

Object Oriented Programming

❑ Object Oriented Programming is a programming concept that works on the principle

that objects are the most important part of your program.

❑ It allows users create the objects that they want and then create methods to handle

those objects.

❑ Manipulating these objects to get results is the goal of Object Oriented Programming.

Object Oriented Programming popularly known as OOP, is used in a modern

programming languages like Java.

Object :

Any real world entity that has state and behaviour is called as Object .(or)

Objects have state and behaviour. Example: Apple, Orange, Bat, Table, etc..

In Java, An Object is an Instance of class.

Class :

Collection of similar objects is called Class . For Example, Apple, orange, Papaya are

grouped into a class called “Fruits” where as Apple, Table, Bat cannot be grouped as

class because they are not similar groups. It is only an logical component not as

physical entity.

Inheritance :
One object acquires all properties and behaviour of the parent object.
It’s creating a parent-child relationship between two classes. It offers robust and
natural,mechanism for organizing and structure of any software.

Polymorphism :
It refers as “ one interface and many forms” (or) the ability of a variable , object or
function to take on multiple forms.
Ex:- In English, the verb “run” has a different meaning if you see it with a “laptop”,
and “a foot race”.

UNIT-1

UNIT I: Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction,
Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line
Arguments, User Input to Programs, Escape Sequences Comments, Programming Style.

Data Types, Variables, and Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types,
Type Casting, Scope of Variable Identifier, Literal Constants, Symbolic Constants, Static Variables and Methods,
Introduction to Operators, Precedence and Associativity of Operators, Assignment Operator (=), Basic
Arithmetic Operators, Increment (++) and Decrement (- -) Operators, Ternary Operator, Relational Operators,
Boolean Logical Operators, Bitwise Logical Operators.

Control Statements: Introduction, if Expression, Nested if Expressions, if–else Expressions, Switch Statement,
Iteration Statements, while Expression, do–while Loop, for Loop, Nested for Loop, Break Statement, Continue
Statement

Abstraction :
Abstraction is a process of hiding the implementation details from the user.
Ex:- while driving a car, you do not have to be concerned with its internal working.
Abstraction can be achieved using Abstract Class and Abstract Method in Java.

Encapsulation :
Encapsulation is a principle of wrapping data (Variables) and code together as a
single unit. In this OOPS concept, variables of a class are always hidden from
other classes. It can only be accessed using the methods of their current
classes.

Program Structure in Java

Elements or Tokens in Java Programs
In Java programming, elements or tokens are the smallest individual units in a program. These
tokens are the building blocks of Java code and are used to construct statements and
expressions. Here are the main types of tokens in Java

1. Keywords
2. Identifiers
3. Literals
4. seperators
5. comments
6. operators

1. Keywords

Keywords are reserved words in Java that have a predefined meaning and cannot be
used as identifiers (names for variables, classes, methods, etc.). Examples of keywords
include class, public, static, void, int, if, else, for, while, return, etc.

2. Identifiers

3. Constants or Literals

o Entities that do not change their values in a program are called Constants or Literals.

o Java Literals are classified into 5 types:

1. Integer Literals

2. Floating Point Literals

3. Character Literals

4. Boolean Literals

5. String Literals

1) Integer Literals :

➢ A whole number is called an integer. Eg: 25,27 etc…are integers

➢ Java supports 3 types of integer literals Decimal, Octal, Hexadecimal.

➢ 25, 27 are decimal integers

➢ Octal stats from 0 and followed by 0 to 7 . Eg: 0.037, 0.08656 are octal integer

➢ Hexadecimal start with OX and followed by digits 0 to 9 , A to F. Eg: 0*29, 0*2AB9

are hexadecimal integer literals .

2. Floating Point Literals :

➢ Numbers with decimal point and fractional values are called floating point

literals.

➢ They can be expressed in either standard or scientific notation.

➢ Standard notation consists of a whole number component followed by a decimal

point followed by a fractional component.

➢ A Floating point number followed by letter E (or) and a signed integer. Eg:

6.237E-35 stands for 6.237*10^-35.

➢ Floating point literals in java defaults to double precision.

3. Boolean literals :

➢ In java, Boolean literals take two values false or true.

➢ These two values are not related to any numeric value as in C or C++.

➢ The Boolean value true is not equal to 1 and false is not value is not equal to 0.

4. Character literals :

➢ Single characters in java are called character literals.

➢ In java characters belong to 16-bit character set called Unicode.

➢ Java characters literals are written within a pair of single quote. Eg: ‘a’, ‘z’,

represent character literals.

➢ To represent such characters, java provides a set of character literals called

escape sequence.

5. String Literals :
➢ A sequence of characters written within a pair of double quote is called

String Literal.

Eg: “This is String”.
➢ String Literals are to be started and ended in one line only.

4. Separators

Separators (or delimiters) are symbols that separate elements of the code. Common
separators in Java include:

• Parentheses: ()
• Braces: {}
• Brackets: []
• Semicolon: ;
• Comma: ,
• Dot: .

5. Comments

Comments are non-executable parts of the code that are used to describe or explain the
code. They are ignored by the Java compiler. There are two types of comments in Java:

• Single-line comments: Start with //
• Multi-line comments: Enclosed between /* and */

Data Types, Variables, and Operators

Data Types

➢ Every variable in java has a data type.

➢ Data type specify the size and type of values that can be stored.

➢ Data type in java under various categories are shown as:

A. Primitive data types :

Primitive data types are whose variables allows us to store only one value but they
never allow us to store multiple values of same type. This is a data type whose
variables can hold maximum one value at a time.

Example:

int a;

a=10;//valid

a=10,20,30;//invalid
B. Non Primitive Data Types or Derived

Derived data types are those which are developed by programmers by making use
of appropriate features of the language. User defined data types related variables
allow us to store multiple values either of same type or different type or both.

Example:

Student s=new Student();

Java defines some primitive types of data. They are:

Integer types

Character types

Floating type

Boolean type

Integer Types :
This type indicates byte, short, int, long which are for whole-valued signed

numbers.
The width and ranges of these integer types vary widely as shown in below :

The width and ranges of these integer types vary widely as shown in below :

Name Width Range

Long 64 -9,223,372,036,854,775,808 TO 9,223,372,036,854,775,807

Int 32 -2.147,483,648 to 2.147,483,647

Short 16 -32,768 to 32,767

Byte 8 -128 to 127

Byte :

Short :

Int :

Long :

➢ Smallest integer type is byte.

➢ This is signed 8-bit type that has range from -128 to 127

➢ It is declared by byte keyword

➢ Short is signed as 16 bit type

➢ It has range from -32,768 to 32,767

➢ It is declared by short keyword.

➢ The most commonly used type is integer type as int.

➢ It is signed as 32 bit type and has range from -2,147,483,648 to

2,147,483,647

➢ long is signed as 64-bit type and is useful for those occasions where as int.

➢ The range of long is quite large.

➢ This makes it useful when big, whole numbers are needed.

Long Int Short Byte

Integer

Floating Point Types :

➢ This group includes float and double which represented numbers in

fractional precision.

➢ They are two types of floating point types ,float and double, which

represents single and double precision numbers

Name Width in bits Approximate range

Double 64 4.9e-324 to 1.8e+308

Float 32 1.4e-045 to 3.4e+038

3. Characters :

➢ In Java, the data type is used to store characters is char.

➢ Char in java is not same as C or C++

➢ In C/C++ char is 8 bit type whereas in java char is 16-bit type

4. Boolean Type :

➢ Java has a primitive data type called Booleans, for logical values.

➢ It can have only one of two possible values true or false.

Variables

➢ A Variable is an identifier that denote s a storage location used to store a data

value . (or) Variables are the names of storage locations.

➢ Variable names may consist of alphabets, digits, the underscore and dollar

characters.

❑ They must not begin with a digit.

❑ Uppercase and Lowercase are distinct. This means that the variable Total is

not same as total or TOTAL.

❑ It should not be a keyword.

❑ White space is not allowed.

❑ Variable names can be any length.

Declaration of Variables :

➢ A Variable must be declared before it is used in the program. The general form of

declaration of a variable is

Type variable1, variable2, variable

➢ Variables are separated by commas. A declaration statement must end with a

semicolon. Some valid declarations are:

Int count;
float x, y;

Giving values to Variables :

A Variable must be given a value after it has been declared but before it is used in an

expression. This can be in two ways:

1. By using an Assignment statement

VariableName=value

2. By using a read statement

we may also give values to variables interactively through the keyword using

the readLine().

Scope of the variable :

➢ the scope refers to validity across the java program.

➢ The scope of a variable is limited to the block defined within the braces { and

}

➢ It means a variable cannot be accessed outside the scope (Or) The scope or a

particular variable is the range within a program ‘s source code in which that

variable is recognized by the compiler.

Type Conversion and Casting

Assigning a value of one type to a variable of another type is known as Type Casting.

Example:

int x=10;

byte y=(byte)x;

In Java, type casting is classified into two types.

Widening Casting (Implicit) : Process of Converting lower data type into higher data type

byte --->short --->int --->long --- >float --- >double

- --------------------------- >

Widening

Narrowing Casting (Explicitly done) : Process of converting Higher Data type into
LowerData Type

double --->float ---->long ----> int ---->short --- >byte

- ---------------------------- >

Example: Converting int to double

class Main {

public static void main(String[] args) {
// create int type variable
int num = 10;
System.out.println("The integer value: " + num);

// convert into double type
double data = num;
System.out.println("The double value: " + data);

}
}

Output
The integer value: 10
The double value: 10.0

Example: Converting double into an int

class Main {
public static void main(String[] args) {

// create double type variable
double num = 10.99;
System.out.println("The double value: " + num);

// convert into int type
int data = (int)num;
System.out.println("The integer value: " + data);

}
}
Output
The double value: 10.99
The integer value: 10

Instance variables

jk

OPERATORS AND EXPRESSIONS

❑ In java Operators are symbols that are used to perform some operations on the

operands.

❑ Combination of operands and operators are known as Expressions.

❑ Java provides, a rich set of operators to manipulate the variables. There are three

types of operators in java.

1. Unary operators

2. Binary operators

3. Ternary operators

1. UNARY OPERATORS:

In which we use one operand is called unary operator. It has two types:

1.1 Increment Unary operator

1.2 Decrement Unary operator

1.1 INCREMENT UNAY OPERATOR:

This is used to increase the value one by one. It has two types:

* Post-fix Increment operator

* pre-fix Increment operator

1.1.1 POST-FIX INCREMENT OPERATOR:

“++” symbol is used to represent Post-fix Increment operator. This symbol is used

after the operand.

In this operator, value is first assign to a variable and then incremented the value.

EX: int a , b;

a=10;

b=a++;

In the above example first the value of “a” is assign to the variable “b”, then I

Increment the value, so the value of b variable is “10”.

1.1.2 PRE-FIX INCREMENT OPERATOR:

“++” symbol is used to represent Pre-Fix operator, this symbol is used after

the operand. In this operator value is incremented first and then assigned to a

variable.

EX: int a,b;

a=10;

b=++a;

In the above example first the increment is done then the value of “a”

variable is assigned to the variable “b”, so the value of “b” variable is “11”.

1.2 DECREMENT UNARY OPERATOR:

“-” symbol is used to decrease the value by one. It has two types:

1. Post-fix decrement operator

2. pre-fix decrement operator

1.2.1 POST_FIX DECREMENT OPEATOR:

“-” symbol is used to represent post-fix decrement operator, this symbol is

used after the operand. In this operator, value is first assigned to a variable and then

decrement the value.

EX: int a , b;

a=10;

b=a--;

In the above example first the value of “a” is assign to the variable ” b”,

then decrement the value. So the value of “b” variable is “10”.

1.2.2 PRE-FIX DECREMENT OPERATOR:

“-” Symbol is used to represent the pre-fix decrement operator. This symbol is
used after the operand. In this operator, value is decremented first and then
decremented value is used in expression.

EX: int a,b;

a=10;

b=--a;

In the above example first the value of “a” is decrement then assign to the
variable “b”. So the value of b variable is “9”.

2. BINARY OPERATOR:

In which we use two operand is called Binary operator. Java supports many
types of Binary operators:

* Assignment operator

* Arithmetic operator

* Logical operator

* Comparison operator

2.1 ASSIGNMENT OPERATOR:

This operator is used to assign the value. This symbol “=“ is used to assign
the value .

EX: int a=12;

2.2 ARITHMETIC OPERATOR:

This operator is used to perform mathematical operand. Arithmetic operator
are:

 Operators Description Use

1. Additional
operator (“+”) :

Used to add the value
of two operand.

a+b

2. Subtract
operator (“-“) :

Used to subtract the
value of two operand.

a-b

3. Multiply
operator (“*”) :

Used to multiply the
value of two operand.

a*b

4. Division
operator (“/”) :

Used to divide the
value of two operand.

a/b

5. Modulus
operator(“%”) :

Used returns the
remainder of a division
operation.

a%b

LOGICAL OPERATOR:

The logical operator ||(conditional-OR),&&(conditional-AND),!(conditional-NOT)

operates on boolean expressions, here’s how they work:

LOGICAL NOT OPERATOR:

➢ Logical NOT operator is used to reverse the logical state of its operand. If a condition

is true then

logical NOT operator will make false. If a condition is false then Logical NOT

operator will make true.

➢ Then NOT operator is probably the easiest to understand. It is simply the opposite

of what the condition says.

EX: boolean a=true;

if(!a)

System.out.println(“u r win”);

else

System.out.println(“u r not win”);

➢ In above example “if not true” is asking if the variable “a” variable is not true,

otherwise known as false.

➢ If “a” variable is false, java will displays ”u r win” “a” variable is not true , so that

code will not execute, then the else part is execute shown in output.

RELATIONAL OPERATOR:

➢ This operator is used to compare the two values, so this operator is also known as

“comparison operator”

➢ Conditional symbols and their meanings for comparison operator are below:

TERNARY OPERATOR:

In ternary operator use three operands. It is also called Conditional assignment statement
because the value assigned to a variable depends upon a logical expression.

SYNTAX:

EX:

variable=(test expression)?Expression 1: Expression 2

c=(a>b)?a:b:

c= (a>b) ? a:b;

Test condition ? Expression1 : Expression2;
BITWISE OPERATORS:

Java provides 4 bitwise and 3 bit shift operators to perform bit

operations.

