UNIT-1
UNIT I: Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction,
Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line
Arguments, User Input to Programs, Escape Sequences Comments, Programming Style.

Data Types, Variables, and Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types,
Type Casting, Scope of Variable Identifier, Literal Constants, Symbolic Constants, Static Variables and Methods,
Introduction to Operators, Precedence and Associativity of Operators, Assignment Operator (=), Basic
Arithmetic Operators, Increment (++) and Decrement (- -) Operators, Ternary Operator, Relational Operat
Boolean Logical Operators, Bitwise Logical Operators.

Statement

Object Oriented Programming

U Object Oriented Programming is a programming concept that

that objects are the most important part of your program?
U It allows users create the objects that they want an th%a methods to handle

those objects.

U Manipulating these objects to get results is,the Object Oriented Programming.
Object Oriented Programming popula k% OP, is used in a modern
programming languages like Java

Object : \
Any real world entity that nd behaviour is called as Object .(or)

Objects have state and b . Example: Apple, Orange, Bat, Table, etc..

In Java, An Objedt is tance of class.
Class : \
Collection

imilar objects is called Class . For Example, Apple, orange, Papaya are

toza class called “Fruits” where as Apple, Table, Bat cannot be grouped as
se they are not similar groups. It is only an logical component not as
| entity.

itance :
One object acquires all properties and behaviour of the parent object.
It’s creating a parent-child relationship between two classes. It offers robust and
natural,mechanism for organizing and structure of any software.

Polymorphism:
It refers as “ one interface and many forms” (or) the ability of a variable , object or
function to take on multiple forms.
Ex:- In English, the verb “run” has a different meaning if you see it with a “laptop”,
and “a foot race”.

Abstraction :
Abstraction is a process of hiding the implementation details from the user.
Ex:- while driving a car, you do not have to be concerned with its internal working.
Abstraction can be achieved using Abstract Class and Abstract Method in Java.
Encapsulation :
Encapsulation is a principle of wrapping data (Variables) and code together as a
single unit. In this OOPS concept, variables of a class are always hidden from
other classes. It can only be accessed using the methods of their current

classes. %
Program Structure in Java c C-)Q

Elements or Tokens in Java Programs
In Java programming, elements or tokens are the smallest individualsup| apfogram. These

tokens are the building blocks of Java code and are used to % statements and
expressions. Here are the main types of tokens in Java

1.Keywords
2.ldentifiers

3.Literals &
4.seperators
5.comments v

6.operators c&
1. Keywords %\

Keywords are reserved words at have a predefined meaning and cannot be
used as identifiers (na or vahables, classes, methods, etc.). Examples of keywords
include class, publi ati id, int, if, else, for, while, return, etc.

\
§

2. ldentifiers

—— e e e ———

Identifier: A name in java program is called identifier. It may be class name, method name,
variable name and label name.

Example:
class Test

{
public static void main(String[] args){

int x=10; T —[_—l_
Yy T 2 3 4
} 5

Rules to define java identifiers:
Rule 1: The only allowed characters in java identifiers are:
1) atoz
2) AtoZ
3) 0to9
4) _
5) S
Rule 2: If we are using any other character we will get compile time error.
Example:
1) total_number----——-- valid
2) Total#-—-———moe - invalid
Rule 3: identifiers are not allowed to starts with digit.
Example:
1) ABC123-——-—--—- valid
2) 123ABC-----—---- invalid
Rule 4: java identifiers are case sensitive up course java language itself treated as case sensitive
language.

Example:
class Test{

int number=10;
int Number=20;

int NUMBER=20; we can differentiate with case.

int NuMbEr=30;

h

Rule 5: There is no length limit for java identifiers but it is not recommended to take more than
15 lengths.

Rule 6: We can’t use reserved words as identifiers.
Example: int if=10; ------—------- invalid
Rule 7: All predefined java class names and interface names we use as identifiers.

\M

3. Constants or Literals

o Entities that do not change their values in a program are called Constants or Literals.
o Java Literals are classified into 5 types:
1. Integer Literals

Floating Point Literals

Character Literals Q%

2
3
4. Boolean Literals
5

. String Literals % ’
1) Integer Literals: %
» A whole number is called an integer. Eg: 25,27 etc...are%{

Java supports 3 types of integer literals Decimal, O¢ @

25, 27 are decimal integers

Octal stats from 0 and followed by 0 to 7. %7, .08656 are octal integer
Hexadecimal start with OX and foIIow%t to9,AtoF. Eg:0*29,0*2AB9
are hexadecimal integer literal v

2. Floating Point Literals : &

» Numbers with decimal %\%&tional values are called floating point

literals.

YV V V V

» They can be expre in€ither standard or scientific notation.
» Standardgo consists of a whole number component followed by a decimal
point y a fractional component.
> ngoint number followed by letter E (or) and a signed integer. Eg:
37E-35 stands for 6.237*10/-35.
ting point literals in java defaults to double precision.
Bo n literals :
» Injava, Boolean literals take two values false or true.
» These two values are not related to any numeric value as in C or C++.
» The Boolean value true is not equal to 1 and false is not value is not equal to 0.
4. Character literals :

» Single characters in java are called character literals.

» Injava characters belong to 16-bit character set called Unicode.

» Java characters literals are written within a pair of single quote. Eg: ‘a’, ‘7,
represent character literals.

» Torepresent such characters, java provides a set of character literals called

escape sequence.

5. String Literals :
» A sequence of characters written within a pair of double quote is called
String Literal. Q

Eg: “This is String”.
» String Literals are to be started and ended in one line only.

4. Separators

Separators (or delimiters) are symbols that separate element e .Common
separators in Java include:

e Parentheses: () &
e Braces: {}
e Brackets: []

e Semicolon:; c

¢ Comma:,

5. Comments

Comments are non-execut art§of the code that are used to describe or explain the
code. They are ignore th compiler. There are two types of comments in Java:

o Single-lj @ : Start with //
omments: Enclosed between /* and */

Data 3 iables, and Operators

Da YR

Every variable in java has a data type.
> Datatype specify the size and type of values that can be stored.

> Datatype in java under various categories are shown as:

DATA TYPES
IN JAVA

Non-
Primitive
= (Derived)

— 7 —
1 1 _ 1 1

I - - _ - -
‘e N 4 Y 7 \I s \‘ I'd ™
Numeric U Non-. U Classes Arrays U Interface
Numeric L

——

E - -
Integer FIoa'Fing- Character
Point

Primitive

(Intrinsic)

U Boolean
A. Primitive data types : Q

Primitive data types are whose variables allows us to s value but they
never allow us to store multiple values of same type. Th a data type whose

variables can hold maximum one value at a tim
Example:
int a;
a=10;//valid &
a=10,20,30;//invalid %
B. Non Primitive Data Types or D%
ich

Derived data types are thos e developed by programmers by making use
of appropriate features language. User defined data types related variables
allow us to store multiple either of same type or different type or both.

Example:

Stude udent();
Java defin Q&w ive types of data. They are:
tegef tyPes
% types
Qa g type
o300

lean type
eger Types:
his type indicates byte, short, int, long which are for whole-valued signed

numbers.
The width and ranges of these integer types vary widely as shown in below :

The width and ranges of these integer types vary widely as shown in below :

Width Range

X

64 -9,223,372,036,854,775,808 TO 9,223,372,036,8 4275%
32 -2.147,483,648 to 2.147,483,647

8 -128to 127

16 -32,768 t0 32,767 Q&
Smallest integer type is byte. &
This is signed 8-bit type that hasffan 128 to 127

It is declared by byte keywo\@
» Shortis signed as 16 %
>

It has range from - 032,767

It is declage ort*keyword.

> Xmmonly used type is integer type as int.
| i

S d as 32 bit type and has range from -2,147,483,648 to
7,483,647

Name
Long
Int
Short
Byte
Byte :
>
>
>
Short :
>
Int:
L :
L)

» long is signed as 64-bit type and is useful for those occasions where as int.

» Therange of long is quite large.

» This makes it useful when big, whole numbers are needed.

Floating Point Types :
» This group includes float and double which represented numbers in
fractional precision.
» They are two types of floating point types ,float and double, which

represents single and double precision numbers

Name Width in bits Approximate range
Double 64 4.9e-324 to 1.8e+308 Q%

Float 32 1.4e-045 to 3.4e+038

3. Characters: % >
» InJava, the data type is used to store characters is char. k%

» Charinjavais not same as C or C++ Q
» In C/C++ char is 8 bit type whereas in java char is 1%
4. Boolean Type:
» Java has a primitive data type called Boolgansyfor logical values.
» It can have only one of two possible va or false.

Variables
» AVariable is an identifier that de o% e location used to store a data
value . (or) Variables are the n@x age locations.
» Variable names may con 'stH

characters.

ts, digits, the underscore and dollar

U They mustn in with a digit.

U up \ wercase are distinct. This means that the variable Total is
otQ(e total or TOTAL.
t'sho

not be a keyword.
ite space is not allowed.
Variable names can be any length.
r t‘ion of Variables :
» AVariable must be declared before it is used in the program. The general form of
declaration of a variable is
Type variablel, variable2, variable

» Variables are separated by commas. A declaration statement must end with a

semicolon. Some valid declarations are:

Int count;
float x, y;
Giving values to Variables :

A Variable must be given a value after it has been declared but before it is used in an
expression. This can be in two ways:
1. Byusing an Assignment statement
VariableName=value
2. Byusing aread statement Q%
we may also give values to variables interactively through the keyword usi
the readLine().
Scope of the variable : k%
» the scope refers to validity across the java program.

» The scope of a variable is limited to the block defi& braces { and

}

> It means a variable cannot be accessed

e scope (Or) The scope or a

particular variable is the range withi rografm®‘s source code in which that

variable is recognized by the co r.

Type Conversion and Casting \
Assigning a value of one type to alvariableof another type is known as Type Casting.

Example:

int x=10;
byte y=(byte)x;
In Java, type castingh ified into two types.
Wideni s (Implicit) : Process of Converting lower data type into higher data type
- rt --->int --->long --- >float --->double
- >
L

Widening

Narrowing Casting (Explicitly done) : Process of converting Higher Data type into
LowerData Type

double --->float ---->long ----> int ---->short --- >byte

- >

Example: Converting int to double

class Main {
public static void main(String[] args) {
// create int type variable
int num = 10;
System.out.printin("The integer value: " + num);

// convert into double type %
double data = num; Q
System.out.printin("The double value: " + data); C-)
} S
} (8z
Output %Q

The integer value: 10

The double value: 10.0 &Q

Example: Converting double into an int
class Main { V\

public static void main(String|] @@

// create double type variable

double num = 10.99;
System.out.printin("T, ecﬁ alue: " + num);
e 2

// convert into in

int data = (in m
System. i he integer value: " + data);
}
} %&
(o)
T value: 10.99
e

COC
int€ger value: 10
Y

Types of Variables

® Based the type of value represented by the varizble all variables are divided into 2
types. They are:
1) Primitive variables
2) Reference variables
Primitive variables: Primitive variables can be used to represent primitive values.

Example: int x=10;
Reference variables: Reference variables can be used to refer objects.

Example: Student s=new Student();
Diagram:
—O
® Based on the purpose and position of declaration all variables are divided into the)
following 3 types.
1) Instance variables ’

2) Static variables

3) Local variables

ND
Instance variables Q%
A

e [f the value of a variable is varied from object to object such type of variables are called

instance variables.

e Forevery object a separate copy of instance variables will be created.

® Instance variables will be created at the time of object creation and destroyed at the
time of object destruction hence the scope of instance variables is exactly same as
scope of objects.

® [nstance variables will be stored on the heap as the part of object.

® Instance variables should be declared with in the class directly but outside of any
method or block or constructor.

® Instance variables can be accessed directly from Instance area. But cannot be accessed
directly from static area.

® But by using object reference we can access instance variables from static area.

