h2 as shown in Fig. (a)) the output from h1 serves as the input to h2. Before
applying an activation function, a bias is added to the weighted inputs.
Each hidden layer computes the weighted sum (`a`) of the inputs then applies an activation
function like ReLU (Rectified Linear Unit) to obtain the output (`o`). The output is passed
to the next layer where an activation function such as softmax converts the weighted outputs
into probabilities for classification.

The forward
pass using weights and biases

How Does the Backward Pass Work?
In the backward pass the error (the difference between the predicted and actual output) is
propagated back through the network to adjust the weights and biases. One common method
for error calculation is the Mean Squared Error (MSE) given by:
MSE=(Predicted Output−Actual Output)2MSE=(Predicted Output−Actual Output)2
Once the error is calculated the network adjusts weights using gradients which are computed
with the chain rule. These gradients indicate how much each weight and bias should be
adjusted to minimize the error in the next iteration. The backward pass continues layer by
layer ensuring that the network learns and improves its performance. The activation function
through its derivative plays a crucial role in computing these gradients during
backpropagation.
Example of Backpropagation in Machine Learning
Let’s walk through an example of backpropagation in machine learning. Assume the neurons
use the sigmoid activation function for the forward and backward pass. The target output is
0.5, and the learning rate is 1.

Example (1) of backpropagation sum

Forward Propagation
1. Initial Calculation
The weighted sum at each node is calculated using:

aj=∑(wi,j∗xi)aj=∑(wi,j∗xi)
Where,
 ajaj is the weighted sum of all the inputs and weights at each node
 wi,jwi,j represents the weights between the ithithinput and the jthjth neuron
 xixi represents the value of the ithith input
o (output): After applying the activation function to a, we get the output of the neuron:

ojoj = activation function(ajaj)
2. Sigmoid Function
The sigmoid function returns a value between 0 and 1, introducing non-linearity into the
model.

yj=11+e−ajyj=1+e−aj1

To find the outputs of y3, y4 and y5

3. Computing Outputs
At h1 node

a1=(w1,1x1)+(w2,1x2)=(0.2∗0.35)+(0.2∗0.7)=0.21a1=(w1,1x1)+(w2,1x2
)=(0.2∗0.35)+(0.2∗0.7)=0.21
Once we calculated the a1 value, we can now proceed to find the y3 value:

yj=F(aj)=11+e−a1yj=F(aj)=1+e−a11
y3=F(0.21)=11+e−0.21y3=F(0.21)=1+e−0.211
y3=0.56y3=0.56

Similarly find the values of y4 at h2 and y5 at O3
a2=(w1,2∗x1)+(w2,2∗x2)=(0.3∗0.35)+(0.3∗0.7)=0.315a2=(w1,2∗x1)+(w2,2∗x2

)=(0.3∗0.35)+(0.3∗0.7)=0.315
y4=F(0.315)=11+e−0.315y4=F(0.315)=1+e−0.3151
a3=(w1,3∗y3)+(w2,3∗y4)=(0.3∗0.57)+(0.9∗0.59)=0.702a3=(w1,3∗y3)+(w2,3∗y4

)=(0.3∗0.57)+(0.9∗0.59)=0.702
y5=F(0.702)=11+e−0.702=0.67y5=F(0.702)=1+e−0.7021=0.67

Values of y3, y4 and y5

4. Error Calculation
Our actual output is 0.5 but we obtained 0.67. To calculate the error we can use the below
formula:

Errorj=ytarget−y5Errorj=ytarget−y5
Error=0.5−0.67=−0.17Error=0.5−0.67=−0.17

Using this error value we will be backpropagating.
Backpropagation
1. Calculating Gradients
The change in each weight is calculated as:
Δwij=η×δj×OjΔwij=η×δj×Oj
Where:
 δjδj is the error term for each unit,
 ηη is the learning rate.
2. Output Unit Error
For O3:

δ5=y5(1−y5)(ytarget−y5)δ5=y5(1−y5)(ytarget−y5)
=0.67(1−0.67)(−0.17)=−0.0376=0.67(1−0.67)(−0.17)=−0.0376