* | Bitwise OR

* & Bitwise AND

* - Bitwise Complement

* ^ Bitwise XOR

* << Left shift

* >> Right shift

* >>> Unsigned Right Shift

Bitwise and bit shift operators are used on integral types (byte, short, int and

long) to perform bit-level operations.

BITWISE OR:

Bitwise OR is a binary operator(operates on two operands). It’s denoted by |. The | operator

compares corresponding bits of two operands. If their of the bits is 1. If not, it gives 0.

EX:

12= 00001100

25= 00011001

Bitwise OR Operation of 12 and 25

00001100

00011001

00011101 =29(In decimal)

BITWISE AND :

Bitwise AND is a binary operator (operates on two operands). It’s denoted by &. The &

operator compares corresponding bits of two operands. If both bits are 1. If either of the bits is

not 1, it gives 0.

EX: 12= 00001100

25=00011001

Bit operation of 12 and 25

00001100

00011001

00001000 = 8(in decimal)

BITWISE COMPLIMENT :

Bitwise compliment is an unary operator(works on only one operand). It is denoted
by ~. The ~ operator inverts the bit pattern. It makes every 0 to 1, and every 1 to 0.

EX: 35= 00100011(in binary)

bitwise complement of 35

~ 00100011

11011100 = 220(in decimal)

BITWISE XOR :

Bitwise XOR is a binary operator(operates on two operands). It’s denoted by “^” .
The operator compares corresponding bits of two operands. If corresponding bits
are different, It gives 1. If corresponding bits are same, it gives 0.

EX: 12=00001100

25=00011001

Bitwise XOR operation of 12 and 25 is:

00001100

1 00011001

00010101 =21(in decimal)

Control Statements

Causes the flow of execution to advance and branch based on changes to the state of

program.

In Java, control statements can be divided into the following three catego

1) Selection Statements

2) Iteration Statements

3) Jump Statements

1) Selection Statements

Selection statements allow you to control the f

outcome of an expression or state of a va

can be divided into the following ca

a) The if and if-else statemen

b) The if-else statemen

c) The if-else-if statement

d) The switch

The if statements :

The first contained statement (that can be a block) of an if statement only executes when

the specified condition is true. If the condition is false and there is not else keyword then

the first contained statement will be skipped and execution continues with the rest of the

program. The condition is an expression that returns a boolean value.

General form of simple if statement is

if<expression>

{

Statement-block;

}

The statement-block may be single statement or a group of statements .

if the expression is true, the statement block will be executed, otherwise the statement

block will be skipped to the statement-x.

if else statement:-

if else statement is an extension of the simple if statement. The general form is

if(expression)

{

}

Else

{

}

True-block statements

False-block statements

▪ if the test expression is true, then the true-block statements immediately following the if statement are executed. Otherwise,

the false-block statementsare executed .

▪ In either case, Either true-block or false-block will be executed, not both.

▪ In both the cases, the control is transferred subsequently to the statement-x Diagram

Nested if else statement :-

❑ A nested if is an if statement that is the target of another if or else.

❑ Nested ifs are very common in programming

❑ General form of Nested if looks like

❑ Nested if else statement is made by placing one if else in another if else statement.

❑ Nested if else statement helps to select one out of many chooses.

❑ General form of Nested if else is

if<cond1>

{

if<cond2>

{

if<cond3>

else

}

else

}

else

stmt 4

stmt3

stmt2

stmt 1

❑ In the nested if else statement, the outermost if is evaluated first.

❑ If the condition1 is false, the statement is the outermost else is evaluated and if else ends.

❑ If the conditon1 is true, the control goes to execute the next inner if statement.

❑ If conditon2 is false, statement2 is executed otherwise conditon3 is evaluated

❑ If condition3 is false statement3 is executed. Otherwise statement is executed.

else if ladder:-

❑ A common programming construct that is based a sequence of nested is based upon a
sequence of nested ifs is the if else if ladder.

❑ • General form of if else ladder

if<condition>

stmt

else if<condition>

stmt;

else if<condition>

stmt;

else

stmt;

❑ The if statements are Executed from the top down. As soon as one of the conditions

controlling the if is true, the stmt associated with that if is Executed, and the rest of the
ladder is bypassed.

❑ If none of the condition is true, then the final else stmt will be executed.

❑ The final else acts as a default condition; i.e if all other conditional tests fail, then the last
else stmt is performed.

❑ If there is no final else and all other condition are false.

Switch statement:-

• The switch statement helps to select one out of many chooses.

• It often provides a better alternative than a large d=series of if else if statements

• General form of switch statement is

Switch(expression)

{

Case value 1:stmt1;

Break;

Case value 2:stmt2;

Break;

.

.

Case value N: stmt N;

Break;

Default: stmt;

}

• The expression must be of type byte, short, int or char.

• Each of the values specified in the case stmts must be of a type compatible with the expression.

• Each case value must be unique literal.

• Duplicate case value are not allowed.

• The switch stmt works like this

while:-
The while loop is java’s most fundamental loop stmt

• It repeats a stmt or block while its controlling expression is true.

• The general form of while stmt is

While <condition>

{

Body of the loop

}

The condition can be any Boolean expression.

The body of the loop will be executed as long as the conditional expression is true

When condition becomes false, control passes to the next line of code immediately following the
loop.

The curly braces are unnecessary if only a single stmt is being repeated.

Do-while:-
❑ If the conditional expression controlling a while loop is initially false, then the body

of the loop will not executed at all

❑ However, it is desirable to execute the of a loop at least once even if condition

expression is false to begin with

❑ Fortunately, java supplies a loop that does just that : the do while

❑ The do while loop always execute its body at least once, because its conditional

expression is at bottom of loop

❑ The general form of do while is

do

{

Body of the loop

}

While<condition>
For statement

 General form of traditional for statement

isfor(initialization; condition;

iteration)

{

Body of the loop

}

 It is important to understand that initialization expression is only executed

once. Next, condition is evaluated. This must be a Boolean expression .i.e the

loop controlvariable against a target value.

 If this expression is true, then the body of the loop is executed.

 If it is false, the loop terminates.

 Next, the iteration portion of the loop executed

 This is usually an expression that increments or decrements the loop

controlsvariable.

 This loop then ITERATES

 First evaluating the conditional expression , then executing the body of the

loop ,and then executing the iteration expression with each pass.

 This process repeats until the controlling expression is false.

Nested loop:-

Like all other programming languages, java allows loops to be nested.

i.e one loop may be inside

anotherEg:-

For(i=0 ; i<10 ; i++)

{

For(j=I ; j<10 ; j++)

{

statement block

}

}

Jump stmts:_
Java supports 3 jump stmts

1. break

2. continue

3. return.

Break stmt:-

It has 3 uses.

1. It terminates a stmts sequence in a switch stmt.

2. If can be used to exit a loop.

3. If can be used as a “civilized” form of goto.

When a break stmt is encountered inside a loop. The loop is terminated and program control

resumes at the next stmt following the loop.

i.e by using break, we can force immediate termination of a loop, by passing the conditional

expression (eg: i<=10) and any Remaining code in the body of the loop.

continue:-

sometimes, you might want to continue running the loop but stop continue running the

remainder of the code in its body for this particular iteration

the continue stmt performs such as an action

 Return:-

Return stmt is used to explicitly return from a method

i.e it causes program control to transfer back to the caller of the method

return stmt can be used to cause execution to branch back to the caller at the method.

CLASSES AND OBJECTS:

Class Declaration And Modifiers

Defining a Class

➢ A class is a user-defined data type with a template that serves to define its
properties.

➢ Once the class type has been defined, we can create “variables” of that type using
declarations that are similar to the basic type declarations.

➢ In Java, these variables are termed as instances of classes, which are the actual
objects.

➢ Class Defines Data and Methods that manipulate the Data.

The basic form of a class definition is

class ClassName [extends SuperClassName]
{

}

Modifiers

[fields declaration]
[methods declaration]

Modifiers are keywords that you can use to change the behavior or visibility of classes,
methods, and variables. They can be divided into two categories: Access Modifiers and Non-
Access Modifiers.

Access Modifiers

Access modifiers determine the visibility of the class to other classes. Java provides four
access levels:

1. public: The class is accessible from any other class.

UNIT-2

Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members,

Declaration of Class Objects, Assigning One Object to Another, Access Control for Class

Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded

Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value

and by Reference, Keyword this.

Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor

Methods, Class Objects as Parameters in Methods, Access Control, Recursive Methods,

Nesting of Methods, Overriding Methods, Attributes Final and Static.

2. protected: The class is accessible within its package and by subclasses.
3. default (no modifier): The class is accessible only within its own package.
4. private: The class is accessible only within the class it is defined. Note that private is

not applicable to top-level classes.

Non-Access Modifiers

Non-access modifiers provide functionality other than visibility control:

1. final: The class cannot be subclassed.
2. abstract: The class cannot be instantiated and may contain abstract methods.
3. static: The modifier indicates that the nested class is a static member of the outer

class

Class Members

Class members include fields (variables), methods, constructors, and nested
classes/interfaces.

Fields Declaration

➢ Data is encapsulated in a class by placing data fields inside the body of the class
definition.

➢ These variables are called instance variables because they are created whenever an
object

➢ of the class is instantiated.
➢ We can declare the instance variables exactly the same way as we declare local

variables

Class Rectangle

{

int length;

int width;

}

➢ The class Rectangle contains two integer type instance variables.
➢ It is allowed them in one line as
➢ int length,width;

Methods Declaration

The General form of a method declaration is

type methodName(parameter-list)

{

Method-body;

}
Method declarations have four basic parts
• The name of the method(method name)
• The type of the value the method returns(type)
• A list of parameters(parameter-list)
• The body of the method

Constructors
➢ Java supports a special type of method called a constructor, that enables an object to

initialize itself when created.
➢ Constructors are used to initialize instance variables.

Nested Classes/Interfaces

➢ Classes and interfaces defined within another class.

public class OuterClass
{

public class InnerClass
{

public void display()
{

System.out.println("Inner Class");
}

}
}

Example:

class OuterClass

{

static int x = 10;

int y = 20;

private static int z = 30;

static class Innerclass

{

void display()

{

System.out.println("x = " +x);

System.out.println("z = "+z);

OuterClass obj = new OuterClass();

System.out.println("y = " + obj.y);

}

}

}

public class Demo {

public static void main(String args[])

{

// accessing a static nested class

OuterClass.Innerclass obj1= new OuterClass.Innerclass();

obj1.display();

}

Declaration of Class Objects

Creating an instance of a class is called declaring a class object.

Person person = new Person("John", 30);

Assigning One Object to Another

Assigning one object to another makes both references point to the same object in memory.

public class Person
{

public String name;
public int age;

// Constructor
public Person(String name, int age)

{
this.name = name;
this.age = age;

}

// Method to display person's details

public void display()
{

System.out.println("Name: " + name + ", Age: " + age);
}

public static void main(String[] args)
{

// Create a Person object

Person person1 = new Person("Alice", 25);

System.out.println("Details of person1:");

person1.display();

// Assign person1 to person2

Person person2 = person1;

System.out.println("Details of person2 (after assignment):");

person2.display();

// Modify person2's details

person2.name = "Bob";

person2.age = 30;

// Display details of both person1 and person2

System.out.println("Details of person1 (after modifying person2):");
person1.display();
System.out.println("Details of person2 (after modifying person2):");
person2.display();

}
}

Access Control for Class Members

Access control determines the visibility of class members.
Java provides four access levels:

1. public: Accessible from any other class.
2. protected: Accessible within the same package and subclasses.
3. default (no modifier): Accessible only within the same package.
4. private: Accessible only within the same class.

1. Public Access Modifier

The public modifier allows class members to be accessed from any other class.

import java.util.*;
public class Demo5

{
public int a = 10;

public void display()
{

System.out.println("Public method");

}
}

class Maindemo
{

public static void main(String[] args)
{

Demo obj = new Demo();
System.out.println(obj.a); // Accessible
obj.display(); // Accessible

}
}

2. Protected Access Modifier

The protected modifier allows class members to be accessed within the same package and
subclasses.

import java.util.*;
class Demo6

{

protected int a = 20;

protected void display()

{

System.out.println("Protected method");

}

}

class Demo7 extends Demo6

{

void display1()

{

System.out.println(a); // Accessible

display(); // Accessible

}
}

class Maindemo1

{

public static void main(String[] args)

{

Demo7 obj = new Demo7();

obj.display1(); // Access protected members via subclass

}

}

Default Access Modifier

The default access modifier (no modifier) allows class members to be accessed only within
the same package.

import java.util.*;
class DemoDefault
{

int a = 30; // Accessible only within the same package
void display()
{

System.out.println("Default method");
}

}

class TestDefault {
public static void main(String args[])
{

DemoDefault obj = new DemoDefault();
System.out.println("Default Field: " + obj.a);
obj.display(); // Accessible
}

}

4.Private Access Modifier

The private modifier allows class members to be accessed only within the same class.

import java.util.*;

public class Demoprivate
{

private int a = 40; // Accessible only within the same class
private void display()

{
System.out.println("Private method");

}

public void display1()
{
System.out.println("Private Field: " + a);
display(); // Accessible within the same class

}
}

class Testprivate
{

public static void main(String[] args)
{

Demoprivate obj = new Demoprivate();
obj.display1(); // Accesses private members through public method

}
}

This Keyword

In Java, this keyword is used to refer to the current object inside a method or a constructor

class Main
{

int age;
Main(int age)
{

this.age = age;
}
public static void main(String[] args)
{

Main obj = new Main(8);
System.out.println("obj.age = " + obj.age);

}
}

Constructor Overloading

The constructor overloading can be defined as the concept of having more than one
constructor with different parameters so that every constructor can perform a different task

Final Class and method

The final method in Java is used as a non-access modifier applicable only to a variable,
a method, or a class. It is used to restrict a user in Java.

The following are different contexts where the final is used:
1. Variable
2. Method
3. Class

Parameter Passing In Java

➢ There are different ways in which parameter data can be passed into and out of methods

and functions.

➢ Let us assume that a function B() is called from another function A().

➢ In this case A is called the “caller function” and B is called the “called function or callee

function”. Also, the arguments which A sends to B are called actual arguments and the

parameters of B are called formal arguments.

Types of parameters

Formal Parameter: A variable and its type as they appear in the prototype
of the function or method.

Syntax:
function _ name(datatype var _ name);

Actual Parameter
The variable or expression corresponding to a formal parameter that appears in the function
or method call in the calling environment.