Example:

class Test

{
int i=10;
public static void main(String[] args)
{

//System.out.printin(i);//C.E:non-static variable i cannot be referenced from a
static context(invalid)
< Test t=new Test();
System.out.printIn(t.i);//10(valid)
t.methodOne();

}
public void methodOne()
{
System.out.printin(i);//10(valid)
}

e For the instance variables it is not required to perform initialization JVM will always

provide default values.

jk

Static variables:
* |f the value of a variable is not varied from object to object such type of variables is not
recommended to declare as instance variables. We have to declare such type of
variables at class level by using static modifier.
®* |n the case of instance variables for every object a separate copy will be created but in
the case of static variables for entire class only one copy will be created and shared by
every object of that class.
® Static variables will be crated at the time of class loading and destroyed at the time of
class unloading hence the scope of the static variable is exactly same as the scope of the
.class file.
® Static variables will be stored in method area. Static variables should be declared with in
the class directly but outside of any method or block or constructor. %
® Static variables can be accessed from both instance and static areas directly.
* We can access static variables either by class name or by object reference but usage of %

class name is recommended.
® But within the same class it is not required to use class name we can access directly. V

Vo 8
® For the static variables it is not required to perform initialization explicitly, JVM will
always provide default values.

Example:
class Test

{

static String s;
public static void main(String[] args)

{
System.out.println(s);//null
!
b
Example:
class Test
{
int x=10;
static int y=20;
public static void main{String[] args)
{
Test t1=new Test();
t1.x=888;
t1.y=999;
Test t2=new Test();
System.out.printIn(t2.x+"-—--"+t2.y);//10----999
!
H

&Diagram:

e Static variables also known as class level variables or fields.
Local variables:
® Some time to meet temporary requirements of the programmer we can declare
variables inside a method or block or constructors such type of variables are called local
variables or automatic variables or temporary variables or stack variables.

e The local variables will be created as part of the block execution in which it is declared
and destroyed once that block execution completes. Hence the scope of the local
variables is exactly same as scope of the block in which we declared.

Example 1:
class Test
{
public static void main(String[] args)
{
int i=0;
for(int j=0;j<3;j++)
{
i=ij;
} D)
System.out.printin(i+"-—-"+j); javac Test java
Test.java:10: cannot find symbol
symbol :variable j
location: class Test
}
H
Example 2:
class Test
{
public static void main(String[] args)
{
try
{
int i=Integer.parseint("ten");
}
catch(NullPointerException e)
{
System.out.printin(i); _
javac Test.java
C.E «JTest.java:11: cannot find symbol
symbol :variable i
}
}
}

OPERATORS AND EXPRESSIONS

O In java Operators are symbols that are used to perform some operations on the
operands.
U Combination of operands and operators are known as Expressions.

O Java provides, a rich set of operators to manipulate the variables. There are three

<

types of operators in java.
1. Unary operators
2. Binary operators

3. Ternary operators

Operators
|
I I 1
Unary Binary Ternary
1
1 1
Increment Decrement — Arithmetic Conditional
operator
Post-fix Post-fix | |Assignmen
Increment decrement t
Pre-fix Pre-fix .
- — Logical
increment decrement
— Relational
—| Bitwise
— Compound
' o
1. RATORS:

I ich we use one operand is called unary operator. It has two types:
* 1.1 Increment Unary operator
1.2 Decrement Unary operator
1.1 INCREMENT UNAY OPERATOR:
This is used to increase the value one by one. It has two types:

* Post-fix Increment operator

* pre-fix Increment operator

1.1.1 POST-FIX INCREMENT OPERATOR:
“++” symbol is used to represent Post-fix Increment operator. This symbol is used
after the operand.
In this operator, value is first assign to a variable and then incremented the value.
EX: inta, b;
a=10;
b=a++; Q%

In the above example first the value of “a” is assign to the variable “b”, then(

Increment the value, so the value of b variable is “10”. %%

1.1.2 PRE-FIX INCREMENT OPERATOR:
“++” symbol is used to represent Pre-Fix operatQ’sE ol is used after
the operand. In this operator value is incremente &d tRen assigned to a

variable.
EX: inta,b; v
a=10; &
b=++a; \%
In the above exa %\e increment is done then the value of “a”

variable is assigned to the v ", so the value of “b” variable is “11”.

1.2 DECREMENT UNARYX O TOR:

“-” symbol odecrease the value by one. It has two types:
nioperator

1. Post-fix %
2.pre-fix de&kemeht operator

IXDECREMENT OPEATOR:
“-” symbol is used to represent post-fix decrement operator, this symbol is
S ‘after the operand. In this operator, value is first assigned to a variable and then
decrement the value.
EX: inta, b;
a=10;

b=a--;

In the above example first the value of “a” is assign to the variable ” b”,

then decrement the value. So the value of “b” variable is “10”.

1.2.2 PRE-FIX DECREMENT OPERATOR:

“” Symbol is used to represent the pre-fix decrement operator. This symbol is
used after the operand. In this operator, value is decremented first and then
decremented value is used in expression.

EX: int a,b;

b=--a;

In the above example first the value of “a” is decrement then assi t%
variable “b”. So the value of b variable is “9”. %

2. BINARY OPERATOR:

In which we use two operand is called Binary operator. Jav@many

types of Binary operators:
* Assignment operator

* Arithmetic operator Q
* Logical operator §

* Comparison operator

2.1 ASSIGNMENT OPERATOR:
This operator is used to assigr@a This symbol “=* is used to assign

the value.

EX: int a=12; \
2.2 ARITHMETIC OPERATOR:
This operator is use rm mathematical operand. Arithmetic operator

L]

are:

“Topuos——— Jomron v
1.

Additional
operator (“+”

2. Subtract
operator (“-“) :

3. Multiply
operator (“*”) :

4. Division
operator (“/”) :

5. Modulus
operator(“%”) :

LOGICAL OPERATOR:

The logical operator | |(c

operates on boolea r

A\

OPERATOR
I

Q&&

S

essions, here’s how they work:

Used to add the value
of two operand.

Used to subtract the
value of two operand.

Used to multiply the
value of two operand.

Used to divide the
value of two operand.

Used returns the
remainder of a division
operation.

&

DESCRPTION BAWPE

Conditional-OR: true if either of
the boolean expression is true.

Conditional-AND; true if all
boolean expressions are true.

a+b
a-b
a*b
a/b

a%b

OR),&&(conditional-AND),!(conditional-NOT)

False || true is evaluated to true.

False && true is evaluated to false.

Conditional-NOT; true if expression ! False is evaluated to true.

is false.

LOGICAL NOT OPERATOR:
» Logical NOT operator is used to reverse the logical state of its operand. If a condition
is true then
logical NOT operator will make false. If a condition is false then Logical NOT

operator will make true.

» Then NOT operator is probably the easiest to understand. It is simply the oppo %
of what the condition says. gQ
EX: boolean a=true; %
if(1a) &%

System.out.printIn(“u r win”);
else Q%

System.out.printin(“u r not win”);
» In above example “if not true” is asking if the “a@” variable is not true,
otherwise known as false.
» If “a” variable is false, java will di %r in” “@” variable is not true , so that
code will not execute, then ;%\ s execute shown in output.
RELATIONAL OPERATOR: %
» This operator is us

compare the two values, so this operator is also known as
“compariso or

» Conditj Qb and their meanings for comparison operator are below:
V4

OPERATOR CONDITION DESCRIPTION | EXAMPLE |
‘ e is equal to Checks if the values of (a==b) is not true

two operands are equal
or not, if yes then
condition becomes true.

1= Is not equal to Checks if the value of two (al=b) is true
operands are equal or
not, if values are not
equal then condition
becomes true.

> Is greater than Checks if the value of left (a=b) is not true
operand is greater than
the value of right
operand, if yes then
condition becomes true.

< Is less than Checks if the value of left (a<b) is true
operand is less than the
value of right operand, if
yes then condition
becomes true.

TERNARY OPERATOR:

In ternary operator use three operands. It is also called Conditional assignment statement
because the value assigned to a variable depends upon a logical expression.

SYNTAX:

variable=(test expression)?Expression 1: Expression 2

EX:
c=(a>b)?a:b:
c= (a>b) ? a:b; %
Test condition ? Expressionl : Expression2; Q
BITWISE OPERATORS:

operations.

Java provides 4 bitwise and 3 bit shift operators to perforn%%%
| Bitwise OR Q&
& Bitwise AND %
* - Bitwise Complement Q
* A Bitwise XOR &
* << Left shift %
* >> Right shift xQ ~
* >>> Unsig ight Shift
Bitwise and bit shift oper %
long) to perform bit-level &%.

*

*

on integral types (byte, short, int and

OPERATOR DESCRIPTION

| Bitwise OR

& Bitwise AND

~ Bitwise Complement
A Bitwise XOR

K Left shift

>> Right shift

>>> Unsigned Right shift

BITWISE OR:
Bitwise OR is a binary operator(operates on two operands). It's denoted by |. The | operator

compares corresponding bits of two operands. If their of the bits is 1. If not, it gives 0.

EX:
12=00001100
25=00011001
Bitwise OR Operation of 12 and 25 %
00001100 Q
00011001 c c-)
00011101 =29(In decimal) k%
BITWISE AND :

Bitwise AND is a binary operator (operates on two gpera . It's'denoted by &. The &

operator compares corresponding bits of two operands. its aré€ 1. If either of the bits is

not 1, it gives 0.
EX: 12= 00001100 V\
25=00011001 &
Bit operation of 12 and 25 \%
00001100 c’)

= 8(in decimal)

8
BITWISE CO L&}
Bitwis iment is an unary operator(works on only one operand). It is denoted
~ @perator inverts the bit pattern. It makes every 0 to 1, and every 1 to 0.
Em 35= 00100011(in binary)
) bitwise complement of 35
~ 00100011

11011100 = 220(in decimal)

BITWISE XOR :

Bitwise XOR is a binary operator(operates on two operands). It's denoted by “*” .
The operator compares corresponding bits of two operands. If corresponding bits
are different, It gives 1. If corresponding bits are same, it gives 0.

EX: 12=00001100
25=00011001
Bitwise XOR operation of 12 and 25 is:

00001100
100011001 Q
00010101 =21(in decimal) (2:3)

Control Statements
Causes the flow of execution to advance and branch based on changes to the state of
program.

In Java, control statements can be divided into the following three catego

1) Selection Statements

2) Iteration Statements

3) Jump Statements
1) Selection Statements
Selection statements allow you to control the f
outcome of an expression or state of a va %
can be divided into the following ca %
a) Theifand if-else statemen &
b) The if-else statemen

c) The if-else-if statement
d) The switch

The if statements : §
The first contained statement (that can be a block) o if statement only executes when
the specified condition is true. If the conditi &1’ there is not else keyword then
the first contained statement will be ski %ec ion continues with the rest of the

program. The condition is an expresgi a boolean value.
General form of simple if state t%

if<expression> m%

{

Statement-bl

}

The statemeht-blogk may‘be single statement or a group of statements .

ion is true, the statement block will be executed, otherwise the statement

ipped to the statement-x.

if else statement:-

if else statement is an extension of the simple if statement. The general form is

if(expression)
{

True-block statements
}
Else
{

False-block statements
}

" if the test expressionis true, then the true-block statements immediately following the if statementare executed. Otherwi.
the false-block statementsare executed .

L] In either case, Either true-block or false-block will be executed, not both.
" In both the cases, the control is transferred subsequently to the statement-x Diagram ‘

Nested if else statement :-

O Anested if is an if statement that is the target of another if or else.

O Nested ifs are very common in programming

0O General form of Nested if looks like

O Nested if else statement is made by placing one if else in another if else statement.

O Nested if else statement helps to select one out of many chooses.

O General form of Nested if else is : %
if<cond1>

{

if<cond3>

if<cond2> \%
| S

else

stm

stmt2

S

the ted if else statement, the outermost if is evaluated first.
®ondition1 is false, the statementis the outermost else is evaluated and if else ends.
e conditon1 is true, the control goes to execute the nextinner if statement.
O Ifconditon?2 is false, statement2 is executed otherwise conditon3 is evaluated
O If condition3 is false statement3 is executed. Otherwise statement is executed.

elseifladder:-

0 A common programming construct thatis based a sequence of nested is based upon a
sequence of nested ifs is the if else if ladder.

(1 e General form of if else ladder
if<condition>
stmt
else if<condition>
stmt;
else if<condition>

stmt; l;
else %

stmt;

L The if statements are Executed from the top down. As soon as one,0f'h
controlling the if is true, the stmt associated with that if is Executed, aad
ladder is bypassed.

ed.

C ions
he rest of the

O Ifnone of the condition is true, then the final else stmt wi

O Thefinal else acts as a default condition; i.e if all othergon nal%ests fail, then the last
else stmtis performed.

O Ifthereisnofinal else and all other condition ar .