3. Hidden Unit Error
For h1:

δ3=y3(1−y3)(w1,3×δ5)δ3=y3(1−y3)(w1,3×δ5)
=0.56(1−0.56)(0.3×−0.0376)=−0.0027=0.56(1−0.56)(0.3×−0.0376)=−0.00

27
For h2:

δ4=y4(1−y4)(w2,3×δ5)δ4=y4(1−y4)(w2,3×δ5)
=0.59(1−0.59)(0.9×−0.0376)=−0.0819=0.59(1−0.59)(0.9×−0.0376)=−0.0819

4. Weight Updates
For the weights from hidden to output layer:

Δw2,3=1×(−0.0376)×0.59=−0.022184Δw2,3
=1×(−0.0376)×0.59=−0.022184
New weight:

w2,3(new)=−0.022184+0.9=0.877816w2,3
(new)=−0.022184+0.9=0.877816
For weights from input to hidden layer:

Δw1,1=1×(−0.0027)×0.35=0.000945Δw1,1=1×(−0.0027)×0.35=0.000945
New weight:

w1,1(new)=0.000945+0.2=0.200945w1,1(new)=0.000945+0.2=0.200945
Similarly other weights are updated:
 w1,2(new)=0.273225w1,2(new)=0.273225
 w1,3(new)=0.086615w1,3(new)=0.086615
 w2,1(new)=0.269445w2,1(new)=0.269445
 w2,2(new)=0.18534w2,2(new)=0.18534
The updated weights are illustrated below

Through backward pass the weights are updated

After updating the weights the forward pass is repeated yielding:
 y3=0.57y3=0.57
 y4=0.56y4=0.56
 y5=0.61y5=0.61
Since y5=0.61y5=0.61 is still not the target output the process of calculating the error and
backpropagating continues until the desired output is reached.
This process demonstrates how backpropagation iteratively updates weights by minimizing
errors until the network accurately predicts the output.

Error=ytarget−y5Error=ytarget−y5
=0.5−0.61=−0.11=0.5−0.61=−0.11

This process is said to be continued until the actual output is gained by the neural network.

UNIT-V

Clustering:

The task of grouping data points based on their similarity with each other is called Clustering or Cluster

Analysis. This method is defined under the branch of unsupervised learning, which aims at gaining insights from

unlabelled data points.

Think of it as you have a dataset of customers shopping habits. Clustering can help you group customers with

similar purchasing behaviors, which can then be used for targeted marketing, product recommendations, or

customer segmentation

Types of Clustering

Broadly speaking, there are 2 types of clustering that can be performed to group similar data points:

 Hard Clustering: In this type of clustering, each data point belongs to a cluster completely or not. For example,

Let's say there are 4 data point and we have to cluster them into 2 clusters. So each data point will either belong to

cluster 1 or cluster 2.

Data Points Clusters

A C1

B C2

C C2

D C1

 Soft Clustering: In this type of clustering, instead of assigning each data point into a separate cluster, a probability

or likelihood of that point being that cluster is evaluated. For example, Let's say there are 4 data point and we have

to cluster them into 2 clusters. So we will be evaluating a probability of a data point belonging to both clusters. This

probability is calculated for all data points.

Data Points Probability of C1 Probability of C2

A 0.91 0.09

B 0.3 0.7

C 0.17 0.83

D 1 0

Partitioning of Data:

Using data partitioning techniques, a huge dataset can be divided into smaller, easier-to-manage portions. These

techniques are applied in a variety of fields, including distributed systems, parallel computing, and database

administration.

https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/what-is-a-distributed-system/

Why do we need Data Partitioning?

Data partitioning is essential for several reasons:

 Performance Improvement: By breaking data into smaller segments, systems can access only the relevant

partitions, leading to faster query execution and reduced load times.

 Scalability: As datasets grow, partitioning allows for easier management and distribution across multiple servers or

storage systems, enabling horizontal scaling.

 Efficient Resource Utilization: It helps optimize the use of resources by allowing systems to focus processing

power on specific partitions rather than the entire dataset.

 Enhanced Manageability: Smaller partitions are easier to back up, restore, and maintain, facilitating better data

governance and maintenance practices.