Syntax:
fun _ name(var _ name(s));

Call By Value:

➢ Changes made to formal parameter do not get transmitted back to the caller.
➢ Any modifications to the formal parameter variable inside the called function or

method affect only the separate storage location and will not be reflected in the actual
parameter in the calling environment.

➢ This method is also called as call by value

Call by reference:

➢ Changes made to formal parameter do get transmitted back to the caller through
parameter passing.

➢ Any changes to the formal parameter are reflected in the actual parameter in
the calling environment as formal parameter receives a reference (or pointer) to the
actual data.

➢ This method is also called as call by reference. This method is efficient in both time
and space.

Introduction to Methods

Methods in Java are blocks of code that perform specific tasks and are typically defined within
classes. They encapsulate behavior and promote code reusability and modularity.

public class MethodsExample
{

// Method to print a greeting message
public void greet()

{
System.out.println("Hello, welcome to Java methods!");

}

// Method with parameters to calculate the sum of two numbers
public int sum(int a, int b)

{
return a + b;

}

public static void main(String[] args)

{
MethodsExample example = new MethodsExample();

// Calling the greet method
example.greet();

// Calling the sum method
int result = example.sum(5, 3);
System.out.println("Sum: " + result);

}
}

Overloaded Methods

Overloaded methods are methods in the same class with the same name but different
parameter lists (number or types), allowing flexibility in method invocation.

public class OverloadedMethodsExample
{

// Method to add two integers
public int add(int a, int b)

{
return a + b;

}

// Overloaded method to add three integers
public int add(int a, int b, int c)

{

return a + b + c;
}

public static void main(String[] args)
{

OverloadedMethodsExample example = new OverloadedMethodsExample();

System.out.println("Sum of two numbers: " + example.add(5, 3));
System.out.println("Sum of three numbers: " + example.add(5, 3, 2));

}
}

Method overriding

Recursive Methods

Recursive methods call themselves directly or indirectly, useful for solving problems where a
method repeats its behavior.

public class RecursiveMethodExample
{

// Recursive method to calculate factorial
public int factorial(int n)

{
if (n == 0 || n == 1)

{

}
else

{

return 1;

return n * factorial(n - 1);

}
}

public static void main(String[] args)

{
RecursiveMethodExample example = new RecursiveMethodExample();

// Calculate factorial of 5
int result = example.factorial(5);
System.out.println("Factorial of 5: " + result);

}
}

Arrays

➢ An array is a group of continuous or related items that share a common name.

➢ For instance, we can define an array name salary to represent a set of salaries of a group of employees.

➢ A particular value is indicated by writing a number called index number or subscript in brackets after the

array name.

One –Dimensional Arrays

A list of items can be given one variable name using only one subscript and such a variable is called a single-

subscripted variable or a one-dimensional array.

Declaration of Array :

Arrays in java may be declared in two forms

Form1

Form2

Creating Arrays :

type arrayname[];

type[] arrayname;

you can create an array by using the new operator by using syntax

Syntax:

arrayname=new type[array_Size];

It creates an array using new type[array_Size]

It assigns the reference of the newly created array to the variable arrayname.

Declaring , Creating and assigning an array to the variable can be combined in one statement as:

type[]=arrayname=new type[array_Size];

(or)

type[] arrayname={value0, value 1,…..value k};

Array indices are start from 0 to arrayname. length-1

Arrays: Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory,
Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array,
Dynamic Change of Array Size, Sorting of Arrays, Search for Values in Arrays, Class Arrays, Two-
dimensional Arrays, Arrays of Varying Lengths, Three-dimensional Arrays, Arrays as Vectors.

Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class- Object
Class, Inhibiting Inheritance of Class Using Final, Access Control and Inheritance, Multilevel
Inheritance, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding,
Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance.

Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces,
Nested Interfaces, Inheritance of Interfaces, Default Methods in Interfaces, Static Methods in Interface,
Functional Interfaces, Annotations.

Two Dimensional Array :

It is used to store two dimensional data. It is also used to store data, which contains rows and columns.

If the data is linear we can use one dimensional array to work with multi-level data we have to use Multi-

Dimensional Array.

Creating Two Dimensional Array :

Data_Type[][] Array_Name=new int[Row_Size][Column_Size];

Initialization of Two Dimensional Array :

We can initialize the Two Dimensional Array in some ways

Example :

int[][] Student_Marks = new int[2][3];

int[][] Employees = { {10,20,30}, {15,25,35}, {22,44,66}, {33,55,77} };

Accessing Elements of Arrays

Accessing Elements of a One-Dimensional Array

Class ArrayExample

{

public static void main(String[] args)

{

// Declare and initialize a one-dimensional array

Int data [] = {5, 10, 15, 20, 25};

// Access and print individual elements

System.out.println("First element: " + data[0]); // Output: 5

System.out.println("Second element: " + data[1]); // Output: 10

System.out.println("Third element: " + data[2]); // Output: 15

System.out.println("Fourth element: " + data[3]); // Output: 20

System.out.println("Fifth element: " + data[4]); // Output: 25

}

}

Accessing Elements of a two-Dimensional Array

class Access2DArray

{

public static void main(String[] args)

{

// Declare and initialize a two-dimensional array

Int matrix[] [] = {

{1, 2, 3},

{4, 5, 6},

{7, 8, 9}

};

// Access and print individual elements

System.out.println("Element at row 0, column 0: " + matrix[0][0]); // Output: 1

System.out.println("Element at row 0, column 1: " + matrix[0][1]); // Output: 2

System.out.println("Element at row 1, column 2: " + matrix[1][2]); // Output: 6

System.out.println("Element at row 2, column 1: " + matrix[2][1]); // Output: 8

System.out.println("Element at row 2, column 2: " + matrix[2][2]); // Output: 9

Storage of Array in Computer Memory

In computer memory, arrays are stored in a contiguous block of memory. The array elements are stored

sequentially in memory, meaning that each element is placed directly after the previous one. This

arrangement allows for efficient access to any element in the array using an index, making arrays a popular

data structure in programming languages like Java.

How Arrays Are Stored in Memory:

1. Contiguous Memory Allocation:

o Arrays are stored in a continuous block of memory. The size of this memory block is calculated based on
the data type of the array and the number of elements.

o If the array is an integer array, for example, each element will take up 4 bytes of memory (assuming a 32-
bit integer), and the total memory size will be 4 * n, where n is the number of elements.

2. Indexing:

o Elements in an array are accessed using an index. The index is used to calculate the memory address of the
element.

o For example, in a one-dimensional array, the memory address of the element at index i is calculated as:

Address_of_element(i) = Base_address + (i * size_of_element)

where Base_address is the memory address of the first element in the array, i is the index, and

size_of_element is the size of each array element in bytes.

3. Memory Layout Example:

o Consider the following integer array:

int[] arr = {10, 20, 30, 40, 50};

o If the array is stored starting at memory address 1000, the elements are laid out in memory as:

Address Value

1000 10 (arr[0])

1004 20 (arr[1])

1008 30 (arr[2])

1012 40 (arr[3])

1016 50 (arr[4])

o Here, each element takes 4 bytes (since it's an int), and the elements are stored consecutively.

Multi-Dimensional Arrays:

o In the case of multi-dimensional arrays (e.g., 2D arrays), the elements are stored in row-major
order in Java. This means that the elements of each row are stored sequentially in memory.

o Consider a 2D array:

int[][] matrix = {

{1, 2, 3},

{4, 5, 6},

{7, 8, 9}

};

In memory, this array would be laid out as:

Address Value

1000 1 (matrix[0][0])

1004 2 (matrix[0][1])

1008 3 (matrix[0][2])

1012 4 (matrix[1][0])

1016 5 (matrix[1][1])

1020 6 (matrix[1][2])

1024 7 (matrix[2][0])

1028 8 (matrix[2][1])

1032 9 (matrix[2][2])

o row are stored first, followed by the elements of the second row, and so on.

Types of Arrays and Memory Allocation:

1. Primitive Arrays:

o Arrays that store primitive types like int, char, float, etc., store the actual values in contiguous memory.

o Example:

int[] arr = {1, 2, 3};

Each int value (4 bytes) is stored contiguously in memory.

2. Object Arrays:

o Arrays that store object references (e.g., arrays of String or user-defined objects) do not store the actual
objects in contiguous memory.

o Instead, the array stores references (memory addresses) to the objects, which may be located anywhere
in memory.

o Example:

String[] arr = {"Apple", "Banana", "Cherry"};

The array arr contains references to String objects, and those strings are stored at different memory

locations.

Advantages of Contiguous Memory Storage:

1. Efficient Indexing:

o Since arrays are stored in contiguous memory, the memory address of any element can be
calculated quickly using the index. This makes accessing elements very fast (O(1) time
complexity).

2. Cache-Friendly:

o Contiguous memory storage takes advantage of CPU caching. When an element of an array is
accessed, nearby elements are likely loaded into the cache, speeding up future access.

Disadvantages:

1. Fixed Size:

o array size is too large or too small.

2. Inefficient Insertion/Deletion:

o Inserting or deleting elements in the middle of an array requires shifting elements, which can
be slow (O(n) time complexity).

Operations on Array Elements

In Java, you can perform various operations on array elements, such as arithmetic operations, traversals,

modifications, and more. Below are some examples of common operations performed on array elements.

Sum of All Elements in an Array

class ArrayOperations

{

public static void main(String[] args)

{

int numbers[] = {10, 20, 30, 40, 50};

int sum = 0;

// Loop through the array to calculate the sum of elements

for (int i = 0; i < numbers.length; i++)

{

sum = sum+ numbers[i];

}

System.out.println("Sum of all elements: " + sum);

}

}

Finding the Maximum Element in an Array

class ArrayOperations

{

public static void main(String[] args)

{

Int numbers[] = {10, 20, 30, 40, 50};

int max = a[i];

// Loop through the array to find the maximum element

for (int i = 1; i < numbers.length; i++)

{

if (numbers[i] > max)

{

max = numbers[i];

}

System.out.println("Maximum element: " + max);

}

}

Finding the Minimum Element in an Array

class ArrayOperations {

public static void main(String[] args) {

int[] numbers = {10, 20, 30, 40, 50};

int min = numbers[0];

// Loop through the array to find the minimum element

for (int i = 1; i < numbers.length; i++) {

if (numbers[i] < min) {

min = numbers[i];

}

}

System.out.println("Minimum element: " + min);

}

}

Get the First and Last Element of an Array

To get the first and last elements of an array, you need to access the elements at index 0 (for the first

element) and index array.length - 1 (for the last element). Here are examples in different programming

languages:

public class ArrayFirstLastElement {

public static void main(String[] args) {

int[] arr = {10, 20, 30, 40, 50};

// Get the first element

int firstElement = arr[0];

// Get the last element

int lastElement = arr[arr.length - 1];

System.out.println("First element: " + firstElement);

System.out.println("Last element: " + lastElement);

}

}

Output:

First element: 10

Last element: 50

To compare two arrays in Java, you need to determine if they are equal in terms of their content and order.

You can use the Arrays class from the java.util package, which provides utility methods for comparing

arrays.

Here’s how you can compare two arrays:

Using Arrays.equals()

The Arrays.equals() method checks if two arrays are equal by comparing their length and corresponding

elements.

Example Code

import java.util.Arrays;

public class CompareArrays {

public static void main(String[] args) {

int[] array1 = {1, 2, 3, 4, 5};

int[] array2 = {1, 2, 3, 4, 5};

int[] array3 = {1, 2, 3, 4, 6};

// Compare array1 and array2

boolean areEqual1 = Arrays.equals(array1, array2);

System.out.println("array1 and array2 are equal: " + areEqual1);

// Compare array1 and array3

boolean areEqual2 = Arrays.equals(array1, array3);

System.out.println("array1 and array3 are equal: " + areEqual2);

}

}

Assigning One Array To Another Array

public class CopyArray {

public static void main(String[] args) {

// Initialize the original array

int[] arr1 = new int[] {1, 2, 3, 4, 5};

// Create another array arr2 with the same size as arr1

int[] arr2 = new int[arr1.length];

// Copy all elements from arr1 to arr2

for (int i = 0; i < arr1.length; i++) {

arr2[i] = arr1[i];

}

// Displaying elements of the original array

System.out.println("Elements of the original array: ");

for (int i = 0; i < arr1.length; i++) {

System.out.print(arr1[i] + " ");

}

System.out.println();

// Displaying elements of the new array

System.out.println("Elements of the new array: ");

for (int i = 0; i < arr2.length; i++) {

System.out.print(arr2[i] + " ");

}

}

}

Dynamic change of arrays

In Java, arrays have a fixed size once they are created. If you need a dynamically sized collection, you'll want to

use ArrayList from the java.util package, which provides dynamic resizing capabilities. Here's how you can use

ArrayList:

Using ArrayList in Java

1. Import ArrayList: Make sure to import the ArrayList class:

import java.util.ArrayList;

2. Create an ArrayList: You can create an ArrayList and use it similarly to an array, but with
dynamic resizing:

public class Main {

public static void main(String[] args) {

// Create an ArrayList of integers

ArrayList<Integer> myList = new ArrayList<>();

// Add elements

myList.add(1);

myList.add(2);

myList.add(3);

// Remove an element

myList.remove(Integer.valueOf(2)); // Removes the element with value 2

// Print the elements

for (int num : myList) {

System.out.print(num + " "); // Output: 1 3

}

}

}

Common Operations with ArrayList:

Adding Elements:

myList.add(4); // Adds 4 to the end of the list

myList.add(1, 5); // Adds 5 at index 1

Removing Elements:

myList.remove(2); // Removes the element at index 2

myList.remove(Integer.valueOf(3)); // Removes the first occurrence of the value 3

Accessing Elements:

int element = myList.get(0); // Gets the element at index 0

o

Iterating Over Elements:

for (int i = 0; i < myList.size(); i++) {

System.out.println(myList.get(i));

}

Getting Size:

int size = myList.size(); // Gets the number of elements in the list

Clearing All Elements:

myList.clear(); // Removes all elements from the list

ArrayList is a versatile and commonly used collection in Java for managing dynamic-sized list.