Switch statement:- %
¢ The switch statement helps lect/one out of many chooses.

e [t often provides a better alteffative than a large d=series of if else if statements
e General form of switc ment is
n

Switch(es
{
asSe value 1:stmt1;

Break;

Case value 2:stmt2;
Q Break;
L Y

Case value N: stmt N;
Break;
Default: stmt;
}

e The expression must be of type byte, short, int or char.
* Each of the values specified in the case stmts must be of a type compatible with the expression.
e Each case value must be unique literal.
e Duplicate case value are not allowed.
e The switch stmt works like this

while:-
The while loop is java’s most fundamental loop stmt
e [t repeats a stmt or block while its controlling expression is true.
e The general form of while stmt is
While <condition>

{

Body of the loop
}
The condition can be any Boolean expression.
The body of the loop will be executed as long as the conditional expression i H

When condition becomes false, control passes to the next line of code im fallowing the
loop.
The curly braces are unnecessary if only a single stmt is being repe :

Do-while:-
O If the conditional expression controlling a while loop i IIWfalSe, then the body

of the loop will not executed at all x
U However, it is desirable to execute the of a%le t once even if condition

expression is false to begin with

O Fortunately, java supplies a loop thaPdoeNustthat : the do while

U The do while loop always exec wa>at least once, because its conditional
expression is at bottom of I%

U The general form of dow

do
{
Q f the loop

condition>

1 form of traditional for statement
isfor(initialization; condition;
iteration)

{
Body of the loop

}

[t is important to understand that initialization expression is only executed

once. Next, condition is evaluated. This must be a Boolean expression .i.e the

loop controlvariable against a target value.

=

If this expression is true, then the body of the loop is executed.

=

If it is false, the loop terminates.

=

Next, the iteration portion of the loop executed

=

This is usually an expression that increments or decrements the loop

controlsvariable.

This loop then ITERATES
First evaluating the conditional expression, then executing the body of the Q

loop ,and then executing the iteration expression with each pass.

This process repeats until the controlling expression is false. @%

Nested loop:- %Q
Like all other programming languages, java allow@)e sted.

=

i.e one loop may be inside
anotherEg:-

For(i=0;i<10; i++) @
(/\

Jump stmts:_
Java supports 3 jump stmts

1. break
2. continue
3. return.
Break stmt:-
It has 3 uses. %
1. It terminates a stmts sequence in a switch stmt. Q
2. If can be used to exit a loop. %
3.If can be used as a “civilized” form of goto.

When a break stmt is encountered inside a loop. The loop is terminate@ andprogfam control
resumes at the next stmt following the loop.

i.e by using break, we can force immediate termination of a logf g the conditional

expression (eg: i<=10) and any Remaining code in the bod

continue:-
sometimes, you might want to continue running the lo top continue running the
remainder of the code in its body for this parti r itgration

the continue stmt performs such as an ac%
Return:- %
Return stmt is used to explicitly r froih a method

i.e it causes program contgol ansfer back to the caller of the method

return stmt can be use®it xecution to branch back to the caller at the method.

&

UNIT-2

Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members,
Declaration of Class Objects, Assigning One Object to Another, Access Control for Class
Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded
Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value
and by Reference, Keyword this.

Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor
Methods, Class Objects as Parameters in Methods, Access Control, Recursive Met
Nesting of Methods, Overriding Methods, Attributes Final and Static.

I/

CLASSES AND OBJECTS:

Class Declaration And Modifiers % >
Defining a Class Q&
» Aclass is a user-defined data type with a template tha% efine its

properties. Q
» Once the class type has been defined, we car Créate “vafiables” of that type using

declarations that are similar to the basic clargtions.
> InJava, these variables are termedds in f classes, which are the actual
objects.
» Class Defines Data and Mel@o@anipulate the Data.
The basic form of a class definition i

class ClassName [ext
{

% keywords that you can use to change the behavior or visibility of classes,
etho

and variables. They can be divided into two categories: Access Modifiers and Non-
s® Modifiers.

declaration]

Modifi
Mot

ccess Modifiers

Access modifiers determine the visibility of the class to other classes. Java provides four
access levels:

1. public: The class is accessible from any other class.

2. protected: The class is accessible within its package and by subclasses.

default (no modifier): The class is accessible only within its own package.

4. private: The class is accessible only within the class it is defined. Note that private is
not applicable to top-level classes.

w

Non-Access Modifiers

Non-access modifiers provide functionality other than visibility control:

1. final: The class cannot be subclassed. %
. abstract: The class cannot be instantiated and may contain abstract met

3. static: The modifier indicates that the nested class is a static memberc

class
Class Members (2(/

Class members include fields (variables), methods, constructo g ie
classes/interfaces.

Fields Declaration {

N

» Datais encapsulated in a class by placing d i€lds inside the body of the class
definition.

» These variables are called instancedagiab ause they are created whenever an
object

» of the class is instantiated.
» We can declare the insta i xactly the same way as we declare local
variables

Class Rectangle S y

*rhe class Rectangle contains two integer type instance variables.
It is allowed them in one line as
» int length,width;

Methods Declaration
The General form of a method declaration is

type methodName(parameter-list)

{

Method-body;

}

Method declarations have four basic parts

The name of the method(method name)

The type of the value the method returns(type)

A list of parameters(parameter-list)
The body of the method

Constructors

» Java supports a special type of method called a const%@bles an object to

Neste

&

o
Constructor Method
Constructor's are used to initialize | Methods are used to do general purpose
instance variables calculation

Constructor Name and Class name should
be same

Constructor name and Class name may or
may not same

Constructor should have neither return
type or void

Method should have either return type or
void

Constructors are invoked at the time of
object creation

Methods are invoked after object is
created.

initialize i wated.
> Constr, a d toinitialize instance variables.

/Interfaces

> es and interfaces defined within another class.

9
ublic class OuterClass

public class InnerClass

{
public void display()

{

System.out.printin("Inner Class");

}
}
}

Example:
class OuterClass

staticintx=10; %
inty=20; Q
private staticint z = 30; S
static class Innerclass @
{ <<
void display() Q
System.out.printin("x =" +x); &
System.out.printin("z = "+z); %
OuterClass obj = new Outeg€la
System.out.printin("y %&'y),

}
}

} S
public class Dem \
publ® ain(String argsl[])

/ accessing a static nested class

® OQuterClass.Innerclass objl= new OuterClass.Innerclass();

objl.display();

Declaration of Class Objects

Creating an instance of a class is called declaring a class object.

Person person = new Person("John", 30);

Assigning One Object to Another

Assigning one object to another makes both references point to the same object in @%

public class Person
{
public String name;

public int age; k

// Constructor

public Person(String name, int age)
{ '\

this.name = name;

this.age = age; &
/ %
// Method to display person's details &
public void display() %
{
System.out.printin("NameX_' + nam ' Age: " + age);
}
public static void ma ringffargs)

{ // Create a \ t
Pers Ql = new Person("Alice", 25);
.out.printin("Details of personl:");
%nl.display();

// Assign personl to person2

Person person2 = personl;

System.out.printIn("Details of person2 (after assignment):");
person2.display();

// Modify person2's details

person2.name = "Bob";

person2.age = 30; %

// Display details of both personl and person2

personl.display();
System.out.printin("Details of person2 (after modifying person2).")}
person2.display();

}
}
Access Control for Class Members & {

Access control determines the visibility of class membe
Java provides four access levels:
1. public: Accessible from any othegla

System.out.printin("Details of person1 (after modifying person2):"); @)

2. protected: Accessible within t pagckage and subclasses.
3. default (no modifier): Acceg8iblénonly Within the same package.
4. private: Accessible only% me class.

1. Public Access Modifier

The public modifier allo s members to be accessed from any other class.
import java.utik;
5

publiccla

{

public int a = 10;

Q c void display()
)

System.out.printin("Public method");

}
}

class Maindemo
{
public static void main(String[] args)
{
Demo obj = new Demo();
System.out.printin(obj.a); // Accessible
obj.display(); // Accessible

2. Protected Access Modifier

The protected modifier allows class members to be accessed within the same package and
subclasses.

import java.util.*;

class Demo6
{
protected int a = 20; %
protected void display() Q

{ %
System.out.printIn("Protected method"); %
}
}
class Demo7 extends Demo6 %Q

{
void display1() Q
{
System.out.printin(a); // Accessi &
display(); // Accessible v
}
| A

class Maindemo1l

{

Default Access Modifier

The default access modifier (no modifier) allows class members to be accessed only within
the same package.

import java.util.*;
class DemoDefault

{

int a = 30; // Accessible only within the same package
void display()
{
System.out.printin("Default method");
}
} %
class TestDefault { k
public static void main(String args[]) %

{

DemoDefault obj = new DemoDefault();
System.out.printIn("Default Field: " + obj.a);
obj.display(); // Accessible
}

! 4\}$
4.Private Access Modifier \%

The private modifier allows class ersto be accessed only within the same class.

import java.util.*;

public class De i\»
{
private | ﬁ); ccessible only within the same class

lay()

priva i
Q& System.out.printIn("Private method");

public void display1()

{

System.out.printIn("Private Field: " + a);
display(); // Accessible within the same class

}

class Testprivate

{
public static void main(String[] args)
{
Demoprivate obj = new Demoprivate();
obj.displayl1(); // Accesses private members through public method
}
}

This Keyword

In Java, this keyword is used to refer to the current object inside a method or a (n
class Main k%j

{

int age;
Main(int age) Q%
{

this.age = age; &

}
public static void main(St g
{

in(8)

Main obj = new Mai
System.out.pgihtih("obj.age =" + obj.age);
| C.)

Constructor Overloading

The constructor overloading can be defined as the concept of having more than one

constructor with different parameters so that every constructor can perform a different task

ferminal Help

1

Rectangle

Coljava - p11 - Visual Studio Code

length,width;

Rectangle

length=x;
width=y;

Rectangle

X

length=width=x;

res=length*width;

res;

main args

obij= Rectangle(x: 10,y: 20

ra=obj.areal();

System.out.println

objl= Rectangle(x: 10);

ral=objl.areal();

System.out.println

Final Class and method

The final method in Java is used as a non-access modifier applicable only to a variable,
a method, or a class. It is used to restrict a user in Java.
The following are different contexts where the final is used:

1. Variable
2. Method
3. Class

o

S

Final Variable =) To Create constantvariable

-

Final Methods =P Prevent Method Overriding

Final Classes =P PreventInheritance

Parameter Passing In Java &E
» There are different waysinw c@ter data can be passed into and out of methods

and functions.

» Letusassume that a fun is called from another function A().

» Inthiscase Ai ca%e caller function” and B is called the “called function or callee
function”. A%@ uments which A sends to B are called actual arguments and the
para@

eters

re called formal arguments.

Ty

e

al Parameter: A variable and its type as they appear in the prototype
he function or method.

Syntax:
function _name(datatype var _name);

Actual Parameter
The variable or expression corresponding to a formal parameter that appears in the function
or method call in the calling environment.

Syntax:
fun _name(var _ name(s));

Call By Value:

» Changes made to formal parameter do not get transmitted back to the calle
» Any modifications to the formal parameter variable inside the calledefu

method affect only the separate storage location and will not be refle g

parameter in the calling environment.
» This method is also called as call by value &

Call by reference:
» Changes made to formal parameter do get transmi o the caller through
parameter passing.