Methods of Data Partitioning

Below are the main methods of Data Partitioning:

1. Horizontal Partitioning/Sharding

In this technique, the dataset is divided based on rows or records. Each partition contains a subset of rows, and the

partitions are typically distributed across multiple servers or storage devices. Horizontal partitioning is often used in

distributed databases or systems to improve parallelism and enable load balancing. Horizontal Partitioning

 Advantages of Horizontal Partitioning/Sharding

o Greater scalability: Large datasets can be processed in parallel thanks to horizontal partitioning, which

divides data among multiple computers or storage devices.

o Load balancing: Data partitioning allows for the equitable distribution of workload across multiple

nodes, preventing bottlenecks and improving system performance.

o Data separation: Data isolation and fault tolerance are enhanced since each partition can be controlled

separately. Even if one partition fails, the others can continue to function.

 Disadvantages of Horizontal Partitioning/Sharding
o Join operations: Horizontal partitioning can make join operations across multiple partitions more

complex and potentially slower, as data needs to be fetched from different nodes.

o Data skew: If the distribution of data is uneven or if some partitions receive more queries or updates than

others, it can result in data skew, impacting performance and load balancing.

2. Vertical Partitioning

Vertical partitioning separates the dataset according to columns or attributes, in contrast to horizontal partitioning.

Each partition in this method has a subset of columns for every row. When certain columns are visited more frequently

than others or when different columns have different access patterns, vertical partitioning might be helpful.

https://www.geeksforgeeks.org/what-is-scalability/
https://www.geeksforgeeks.org/database-sharding-a-system-design-concept/
https://www.geeksforgeeks.org/what-is-scalability/
https://www.geeksforgeeks.org/what-is-load-balancer-system-design/

Matrix Factorization | Clustering of Patterns:

This mathematical model helps the system split an entity into multiple smaller entries, through an ordered rectangular

array of numbers or functions, to discover the features or information underlying the interactions between users and items.

his approach recommends items based on user preferences. It matches the requirement, considering the past actions of the

user, patterns detected, or any explicit feedback provided by the user, and accordingly, makes a recommendation.

Example: If you prefer the chocolate flavor and purchase a chocolate ice cream, the next time you raise a query, the

system shall scan for options related to chocolate, and then, recommend you to try a chocolate cake.

How does the System make recommendations?

Let us take an example. To purchase a car, in addition to the brand name, people check for features available in the car,

most common ones being safety, mileage, or aesthetic value. Few buyers consider the automatic gearbox, while others opt

for a combination of two or more features. To understand this concept, let us consider a two-dimensional vector with the

features of safety and mileage.

Divisive Clustering:

Divisive clustering starts with one, all-inclusive cluster. At each step, it splits a cluster until each cluster contains a

point (or there are k clusters).

Divisive Clustering Example

The following is an example of Divisive Clustering.

Distance a b c d e

a 0 2 6 10 9

b 2 0 5 9 8

c 6 5 0 4 5

d 10 9 4 0 3

e 9 8 5 3 0

Step 1. Split whole data into 2 clusters

1. Who hates other members the most? (in Average)

o aa to others: mean(2,6,10,9)=6.75 →amean(2,6,10,9)=6.75 →a goes out! (Divide aa into a new cluster)

o bb to others: mean(2,5,9,8)=6.0mean(2,5,9,8)=6.0

o cc to others: mean(6,5,4,5)=5.0mean(6,5,4,5)=5.0

o dd to others: mean(10,9,4,3)=6.5mean(10,9,4,3)=6.5

o ee to others: mean(9,8,5,3)=6.25mean(9,8,5,3)=6.25

2. Everyone in the old party asks himself: “In average, do I hate others in old party more than hating the members in the

new party?”

o If the answer is “Yes”, then he will also go to the new party.

 α=α=distance to the old party β=β=distance to the new party α−βα−β

b 5+9+83=7.335+9+83=7.33 2 >0>0 (bb also goes out!)

c 5+4+53=4.675+4+53=4.67 6 <0<0

d 9+4+33=5.339+4+33=5.33 10 <0<0

 α=α=distance to the old party β=β=distance to the new party α−βα−β

e 8+5+33=5.338+5+33=5.33 9 <0<0

3. Everyone in the old party ask himself the same question as above again and again until everyone’s got the answer “No”.