Arrays Sorting

Array sorting refers to the process of arranging the elements of an array in a specific order,
typically in ascending or descending order. In Java, there are several ways to sort arrays, including
using built-in methods or implementing custom sorting algorithmS

public class SortArrayExample2

{

public static void main(String[] args)

{

//creating an instance of an array

int[] arr = new int[] {4,2,3,1};

System.out.println("Array elements after sorting:");

//sorting logic

for (int i = 0; i < arr.length; i++)

{

for (int j = i + 1; j < arr.length; j++)

{

int tmp = 0;

if (arr[i] > arr[j])

{

tmp = arr[i];

arr[i] = arr[j];

arr[j] = tmp;

}

}

//prints the sorted element of the array

System.out.println(arr[i]);

}

}

}

Descending Order

public class SortArrayExample2

{

public static void main(String[] args)

{

//creating an instance of an array

int[] arr = new int[] {78, 34, 1, 3, 90, 34, -1, -4, 6, 55, 20, -65};

System.out.println("Array elements after sorting:");

//sorting logic

for (int i = 0; i < arr.length; i++)

{

for (int j = i + 1; j < arr.length; j++)

{

int tmp = 0;

if (arr[i] < arr[j])

{

tmp = arr[i];

arr[i] = arr[j];

arr[j] = tmp;

}

}

//prints the sorted element of the array

System.out.println(arr[i]);

}

}

}

Search for Values in Arrays

To search for values in arrays in Java, you can use various methods depending on the type of search
you want to perform. Below are examples of two common types of searches: linear search and
binary search.

Linear Search

• Step 1 - Read the search element from the user.
• Step 2 - Compare the search element with the first element in the list.
• Step 3 - If both are matched, then display "Given element is found!!!" and terminate the function
• Step 4 - If both are not matched, then compare search element with the next element in the list.
• Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.
• Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and

terminate the function.

Class LinearSearch

{

Public static void main (String args[])

{

Int a[]={10,20,40,50,30};

Int search_ele=50;

Boolean flag=false;

For(int i=0;i<a.length;i++)

{

If(search_ele==a[i])

{

System.out.println(“the element is found at :+i);

flag=true;

break;

}

}

If(flag==false)

{

System.out.println(“element is not found”);

}

}

Binary search

• Step 1 - Read the search element from the user.
• Step 2 - Find the middle element in the sorted list.
• Step 3 - Compare the search element with the middle element in the sorted list.
• Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function.
• Step 5 - If both are not matched, then check whether the search element is smaller or larger than

the middle element.
• Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for the left

sublist of the middle element.
• Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right

sublist of the middle element.
• Step 8 - Repeat the same process until we find the search element in the list or until sublist

contains only one element.
• Step 9 - If that element also doesn't match with the search element, then display "Element is not

found in the list!!!" and terminate the function.

public class BinarySearch {

public static void main(String[] args) {

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // Should be in sorted order

boolean flag = false;

int key = 5;

int l = 0;

int h = a.length - 1;

while (l <= h)

{

int m = (l + h) / 2;

if (a[m] == key) {

System.out.println("Element Found..");

flag = true;

break;

}

if (a[m] < key) {

l = m + 1;

}

if (a[m] > key) {

h = m - 1;

}

}

if (flag == false) {

System.out.println("Element NOT found..");

}

}

}

Arrays as Vectors (Vector Class in Java)

The Vector class in Java implements a dynamic array where elements can be added or removed. It
is synchronized, which means it's thread-safe for use in multi-threaded applications. However,
because of the synchronization overhead, it's generally slower than ArrayList.

Key Features of Vector:

• Dynamic resizing

• Can hold any type of data

• Supports operations like insertion, deletion, and searching

• Synchronization makes it thread-safe

Declaring and Using a Vector in Java:

import java.util.Vector;

public class VectorExample {

public static void main(String[] args) {

// Create a Vector to hold integer values

Vector<Integer> vector = new Vector<>();

// Adding elements to the Vector

vector.add(10);

vector.add(20);

vector.add(30);

vector.add(40);

vector.add(50);

// Accessing elements using an index

System.out.println("Element at index 2: " + vector.get(2)); // Output: 30

// Removing an element at a specific index

vector.remove(3); // Removes the element at index 3 (40)

// Iterating over the elements

System.out.println("Vector elements after removal:");

for (int i = 0; i < vector.size(); i++) {

System.out.println("Element at index " + i + ": " + vector.get(i));

}

// Size of the vector

System.out.println("Size of the vector: " + vector.size());

// Checking if the vector contains a specific element

if (vector.contains(30)) {

System.out.println("Vector contains 30");

} else {

System.out.println("Vector does not contain 30");

}

}

}

Output:

Element at index 2: 30

Vector elements after removal:

Element at index 0: 10

Element at index 1: 20

Element at index 2: 30

Element at index 3: 50

Size of the vector: 4

Vector contains 30

Arrays Of Varying Lengths

In Java, you can create arrays of varying lengths, also known as jagged arrays or ragged arrays.
A jagged array is an array whose elements are arrays of different lengths, unlike a regular
multidimensional array where all rows have the same number of elements.

Declaring and Using Jagged Arrays

When you declare a 2D array, you don’t have to specify the size of each row. Instead, you can assign
arrays of varying lengths to each row.

Example Program: Arrays of Varying Lengths (Jagged Arrays)

java

Copy code

public class JaggedArrayExample {

public static void main(String[] args) {

// Declaring a 2D array with 3 rows

int[][] jaggedArray = new int[3][];

// Initializing each row with a different number of columns

jaggedArray[0] = new int[3]; // First row has 3 elements

jaggedArray[1] = new int[2]; // Second row has 2 elements

jaggedArray[2] = new int[4]; // Third row has 4 elements

// Populating the jagged array with values

int value = 1;

for (int i = 0; i < jaggedArray.length; i++)

{

for (int j = 0; j < jaggedArray[i].length; j++)

{

jaggedArray[i][j] = value++;

}

}

// Printing the elements of the jagged array

System.out.println("Jagged Array Elements:");

for (int i = 0; i < jaggedArray.length; i++)

{

for (int j = 0; j < jaggedArray[i].length; j++)

{

System.out.print(jaggedArray[i][j] + " ");

}

System.out.println(); // Move to the next line after each row

}

}

}

Output:

Jagged Array Elements:

1 2 3

4 5

6 7 8 9

INHERITANCE

➢ The mechanism of deriving a new class from an old class such that the new class

acquires all the properties of the old class is called Inheritance.

➢ The old class is known as Parent, base or Super class and the new class that is derived is

known as child, derived or subclass.

➢ The Inheritance allows subclasses to inherit all the variables and methods of their

parent classes.

Defining a Subclass

➢ A Subclass is defined as follows

Class subclassname extends superclassname

{

Variables declaration

Methods declaration

}

➢ The keyword extends signifies that the properties of the superclassname are extended

subclassname.

➢ The subclass will now contain its own variables and methods as well those superclass.

➢ This kind of situation occurs when we want to add some more properties to an

existing class without actually modifying it.

Inheritance may take different types

1. Single inheritance

2. Multilevel Inheritance

3. Hierarchical Inheritance

4. Hybrid Inheritance

5. Multiple Inheritance (Does not supports in java)

These forms of inheritance are shown as

1. Single inheritance

The process of Creating one Child class from one Parent class is called single inheritance.

Example:

2. Multilevel Inheritance

Process of deriving a class from another derived class is called multilevel inheritance

3. Hierarchical Inheritance

Process of deriving one or more subclasses from one super class is called hierarchical inheritance

4. Hybrid Inheritance

Combination of above any inheritance is called hybrid inheritance

. Multiple inheritance

5

Process of deriving a subclass from one or more superclasses is called multiple inheritance.

Java does not directly implement multiple inheritance.

however, this concept is implemented using a secondary inheritance path in the form of

interfaces. Class A

{

}

Class B

A method in subclass, whose name, parameter list and return type are same as that
of the method in superclass is called overrided methods.

{

}

Class C extends A,B // java does not allow this { }

{

}

Method Overrididng

Abstract Methods and Classes

➢ An Abstract method is a method without method body or a method without

implementation.

➢ An Abstract method is written when the same method has to perform different tasks

depending on the object calling it.

Example:

class A // Automatically Becomes Abstract Class

{

void m1(); // Abstract Method

void m2() // Concrete Method

{

System.out.println(“method 2”);

}

}

➢ A Class that contains one or more Abstract Methods is called Abstract Class.

➢ An Abstract class is a class that contains 0 or more Abstract Methods.

➢ Abstract class can contain instance variables and concrete methods in addition to abstract

methods. Since, abstract class contains incomplete methods, it is not possible to estimate

the total memory required to create the object.

Example:

Abstract class MyClass

{

abstract void calculate(double x);

}

Class Sub1 extends MyClass

{

void calculate(double x)

{

System.out.println(“Square =”+(x*x));

}

}

Class Sub3 extends MyClass

{

void calculate(double x)

{

System.out.println(“Square Root =”+Math.sqrt(x));

}

}

Class Different

{

public static void main(String args[])

{

Sub1 obj1 = new Sub1();

Sub2 obj2 = new Sub2();

Sub3 obj3 = new Sub3();

obj1.calculate(3);

obj2.calculate(4);

obj3.calculate(5);

}

}

Example:2

final class : prevents inheritance

sometimes we may like to prevent a class being further subclasses for security reasons. A

class that cannot be subclasses is called a final class. Any attempt to inherit final classes will

cause an error and the compiler will not allow it.

final class A

{

}

class B extend A //error, cannot inherit a because it is a final class

{

}

Interfaces:

Defining an Interface

➢ An Interface is basically a kind of class

➢ Like classes, interface contain methods and variables but with a major difference.

➢ The difference is that interfaces de𝑓ine only

▪ Abstract Method &

▪ Final and Static Variables

➢ i.e methods are declared without any body and variables are implicitly final and static,

meaning they cannot be changed by the implementing class. They must also be initialized.

➢ All Methods and Variables in the interface are implicitly public.

The syntax for defining an interface is very similar to that of defining a class

Interface InterfaceName

{

static and final Variables

Abstract Methods

}

Where Interface is the keyword and InterfaceName is any valid java variable

Example:
Interface Item

{

static final int code = 1001;

static final String name = “Fan”;

void display();

}

Implementing Interface

✓ An Interface will have 0 or more abstract methods which are all public and abstract by

default.

✓ An Interface can have variables which are public, static and final by default,

means all the variables of the interface are constants.

✓ Objects cannot be created to an interface whereas reference can be created.

✓ Once interface is de𝑓ined, any number of classes can implement an interface.

✓ Also one class can implement any number of interfaces.

✓ To Implement an interface, a class must create the complete set of methods defined by the

interface.

✓ To implement an interface, include the implements clause in a class definition, and then

create the methods defined by the interface.

✓ General form of a class that includes the implements clause looks like

Class ClassName [extends SuperClass] [implements Interface1[,... Interface N]]

{

// class body

}

Example

Class A Extends B Implements I1,I2

{

}

✓ i.e if a class implements more than one interface, the interfaces are separated with a

comma.

The Relationship between classes and Interfaces are

Example:

Interface Bank

{

float rateOfInterest();

}

Class SBI implements Bank

{

public float reateOfInterest()

{

return (7.8f);

}

}

class ICICI implements Bank

{

public float reateOfInterest()

{

return (9.8f);

}

}

class IB implements Bank

{

public float reateOfInterest()

{

return (8.8f);

}

}

class InterfaceDemo

{

public staticvoid main(String args[])

{

SBI obj1 = new SBI();

float sbi_roi = obj1.rateOfInterest();

ICICI obj1 = new ICICI();

float icici_roi = obj1.rateOfInterest();

IB obj1 = new IB();

float ib_roi = obj1.rateOfInterest();

System.out.println(“SBI rate of Interest is “+ sbi_roi);

System.out.println(“ICICI rate of Interest is “+ sbi_icici);

System.out.println(“IB rate of Interest is “+ sbi_ib);

}

}

Interfaces can be Extended

✓ Like classes, interface can also be extended.

✓ i.e an interface can be sub interfaced from other interfaces.

✓ The new sub interface will inherit all the members of the super interface in the

manner similar to subclasses.

✓ This is achieved using the keyword “extends”.

✓ General form of extending interfaces is

Syntax:

Interface NameNew extends name1[,…nameN]

{

Body of Interface

}

Example:

interface A

{

void meth1();

void meth2();

}

interface B extends A

{

void meth3();

}

Class MyClass implements B

{

public void meth1()

{

System.out.println(“implementing meth1()…..”);

}

public void meth2()

{

System.out.println(“Implementing meth2()….”);

}

public void meth3()

{

System.out.println(“Implementing meth3()….”);

}

}

Class InterfaceDemo

{

Public static void main(string args[])

{

MyClass obj = new MyClass();

obj.meth1();

obj.meth2();

obj.meth3();

}

}

❑ When a class implements an interface that inherits another interface, it must

provide implementations for all methods defined within the interface

inheritance chain.
Note : if a class that implements an interface and the class does not give
implementations to all the methods of the interface, then the class becomes an

abstract class and cannot be instantiated

1. Introduction to Packages in Java

In Java, a package is a mechanism for organizing Java classes, interfaces, and sub-packages into

namespaces. Packages act like containers that group related classes and interfaces, helping to avoid naming

conflicts and managing large codebases efficiently.

Key Benefits of Using Packages:

1. Namespace Management: Packages help in organizing classes and interfaces into different

namespaces, which prevents naming conflicts. For example, you can have two classes with the same

name in different packages without causing any conflicts.

2. Access Control: Packages allow the application of access control. Classes, methods, and fields can be

declared public, protected, private, or package-private (default), controlling how they are

accessed from other packages or within the same package.

3. Code Reusability: Packages make it easier to reuse classes across different projects or parts of a

project. You can easily import them into other programs and extend their functionality.

4. Logical Grouping: Grouping related classes together makes it easier to maintain and manage code. It

also provides structure, making the code more readable and understandable.

package:

➢ Package a group of similar types of classes and interfaces and subpackages

Or

➢ Package is a folder that contains collection of related classes and interfaces.

➢ In java ,packages can be categorized into two types

➢ 1.Built-in packages

2.user-defined packages

Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into

Programs, Path and Class Path, Access Control, Packages in Java SE, Java.lang Package and its Classes,

Class Object, Enumeration, class Math, Wrapper Classes, Auto-boxing and Auto- unboxing, Java util

Classes and Interfaces, Formatter Class, Random Class, Time Package, Class Instant

(java.time.Instant), Formatting for Date/Time in Java, Temporal Adjusters Class, Temporal Adjusters

Class.

Exception Handling: Introduction, Hierarchy of Standard Exception Classes, Keywords throws and

throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked Exceptions,

Checked Exceptions.