» Any changes to the formal parameter are reflected imthe actual parameter in
elyes a reference (or pointer) to the

the calling environment as formal paramete
actual data.
» This method is also called as call by ref W his method is efficient in both time
and space. &
Introduction to Methods \ >

Methods in Java are blocks of co rform specific tasks and are typically defined within

classes. They encapsulate be r promote code reusability and modularity.

public class Metho %
{
/I M phint a greeting message
pub i t()
Q&ystem.out.println("HeIIo, welcome to Java methods!");
%‘
/

Method with parameters to calculate the sum of two numbers
public int sum(int a, int b)

{

return a + b;

}

public static void main(String[] args)

{

MethodsExample example = new MethodsExample();

// Calling the greet method
example.greet();

// Calling the sum method

int result = example.sum(5, 3);
System.out.printin("Sum: " + result);

}
}

Overloaded Methods

public class OverloadedMethodsExample

{

// Method to add two integers
public int add(int a, int b)

{
return a + b; &
} %
// Overloaded method to ad %\ers
publicint add(int a, int b, int
{
return +¢
}
public statQ\:' ring[] args)

{
0
System.out.printin("Sum of two numbers: " + example.add(5, 3));
System.out.printin("Sum of three numbers: " + example.add(5, 3, 2));

loadedMethodsExample example = new OverloadedMethodsExample();

e

Moljava - p11 - Visual Studio Code

Single.java vel2.jav Hierarchical.java

> %2 Mol

-

Demo
sum(int x,int
resl=x+y;
System.out.println(”the sum of numbers

sum(int x,int y,int z)

res2=x+y+z;
System.out.println(™ sum of 3 numbers
sum(int x,int y,int int p)

res3=xX+y+z+p;
System.out.println(™ sum of 4 numbers is:"+res3);

main(Stri

j=new Demo();
obj.sum(x: 10,y: 20);
obj.sum(x: 10,y: 20,z: 30);
obj.sum(x: 10,y: 20,z: 30,p: 40);

] cd "f:\pl1\" && javac Mol.java &8& java Mol
sum of 2 numbers is:30
sum of 3 numbers is:6@
sum of 4 numbers is:10@

exited with in 1.602 seconds

Method overriding
Terminal Help Morjava - p11 - Visual Studio Code
) Welcome Single.java 1 @ Multilevel2.java Hierarchical.java

Mor.java > ...

ss Triangle extends Rectangle

resl=0.5*%1*b;
resl;

main(Stri

le objl=new Triangle();
> ta=objl.area(l: 4,b: 5);

System.out.println("the area of triangle is"+ta);

[Running] cd "f:\pll\" && javac Mor.java && java Mor
the area of triangle isl1©.©

exited with in 3.822 seconds

Recursive Methods

Recursive methods call themselves directly or indirectly, useful for solving problems where a
method repeats its behavior.

public class RecursiveMethodExample

{
// Recursive method to calculate factorial Q

public int factorial(int n)

{ >
if (n==0] n==1) (é;)
{
return 1; &
} O
else %

return n * factorial(n - 1); &Q
}
} %

public static void main(String[] args) v
{
RecursiveMethodEx n\ ple = new RecursiveMethodExample();

// Calculate fact@rial of 5
int result = ple.factorial(5);
System.out.p actorial of 5: " + result);

P
@\

)

Arrays: Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory,
Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array,
Dynamic Change of Array Size, Sorting of Arrays, Search for Values in Arrays, Class Arrays, Two-
dimensional Arrays, Arrays of Varying Lengths, Three-dimensional Arrays, Arrays as Vectors.

Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class- Object
Class, Inhibiting Inheritance of Class Using Final, Access Control and Inheritance, Multilevel
Inheritance, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding,
Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance.

Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Intg ,
Nested Interfaces, Inheritance of Interfaces, Default Methods in Interfaces, Static Methods i [
Functional Interfaces, Annotations.

)

Arrays

An array is a group of continuous or related items that share a common nam

For instance, we can define an array name salary to represent a set of s% roup of employees.
A particular value is indicated by writing a number called index n\Qor bs

array name.
One -Dimensional Arrays
Alist of items can be given one variable name using oqli 0 riptand such a variable is called a single-

cript in brackets after the

subscripted variable or a one-dimensional array.

Declaration of Array:

Arrays in java may be declared in two for\%
Form1 ; %

type arrayn
Form?2 %

eIt
typgl | ame;

Creating Arrays :
you can crean‘N y using the new operator by using syntax
Syntax:

a =new type[array_Size];

ates’an array using new type[array_Size]
[t agsigns the reference of the newly created array to the variable arrayname.
Declaring, Creating and assigning an array to the variable can be combined in one statement as:
type[]=arrayname=new type[array_Size];
(or)
type[] arrayname={value0, value 1,....value k};

Array indices are start from 0 to arrayname. length-1

Two Dimensional Array :
It is used to store two dimensional data. It is also used to store data, which contains rows and columns.

If the data is linear we can use one dimensional array to work with multi-level data we have to use Multi-
Dimensional Array.

Creating Two Dimensional Array :

Data_Type[][] Array_Name=new int[Row_Size][Column_Size]; %

Initialization of Two Dimensional Array :

We can initialize the Two Dimensional Array in some ways %
Example:
int[][] Student_Marks = new int[2][3]; Q

int[][] Employees = { {10,20,30}, {15,25,35}, {22,44,66}, {33,55,77} }; Q

Accessing Elements of Arrays ‘&Q E

Accessing Elements of a One-Dimensional Arra

Class ArrayExample v
{ S
public static void main(String[] args) \%
(C?
ize a on

// Declare and initi imensional array

Intdata[]={5,10, 15{20;25};

// Access an&@al elements

System.o '@ intlp("First element: " + data[0]); // Output: 5
Sys &t} tin("Second element: " + data[1]); // Output: 10
t.println("Third element: " + data[2]); // Output: 15
tem.out.println("Fourth element: " + data[3]); // Output: 20

Q;ystem.out.println("Fifth element: " + data[4]); // Output: 25
}
}

Accessing Elements of a two-Dimensional Array

class Access2DArray

{

public static void main(String[] args)

{
// Declare and initialize a two-dimensional array %
Int matrix[][] ={ Q
{1,2,3}, %%
{4, 5, 6}, QQ}

{7, 8,9}
5 Q
// Access and print individual elements 2
System.out.println("Element at row 0, column 0: " ‘& 0]); // Output: 1

System.out.println("Element at row 0, column 1: " + 1]); // Output: 2

111]
System.out.println("Element at row 1, colu rix[1][2]); // Output: 6
System.out.println("Element at row 2, c% ' + matrix[2][1]); // Output: 8

System.out.println("Element at row,

Storage of Array in Compu%%

"+ matrix[2][2]); // Output: 9

In computer memory, ar
sequentially in memary,
arrangement allowsgor effici
data structure infro

How Array, %

Contiguodt

s are $tored in a contiguous block of memory. The array elements are stored
ing that each element is placed directly after the previous one. This
ntaccess to any element in the array using an index, making arrays a popular
ing languages like Java.

toré€d in Memory:

iemnory Allocation:

e §tored in a continuous block of memory. The size of this memory block is calculated based on
e of the array and the number of elements.

Arra
@array is an integer array, for example, each element will take up 4 bytes of memory (assuming a 32-
it integer), and the total memory size will be 4 * n, where n is the number of elements.
Indexing:

Elements in an array are accessed using an index. The index is used to calculate the memory address of the
element.

For example, in a one-dimensional array, the memory address of the element at index i is calculated as:

Address_of_element(i) = Base_address + (i * size_of_element)

where Base_address is the memory address of the first element in the array, i is the index, and
size_of_element is the size of each array element in bytes.

3. Memory Layout Example:

o Consider the following integer array:

Address Value

int[] arr = {10, 20, 30, 40, 50};

o Ifthe array is stored starting at memory address 1000, the elements are laid out in mefo :

1000
1004
1008
1012
1016

10 (arr[0])
20 (arr[1])

40 (arr[3])

[
[
30 (arr[2])
[
50 (arr[4])

CD
&
S

o Here, each element takes 4 bytes (since it's an int), an&eme ts are stored consecutively.

Multi-Dimensional Arrays:

o In the case of multi-dimensional arrays
order in Java. This means that the elefnents ofjeach row are stored sequentially in memory.

o Considera?2D array:

int[][] matrix = {

S
v

&rould be laid out as:

Address Value

{1,2,3},

{4,5, 6},

{7,8,9}

b
In memory,

1000
Q¥
¢ 1008
1012
1016
1020
1024
1028

.

rays), the elements are stored in row-major

o row are stored first, followed by the elements of the second row, and so on.

Types of Arrays and Memory Allocation:

1.

1.

2.

Primitive Arrays:

o Arrays that store primitive types like int, char, float, etc., store the actual values in contiguous memory.

o Example:
int[] arr = {1, 2, 3}; Q%

Each int value (4 bytes) is stored contiguously in memory. C

objects in contiguous memory.

o Instead, the array stores references (memory addresses) to the objects, w %
in memory.

o Example: QQ

String|[] arr = {"Apple", "Banana", "Cherry"};
The array arr contains references to String objects, andéhose$trings are stored at different memory

locations.

Advantages of Contiguous Memory Storage: v
Efficient Indexing: &

o Since arrays are stored in co%u memory, the memory address of any element can be

Object Arrays: %
o Arraysthatstore object references (e.g., arrays of String or user-defined objects t e the actual
a

e located anywhere

calculated quickly using tHe' index.¥*This makes accessing elements very fast (0(1) time

complexity).
Cache-Friendly:

o Contiguous memory sg;age takes advantage of CPU caching. When an element of an array is
accessed, near ents are likely loaded into the cache, speeding up future access.
Disadvantages:
Fixed Size: \

o a%e is too large or too small.
ient r

Inef tion/Deletion:
nserting or deleting elements in the middle of an array requires shifting elements, which can
be slow (O(n) time complexity).

L 2

Operations on Array Elements

In Java, you can perform various operations on array elements, such as arithmetic operations, traversals,
modifications, and more. Below are some examples of common operations performed on array elements.

Sum of All Elements in an Array

class ArrayOperations

: Q%

public static void main(String[] args)

int numbers[] ={10, 20, 30, 40, 50};
int sum = 0; Q

// Loop through the array to calculate the sum of elements Q
for (inti=0; i < numbers.length; i++) %
(Q
sum = sum+ numbers][i]; &
}

System.out.println("Sum of all elements: " &»
} S
} o
Finding the Maximum Element il% y
class ArrayOperations v

{

public static voi g[] args)
{
b

[1={10, 20, 30,40, 50};

. Loop through the array to find the maximum element

for (inti=1; i < numbers.length; i++)

if (numbers[i] > max)

max = numbers][i];

System.out.println("Maximum element: " + max);

Finding the Minimum Element in an Array %

class ArrayOperations {

public static void main(String[] args) {

int[] numbers = {10, 20, 30, 40, 50}; é):

int min = numbers[0]; :
// Loop through the array to find the minimum element Q%

for (inti=1; i < numbers.length; i++) {
if (numbers[i] < min) { &

min = numbers|[i];

System.out.println("Minimum %%\ min);

array.length - 1 (for the last element). Here are examples in different programming

rrayFirstLastElement {
pablic static void main(String[] args) {

L 2
int[] arr = {10, 20, 30, 40, 50};

Get the First anx ent of an Array
To get the % 1a5t elements of an array, you need to access the elements at index 0 (for the first
in

// Get the first element

int firstElement = arr[0];

// Get the last element

System.out.println("First element: " + firstElement);

System.out.println("Last element: " + lastElement);

}
Output: %
First element: 10 Q
Last element: 50 C %
t

To compare two arrays in Java, you need to determine if they are equal in terms of their ent and order.
You can use the Arrays class from the java.util package, which provides utii thods for comparing

&

The Arrays.equals() method checks if two arrays are comparing their length and corresponding
elements.

Example Code %
import java.util.Arrays; (\

public class CompareArrays {

public static void main(Stsing[] args) {
int[] array1 = {162} 3, 4,%};

Here’s how you can compare two arrays:

Using Arrays.equals()

]
int[] array, , 374, 5};
int][] 1,2,3,4, 6}
are arrayl and array2
olean areEquall = Arrays.equals(array1, array2);
L 2

System.out.println("arrayl and array2 are equal: " + areEqual1l);

// Compare arrayl and array3
boolean areEqual2 = Arrays.equals(array1, array3);

System.out.println("array1 and array3 are equal: " + areEqual2);

Assigning One Array To Another Array

public class CopyArray {
public static void main(String[] args) {
// Initialize the original array

int[] arrl = new int[] {1, 2, 3, 4, 5};

// Create another array arr2 with the same size as arr1

int[] arr2 = new int[arrl.length];

// Copy all elements from arr1 to arr2
for (inti=0;i<arrl.length; i++) {

arr2[i] = arrl[i];

// Displaying elements of the original array
System.out.println("Elements of the origjffal array; “);

for (inti= 0; i <arrl.length;i++) { :\

System.out.print(arr1[i] +" ")

System.out.prir@

// Disp @ents of the new array

Sy, tprintln("Elements of the new array: ");
or\{inth= 0; i < arr2.length; i++) {

stem.out.print(arr2[i] +" ");

*)

}

Dynamic change of arrays

In Java, arrays have a fixed size once they are created. If you need a dynamically sized collection, you'll want to
use ArrayList from the java.util package, which provides dynamic resizing capabilities. Here's how you can use
ArrayList:

Using ArrayListin Java

1. Import ArrayList: Make sure to import the ArrayList class: %

import java.util.ArrayList;

2. Create an ArrayList: You can create an ArrayList and use it similarly to an arr t%th
dynamic resizing: Q)%
public class Main { Q ,;
public static void main(String[] args) { &
// Create an ArrayList of integers
ArrayList<Integer> myList = new ArrayList<>(); v

// Add elements \%
myList.add(1); : %

myList.add(2);
myList.add(3);

// Remove an e@

myList.r@te er.valueOf(2)); // Removes the element with value 2
/ in elements
f num : myList) {

0
g
ystem.out.print(num + " "); // Output: 1 3

}

Common Operations with ArrayList:

Adding Elements:

myList.add(1,5); // Adds 5 atindex 1
Removing Elements:
myList.remove(2); // Removes the element at index 2

myList.remove(Integer.valueOf(3)); // Removes the first occurrence of the value 3

Accessing Elements: %
int element = myList.get(0); // Gets the element at index 0 Q
o S
Iterating Over Elements: %
for (inti= 0; i < myList.size(); i++) { QQ}

System.out.println(myList.get(i)); Q

} N~
Getting Size: Q

int size = myList.size(); // Gets the number of e &in the list

Clearing All Elements:

myList.clear(); // Removes all elements from tl&%
1

ArrayList is a versatile and commonly used ¢ tidg in'Java for managing dynamic-sized list.