 α=α=distance to the old party β=β=distance to the new party α−βα−β

c … … <0<0

d … … <0<0

e … … <0<0

Step 2. Choose a current cluster and split it as in Step 1.

1. Choose a current cluster

o If split the cluster with the largest number of members, then the cluster {c,d,ec,d,e} will be split.

o If split the cluster with the largest diameter, then the cluster {c,d,ec,d,e} will be split.

cluster diameter

{a,b} 2

{c,d,e} 5

2. Split the chosen cluster as in Step 1.

Step 3. Repeat Step 2. until each cluster contains a point (or there are kk clusters)

Agglomerative Clustering:

Clustering is the broad set of techniques for finding subgroups or clusters on the basis of characterization of objects

within dataset such that objects with groups are similar but different from the object of other groups. Primary

guideline of clustering is that data inside a cluster should be very similar to each other but very different from those

outside clusters. There are different types of clustering techniques like Partitioning Methods, Hierarchical Methods

and Density Based Methods.

Method Characteristics

Partitioning Method

 Uses mean/mediod to represent cluster centre

 Adopts distance-based approach to refine clusters

 Finds mutually exclusive clusters of spherical / nearly spherical shape

 Effective for datasets of small - medium age

Hierarchical Method

 Creates tree-like structure through decomposition

 Uses distance between nearest / furthest points in neighbouring clusters for

refinement

 Error can't be corrected at subsequent levels

Density Based Method
 Useful for identifying arbitrarily shaped clusters

 May filter out outliers

Partitional Clustering,K-means:

Partitional clustering, also known as partitioning clustering, is a type of clustering algorithm that divides a dataset into a

predefined number of clusters (k).

Method:
1. Randomly assign K objects from the dataset(D) as cluster centres(C)

2. (Re) Assign each object to which object is most similar based upon mean values.

3. Update Cluster means, i.e., Recalculate the mean of each cluster with the updated values.

4. Repeat Step 2 until no change occurs.

Example: Suppose we want to group the visitors to a website using just their age as follows:

16, 16, 17, 20, 20, 21, 21, 22, 23, 29, 36, 41, 42, 43, 44, 45, 61, 62, 66

Initial Cluster:
K=2

Centroid(C1) = 16 [16]

Centroid(C2) = 22 [22]

Note: These two points are chosen randomly from the dataset.

Iteration-1:
C1 = 16.33 [16, 16, 17]

C2 = 37.25 [20, 20, 21, 21, 22, 23, 29, 36, 41, 42, 43, 44, 45, 61, 62, 66]

Iteration-2:
C1 = 19.55 [16, 16, 17, 20, 20, 21, 21, 22, 23]

C2 = 46.90 [29, 36, 41, 42, 43, 44, 45, 61, 62, 66]

Iteration-3:
C1 = 20.50 [16, 16, 17, 20, 20, 21, 21, 22, 23, 29]

C2 = 48.89 [36, 41, 42, 43, 44, 45, 61, 62, 66]

Iteration-4:
C1 = 20.50 [16, 16, 17, 20, 20, 21, 21, 22, 23, 29]

C2 = 48.89 [36, 41, 42, 43, 44, 45, 61, 62, 66]

No change Between Iteration 3 and 4, so we stop. Therefore we get the clusters (16-29) and (36-66) as 2 clusters we

get using K Mean Algorithm.

Expectation Maximization-Based Clustering:

Expectation-Maximization (EM) algorithm is a iterative method used in unsupervised machine learning to find

unknown values in statistical models. It helps to find the best values for unknown parameters especially when

some data is missing or hidden. It works in two steps:

 E-step (Expectation Step): Estimates missing or hidden values using current parameter estimates.

 M-step (Maximization Step): Updates model parameters to maximize the likelihood based on the estimated values

from the E-step.

This process repeats until the model reaches a stable solution as it improve accuracy with each iteration. It is widely

used in clustering like Gaussian Mixture Models and handling missing data.