Java I/O and File: Java I/O API, standard I/O streams, types, Byte streams, Character streams,

Scanner class, Files in Java

Packages

Built-in packages User defined packages

Java.awt Java.util

Built-in packages

Java.lang Java.util Java.io

Built-in packages

In java we have various built-in packages that are already created by java people and these

packages contain large number of classes and interfaces

User defined packages

As the name suggests user-defined packages are a package that is defined by theuser or

programmer.

Java.io Contains classes related to input/output operations

Java.util Contains classes and interfaces of collection framework, scanner class

Java.lang Contains fundamental classes like system, object etc for designing java

program

Java.awt Contains classes and interfaces for creating graphical components

Java.swing Contain classes and interfaces for creating graphical components

Advantages

➢ Java package is used to categorized the classes and interfaces so that theycan be

easily categorized.

➢ Java package provides access protection

➢ Java package helps to avoid name space collision.

How to create user defined packages

➢ To create the package should be starts with the keyword is package

Syntax: package package_name;

➢ It should not contain main class

➢ Multiple programs should be written for placing multiple classes in samepackage.

Steps to create a simple user defined packageStep-1

Step-2

Step-3

Step-4

A package hierarchy must be reflected in the file system of your Java development system. For

example, a package declared as package java.awt.image;

Example: Package demonstration

package pack; public

class Addition

{

int x,y;

public Addition(int a, int b)

{

x=a;

y=b;

}

public void sum()

{

System.out.println("Sum :"+(x+y));

}

}

Step 1: Save the above file with Addition.java

package pack;

public class Subtraction

{

int x,y;

public Subtraction(int a, int b)

{

x=a;

y=b;

}

public void diff()

{

System.out.println("Difference :"+(x-y));

}

}

Step 2: Save the above file with Subtraction.javaStep 3:

Compilation

To compile the java files use the following commands

javac -d directory_path name_of_the_java fileJavac –d

. name_of_the_java file

Note: -d is a switching options creates a new directory with package name. Directory path

represents in which location you want to create package and . (dot)represents current working

directory.

Step 4: Access package from another package

There are three ways to use package in another package:

1. With fully qualified name.

class UseofPack

{

public static void main(String arg[])

{

pack.Addition a=new pack.Addition(10,15);

a.sum();

pack.Subtraction s=new pack.Subtraction(20,15);

s.difference();

}

}

2. import package.classname;

import pack.Addition;

import pack.Subtraction;

class UseofPack

{

public static void main(String arg[])

{

Addition a=new Addition(10,15);a.sum();

Subtraction s=new Subtraction(20,15);

s.difference();

}

}

3. import package.*;

import pack.*; class

UseofPack

{

public static void main(String arg[])

{

Addition a=new Addition(10,15);a.sum();

Subtraction s=new Subtraction(20,15);

s.difference();

}

}

Note: Don’t place Addition.java, Subtraction.java files parallel to the pack directory. If you

place JVM searches for the class files in the current working directory not in the pack directory.

Access Control

• Java provides four types of access modifiers: public, protected, default (no modifier), and

private.

o public: Accessible from any class.

o protected: Accessible within the same package and subclasses.

o default: Accessible only within the same package.

o private: Accessible only within the class where it is declared.

Packages in Java SE

1. java.lang Package

• This package is automatically imported into every Java program, providing fundamental classes

essential for the language.

• Key classes:

o Object: The root class from which all classes in Java inherit.

o String: Immutable sequences of characters.

o Math: Provides mathematical operations such as sqrt(), pow(), abs().

o System: Used to interact with system resources, e.g., System.out for standard output.

o Thread: For multithreading operations.

2. java.util Package

• Contains utility classes and interfaces used for collections, date/time manipulation, and random

number generation.

• Key classes:

o ArrayList, LinkedList, HashSet, HashMap: For handling dynamic collections of data.

o Collections: Utility class for manipulating collections (e.g., sorting, searching).

o Date, Calendar, TimeZone: For handling date and time.

o Random: For generating random numbers.

3. java.io Package

• Provides classes for input and output operations, such as reading and writing data to files, handling

streams, and working with serializable objects.

• Key classes:

o File: Represents file and directory pathnames.

o BufferedReader, BufferedWriter: For efficient reading/writing of text from/to files.

o InputStream, OutputStream: Base classes for byte stream operations.

o Serializable: Marks classes for object serialization

Wrapper Classes in Java

Wrapper classes in Java are used to convert primitive data types into objects. Each of Java's eight primitive

types (int, char, etc.) has a corresponding wrapper class in the java.lang package. These wrapper classes

provide a way to treat primitive data types as objects, which is necessary in scenarios where only objects are

allowed, such as with Java Collections (e.g., ArrayList, HashMap).

The process of converting a primitive type to its corresponding wrapper object is known as boxing, and

converting it back to a primitive is called unboxing.

Primitive Types and Corresponding Wrapper Classes:

Primitive Type Wrapper Class

boolean Boolean

byte Byte

char Character

Primitive Type Wrapper Class

short Short

int Integer

long Long

float Float

double Double

Why Use Wrapper Classes?

1. Object-Oriented Collection Classes: Java's collection classes (e.g., ArrayList, HashMap) can

only store objects, not primitives. Wrapper classes allow primitive data types to be stored in

collections by converting them into objects.

2. Utility Methods: Wrapper classes provide many useful methods for manipulating and converting

primitive values.

3. Default Values in Generics: Java Generics work only with objects, so wrapper classes are used

when you need to work with generic types.

4. Nullability: Wrapper classes can be null, whereas primitive types cannot. This can be useful for

representing the absence of a value.

Boxing and Unboxing

• Boxing is the process of converting a primitive type into its corresponding wrapper object.

• Unboxing is the reverse process, where the wrapper object is converted back into a primitive type.

Example of Boxing and Unboxing:

public class BoxingUnboxingExample {

public static void main(String[] args) {

// Boxing (primitive to object)

int num = 100;

Integer obj = Integer.valueOf(num); // explicitly boxing

// Unboxing (object to primitive)

Integer obj1 = new Integer(200);

int num2 = obj1.intValue(); // explicitly unboxing

System.out.println("Boxed Integer: " + obj);

System.out.println("Unboxed int: " + num2);

}

}

Auto Boxing and Auto Unboxing

Java automatically handles the conversion between primitives and their corresponding wrapper classes

through auto-boxing and auto-unboxing.

• Auto-boxing: Automatic conversion of a primitive type into its wrapper class object.

• Auto-unboxing: Automatic conversion of a wrapper object to its corresponding primitive type.

Example of Auto Boxing and Auto Unboxing:

public class AutoBoxingUnboxingExample {

public static void main(String[] args) {

// Auto-boxing

int num = 100;

Integer obj = num; // no need to call Integer.valueOf(num)

// Auto-unboxing

Integer obj1 = new Integer(200);

int num2 = obj1; // no need to call wrappedNum2.intValue()

System.out.println("Auto-boxed Integer: " + obj);

System.out.println("Auto-unboxed int: " + num2);

}

}

Java util Classes and Interfaces

Formatter Class (java.util.Formatter)

The Formatter class in Java provides support for formatting data (such as strings, numbers, dates, etc.)

in a way similar to printf() in C. It can format output based on a format string that specifies how data

should be presented. It is often used in logging, console output, or file writing.

Key Methods:

• format(): This is the primary method for formatting. It supports a variety of data types, and the

format string uses placeholders.

Key Concepts:

1. Format String: The format string specifies how data should be formatted. It contains placeholders

like %d, %f, %s, which get replaced with actual values.

2. Supported Data Types:

o %d: Integer (decimal).

o %f: Floating-point number (decimal).

o %s: String.

o %x: Integer (hexadecimal).

o %o: Integer (octal).

o %t: Date/time values.

Example:

public class FormatterExample {

public static void main(String[] args) {

Formatter fmt = new Formatter();

fmt.format("Value of Pi to 2 decimals: %.2f", 3.14159);

System.out.println(fmt);

fmt.close();

}

}

Output:

Value of Pi to 2 decimals: 3.14

Example2:

import java.util.Formatter;

public class FormatterExample {

public static void main(String[] args) {

// Create a Formatter

Formatter fmt = new Formatter();

// Format an integer, a float, and a string

fmt.format("Integer: %d\n", 123);

fmt.format("Floating-point: %.2f\n", 3.14159);

fmt.format("String: %s\n", "Hello, World!");

// Print the formatted output

System.out.println(fmt);

// Close the Formatter to release resources

fmt.close();

}

}

Output:

Integer: 123

Floating-point: 3.14

String: Hello, World!

Formatting Dates and Times:

You can use the Formatter class to format dates and times using the %t prefix.

• %tY: Year (4 digits).

• %tm: Month (2 digits).

• %td: Day of the month.

• %tH: Hour (24-hour clock).

• %tM: Minute.

• %tS: Second.

Example3:

import java.util.Formatter;

import java.util.Calendar;

public class DateFormatExample {

public static void main(String[] args) {

Formatter fmt = new Formatter();

Calendar cal = Calendar.getInstance();

// Format current date and time

fmt.format("Current Date: %tY-%tm-%td\n", cal, cal, cal);

fmt.format("Current Time: %tH:%tM:%tS\n", cal, cal, cal);

// Print the formatted output

System.out.println(fmt);

// Close the Formatter

fmt.close();

}

}

Output:

Current Date: 2024-10-13

Current Time: 09:30:47

2. Random Class (java.util.Random)

The Random class in Java is used to generate pseudo-random numbers. It provides methods to

generate random integers, floats, longs, and even boolean values.

Key Methods:

• nextInt(): Returns a random integer.

• nextInt(int bound): Returns a random integer within the specified bound.

• nextDouble(): Returns a random double between 0.0 and 1.0.

• nextBoolean(): Returns a random boolean.

Example:

import java.util.Random;

public class RandomExample {

public static void main(String[] args) {

Random random = new Random();

// Generate random integers

int randInt = random.nextInt(100); // Random integer between 0 and 99

System.out.println("Random Integer: " + randInt);

// Generate random doubles

double randDouble = random.nextDouble(); // Random double between 0.0 and 1.0

System.out.println("Random Double: " + randDouble);

// Generate random booleans

boolean randBoolean = random.nextBoolean();

System.out.println("Random Boolean: " + randBoolean);

}

}

Output:

Random Integer: 70

Random Double: 0.024016527282495925

Random Boolean: false

3. Time Package (java.time)

The java.time package introduced in Java 8 provides a comprehensive API for handling dates
and times. It offers a much more flexible and modern way of working with time compared to
the legacy java.util.Date and java.util.Calendar classes.

Key classes include:

• LocalDate: Represents a date without time.

• LocalTime: Represents a time without a date.

• LocalDateTime: Represents a date and time.

• Duration: Represents a time duration (e.g., 5 hours, 30 minutes).

• Period: Represents a date-based amount of time (e.g., 2 years, 3 months).

• ZonedDateTime: Represents a date-time with a time zone.

Example:

1. LocalDate

Represents a date without a time zone (year, month, day).

import java.time.LocalDate;

public class LocalDateExample {

public static void main(String[] args) {

// Get the current date

LocalDate today = LocalDate.now();

System.out.println("Today's date: " + today);

// Create a specific date

LocalDate specificDate = LocalDate.of(2024, 10, 13);

System.out.println("Specific date: " + specificDate);

// Add days to a date

LocalDate nextWeek = today.plusDays(7);

System.out.println("Date after one week: " + nextWeek);

// Check if a year is a leap year

boolean isLeapYear = today.isLeapYear();

System.out.println("Is this year a leap year? " + isLeapYear);

}

}

Output:

Today's date: 2024-10-13

Specific date: 2024-10-13

Date after one week: 2024-10-20

Is this year a leap year? false

Example2:

2. LocalTime

Represents a time without a date and without a time zone.

import java.time.LocalTime;

public class LocalTimeExample {

public static void main(String[] args) {

// Get the current time

LocalTime now = LocalTime.now();

System.out.println("Current time: " + now);

// Create a specific time

LocalTime specificTime = LocalTime.of(14, 30, 45); // 2:30:45 PM

System.out.println("Specific time: " + specificTime);

// Add hours and minutes to the current time

LocalTime later = now.plusHours(2).plusMinutes(15);

System.out.println("Time after 2 hours and 15 minutes: " + later);

// Get the hour, minute, and second

int hour = now.getHour();

int minute = now.getMinute();

int second = now.getSecond();

System.out.println("Hour: " + hour + ", Minute: " + minute + ", Second: " + second);

}

}

Output:

Current time: 09:30:47.123

Specific time: 14:30:45

Time after 2 hours and 15 minutes: 11:45:47.123

Hour: 9, Minute: 30, Second: 47

5. Formatting for Date/Time in Java (DateTimeFormatter)

The DateTimeFormatter class (from java.time.format) is used to format and parse date/time

objects. It provides flexible and powerful formatting options.

Common Predefined Formatters:

• ISO_LOCAL_DATE: Formats a date as yyyy-MM-dd.

• ISO_LOCAL_DATE_TIME: Formats a date and time as yyyy-MM-ddTHH:mm:ss.

Custom Format Example:

import java.time.LocalDateTime;

import java.time.format.DateTimeFormatter;

public class DateTimeFormattingExample {

public static void main(String[] args) {

LocalDateTime now = LocalDateTime.now();

// Custom format: "dd-MM-yyyy HH:mm:ss"

DateTimeFormatter formatter = DateTimeFormatter.ofPattern("dd-MM-yyyy HH:mm:ss");

String formattedDateTime = now.format(formatter);

System.out.println("Formatted DateTime: " + formattedDateTime);

}

}

Output:

Formatted DateTime: 13-10-2024 08:52:35

6. TemporalAdjusters Class (java.time.temporal.TemporalAdjusters)

The TemporalAdjusters class provides common temporal adjusters, which allow date

manipulations such as finding the next day of the week, the last day of the month, etc. Adjusters
are often used with classes like LocalDate.

Common Temporal Adjusters:

• firstDayOfMonth(): Returns the first day of the current month.

• lastDayOfMonth(): Returns the last day of the current month.

• next(DayOfWeek dayOfWeek): Returns the next occurrence of the specified day of the week.

• previous(DayOfWeek dayOfWeek): Returns the previous occurrence of the specified day of
the week.