Arrays Sorting C %\

Array sorting refers to the ess/0f arranging the elements of an array in a specific order,
typically in ascending or desceWding order. In Java, there are several ways to sort arrays, including
using built-in methods @Mimplementing custom sorting algorithm$S

public class SortA: ample2

{ \
n% ic void main(String[] args)
Q //creating an instance of an array
2

int[] arr = new int[] {4,2,3,1};
System.out.println("Array elements after sorting:");
//sorting logic

for (inti=0; i < arr.length; i++)

{

for (intj =i+ 1;j <arrlength; j++)

int tmp = 0;
if (arr[i] > arr[j])
{

tmp = arr|[i];

arr[i] = arr[j]; %
arr[j] = tmp; Q

} S

) e
//prints the sorted element of the array QQ}

System.out.println(arr[i]); Q
} %
} Q

Descending Order %\
public class SortArrayExamp%
{

public stati¢ void maih(String[] args)

= new int[] {78, 34, 1, 3, 90, 34, -1, -4, 6, 55, 20, -65};

1
Q%m.out.println("Array elements after sorting:");
*

//sorting logic

{ \
/ %% an instance of an array
t

for (inti = 0; i < arr.length; i++)

{

for (intj =i+ 1;j <arr.length; j++)

{

int tmp = 0;

tmp = arr([i];
arr[i] = arr[j];
arr[j] = tmp;

}

} Q‘
//prints the sorted element of the array Q

System.out.println(arr[i]); %
} %:)
) Q

Search for Values in Arrays C %\

To search for values in aysmwa, you can use various methods depending on the type of search
you want to performt B re examples of two common types of searches: linear search and
binary search.

Linear %a‘ghz
o Step the search element from the user.
. ;‘% - @ompare the search element with the first element in the list.
Stép ¥ - If both are matched, then display "Given element is found!!!" and terminate the function
tep 4 - If both are not matched, then compare search element with the next element in the list.
ep 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.

Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and
terminate the function.

Class LinearSearch

{

Public static void main (String args[])

Int a[]={10,20,40,50,30};
Int search_ele=50;
Boolean flag=false;

For(int i=0;i<a.length;i++)

{ %
If(search_ele==a[i]) Q
{ S
System.out.println(“the element is found at : +i); %
flag=true; QQ}

break;

) %
} 3
If(flag==false) &
{ N

System.out.println(“element is not f; %

} N

&

list |65]20]10|55|32|12|50]|99

search element 12

Step 1:
search element (12) is compared with first element (65)

list [@8]20]10]55][32]12][50]99
12

Both are not matching. So move to next element %
Step 2:
search element (12) is compared with next elerQ

list [65]28]10]55]32]12[50][99
12
Both are not matching. So move to ne %nt
Step 3:
n

search element (12) is compared & element (10)
list [65]20]@0]55]3 o[o9
12
Both are not matching. S o next element
Step 4:
search element (12) i red with next element (55)
A
list |65|2043Q 3

v 12

Both are not Nng. So move to next element
Step 5:

search I%\t (12) is compared with next element (32)
&65 20[10[55]B2][12[50[29
Qb 12

oth are not matching. So move to next element

2|12|50|99

St

;%Search element (12) is compared with next element (12)

list [65]20]10][55][32]E2]50]99
12

<

Both are matching. So we stop comparing and display
element found at index 5.

N2

Binary search

Step 1 - Read the search element from the user.

Step 2 - Find the middle element in the sorted list.

Step 3 - Compare the search element with the middle element in the sorted list.

Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function.
Step 5 - If both are not matched, then check whether the search element is smaller or larger

the middle element. %
Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 f@e

sublist of the middle element.
Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 a e right
sublist of the middle element.

Step 8 - Repeat the same process until we find the search element in th t11 sublist
contains only one element.

Step 9 - If that element also doesn't match with the search element, t

found in the list!!!" and terminate the function.
>
public class BinarySearch { &Q
public static void main(String[] args) { @
inta[]={1,2,3,4,5,6,7,8,9,10}; /%%be in sorted order

boolean flag = false; >
intkey = 5; Z

intl=
int Q%h 1;

1ntrn—(1+h)/2;

ay Element is not

if (a[m] == key) {
System.out.println("Element Found..");
flag = true;
break;

if (a[m] <key) {
l=m+1;

}
if (a[m] > key) { %
h=m-1; Q

} :>

} %3

if (flag == false) { §
System.out.println("Element NOT found.."); %

} Q

}

| &
=

list |10]|12|20|32]|50|55]|65]|80]|99|

search element iz2

Step 1:
search element (12) is compared with middle element (50)

list [1o][12]20o][32]88]55]65][80][29]
12
Both are not matching. And 12 is smaller than 50. So we
search only in the left sublist (i.e. 10, 12, 20 & 32).

list |10|12|=20|=2] %3
Step 2: @

search element (12) is compared with middle eleme

list [1o]E2]=z0o][32]
12

Both are matching. So the result is “Elemen&t inde>x 17

search element

Step 1:
search element (80) is compared it dle element (50)

list |10]|12|20|3 |es|80|9o9|

Both are not matching. An isflarger than 50. So we

search only in the right s ti.e. 55, 65, 80 & 99).
list Iss|es|s80|99|
Step 2:
search element (8 ompared with middle element (65)
list [ss[ES]so]29]
80
Both aren ching. And 80 is larger than 65. So we
search he right sublist (i.e. 80 & 99).

Qst

s -
% element (80) is compared with middle element (80)

80

th are not matching. So the result is “"Element found at index 7~

Arrays as Vectors (Vector Class in Java)

The Vector class in Java implements a dynamic array where elements can be added or removed. It
is synchronized, which means it's thread-safe for use in multi-threaded applications. However,
because of the synchronization overhead, it's generally slower than ArrayList.

Key Features of Vector:

Dynamic resizing %

Can hold any type of data

Supports operations like insertion, deletion, and searching %
Synchronization makes it thread-safe Q)%
Declaring and Using a Vector in Java: Q
import java.util.Vector;
public class VectorExample {
public static void main(String[] args) { &

// Create a Vector to hold integer values

Vector<Integer> vector = new Vector<> &v
// Adding elements to the Vect \%
vector.add(10); %%
vector.add(20); v

vector.add(30);

vector.add(4

ng elements using an index

Qt m.out.println("Element at index 2: " + vector.get(2)); // Output: 30

L 2

// Removing an element at a specific index

vector.remove(3); // Removes the element at index 3 (40)

// Iterating over the elements

System.out.println("Vector elements after removal:");

System.out.println("Element at index " +1i + ":

// Size of the vector

System.out.println("Size of the vector: " + vector.size());

// Checking if the vector contains a specific element

if (vector.contains(30)) {
System.out.println("Vector contains 30");

}else {

System.out.println("Vector does not contain 30");

; N\
Output: &v
CD
S
>

Element at index 2: 30
Vector elements after removal:
Element at index 0: 10
Element at index 1: 20
Element at index 2: 30

Element atindex 3;
Size of the ve K
Vector c i§30

<

+ vector.get(i));

Arrays Of Varying Lengths

In Java, you can create arrays of varying lengths, also known as jagged arrays or ragged arrays.
A jagged array is an array whose elements are arrays of different lengths, unlike a regular
multidimensional array where all rows have the same number of elements.

Declaring and Using Jagged Arrays

arrays of varying lengths to each row.

Example Program: Arrays of Varying Lengths (Jagged Arrays) %
java Q

When you declare a 2D array, you don’t have to specify the size of each row. Instead, yo: %ign

Copy code
public class JaggedArrayExample { %
public static void main(String[] args) { Q
// Declaring a 2D array with 3 rows &

int[][] jaggedArray = new int[3][];

// Initializing each row with a differ &e; of columns

jaggedArray[0] = new int[3]; // E t rowyhas 3 elements

jaggedArray[1] = new int[2]; nd row has 2 elements
/L Ahird row has 4 elements

jaggedArray[2] = new in%

// Populating the jagged’array with values

int value =

for % i <jaggedArray.length; i++)
b for (intj = 0; j < jaggedArray[i].length; j++)
{
<
jaggedArray([i][j] = value++;
}
}

// Printing the elements of the jagged array

m.out.println("Jagged Array Elements:"

for (intj = 0; j < jaggedArray[i].length; j++)

System.out.print(jaggedArray[i][j] +" ");

} Q‘
System.out.println(); // Move to the next line after each row Q

} e
) QQ/‘
Output: Q
Jagged Array Elements: %

123 Q

” S

6789

5.

INHERITANCE

The mechanism of deriving a new class from an old class such that the new class
acquires all the properties of the old class is called Inheritance.

The old class is known as Parent, base or Super class and the new class that is derived is

known as child, derived or subclass.

The Inheritance allows subclasses to inherit all the variables and methods of their %
parent classes. Q

Defining a Subclass %
A Subclass is defined as follows Q

Class subclassname extends superclassname

{ K~
Variables declaration Q
Methods declaration &

}
The keyword extends signifies that the prop e%ﬁe superclassname are extended

subclassname.

The subclass will now contain its O%N%as and methods as well those superclass.
we

This kind of situation occurs w, ant to add some more properties to an
existing class without actual ifying it.

20
Inheritance may take @Qifferent types

Single inheritan
. Multilevel Iije
. Hierar @ itance
1tance

4.