Key Terms in Expectation-Maximization (EM) Algorithm

Lets understand about some of the most commonly used key terms in the Expectation-Maximization (EM) Algorithm:

 Latent Variables: These are hidden parts of the data that we can’t see directly but they still affect what we do see.

We try to guess their values using the visible data.

 Likelihood: This refers to the probability of seeing the data we have based on certain assumptions or parameters.

The EM algorithm tries to find the best parameters that make the data most likely.

 Log-Likelihood: This is just the natural log of the likelihood function. It's used to make calculations easier and

measure how well the model fits the data. The EM algorithm tries to maximize the log-likelihood to improve the

model fit.

 Maximum Likelihood Estimation (MLE): This is a method to find the best values for a model’s settings called

parameters. It looks for the values that make the data we observed most likely to happen.

 Posterior Probability: In Bayesian methods this is the probability of the parameters given both prior knowledge

and the observed data. In EM it helps estimate the "best" parameters when there's uncertainty about the data.

 Expectation (E) Step: In this step the algorithm estimates the missing or hidden information (latent variables) based

on the observed data and current parameters. It calculates probabilities for the hidden values given what we can see.

 Maximization (M) Step: This step update the parameters by finding the values that maximize the likelihood based

on the estimates from the E-step.

 Convergence: Convergence happens when the algorithm has reached a stable point. This is checked by seeing if the

changes in the model's parameters or the log-likelihood are small enough to stop the process.

Working of Expectation-Maximization (EM) Algorithm

So far, we've discussed the key terms in the EM algorithm. Now, let's dive into how the EM algorithm works. Here's a

step-by-step breakdown of the process:

https://www.geeksforgeeks.org/gaussian-mixture-model/

1. Initialization: The algorithm starts with initial parameter values and assumes the observed data comes from a

specific model.

2. E-Step (Expectation Step):
 Find the missing or hidden data based on the current parameters.

 Calculate the posterior probability of each latent variable based on the observed data.

 Compute the log-likelihood of the observed data using the current parameter estimates.

3. M-Step (Maximization Step):
 Update the model parameters by maximize the log-likelihood.

 The better the model the higher this value.

4. Convergence:
 Check if the model parameters are stable and converging.

 If the changes in log-likelihood or parameters are below a set threshold, stop. If not repeat the E-step and M-step

until convergence is reached

Fuzzy C-Means Clustering:

It is an unsupervised clustering algorithm that permits us to build a fuzzy partition from data. The algorithm depends on a
parameter m which corresponds to the degree of fuzziness of the solution. Large values of m will blur the classes and all
elements tend to belong to all clusters. The solutions of the optimization problem depend on the parameter m. That is,
different selections of m will typically lead to different partitions. Given below is a gif that shows the effect of the
selection of m obtained from the fuzzy c-means.

Steps:

1. Assume a fixed number of clusters k.

2. Initialization: Randomly initialize the k-means μk associated with the clusters and compute the probability that each

data point xi is a member of a given cluster k, P(point xi has label k|xi, k).

3. Iteration: Recalculate the centroid of the cluster as the weighted centroid given the probabilities of membership of all

data points xi:

4. Termination: Iterate until convergence or until a user-specified number of iterations has been reached (the

iteration may be trapped at some local maxima or minima).

K-Means Clustering Algorithm:
K-Means Clustering is an Unsupervised Machine Learning algorithm which groups unlabeled dataset into different clusters. It is
used to organize data into groups based on their similarity.
We are given a data set of items with certain features and values for these features like a vector. The task is to categorize those
items into groups. To achieve this we will use the K-means algorithm. 'K' in the name of the algorithm represents the number of
groups/clusters we want to classify our items into.

1.

. First we randomly initialize k points called means or cluster centroids.
2. We categorize each item to its closest mean and we update the mean's coordinates, which are the averages of the items categorized in

that cluster so far.
3. We repeat the process for a given number of iterations and at the end, we have our clusters.

The "points" mentioned above are called means because they are the mean values of the items categorized in them. To initialize these
means, we have a lot of options. An intuitive method is to initialize the means at random items in the data set. Another method is to initialize
the means at random values between the boundaries of the data set. For example for a feature x the items have values in [0,3] we will
initialize the means with values for x at [0,3].