Example:

import java.time.LocalDate;

import java.time.temporal.TemporalAdjusters;

import java.time.DayOfWeek;

public class TemporalAdjustersExample {

public static void main(String[] args) {

LocalDate today = LocalDate.now();

// Get the next Sunday

LocalDate nextSunday = today.with(TemporalAdjusters.next(DayOfWeek.SUNDAY));

System.out.println("Next Sunday: " + nextSunday);

// Get the last day of the current month

LocalDate lastDayOfMonth = today.with(TemporalAdjusters.lastDayOfMonth());

System.out.println("Last Day of Month: " + lastDayOfMonth);

}

}

Output:

Next Sunday: 2024-10-20

Last Day of Month: 2024-10-31

Exception Handling

Java Errors are classified into 3 types

1) Compile -Time Errors

2) Run -Time Errors

3) Logical Errors

Compile-Time Errors

Errors occurred at Compile Time are called Compile Time Errors

Syntax Errors are detected at Compile Time.

These are Syntactical Errors found in the code, due to which a program fails to

compile.

For Example, forgetting a semicolon at the end of a Java statement, or writing a

statement without proper syntax will result in compile-time error.

Detecting and Correcting compile-time errors is easy as the Java Compiler displays

the list of errors with the line numbers along with theirdescription

Run Time Errors

Errors occurred at Run Time are called Run Time Errors

Run time errors are not detected by the java compiler.

It is the JVM which detects it while the program is running.

Semantic Errors like division by zero, Index out of Bound are detectedby JVM at

runtime.

Logical Errors

These errors are due to the mistakes made by the programmer.

It will not be detected by a compiler nor by the JVM.

errors may be due to wrong idea or concept used by a programmer while coding.

Introduction to Exception Handling

An Exception is a Run Time Error (or) An exception is abnormal condition that

arises in a code sequence at the run time.

When the jvm encounter an Run Time Error such as Division by zero, JVM creates

an object to the Corresponding Class and throws it.

If the Programmer does not catch the thrown object and handles properly, the

interpreter will display an error message and the program gets terminated

abnormally.

In order to stop abnormal termination of the program and to fix the error,

exceptions should be caught and handled.

Java exception handling is managed via five keywords

• Try

• Catch

• Throw

• Throws

• Finally

TRY

➢ Statements that need to be monitored for exceptions should be placed

within a try block

CATCH

➢ If an exception occurs within the try block, it is thrown and Your code can catch this

exception using catch block and handles it in some rational manner.

THROW

➢ System generated exception are automatically thrown by the jvm. To manually throw an

exception, use the keyword throw.

THROWS

➢ Any exception that is thrown out of method must be specified as such by a

throws clause

FINALLY

➢ Any code that obsolutely must be executed after a try block completes isput in a

finally block.

Hierarchy of Standard Exception Classes

1. User-Defined Exceptions

• These are custom exceptions created by users.

• In Java, users can define their own exceptions by extending the Exception class (for checked

exceptions) or RuntimeException (for unchecked exceptions).

2. Built-in Exceptions

Built-in exceptions are predefined in Java and categorized as:

a. Checked Exceptions:

• Checked exceptions must be either caught or declared in the throws clause of a method.

• Examples include:

o ClassNotFoundException

o IOException

o SQLException

o FileNotFoundException

o

b. Unchecked Exceptions:

• These exceptions occur at runtime and don't need to be declared in a method's throws clause.

• Examples include:

o ArithmeticException

o NullPointerException

o ArrayIndexOutOfBoundsException

o IllegalArgumentException

Examples of Programs

1. User-Defined Exception Example: Here’s how you can create and use a user-defined exception.

class CustomException extends Exception {

public CustomException(String message) {

super(message);

}

}

public class Main {

public static void validateAge(int age) throws CustomException {

if(age < 18) {

throw new CustomException("Age is less than 18, not eligible.");

} else {

System.out.println("Eligible");

}

}

public static void main(String[] args) {

try {

validateAge(15);

} catch (CustomException e) {

System.out.println("Caught: " + e.getMessage());

}

}

}

Output:

Caught: Age is less than 18, not eligible.

class ArithmeticException_Demo {

public static void main(String args[])

{

try {

int a = 30, b = 0;

int c = a / b; // cannot divide by zero

System.out.println("Result = " + c);

}

catch (ArithmeticException e) {

b. Unchecked Exceptions:

• These exceptions occur at runtime and don't need to be declared in a method's throws clause.

• Examples include:

o ArithmeticException

o NullPointerException

o ArrayIndexOutOfBoundsException

o IllegalArgumentException

Built-in-Exception-Creating own Exceptions

Arithmetic exception

ArrayIndexOutOfBounds Exception

class ArrayIndexOutOfBound_Demo {

public static void main(String args[])

{

try {

int a[] = new int[5];

a[6] = 9; // accessing 7th element in an array of

// size 5

}

catch (ArrayIndexOutOfBoundsException e) {

System.out.println("Array Index is Out Of Bounds");

}

}

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

class File_notFound_Demo {

public static void main(String args[])

{

try {

// Following file does not exist

File file = new File("E:// file.txt");

FileReader fr = new FileReader(file);

}

class NullPointer_Demo {

public static void main(String args[])

{

try {

String a = null; // null value

System.out.println(a.charAt(0));

}

catch (NullPointerException e) {

System.out.println("NullPointerException..");

}

FileNotFoundException

NullPointerException

Java File Handling

In Java by reading and writing text and binary files. File handling is crucial for any software

developer since it allows you to store and retrieve data, create logs, and process input/output

files.

java provides several classes and methods to work with files. The most common classes used

for file handling are:

• File: Represents a file or directory and provides methods to work with them.

• FileInputStream and FileOutputStream: Used for reading and writing binary files.

• FileReader and FileWriter: Used for reading and writing text files.

• BufferedReader and BufferedWriter: Used for buffered reading and writing.

To read a text file, follow these steps:

1. Create a Fileobject representing the text file.

2. Create a FileReaderobject to read the file.

3. Create a BufferedReaderobject to read text from the file efficiently.

4. Read the file using the readLine()method.

5. Close the BufferedReaderobject.

Types of Streams

Java defines two types of streams:

• Byte Streams: Used to perform input and output of 8-bit bytes.

• Character Streams: Used to perform input and output for characters (16-bit

Unicode).

Byte Streams

Byte streams in Java are used to handle raw binary data. These streams read/write data in the form of bytes.

Classes for byte streams are part of the java.io package and typically extend InputStream or OutputStream.

Common Byte Stream Classes:

• FileInputStream: Reads bytes from a file.

• FileOutputStream: Writes bytes to a file.

• BufferedInputStream: Reads bytes from a file with buffering.

• BufferedOutputStream: Writes bytes to a file with buffering.

1. FileInputStream

• Purpose: Reads raw bytes from a file.

• It is used to read the content of a file byte by byte, making it ideal for reading binary files like

images, audio, etc.

• It is part of the java.io package and extends the InputStream class.

Example:

import java.io.FileInputStream;

import java.io.IOException;

public class FileInputStreamExample {

public static void main(String[] args) {

try (FileInputStream fis = new FileInputStream("example.txt")) {

int data;

while ((data = fis.read()) != -1) { // Read byte by byte

System.out.print((char) data); // Convert byte to char and print

}

} catch (IOException e) {

e.printStackTrace();

}

}

}

2. FileOutputStream

• Purpose: Writes raw bytes to a file.

• It is used to write data into a file byte by byte, useful for writing binary data.

• It is part of the java.io package and extends the OutputStream class.

Example:

import java.io.FileOutputStream;

import java.io.IOException;

public class FileOutputStreamExample {

public static void main(String[] args) {

try (FileOutputStream fos = new FileOutputStream("output.txt")) {

String content = "Hello, World!";

fos.write(content.getBytes()); // Convert string to bytes and write to file

System.out.println("Data written to file successfully.");

} catch (IOException e) {

e.printStackTrace();

}

}

}

Explanation:

• The content "Hello, World!" is converted into bytes using the getBytes() method and written to the

file output.txt.

• The write() method writes bytes to the file.

3. BufferedInputStream

• Purpose: Reads bytes from a file with buffering to improve performance.

• It wraps a FileInputStream and provides buffering, which reduces the number of actual read

operations performed on the file, improving efficiency.

• It is part of the java.io package and extends the InputStream class.

Example:

import java.io.BufferedInputStream;

import java.io.FileInputStream;

import java.io.IOException;

public class BufferedInputStreamExample {

public static void main(String[] args) {

try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream("example.txt"))) {

int data;

while ((data = bis.read()) != -1) {

System.out.print((char) data); // Convert byte to char and print

}

} catch (IOException e) {

e.printStackTrace();

}

}

}

4. BufferedOutputStream

• Purpose: Writes bytes to a file with buffering to improve performance.

• It wraps a FileOutputStream and provides buffering, reducing the number of actual write operations

performed on the file.

• It is part of the java.io package and extends the OutputStream class.

Example:

import java.io.BufferedOutputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class BufferedOutputStreamExample {

public static void main(String[] args) {

try (BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream("output.txt"))) {

String content = "Hello, Buffered World!";

bos.write(content.getBytes()); // Write bytes to buffer

System.out.println("Data written to file successfully.");

} catch (IOException e) {

e.printStackTrace();

}

}

}

Advantages of Buffered Streams:

• Performance Improvement: Buffered streams improve performance by reducing the number of

disk I/O operations. Instead of reading/writing byte-by-byte, buffered streams work with larger

blocks of data.

• Efficiency: Buffered streams are more efficient when reading from or writing to slow sources, such

as files on a disk or network connections.

Key Differences:

1. FileInputStream/FileOutputStream:

o Read/write data one byte at a time.

o Suitable for binary data but not optimized for frequent I/O operations.

2. BufferedInputStream/BufferedOutputStream:

o Read/write data in chunks, improving efficiency by reducing I/O operations.

o Suitable for larger files or when efficiency is a concern.

character Streams

Character Streams handle 16-bit Unicode characters, making them ideal for reading and writing text data.

Classes for character streams typically extend the Reader class (for reading) or the Writer class (for writing).

Common Character Stream Classes:

1. FileReader: Reads characters from a file.

2. FileWriter: Writes characters to a file.

3. BufferedReader: Wraps FileReader to provide efficient character buffering while reading text.

4. BufferedWriter: Wraps FileWriter to provide efficient character buffering while writing text.

FileReader

• Purpose: Reads characters from a file.

• It is a convenient class for reading text files as it reads characters rather than bytes, making it

suitable for handling text data.

Example:

import java.io.FileReader;

import java.io.IOException;

public class FileReaderExample {

public static void main(String[] args) {

try (FileReader fr = new FileReader("example.txt")) {

int data;

while ((data = fr.read()) != -1) {

System.out.print((char) data); // Read character-by-character.

}

} catch (IOException e) {

e.printStackTrace();

}

}

}

2. FileWriter

• Purpose: Writes characters to a file.

• FileWriter is used for writing text data to a file, character-by-character. It's a simple way to write text

files.

Example:

import java.io.FileWriter;

import java.io.IOException;

public class FileWriterExample {

public static void main(String[] args) {

try (FileWriter fw = new FileWriter("output.txt")) {

String content = "Hello, FileWriter!";

fw.write(content); // Write string to file.

System.out.println("Data written to file successfully.");

} catch (IOException e) {

e.printStackTrace();

}

}

}

3. BufferedReader

• Purpose: Wraps FileReader to provide efficient character buffering while reading text.

• It reads text from a file more efficiently by buffering character input. It also provides convenient

methods like readLine() for reading entire lines of text.

Example:

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

public class BufferedReaderExample {

public static void main(String[] args) {

try (BufferedReader br = new BufferedReader(new FileReader("example.txt"))) {

String line;

while ((line = br.readLine()) != null) { // Read line-by-line.

System.out.println(line);

}

} catch (IOException e) {

e.printStackTrace();

}

}

}

4. BufferedWriter

• Purpose: Wraps FileWriter to provide efficient character buffering while writing text.

• It writes text to a file more efficiently by buffering character output. It also provides convenient

methods like newLine() to write line separators.

Example:

import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

public class BufferedWriterExample {

public static void main(String[] args) {

try (BufferedWriter bw = new BufferedWriter(new FileWriter("output.txt"))) {

bw.write("Hello, BufferedWriter!"); // Write text to file.

bw.newLine(); // Insert a new line.

bw.write("This is the second line.");

System.out.println("Data written to file successfully.");

} catch (IOException e) {

e.printStackTrace();

}

}

}

1. Scanner Class

The Scanner class in Java is part of the java.util package. It is widely used to parse primitive types (e.g., int,

double, float, etc.) and strings using regular expressions. A common use case for the Scanner class is

reading input from the user, reading files, or processing input from other data sources like input streams.

Common Uses:

1. Reading from the Console (Standard Input)

2. Reading from Files

a. Reading from the Console (Standard Input)

The Scanner class can read input from the console using the standard input stream (System.in).

Example:

import java.util.Scanner;

public class ConsoleInputExample {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("Enter your name: ");

String name = scanner.nextLine(); // Read a full line of text

System.out.println("Hello, " + name + "!");

System.out.print("Enter your age: ");

int age = scanner.nextInt(); // Read an integer value

System.out.println("You are " + age + " years old.");

}

}

Explanation:

• The nextLine() method is used to read a full line of text.

• The nextInt() method reads an integer value.

b. Reading from a File

The Scanner class can also be used to read data from a file by passing a File object or the file path to the

Scanner constructor.

Example:

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Scanner;

public class FileReadingExample {

public static void main(String[] args) {

try {

File file = new File("input.txt");

Scanner scanner = new Scanner(file);

while (scanner.hasNextLine()) {

String line = scanner.nextLine(); // Read line-by-line

System.out.println(line);

}

scanner.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

}

}

}

Explanation:

• The Scanner reads lines from the file input.txt line-by-line using the nextLine() method.

• The hasNextLine() method checks if there are more lines to read.

2. Files Class

The Files class in Java is part of the java.nio.file package, which provides a variety of utility methods for

file handling, including reading, writing, creating, copying, moving, and deleting files and directories. It

supports working with Path objects, which represent file and directory locations in the file system.

Common Operations:

1. Reading a File

2. Writing to a File

3. Copying Files

4. Deleting Files

5. Creating Files and Directories

1. Introduction to String Handling

In Java, strings are objects used to store and manipulate sequences of characters. Java provides several classes,

such as String, StringBuilder, and StringBuffer, for handling strings. Strings in Java are immutable, meaning

once created, their values cannot be changed. This immutability allows for more efficient memory usage and

easier handling of strings.

The java.lang.String class is used to create a string object.