Hybr
@e Inheritance (Does not supports in java)
<

These forms of inheritance are shown as

Single Inheritance

l Super Class
—

|

Hierarchial Inheritance

Super Class J

|

MultiLevel Inheritance

Super Class

f

Sub Class 1

I Sub Class | ’ Sub Class 1

Sub Class 2 ‘ | Sub Class 3 |

f

Sub Class 2

Hybrid Inheritance

Super Class

Sub Class 1 Sub Class 2

- >

Sub Class 3

1.Single inheritance

Example:

= . « & - 3
Single.java > ‘2 Triangle >
- Rectangle

length,width;
Rectangle(int x,i

length=x;
width=y;

t res=length®width;
res;

Triangle exte Rectangle
height;
Triangle(int x,i

PErF(X,Y)5
height=z;

¢t tarea

resl=area()*height;

resl;

i main(St > args
obj=new Triangle(X:
"t ra=obj.area();
ta=obj.tarea();

10,y =

System.out.println(”
System.out.println(’

Multiple Inhertance

[Super Class 1 ‘ ‘ Super Class 2 ‘

5,2

w o

l Sub Class ‘

Q-
o

2. Multilevel Inheritance

Process of deriving a class from another derived class is called multilevel inheritance

inal Help Multilevel2.java - p11 - Visual Stug

Multilevel2.java

Student

sSno;
- o sname;
Student(int x,String

1
SNo=Xx;
sname=y;

stu()

System.out.println(“"the sno is:"+sno);
System.out.println("the sname is:"+sname);

Student

m3=c;

!

bid stu marks()
System.out.println("the subl marks

System.out.println("the sub2 mark
System.out.println("the sub3 marks

XJy)a)b)C ;
total()
tot=ml+m2+m3;

turn tot;

Percentage

Percentage(int x,String y,int a,int b,int

Multilevel2.java > %2 Percentage > & Percentage(int, String, int, int, int)
Sé ® ; }x er(x,y,a,b,c);
per()
avg=total()/3;
avegs
s Multilevel2

i main(String args[])

obj.stu();
obj.stu marks();
int tm=obj.total();

pa=obj.per();
System.out.println("the student total marks
System.out.println("the student total marks

obj=new Percentage(x: 18,y: "yuvaraju”,a: 90,b: 92,c: 93

is"+tm);
is"+pa);

>

3. Hierarchical Inheritance

Process of deriving one or more subclasses from one super class is called hierarchical inheritance

erminal Help

L L= | L=

J i1.%;
Rectangle

length,width;
Rectangle(X, y)

length=x;
width=y;

rarea()

res=length*width;
res;

Volume Rectangle

Volume(X, y)
{

X>¥)s
vareal()

resl=1/2*rareal();
resl;

lass Triangle extends Rectangle

C height;
Triangle(int x,int

super(x,y);
height=z;

- tarea()

int res3=rarea
1 res3;

155 Hierarchical

main(String args[])

Triangle objl=new Triangle(x: 10,y: 20,z: 30);
int ta=objl.tareal();
int ra=objl.rarea();
System.out.println("the C
System.out.println("the area of tris:
me obj2=new Volume(x: 10,y: 20);
int va=obj2.varea();
System.out.println("the area of volume is:"+va);

_ Y <
4.y
4.Hybrid Inher.'&tzi‘n‘cw
’\ N »
Combin? wf aboVe any inheritance is called hybrid inheritance
5. Multip e.j}l ritance
a\

P S$of eriving a subclass from one or more superclasses is called multiple inheritance.
]a;:::z

es not directly implement multiple inheritance.

wever, this concept is implemented using a secondary inheritance path in the form of
interfaces. Class A

{

}
Class B

{
}

Class C extends A,B

{
}

Method Overrididng

A method in subclass, whose name, parameter list and return type are sam
of the method in superclass is called overrided methods.

Triangle extend Rectangle
area(double 1, uble b)

resl=0.5*1%*b;
resi;

main(String

objl=: v Triangle
ta=objl.area(l: 4,b:

System out.println(”the area o

L) E cd "f:\pll\" &&
the area of triangle isl@. G

// java does not allow this { }

Q-
%Q

Abstract Methods and Classes

An Abstract method is a method without method body or a method without
implementation.

An Abstract method is written when the same method has to perform different tasks

depending on the object calling it. Q
Example: Q
class A // Automatically Becomes Abstract Class %%
{ QQ"

void m1(); // Abstract Method

void m2 oncrete Metho
d //C Method

System.out.println(“method 2”);

An Abstract class is a class thatg€ontains 0 or more Abstract Methods.

A Class that contains one or @ract Methods is called Abstract Class.

Abstract class can c ance variables and concrete methods in addition to abstract
methods. Since, ass contains incomplete methods, it is not possible to estimate
the total meQ& ired to create the object.

ss MyClass
{

stract void calculate(double x);

}
Class Sub1 extends MyClass

{

void calculate(double x)

}

}
Class Sub3 extends MyClass

{

void calculate(double x)

{

System.out.println(“Square Root ="+Math.sqrt(x));

}
}

Class Different

{

public static void main(String args|[])

{
Sub1 objl = new Sub1();

Sub2 obj2 = new Sub2();
Sub3 obj3 = new Sub3();

obj1l.calculate(3);

obj2.calculate(4);

obj3.calculate(5);
} \
R

L 2

%@*

Example:2

Abstraction.

regno=x;
i fulltank()

System.out.println(x: "the car is full

s Maruthi

Maruthi(int

maruthi car is r

erminal Help Abstraction,java - p11 - Visual Studio Code

) Welcome Single.java 1 @ Multilev Hierarchical.java Abstraction.java
Abstraction.java > %2 Maruthi > @ breaking()

Santro extends Car

Santro(int x)

f
1

steering()

System.out.println(x: "the santro car is power steering”

breaking()

System.out.println(x: "santro car is hydralic breaking:"

Abstraction

main(String args

obj=new Santro(x: 10);
obj.fulltank
obj.steering();

obj.breaking();
1 objl=new Maruthi(x: 20);
objl.fulltank();
objl.steering();

objl.breaking

AR

ing] cd "f:\p11\" && javac Abstraction.java & java Ab
the car is full tank:
the santro car is power steering
santro car is hydralic breaking:
the car is full tank:
the maruthi car is normal steering:
the maruthi car is ready to breaking:

final class : prevents inheritance

sometimes we may like to prevent a class being further subclasses for security reasons. A
class that cannot be subclasses is called a final class. Any attempt to inherit final classes will
cause an error and the compiler will not allow it.

final class A

i N

class B extend A //error, cannot inherit a because it is a final class :)
(%3
| §

Interfaces:

YV V V

Defining an Interface
An Interface is basically a kind of class

Like classes, interface contain methods and variables but with a major difference.

The difference is that interfaces delline only %
Abstract Method & Q
Final and Static Variables %

i.e methods are declared without any body and variables are implicitly finaldnd static,
meaning they cannot be changed by the implementing class. They must alsé be itjalized.

All Methods and Variables in the interface are implicitly public.
The syntax for defining an interface is very similar to that (%

Interface InterfaceName
{ &

static and final Variables

Abstract Methods & Z
} S
Where Interface is the keyword ? ceName is any valid java variable

Example: v
Interface Item v
{
static final @ 1001;
1

static fi%

)/ y(0;

name = “Fan”;

NN N N

<\

Implementing Interface

An Interface will have 0 or more abstract methods which are all public and abstract by
default.

An Interface can have variables which are public, static and final by default,

means all the variables of the interface are constants. %
Objects cannot be created to an interface whereas reference can be created. Q
Once interface is deRined, any number of classes can implement an interface. %

Also one class can implement any number of interfaces. %

To Implement an interface, a class must create the complete set of metho 1 y the
interface.

To implement an interface, include the implements clause in a cla e n, and then
create the methods defined by the interface.

General form of a class that includes the implements cla;@ke

Class ClassName [extends SuperClass] [imple%en rfacel|,.. InterfaceN]]

{
// class body < &

} S
Example %
Class A Extends B Impleme%

}

v ie if a class implements more than one interface, the interfaces are separated with a
comma.

The Relationship between classes and Interfaces are

class interface interface D%' ”

T extends | implements Textends)

class class interface

4
Example: §<\

Interface Bank v
(S
float rateOflnterest(); \%

} >

Class SBI implements Bank %

{ Nag

public float reateOﬂte%

{ \
return Q

} %

cla [CIimplements Bank
<

public float reateOfInterest()

{
return (9.8f);

}
}

class IB implements Bank

{

public float reateOfInterest() %
| QO
return (8.8f); %

} <

} N

class InterfaceDemo Q

{ &~

public staticvoid main(String args([]) Q

{ S

SBI obj1 = new SBI();

float sbi_roi = obj1.rateOfInterest(); &; y
ICICI obj1 = new ICICI(); \%
floaticici_roi = objl.rateOfInteres

IB obj1 = new IB();

float ib_roi = obj1.rateOfInte

System.out.println(“§BI f Interest is “+ sbi_roi);
System.out.prin(%'B rate of Interest is “+ sbi_icici);
System.o In(*IB rate of Interest is “+ sbi_ib);

}

%

Interfaces can be Extended

D

Like classes, interface can also be extended.
v" i.e an interface can be sub interfaced from other interfaces.

The new sub interface will inherit all the members of the super interface in the
manner similar to subclasses.

v’ This is achieved using the keyword “extends”.

v General form of extending interfaces is

Syntax:

Interface NameNew extends namel][,...nameN]

{

Body of Interface

}
Example:
interface A
{
void meth1();
void meth2();
}
interface B extends A
{
void meth3();
} N
Class MyClass implements B %
{ 2
public void meth1() %
(?‘
System.out.println{im enting meth1()....");
} %
public voi h
{

.printin(“Implementing meth2()....”);
}

<
blic void meth3()

{
System.out.println(“Implementing meth3()....");

}

}

Class InterfaceDemo

{
Public static void main(string args[])
{
MyClass obj = new MyClass();
obj.meth1();
obj.meth2();
obj.meth3();
}
}
a

inheritance chain.
Note : if a class that implements an
implementations to all the method
abstract class and cannot be inst

When a class implements an interface that inherig§,anoth
provide implementations for all methods n

interface, it must
within the interface

rface and the class does not give
the’'interface, then the class becomes an
d

Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into
Programs, Path and Class Path, Access Control, Packages in Java SE, Java.lang Package and its Classes,
Class Object, Enumeration, class Math, Wrapper Classes, Auto-boxing and Auto- unboxing, Java util
Classes and Interfaces, Formatter Class, Random Class, Time Package, Class Instant
(java.time.Instant), Formatting for Date/Time in Java, Temporal Adjusters Class, Temporal Adjusters
Class.

Exception Handling: Introduction, Hierarchy of Standard Exception Classes, Keywords thro d|
throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked E)@ ,

Checked Exceptions. :

Java I/0 and File: Java 1/0 API, standard I/0O streams, types, Byte streams, % streams,
Scanner class, Files in Java Q)

1. Introduction to Packages in Java Q

In Java, a package is a mechanism for organizing Java clas ierfaces, and sub-packages into

namespaces. Packages act like containers that group related clas&d rfaces, helping to avoid naming

conflicts and managing large codebases efficiently. s

Key Benefits of Using Packages:

1. Namespace Management: Packages (&rganizing classes and interfaces into different
namespaces, which prevents namin % ZFor example, you can have two classes with the same
name in different packages with g%g any conflicts.

2. Access Control: Packages alleyy the application of access control. Classes, methods, and fields can be

declared public, protectéd, private, or package-private (default), controlling how they are

accessed from otherpac

3. Code Reusabili

or within the same package.

ges make it easier to reuse classes across different projects or parts of a
project. Youﬁe ily import them into other programs and extend their functionality.

4. Logic g: Grouping related classes together makes it easier to maintain and manage code. It

also ideS structure, making the code more readable and understandable.

pagkage

» Package a group of similar types of classes and interfaces and subpackages
Or
Package is a folder that contains collection of related classes and interfaces.

>
» Injava ,packages can be categorized into two types

1.Built-in packages

2.user-defined packages

Built-in packages

In java we have various built-in packages that are already created by java people and these
packages contain large number of classes and interfaces

User defined packages

As the name suggests user-defined packages are a package that is defined by theuser or

programmer. %

Packages

Built-in packages U?QEfi packages
%

ot
D>
N

Java.io Java.util Java.lang Java.awt Java.util

V

Java.io Contains classes related to input/output operations
Java.util Contains classes and interfaces of collection framework, scanner class
Java.lang Contains fundamental classes like system, object etc for designing java
program
Java.awt Contains classes and interfaces for creating graphical components
&
NQ)
Java.swing Contain classes and interfaces for creating graphical components A

h g
Advantages :)
» Javapackage is used to categorized the classes and interfaces so that»%a e

easily categorized. Q
» Java package provides access protection %
’ & :

Java package helps to avoid name space collision.

How to create user defined packages

» To create the package should be starts with % ord is package

Syntax: package package name; :&

> It should not contain main class

» Multiple programs should ﬁ%-&or placing multiple classes in samepackage.

?»
s
9@

Steps to create a simple user defined packageStep-1

package pack;
public class PackDemo

{
public void show()
{
System.out.println("welcome to java");
}
I

Step-2 Q&'
Ve

import pack.PackDemo;
class Packl

{
public static void main(String args[])
{
PackDemo obj=new PackDemo();
obj.show();
;
}

D:\java>javac -d . PackDemo.java

D:\java>|

A 4

Step-4

D:\java>javac Packl.java

D:\java>java Packl

welcome to java

D:\java>| %
O
%

A package hierarchy must be reflected in the file system of your Java developm, t ; For

example, a package declared as package java.awt.image;

Example: Package demonstration Q
package pack; public %r
class Addition 2

{ &
int x,y;
public Addition(int a, int b) (@V

}

Step 1: Save the above file with Addition.java
package pack;

public class Subtraction

{ QQ,

int X,y;

public Subtraction(int a, int b) %
{ @

} %
public void diff() Q

{ (&
System.out.println("Difference :"+(X—)d%
} ?V
} &
Step 2: Save the above file with Subt & vaStep 3:

Compilation
To compile the java files use t %ng commands

fo
javac -d directory path name off the java fileJavac —d

java file

Note: -d is a swi

represents ith
directo @

Step

tions creates a new directory with package name. Directory path

ation you want to create package and . (dot)represents current working

package from another package
i % three ways to use package in another package:

1. With fully qualified name.

class UseofPack

{
public static void main(String arg[]) Q

| S
pack.Addition a=new pack.Addition(10,15); %
a.sum(); @
pack.Subtraction s=new pack.Subtraction(20,15); §

s.difference();

2. import package.classname; é)
import pack.Addition; C\&

import pack.Subtraction;

class UseofPack C\%x

{

public static void main(Sfring arg[])

{
Additio Addition(10,15);a.sum();
Sw@ s=new Subtraction(20,15);
@%& nce();
} ;

3. import package.*;
import pack.*; class
UseofPack

{

public static void main(String arg[])
(%
Addition a=new Addition(10,15);a.sum(); Q
Subtraction s=new Subtraction(20,15); %
s.difference(); %
} Q@
| &

Note: Don’t place Addition.java, Subtraction.java files parallel to t rectory. If you

place JVM searches for the class files in the current working dire no?in the pack directory.

Access Control

o Javaprovides four types of access modifiers: %rprote cted, default (no modifier), and

private.
o public: Accessible from an '%%
o protected: Accessibl same package and subclasses.
o default: Accessib %thin the same package.
o private: Acce531ble nly within the class where it is declared.

Packages in Java SE

1. java.lang Pack
e This pa% automatically imported into every Java program, providing fundamental classes
th

e language.

. lgsses:
o Object: The root class from which all classes in Java inherit.

o String: Immutable sequences of characters.
o Math: Provides mathematical operations such as sqrt(), pow(), abs().
o System: Used to interact with system resources, e.g., System.out for standard output.

o Thread: For multithreading operations.

2. java.util Package

o Contains utility classes and interfaces used for collections, date/time manipulation, and random

number generation.

o Key classes: %
o ArrayList, LinkedList, HashSet, HashMap: For handling dynamic collections of d

o Collections: Utility class for manipulating collections (e.g., sorting, searching)!
o Date, Calendar, TimeZone: For handling date and time. %
o Random: For generating random numbers. @

O

3. java.io Package
e Provides classes for input and output operations, such as readig@ﬁng data to files, handling

streams, and working with serializable objects.

o Key classes: &
o File: Represents file and directory pathnames.

es
o BufferedReader, BufferedWriter: For :%ading/writing of text from/to files.
o InputStream, OutputStream: Base etasseS\for byte stream operations.
eE ;

o Serializable: Marks classes fo &
Wrapper Classes in Java %

Wrapper classes in Java are used to cgvert primitive data types into objects. Each of Java's eight primitive

rialization

types (int, char, etc.) has a gorr ing wrapper class in the java.lang package. These wrapper classes

provide a way to treat pr data types as objects, which is necessary in scenarios where only objects are

allowed, such as with Ja ollections (e.g., ArrayList, HashMap).

The proce og%rting a primitive type to its corresponding wrapper object is known as boxing, and

conveb to a primitive is called unboxing.

'Types and Corresponding Wrapper Classes:

Primitive Type|Wrapper Class

boolean Boolean

byte Byte

char Character

Primitive Type |Wrapper Class

short Short

int Integer

long Long %
float Float 0

double Double Q)%\:)

Why Use Wrapper Classes?

1. Object-Oriented Collection Classes: Java's collection classes (e.g., A .@ ist, HashMap) can

only store objects, not primitives. Wrapper classes allow primitives to be stored in

collections by converting them into objects.
2. Utility Methods: Wrapper classes provide many useful methods fg manipulating and converting

primitive values.
3. Default Values in Generics: Java Generics work o ith objects, so wrapper classes are used

when you need to work with generic types.
4. Nullability: Wrapper classes can be null, w primitive types cannot. This can be useful for

representing the absence of a value. ;
Boxing and Unboxing \,

o Boxing is the process of convert%;lmitive type into its corresponding wrapper object.
e Unboxing is the reverse proc%ere the wrapper object is converted back into a primitive type.

Example of Boxing and Unbo

public ClaS‘SQ'% boxingExample {

publi ticwwoid main(String[] args) {

ing (primitive to object)
ntnum = 100;
[

Integer obj = Integer.valueOf(num); // explicitly boxing

// Unboxing (object to primitive)

Integer obj1 = new Integer(200);

int num2 = objl.intValue (; // explicitly unboxing

System.out.println("Boxed Integer: " + obj);

System.out.println("Unboxed int: " + num?2);

}

Auto Boxing and Auto Unboxing %

Java automatically handles the conversion between primitives and their corresponding wrappet ¢
through auto-boxing and auto-unboxing.

e Auto-boxing: Automatic conversion of a primitive type into its wrapper cla '%t{
e Auto-unboxing: Automatic conversion of a wrapper object to its correspo@p fmitive type.
Example of Auto Boxing and Auto Unboxing:

public class AutoBoxingUnboxingExample { Q %

public static void main(String[] args) { &
// Auto-boxing

int num = 100;

Integer obj = num; // no need to call l@%erzglueOf(num)
// Auto-unboxing \,:

Integer obj1 = new Intege ;

int num2 = obj1; // no v call wrappedNum2.intValue()
System.out.println{"Alito-boxed Integer: " + obj);

System.o&

}

) @;

Jav, l@sses and Interfaces
[J

Fopmatter Class (java.util. Formatter)

("Auto-unboxed int: " + num2);

The Formatter class in Java provides support for formatting data (such as strings, numbers, dates, etc.)
in a way similar to printf() in C. It can format output based on a format string that specifies how data
should be presented. It is often used in logging, console output, or file writing.

Key Methods:

format(): This is the primary method for formatting. It supports a variety of data types, and the

format string uses placeholders.

Key Concepts:
1. Format String: The format string specifies how data should be formatted. It contains placeholders
like %d, %f, %s, which get replaced with actual values.
2. Supported Data Types:
o %d: Integer (decimal).

o %f: Floating-point number (decimal). %’
o %s: String. Q

o %x: Integer (hexadecimal). %
o %o: Integer (octal). %
o %t: Date/time values. QQ)
Example: Q
public class FormatterExample { &'

public static void main(String[] args) {
Formatter fmt = new Formatter(); &
fmt.format("Value of Pi to 2 decimals: %.21", 3.1

System.out.println(fmt); v
fmt.close(); &
} &
} S
Output: %
Value of Pi to 2 decimals: 3.%

Example2:

import jang atter;
puh@%ﬁ)wrmatteﬁxample {
@1 static void main(String[] args) {

// Create a Formatter

Formatter fmt = new Formatter();

// Format an integer, a float, and a string
fmt.format("Integer: %d\n", 123);
fmt.format("Floating-point: %.2f\n", 3.14159);
fmt.format("String: %s\n", "Hello, World!");

// Print the formatted output

System.out.println(fmt);

// Close the Formatter to release resources

fmt.close();

H
Output: %
Integer: 123 @%
Floating-point: 3.14 Q

String: Hello, World! Q
Formatting Dates and Times: Q E

You can use the Formatter class to format dates and tim. ing the %t prefix.
o %tY: Year (4 digits).
e %tm: Month (2 digits).

e %td: Day of the month. (& z

e %tH: Hour (24-hour clock).
e %¢tM: Minute. %&
e %tS: Second. %
Example3: v
importjava.util.Form ;

import java.util.

public ¢ %&rmat&mmple {
public c void main(String|[] args) {

atter fmt = new Formatter();
alendar cal = Calendar.getInstance();

// Format current date and time
fmt.format("Current Date: %tY-%tm-%td\n", cal, cal, cal);
fmt.format("Current Time: %tH:%tM:%tS\n", cal, cal, cal);

// Print the formatted output

// Close the Formatter

fmt.close();

}

Output:
Current Date: 2024-10-13 Q%

Current Time: 09:30:47

2. Random Class (java.util. Random) ﬁ\a
ods to

The Random class in Java is used to generate pseudo-random numbers. It pr
generate random integers, floats, longs, and even boolean values.

Key Methods: 0

o nextInt(): Returns a random integer. %
o nextInt(int bound): Returns a random integer within the (si)i£.
1.0%

e nextDouble(): Returns a random double between 0.0 a

e nextBoolean(): Returns a random boolean.
Example: %(&
import java.util. Random; C\x

public class RandomExamp

Qrstem.out.println("Random Integer: " + randInt);

// Generate random doubles
double randDouble = random.nextDouble(); // Random double between 0.0 and 1.0

System.out.println("Random Double: " + randDouble);

System.out.println("Random Boolean: " + randBoolean);

Output:
Random Integer: 70 Q%

Random Double: 0.024016527282495925

Random Boolean: false Q)% :

3. Time Package (java.time)

and times. It offers a much more flexible and modern way of wogrking with time compared to
the legacy java.util.Date and java.util.Calendar classes.

Key classes include: & Q

The java.time package introduced in Java 8 provides a comprehens r handling dates

e LocalDate: Represents a date without time.
e LocalTime: Represents a time without a date.

e LocalDateTime: Represents a date and tiy%})
5

e Duration: Represents a time duration (e. urs, 30 minutes).
o Period: Represents a date-based % time (e.g., 2 years, 3 months).
m

e ZonedDateTime: Represents e with a time zone.

1. LocalDate

Represents a QQ ut a time zone (year, month, day).

Example:

import jaya.time.LocalDate;

ft class LocalDateExample {

public static void main(String[] args) {
// Get the current date
LocalDate today = LocalDate.now();

System.out.println("Today's date: " + today);

// Create a specific date

LocalDate specificDate = LocalDate.of(2024, 10, 13);

System.out.println("Specific date: " + specificDate);

// Add days to a date
LocalDate nextWeek = today.plusDays(7);
System.out.println("Date after one week: " + nextWeek); Q%’
// Checkif a year is a leap year %%
boolean isLeapYear = today.isLeapYear(); Q)
System.out.printin("Is this year aleap year? " + isLeapYear); QQ
} %
} R

Output:

Today's date: 2024-10-13 ‘é&
Specific date: 2024-10-13 Yy

Date after one week: 2024-10-20 &

[s this year a leap year? false %\%

Example2: %

2. LocalTime v

Represents a time without%a date and without a time zone.

import java.tim a

public@%ﬁTimeExample {

: @ static void main(String[] args) {
L/’ Get the current time

LocalTime now = LocalTime.now();

System.out.println("Current time: " + now);

// Create a specific time

LocalTime specificTime = LocalTime.of(14, 30, 45); // 2:30:45 PM

// Add hours and minutes to the current time
LocalTime later = now.plusHours(2).plusMinutes(15);
System.out.println("Time after 2 hours and 15 minutes: " + later);

// Get the hour, minute, and second

int hour = now.getHour(); %

int minute = now.getMinute();

int second = now.getSecond(); q I >

System.out.printin("Hour: " + hour + ", Minute: " + minute + ", Second.%c d);
) %

Output: %

Current time: 09:30:47.123 &

Specific time: 14:30:45

Time after 2 hours and 15 minutes: 11:45:47.& E’

Hour: 9, Minute: 30, Second: 47 \%
5. Formatting for Date/Time in %sateTimeFormatter)

The DateTimeFormatter class %ava.time.format) is used to format and parse date/time

objects. It provides flexib powerful formatting options.

Common Predeﬁ% atters:
. ISO_LOC:‘%T : Formats a date as yyyy-MM-dd.

« ISO ATE_TIME: Formats a date and time as yyyy-MM-ddTHH:mm:ss.
st

uQF ormat Example:

[]
ort java.time.LocalDateTime;

import java.time.format.DateTimeFormatter;

public class DateTimeFormattingExample {

public static void main(String[] args) {

LocalDateTime now = LocalDateTime.now();

// Custom format: "dd-MM-yyyy HH:mm:ss"
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("dd-MM-yyyy HH:mm:ss");

String formattedDateTime = now.format(formatter);

System.out.println("Formatted DateTime: " + formattedDateTime); Q%
} =
) S
Output: Q@
Formatted DateTime: 13-10-2024 08:52:35 Q

6. TemporalAdjusters Class (java.time.temporal.TemporalAdj

The TemporalAdjusters class provides common temporal adjustess, which allow date
manipulations such as finding the next day of the week, t st day of the month, etc. Adjusters
are often used with classes like LocalDate.