There are two ways to create String object:

1. By string literal

2. By new keyword

1. By String Literal

Java String literal is created by using double quotes. For Example:

String s="welcome";

2. By new keyword

String s=new String("Welcome");

String methods in java

1. length():Returns the number of characters in the string.

String str = "Hello, World!";

int len = str.length(); // 13

System.out.println("Length of the string: " + len);

Output:

Length of the string: 13

2. equals():Checks if two strings have the same content (case-sensitive).

String str1 = "Hello";

String str2 = "Hello";

String str3 = "hello";

boolean isEqual = str1.equals(str2); // true

boolean isEqualCaseSensitive = str1.equals(str3); // false

System.out.println("str1 equals str2: " + isEqual);

System.out.println("str1 equals str3 (case-sensitive): " + isEqualCaseSensitive);

Output:

str1 equals str2: true

str1 equals str3 (case-sensitive): false

3. equalsIgnoreCase():Compares strings, ignoring case differences.

String str1 = "Hello";

String str2 = "hello";

boolean isEqualIgnoreCase = str1.equalsIgnoreCase(str2); // true

System.out.println("str1 equals str2 (ignoring case): " + isEqualIgnoreCase);

Output:

str1 equals str2 (ignoring case): true

4. startsWith(String prefix):Checks if the string starts with the specified prefix.

String str = "Java Programming";

boolean startsWithJava = str.startsWith("Java"); // true

System.out.println("String starts with 'Java': " + startsWithJava);

Output:

String starts with 'Java': true

5. endsWith(String suffix):Checks if the string ends with the specified suffix.

String str = "Hello, World!";

boolean endsWithWorld = str.endsWith("World!"); // true

System.out.println("String ends with 'World!': " + endsWithWorld);

Output:

String ends with 'World!': true

6. StringBuffer reverse()

Reverses the contents of a StringBuffer.

StringBuffer sb = new StringBuffer("Hello");

sb.reverse(); // "olleH"

System.out.println("Reversed StringBuffer: " + sb);

Output:

Reversed StringBuffer: olleH

7. replace(char oldChar, char newChar):Replaces all occurrences of a specified character in a string.

String str = "balloon";

String replacedStr = str.replace('o', 'a'); // "ballaan"

System.out.println("Replaced String: " + replacedStr);

Output:

Replaced String: ballaan

8. concat(String str):Concatenates the specified string to the end of the current string.

String str1 = "Hello";

String str2 = str1.concat(" World");

System.out.println("Concatenated String: " + str2);

Output:

Concatenated String: Hello World

9. charAt(int index):Returns the character at the specified index.

String str = "Hello, World!";

char ch = str.charAt(7); // 'W'

System.out.println("Character at index 7: " + ch);

Output:

Character at index 7: World

10. substring(int start, int end):Returns a new string containing the characters from the specified start to

end index.

String str = "Hello, World!";

String subStr = str.substring(7, 12); // "World"

System.out.println("Substring from index 7 to 12: " + subStr);

Output:

Substring from index 7 to 12: World

11. toCharArray():Converts the string to a character array.

String str = "Hello";

char[] charArray = str.toCharArray();

System.out.println("Character array: " + Arrays.toString(charArray));

Output:Character array: [H, e, l, l, o]

12. compareTo(String anotherString):Compares two strings lexicographically.

String str1 = "Apple";

String str2 = "Banana";

int comparison = str1.compareTo(str2); // returns a negative value because "Apple" < "Banana"

System.out.println("Comparison result: " + comparison);

Output:

Comparison result: -1

13. concat(String str):Concatenates the specified string to the end of the current string.

String str1 = "Hello";

String str2 = “world”

System.out.println(str1.concat(str2);

Output:

Concatenated String: Hello World

14. replaceAll(String regex, String replacement):Replaces each substring that matches the given regular

expression with the specified replacement.

String sentence = "The rain in Spain";

String replacedSentence = sentence.replaceAll("ain", "oon"); // "The roon in Spoon"

System.out.println("Replaced Sentence: " + replacedSentence);

Output:

Replaced Sentence: The roon in Spoon

15. toLowerCase() and toUpperCase():Converts all characters in the string to lowercase or uppercase.

String str = "Hello, World!";

String lower = str.toLowerCase(); // "hello, world!"

String upper = str.toUpperCase(); // "HELLO, WORLD!"

System.out.println("Lowercase: " + lower);

System.out.println("Uppercase: " + upper);

Output:

Lowercase: hello, world!

Uppercase: HELLO, WORLD!

Multithreading

Multithreaded programming is a method of concurrent execution in which multiple threads, or smaller

units of a process, run simultaneously. This technique enhances the efficiency of a program, particularly

on multi-core processors, by allowing multiple tasks to execute at once. Let's break down some of the

essential concepts in multithreaded programming:

1. Need for Multiple Threads

Multiple threads enable concurrent execution, which improves program performance and responsiveness.

For example, in a GUI application, one thread can handle the user interface while another thread performs

calculations in the background.

2. Multithreaded Programming for Multi-core Processors

Multi-core processors can execute multiple threads in parallel, allowing programs to take full advantage

of the processor's capabilities. This enables faster computation and can reduce the time required for

processing tasks.

Thread Life Cycle

During the life time of a thread there are many states it can enter. They are

A. NewBorn state

B. Runnable state

C. Running State

D. Blocked state

E. Dead state

A thread is always in any one of these five states.It can move from one state to another via a

variety of ways as shown below

New Born state

✓ when we create a thread object, the thread is born and is said to be in new born state.

✓ The thread is not yet scheduled for running .At this state, we can do only one of the

following things with it.

❖ Schedule it for running using start() method.

❖ Kill it using stop() method.

❖ If scheduled ,it moves to the runnable state

Runnable State

➢ The runnable state means that the thread is ready for execution and is waiting for

availability of the processor .i.e the thread has joined the queue of threads that are

waiting for execution.

➢ If all threads have equal priority, then they are given time slots for execution in Round

Robin fashion,i.e FCFS manner.

➢ The thread that relinguishes control joins the queue at the end & again waits for its turn

Running State

➢ Running means that the processor has given its time to the thread for its execution.

➢ The thread runs until it relinguishes its control in one of the following situations.

1) It has been suspended using suspend().

a suspended thread can be received by using the resume() method.

2) It has been made wait by using wait() method

A thread that is waiting will get resumed after notify() method

3) It has been slept for a t seconds.

A thread will get invoked after t seconds

Example

Blocked state

➢ Thread can also be temporarily suspended or blocked from entering into the

runnable and subsequently running state by using either of the following

thread methods.

Sleep() // blocked for specified time

Suspended() // blocked until further orders

Wait() // blocked until certain condition occurs.

➢ These methods cause the thread to go into the blocked sate. The thread will

return to runnable state when the specified time is elapsed in the case of

sleep(),the resume() method is invoked in case of suspend(),and notify()

method is called in case of wait().

Dead State

➢ Every thread has a life cycle .

➢ A running thread ends its life when it has completed executing its run().it is

natural death.

➢ However, we can kill it by using stop message to it at any stage.Thus causing

premature death to it.

Creating threads in java is simple. Threads in java can be created in two ways

1) By extending the thread class.

2) By implementing the runnable interface.

1) Creating threads by extending the thread class:

❑ Define a class that extends thread class and override its run()with the code

required by the thread.

❑ Steps to create thread by extending thread class are

a) Declaring the class

b) Implementing the run() method.

c) Starting New Thread.

Declaring the class:

Declare the class by extending the thread

class as: Class MyThread extends Thread

{

}

Implementing the run() method:

• the run method is the heart and soul of any thread.

• We have to override this method in order to implement the code to be

executed by our thread.

• It makes up the entire body of a thread and is the only method in which

the threads behavior can be implemented.

• The basic implementation of run()

will look like public void run()

{

Thread code

}

When we start new thread ,java calls the threads run() method.

Starting New Thread:

• create a thread object and call the start() method to initiate the thread execution.

• To create and run an instance of our thread class, we must write the

following: MyThread t1=new MyThread();

T1.start();

• The first line instantiates a new object of class MyThread.

• The second line calls start() causing the thread to move into runnable state.

• Then, the java runtime will schedule the thread to run by invoking its

run().Hence the thread is said to be in Running state.

Creating Thread using Runnable Interface

A) Create a Class that implements Runnable Interface

B) override run() method

create a thread by passing an object to the implementation class of runnable interface

Thread Priority and Synchronization

Thread Priority is a concept in multithreaded programming that determines the relative

importance of each thread when they compete for CPU time. Thread priorities help the system’s

scheduler decide which thread to run when multiple threads are ready for execution.

1. Priority Levels:

o Threads are assigned priority levels, typically as integers. In Java, for example,

thread priorities range from MIN_PRIORITY (1) to MAX_PRIORITY (10), with

NORM_PRIORITY (5) as the default.

o A higher priority thread is more likely to be selected by the CPU scheduler over a

lower-priority thread, although this behavior is platform-dependent.

Synchronization in multithreaded programming is crucial for managing access to shared

resources to avoid data inconsistency and ensure thread safety.

1. The Need for Synchronization:

o When multiple threads access shared resources (e.g., shared variables, files, or

memory), there is a risk of race conditions, where the final outcome depends on

the timing of thread execution.

o Synchronization prevents threads from interfering with each other and ensures that

only one thread accesses a shared resource at a time.

2. Synchronized Blocks and Methods:

o In many programming languages, synchronization is achieved using synchronized

blocks or methods. A synchronized block allows only one thread at a time to access

the code block or resource.

o For example, in Java, the synchronized keyword locks an object, so no other thread

can access the synchronized code block or method of that object until the current

thread completes it.

3. Locks (Mutexes):

o A lock (or mutex) is a mechanism used to enforce synchronization by allowing

only one thread to hold the lock at a time.

o When a thread acquires a lock on a resource, other threads must wait until the lock

is released before they can access the same resource.

4. Deadlock:

o Deadlock occurs when two or more threads wait indefinitely for resources held by

each other, creating a cycle of dependencies with no resolution.

o Avoiding deadlock requires careful resource allocation and sometimes the use of

timeout-based locking mechanisms.

5. Avoiding Race Conditions:

o Race conditions occur when multiple threads attempt to modify shared data

concurrently, leading to inconsistent results. Synchronization helps avoid race

conditions by enforcing an orderly access to shared resources.

Deadlock and RaceConditions

Both deadlock and race conditions are critical concurrency issues in multithreaded programming.

Deadlock involves threads waiting indefinitely for each other, which halts progress, often

requiring a restart or intervention.

Race Conditions involve unpredictable results due to concurrent access to shared data, leading to

data inconsistency.

Using synchronization techniques and careful resource management can help prevent both

deadlock and race conditions, resulting in safer and more predictable multithreaded programs.

Java Database Connectivity (JDBC)

Java Database Connectivity (JDBC) is a standard Java API that enables Java applications to

interact with a wide range of databases. It provides methods for querying and updating data in a

database and is widely used for developing Java applications that need to communicate with

databases like MySQL, PostgreSQL, Oracle, and others.

1. Introduction to JDBC

JDBC allows Java programs to:

• Connect to a database.

• Send SQL queries and update statements to the database.

• Process the results retrieved from the database.

JDBC provides a universal data access API that is independent of any particular database or

platform, enabling developers to switch databases without altering their Java code significantly.

2. JDBC Architecture

The JDBC architecture consists of two main components:

1. JDBC API: This provides a standard interface for Java applications to connect to the

database, execute SQL queries, and retrieve results. The JDBC API includes classes and

interfaces such as DriverManager, Connection, Statement, PreparedStatement, and

ResultSet.

2. JDBC Driver: JDBC drivers are database-specific implementations of the JDBC API that

communicate with the database. JDBC drivers translate the API calls into database-specific

calls, making the interaction between Java applications and databases possible. There are

four types of JDBC drivers:

o Type 1: JDBC-ODBC Bridge Driver

o Type 2: Native API Driver

o Type 3: Network Protocol Driver

o Type 4: Thin Driver (pure Java driver; commonly used for databases like

MySQL)

3. Installing MySQL and MySQL Connector/J

To use JDBC with MySQL, you need to install both MySQL and the MySQL Connector/J.

Installing MySQL

1. Download the MySQL installer from the MySQL official website.

2. Run the installer and follow the installation steps.

3. Set up a root password and configure any other settings as needed.

https://dev.mysql.com/downloads/

Installing MySQL Connector/J

The MySQL Connector/J is the JDBC driver for MySQL, which is required to connect Java

applications to a MySQL database.

1. Download the MySQL Connector/J from the MySQL Connector/J download page.

2. Extract the downloaded ZIP file, and locate the mysql-connector-java-<version>.jar file.

3. Add this .jar file to your project’s classpath. In IDEs like IntelliJ or Eclipse, you can do

this by right-clicking your project, selecting "Add External JARs," and choosing the

Connector/J JAR file.

4. JDBC Environment Setup

To set up the JDBC environment in a Java application:

1. Ensure the MySQL Connector/J JAR file is in your project’s classpath.

2. Import necessary JDBC packages:

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.SQLException;

5. Establishing JDBC Database Connections

To establish a connection with a database in Java, follow these steps:

1. Load the JDBC Driver (optional since JDBC 4.0):

Class.forName("com.mysql.cj.jdbc.Driver");

2. Establish a Connection:

o Use DriverManager.getConnection() with the JDBC URL, username, and

password.

o The JDBC URL format for MySQL is:

jdbc:mysql://<hostname>:<port>/<database_name>

For example:

String url = "jdbc:mysql://localhost:3306/mydatabase";

String username = "root";

String password = "password";

Connection connection = DriverManager.getConnection(url, username, password);

https://dev.mysql.com/downloads/connector/j/

3. Create a Statement:

Statement statement = connection.createStatement();

4. Execute Queries:

ResultSet resultSet = statement.executeQuery("SELECT * FROM users");

5. Close the Connection:

resultSet.close();

statement.close();

connection.close();

6. ResultSet Interface

The ResultSet interface represents the result set obtained by executing a SQL query and provides

methods to navigate and retrieve data from it. A ResultSet can be thought of as a table of data,

with rows representing each record returned by the query.

Commonly Used Methods of the ResultSet Interface

1. Navigating the ResultSet:

o next(): Moves the cursor to the next row. Returns false if there are no more rows.

o previous(): Moves the cursor to the previous row (only if ResultSet is scrollable).

o first(), last(): Moves to the first or last row.

2. Retrieving Data:

o getString(columnLabel): Retrieves a column as a String.

o getInt(columnLabel): Retrieves a column as an int.

o getDouble(columnLabel): Retrieves a column as a double.

o Column labels can be the column name or the column index.

Example Program Using JDBC to Query MySQL Database

Here's an example program that connects to a MySQL database, retrieves data from a table, and

displays it.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.SQLException;

public class JDBCExample {

public static void main(String[] args) {

String url = "jdbc:mysql://localhost:3306/mydatabase";

String username = "root";

String password = "password";

try (Connection connection = DriverManager.getConnection(url, username, password)) {

System.out.println("Database connected successfully!");

Statement statement = connection.createStatement();

String query = "SELECT id, name, email FROM users";

ResultSet resultSet = statement.executeQuery(query);

System.out.println("User Details:");

while (resultSet.next()) {

int id = resultSet.getInt("id");

String name = resultSet.getString("name");

String email = resultSet.getString("email");

System.out.println("ID: " + id + ", Name: " + name + ", Email: " + email);

}

resultSet.close();

statement.close();

} catch (SQLException e) {

e.printStackTrace();

}

}

}

This program:

• Connects to a MySQL database.

• Queries a table named users.

• Iterates over the ResultSet to print each user’s id, name, and email.

JavaFX Scene Builder

JavaFX Scene Builder is a visual design tool used for building the user interface (UI) of JavaFX

applications without manual coding. Instead of writing Java code for UI layouts, Scene Builder

allows you to visually design the interface and automatically generates an FXML file to

represent the structure.

Key Features

1. Drag-and-Drop Interface

o You can easily add UI components like buttons, labels, and text fields by

dragging them from the toolbox onto the design canvas.

2. Set Properties for Controls

o Configure UI components by setting properties such as text, size, alignment, and

style directly in Scene Builder.

3. FXML Code Generation

o Automatically generates an FXML file based on the layout you design. This file

can be loaded in your JavaFX application for rendering.

4. Link to Controller Classes

o Allows you to assign event handlers and bind UI components to your JavaFX

application’s controller class.

How to Use

1. Download and Install Scene Builder

o Download Scene Builder from the official Gluon website.

o Install it on your computer.

2. Design the User Interface

o Open Scene Builder and start a new design.

o Add nodes like buttons, text fields, or labels by dragging them from the toolbox

to the design area.

o Arrange and configure properties for each node using the Properties panel.

3. Save as FXML

o Once the design is complete, save it as an .fxml file.

o Example: MainUI.fxml.

4. Integrate FXML with Your JavaFX Application

o Use the FXMLLoader class in your JavaFX code to load the saved FXML file.

Example Code Integration

FXML File (MainUI.fxml):

xml

Copy code

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>

<?import javafx.scene.layout.StackPane?>

<StackPane xmlns:fx="http://javafx.com/fxml">

<Button text="Click Me!" fx:id="myButton"/>

</StackPane>

Java Application:

java

Copy code

import javafx.application.Application;

import javafx.fxml.FXMLLoader;

import javafx.scene.Parent;

import javafx.scene.Scene;

import javafx.stage.Stage;

public class MainApp extends Application {

@Override

public void start(Stage primaryStage) throws Exception {

Parent root = FXMLLoader.load(getClass().getResource("MainUI.fxml"));

Scene scene = new Scene(root, 400, 300);

http://javafx.com/fxml

primaryStage.setTitle("JavaFX with Scene Builder");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

2. JavaFX App Window Structure

A JavaFX application follows a hierarchical structure where components are organized into three

main layers: Stage, Scene, and Nodes. Let’s explore these components in detail:

1. Stage

• What is it?

The Stage is the top-level container that represents the application window. It is

automatically created when a JavaFX application starts.

• Key Features:

o Controls the window's title, size, and visibility.

o Acts as the main entry point for displaying the user interface.

Example:

primaryStage.setTitle("My JavaFX Application");

primaryStage.setWidth(800);

primaryStage.setHeight(600);

2. Scene

• What is it?

The Scene holds all the visual elements (nodes) of the application and represents the

content to be displayed in the Stage.

• Key Features:

o Acts as a container for the Scene Graph, which is a hierarchical tree of nodes.

Example:

o Defines properties like dimensions and styling.

o A Stage can have only one Scene at a time, but the Scene can be swapped

dynamically.

Scene scene = new Scene(rootNode, 400, 300);

primaryStage.setScene(scene);

3. Nodes

• What are they?

Nodes are the building blocks of the Scene Graph. They are individual components like

buttons, labels, text fields, and layout panes.

• Types of Nodes:

o Root Node: The top-most node in the Scene Graph (e.g., layout panes like

StackPane, VBox, etc.).

o Child Nodes: UI elements (e.g., Button, Label, Text, ImageView) added to the

Root Node or other containers.

Example:

Label label = new Label("Hello, JavaFX!");

Button button = new Button("Click Me");

VBox rootNode = new VBox(10, label, button);

Complete Example:

Here’s a simple JavaFX application demonstrating the structure:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.control.Label;

import javafx.scene.layout.VBox;

import javafx.stage.Stage;

public class JavaFXAppStructure extends Application {

@Override

public void start(Stage primaryStage) {

// Create Nodes

Label label = new Label("Welcome to JavaFX!");

Button button = new Button("Click Me");

// Create Root Node (Layout Pane)

VBox rootNode = new VBox(10, label, button);

// Create Scene and Set Dimensions

Scene scene = new Scene(rootNode, 400, 300);

// Set Scene to the Stage

primaryStage.setScene(scene);

primaryStage.setTitle("JavaFX App Window Structure");

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

3. Displaying Text and Images in JavaFX

JavaFX provides straightforward ways to display both text and images in a user interface.

Here’s how you can use the Label, Text, and ImageView nodes effectively:

Displaying Text

Options:

1. Label

o Used for short, non-editable text.

o Often used in forms or as a description for UI components.

Example:

Label label = new Label("Welcome to JavaFX!");

2. Text

o More flexible than Label, allowing custom fonts, styles, and multi-line text.

o Used for rich text display or larger content.

Example:

Text text = new Text("Hello, JavaFX Text Node!");

text.setStyle("-fx-font-size: 20px; -fx-fill: blue;");

Code Example for Text Display:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.VBox;

import javafx.scene.text.Text;

import javafx.scene.control.Label;

import javafx.stage.Stage;

public class DisplayTextExample extends Application {

@Override

public void start(Stage primaryStage) {

Label label = new Label("This is a Label!");

Text text = new Text("This is a Text node!");

VBox root = new VBox(10, label, text);

Scene scene = new Scene(root, 300, 200);

primaryStage.setTitle("Displaying Text");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

Displaying Images

Using Image and ImageView:

1. Image: Represents the image file loaded from a URL or local file.

2. ImageView: Displays the image in the scene.

Steps:

• Create an Image object.

• Pass it to an ImageView.

Code Example for Image Display:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.image.Image;

import javafx.scene.image.ImageView;

import javafx.scene.layout.VBox;

import javafx.stage.Stage;

public class DisplayImageExample extends Application {

@Override

public void start(Stage primaryStage) {

// Load image from a file (adjust the file path as needed)

Image image = new Image("file:your_image_path.jpg");

ImageView imageView = new ImageView(image);

// Optional: Set image dimensions

imageView.setFitWidth(200);

imageView.setPreserveRatio(true);

VBox root = new VBox(imageView);

Scene scene = new Scene(root, 300, 300);

primaryStage.setTitle("Displaying Image");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

4. Event Handling in JavaFX

Event handling in JavaFX allows you to define actions or behaviors that occur when a user

interacts with UI components, such as clicking a button, pressing a key, or moving the mouse.

JavaFX uses an event-driven model to handle these interactions.

Key Components of Event Handling

1. Event Source

The UI component that generates the event (e.g., Button, TextField).

2. Event Handler

A method or lambda expression that defines the response to the event.

3. Event Object

Provides information about the event, such as the source of the event and event type.

Steps to Handle Events

1. Set an Event Handler

You can set an event handler for a UI component using:

• A Lambda Expression

• An Anonymous Class

• A Separate Method

2. Use Event Methods

The most common method for handling events is setOnAction, which is used for buttons and

similar controls.

Examples

1. Button Click Event

Using a Lambda Expression:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

public class ButtonEventExample extends Application {

@Override

public void start(Stage primaryStage) {

Button button = new Button("Click Me");

button.setOnAction(e -> System.out.println("Button clicked!"));

StackPane root = new StackPane(button);

Scene scene = new Scene(root, 300, 200);

primaryStage.setTitle("Button Click Event");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

2. Handling Mouse Events

JavaFX provides methods like setOnMouseEntered and setOnMouseClicked for handling mouse

interactions.

Example:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.scene.text.Text;

import javafx.stage.Stage;

public class MouseEventExample extends Application {

@Override

public void start(Stage primaryStage) {

Text text = new Text("Hover over me!");

text.setOnMouseEntered(e -> text.setText("Mouse Entered!"));

text.setOnMouseExited(e -> text.setText("Hover over me!"));

StackPane root = new StackPane(text);

Scene scene = new Scene(root, 300, 200);

primaryStage.setTitle("Mouse Event Example");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

3. Handling Events with a Separate Method

You can define a separate method to handle the event.

Example:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

public class SeparateMethodEventExample extends Application {

@Override

public void start(Stage primaryStage) {

Button button = new Button("Click Me");

button.setOnAction(this::handleButtonClick);

StackPane root = new StackPane(button);

Scene scene = new Scene(root, 300, 200);

primaryStage.setTitle("Event Handling with Separate Method");

primaryStage.setScene(scene);

primaryStage.show();

}

private void handleButtonClick(javafx.event.ActionEvent event) {

System.out.println("Button was clicked!");

}

public static void main(String[] args) {

launch(args);

}

}

Event Types

• ActionEvent: Triggered by actions like button clicks or menu item selection.

• MouseEvent: Triggered by mouse actions like clicks or movement.

• KeyEvent: Triggered by keyboard actions like key presses or releases.

• WindowEvent: Triggered by changes in the application window (e.g., close or resize).

5. Laying Out Nodes in the Scene Graph

In JavaFX, layout panes are used to organize and position nodes (UI components) within the

Scene Graph. Each layout pane provides a specific way to arrange its children.

Common Layout Panes

1. HBox (Horizontal Layout)

• Description: Arranges its children in a single horizontal row.

• Use Case: Useful for toolbars or placing buttons side-by-side.

Example:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.layout.HBox;

import javafx.stage.Stage;

public class HBoxExample extends Application {

@Override

public void start(Stage primaryStage) {

Button btn1 = new Button("Button 1");

Button btn2 = new Button("Button 2");

Button btn3 = new Button("Button 3");

HBox hbox = new HBox(10, btn1, btn2, btn3); // Spacing between nodes

Scene scene = new Scene(hbox, 300, 100);

primaryStage.setTitle("HBox Example");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

2. VBox (Vertical Layout)

• Description: Arranges its children in a single vertical column.

• Use Case: Useful for forms, menus, or stacked controls.

Example:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.layout.VBox;

import javafx.stage.Stage;

public class VBoxExample extends Application {

@Override

public void start(Stage primaryStage) {

Button btn1 = new Button("Button 1");

Button btn2 = new Button("Button 2");

Button btn3 = new Button("Button 3");

VBox vbox = new VBox(10, btn1, btn2, btn3); // Spacing between nodes

Scene scene = new Scene(vbox, 200, 150);

primaryStage.setTitle("VBox Example");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

3. GridPane (Grid Layout)

• Description: Arranges children in a flexible grid of rows and columns.

• Use Case: Useful for complex forms or tables.

Example:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.layout.GridPane;

import javafx.stage.Stage;

public class GridPaneExample extends Application {

@Override

public void start(Stage primaryStage) {

Button btn1 = new Button("Button 1");

Button btn2 = new Button("Button 2");

Button btn3 = new Button("Button 3");

Button btn4 = new Button("Button 4");

GridPane grid = new GridPane();

grid.setHgap(10); // Horizontal gap between columns

grid.setVgap(10); // Vertical gap between rows

// Adding buttons to the grid (column, row)

grid.add(btn1, 0, 0);

grid.add(btn2, 1, 0);

grid.add(btn3, 0, 1);

grid.add(btn4, 1, 1);

Scene scene = new Scene(grid, 300, 200);

primaryStage.setTitle("GridPane Example");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

4. BorderPane (Border Layout)

• Description: Divides the layout into five regions: top, bottom, left, right, and center.

• Use Case: Useful for creating applications with a header, footer, sidebar, and main

content.

Example:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.layout.BorderPane;

import javafx.stage.Stage;

public class BorderPaneExample extends Application {

@Override

public void start(Stage primaryStage) {

Button topButton = new Button("Top");

Button bottomButton = new Button("Bottom");

Button leftButton = new Button("Left");

Button rightButton = new Button("Right");

Button centerButton = new Button("Center");

BorderPane borderPane = new BorderPane();

borderPane.setTop(topButton);

borderPane.setBottom(bottomButton);

borderPane.setLeft(leftButton);

borderPane.setRight(rightButton);

borderPane.setCenter(centerButton);

Scene scene = new Scene(borderPane, 400, 300);

primaryStage.setTitle("BorderPane Example");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

6. Handling Mouse Events in JavaFX

JavaFX provides a rich set of mouse events to handle interactions such as clicks, drags, and

hover actions. These events are defined in the MouseEvent class, and you can attach event

handlers to any node in your scene.

Common Mouse Events

1. Mouse Click Events

o setOnMouseClicked: Triggered when a mouse button is clicked on a node.

2. Mouse Hover Events

o setOnMouseEntered: Triggered when the mouse enters a node.

o setOnMouseExited: Triggered when the mouse leaves a node.

3. Mouse Drag Events

o setOnMouseDragged: Triggered when the mouse is dragged while pressing a

button.

o setOnMousePressed / setOnMouseReleased: Triggered when the mouse button is

pressed/released.

Example 1: Handling a Mouse Click

This example changes the text of a Label when clicked.

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Label;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

public class MouseClickExample extends Application {

@Override

public void start(Stage primaryStage) {

Label label = new Label("Click Me!");

// Set Mouse Click Event

label.setOnMouseClicked(e -> label.setText("Label Clicked!"));

StackPane root = new StackPane(label);

Scene scene = new Scene(root, 300, 200);

primaryStage.setTitle("Mouse Click Example");

primaryStage.setScene(scene);

primaryStage.show();

}

public static void main(String[] args) {

launch(args);

}

}