Common Temporal Adjusters:

o firstDayOfMonth(): Returns the first da eX?rent month.

o lastDayOfMonth(): Returns the last a%—:e current month.

« next(DayOfWeek dayOfWeek): %Xthe next occurrence of the specified day of the week.
e previous(DayOfWeek da Ol%): Returns the previous occurrence of the specified day of

the week.)v

Example:

import java.time.L ate;

import java.tigq3 al.TemporalAdjusters;
importj@% yOfWeek;
u@ss TemporalAdjustersExample {

Blic static void main(String[] args) {

LocalDate today = LocalDate.now();

// Get the next Sunday
LocalDate nextSunday = today.with(TemporalAdjusters.next(DayOfWeek.SUNDAY));

// Get the last day of the current month

LocalDate lastDayOfMonth = today.with(TemporalAdjusters.lastDayOfMonth());

System.out.println("Last Day of Month: " + lastDayOfMonth);

| Q%

Output:

Next Sunday: 2024-10-20 %:
Last Day of Month: 2024-10-31 @

Exception Handling
Java Errors are classified into 3 types
1) Compile -Time Errors

2) Run -Time Errors

3) Logical Errors
Compile-Time Errors Q%I
_ Errors occurred at Compile Time are called Compile Time Errors

_ Syntax Errors are detected at Compile Time.

T These are Syntactical Errors found in the code, due to which a pro %;; to
compile.
t, or writing a

va Compiler displays

~ For Example, forgetting a semicolon at the end of a Java

statement without proper syntax will result in compile-ti

— Detecting and Correcting compile-time errors is easy as the

the list of errors with the line numbers along with4heir@gscription
Run Time Errors

Errors occurred at Run Time are calle@ Errors
a

Run time errors are not detected by e j ompiler.

It is the JVM which detects it whilg theprogram is running.

[A O I B

Semantic Errors like divigi ro, Index out of Bound are detectedby JVM at

runtime.
Logical Errors Z

[C These errors

Introd xception Handling
n pxception is a Run Time Error (or) An exception is abnormal condition that
rises in a code sequence at the run time.
When the jvm encounter an Run Time Error such as Division by zero, JVM creates
an object to the Corresponding Class and throws it.
T If the Programmer does not catch the thrown object and handles properly, the
interpreter will display an error message and the program gets terminated

abnormally.

[In order to stop abnormal termination of the program and to fix the error.

exceptions should be caught and handled.

Java exception handling is managed via five keywords

o Try

e (Catch

® Throw

® Throws

e Finally Q%'

TRY

» Statements that need to be monitored for exceptions should be@

within a try block
CATCH Q
» If an exception occurs within the try block, it is thrown and %' € can catch this
er,

exception using catch block and handles it in some rational \Q
THROW

» System generated exception are automatically thro the’jvm. To manually throw an

exception, use the keyword throw.

THROWS &

» Any exception that is thrown out & must be specified as such by a

throws clause q

FINALLY

» Any code that gbso must be executed after a try block completes isput in a
finally block:

&

Hierarchy of Standard Exception Classes

Types of Exceptions

Built-in Exception

Checked Exceptions

— ClassNotFoundException —}@Emepuun

— InterruptedException %Qla sCastException
3 |OException

5 * NullPointerException
S lnshntiaﬂanEmep&&n& — ArrayIndexOutOfBoundsExceptior

_ EQLEuceptite\x

> Flleth@j\! tion — lllegalThreadStateException

1. User-Defined Exceptions z

— ArrayStoreException

hecked exceptions must be either caught or declared in the throws clause of a method.

« Examples include:
o ClassNotFoundException
o IOException
o SQLException

o FileNotFoundException

b. Unchecked Exceptions:
o These exceptions occur at runtime and don't need to be declared in a method's throws clause.
e Examples include:
o ArithmeticException
o NullPointerException
o ArraylndexOutOfBoundsException %’
o lllegalArgumentException Q
Examples of Programs %

1. User-Defined Exception Example: Here’s how you can create and use a u§ exception.

class CustomException extends Exception {
public CustomException(String message) { Q
super(message); Q%
h

} ‘é&
public class Main {

public static void validateAge(int age) throws C &x ption {

if(age < 18) { X
throw new CustomException(" % an 18, not eligible.");
} else {)

System.out.println("Eligible");;)
}
}

public static vai in(Btring[] args) {

try {
i e(15);
} ca CustomException e) {

[
ystem.out.println("Caught: " + e.getMessage());

H
Output:
Caught: Age is less than 18, not eligible.

b. Unchecked Exceptions:
o These exceptions occur at runtime and don't need to be declared in a method's throws clause.
e Examples include:
o ArithmeticException
o NullPointerException

o ArraylndexOutOfBoundsException Q)%'

o lllegalArgumentException

Built-in-Exception-Creating own Exceptions

Arithmetic exception @

ArithmeticException Demo {

main(String args[])

a=230,b=0;

c=a/ b;
System.out.println("Result = " + c);

(ArithmeticException e) {

ArraylndexOutOfBounds Exeption

class ArrayIndexOutOfBgurid_Demo {

public static v 1n(String args(])

& new int|
a[6] =9; // accessing 7th element in an array of

// size 5
}

catch (ArrayIndexOutOfBoundsException e) {

System.out.println("Array Index is Out Of Bounds");

}

FileNotFoundException

java.io.File;

java.io.FileNotFoundException;

java.io.FileReader;

File notFound Demo {

main(String args[])

File file = File("E:

FileReader fr = FileReader(file);

NullPointerException %

NullPointer Demo {

main(String args[])

{

String a = 5
System.out.println(a.charAt(9));

(NullPointerException e) {
System.out.println("NullPointerException..");

Java File Handling

In Java by reading and writing text and binary files. File handling is crucial for any software
developer since it allows you to store and retrieve data, create logs, and process input/output

files.

java provides several classes and methods to work with files. The most common classes used %.«

for file handling are: 0
 TFile: Represents a file or directory and provides methods to work with them % :
e FileInputStream and FileOutputStream: Used for reading and writing binar}%

* FileReader and FileWriter: Used for reading and writing text files.

e BufferedReader and BufferedWriter: Used for buffered reading an(@'

To read a text file, follow these steps: & 2

Create a Fileobject representing the text

Create a FileReaderobject to read the fi

Create a BufferedReaderobject to r&%m the file efficiently.
Read the file using the readLine@imeth

Close the BufferedReaderOb] :N

Types of Streams

Java defines two types of strggms:

o Byte Strea

omgf®
S

vk wpn =

to perform input and output of 8-bit bytes.

ms: Used to perform input and output for characters (16-bit

Byte Streams

Byte

streams in Java are used to handle raw binary data. These streams read/write data in the form of bytes.

Classes for byte streams are part of the java.io package and typically extend InputStream or OutputStream.

Common Byte Stream Classes:

FileInputStream: Reads bytes from a file.

FileOutputStream: Writes bytes to a file. '%'

BufferedInputStream: Reads bytes from a file with buffering.

BufferedOutputStream: Writes bytes to a file with buffering. q ,

Purpose: Reads raw bytes from a file.

It is used to read the content of a file byte by byte, making it idq%ﬁing binary files like

1. FileInputStream Q

images, audio, etc.

Example:

import java.io.FileInputStream; v
import java.io.IOException; C\&
public class FileInputStreamExample {(E E)

public static void main(String]] ar%
try (FileInputStream fis =ypew Fil€InputStream("example.txt")) {

It is part of the java.io package and extends the InputSt;(&ss.

int data;

while ((data =

Systs%
o
} I

xception e) {

) 1=-1) { // Read byte by byte

int((char) data); // Convert byte to char and print

eprintStackTrace();

2. FileOutputStream
e Purpose: Writes raw bytes to a file.
o Itisused to write data into a file byte by byte, useful for writing binary data.
e Itis part of the java.io package and extends the OutputStream class.
Example:

import java.io.FileOutputStream; &'

import java.io.IOException;

public class FileOutputStreamExample {
public static void main(String[] args) { Q
try (FileOutputStream fos = new FileOutputStream("output.txt")) { %'0

String content = "Hello, World!"; %
fos.write(content.getBytes()); // Convert string to bytes a?&rite to file
System.out.println("Data written to file successfully,z;

} catch (IOException e) {

e.printStackTrace(); : & :
! %x

} E)

Explanation: E

e The content "HellogyWo s converted into bytes using the getBytes() method and written to the
file output.txt.

e The write(@
3. Bufferedln@
. Pu@eads bytes from a file with buffering to improve performance.

. @ps a FileInputStream and provides buffering, which reduces the number of actual read
op

rites bytes to the file.

ations performed on the file, improving efficiency.
It is part of the java.io package and extends the InputStream class.
Example:
import java.io.BufferedInputStream;
import java.io.FileInputStream;

import java.io.IOException;

public class BufferedInputStreamExample {
public static void main(String[] args) {
try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream("example.txt"))) {

int data;

while ((data = bis.read()) !=-1) {

System.out.print((char) data); // Convert byte to char and print &'

H
} catch (IOException ¢e) {

e P
} Q%’

4. BufferedOutputStream

o Purpose: Writes bytes to a file with buffering to im rformance.

o It wraps a FileOutputStream and provides bufferi ducing the number of actual write operations
performed on the file.

e Itis part of the java.io package and exte tputStream class.

Example: (E
import java.io.BufferedOutputStream; %
import java.io.FileOutputStream; v

import java.io.IOException;

public class Buffe@ treamExample {

public stati@n in(String[] args) {
try (BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream("output.txt"))) {
content = "Hello, Buffered World!";
8s.write(content.getBytes()); // Write bytes to buffer
System.out.println("Data written to file successfully.");
} catch (IOException e) {

e.printStack Trace();

Advantages of Buffered Streams:

e Performance Improvement: Buffered streams improve performance by reducing the number of
disk I/O operations. Instead of reading/writing byte-by-byte, buffered streams work with larger
blocks of data.

o Efficiency: Buffered streams are more efficient when reading from or writing to slow sources, such

as files on a disk or network connections.
Key Differences: Q
1. FileInputStream/FileOutputStream: %

o Read/write data one byte at a time.
o Suitable for binary data but not optimized for frequent I/O operati Q
2. BufferedInputStream/BufferedOutputStream: @
o Read/write data in chunks, improving efficiency by re %gperations.
o Suitable for larger files or when efficiency is a co md.‘Q

character Streams

Classes for character streams typically extend the Redder class (for reading) or the Writer class (for writing).

Common Character Stream Classes: %

FileReader: Reads characters from 4 file.

Character Streams handle 16-bit Unicode characters, m?‘ em ideal for reading and writing text data.
(

—

2. FileWriter: Writes characters t
3. BufferedReader: Wraps Filﬂ?r to provide efficient character buffering while reading text.
4. BufferedWriter: Wra

ileWriter to provide efficient character buffering while writing text.

FileReader %&

characters from a file.

. Purpo@
o [ti§agonyenient class for reading text files as it reads characters rather than bytes, making it

l or handling text data.
Ex le:

1 java.io.FileReader;
import java.io.IOException;
public class FileReaderExample {
public static void main(String[] args) {

try (FileReader fr = new FileReader("example.txt")) {

while ((data = fr.read()) !=-1) {

System.out.print((char) data); // Read character-by-character.

}
} catch (IOException e) {

e.printStackTrace();

} >
} P
2. FileWriter @

o Purpose: Writes characters to a file.

files.

o FileWriter is used for writing text data to a file, character-by-charz%@imple way to write text
Example: & {

import java.io.FileWriter;

import java.io.IOException;

public class FileWriterExample {

public static void main(String[] args) { ; X;:

try (FileWriter fw = new FileWrite txt")) {
String content = "Hello, File% s
fw.write(content); // Wiitg.string to file.

ritten to file successfully.");

3. BufferedReader
o Purpose: Wraps FileReader to provide efficient character buffering while reading text.

o It reads text from a file more efficiently by buffering character input. It also provides convenient
methods like readLine() for reading entire lines of text.

Example:
import java.io.BufferedReader;
import java.io.FileReader;

import java.io.IOException;

public class BufferedReaderExample { &'

public static void main(String[] args) { q
try (BufferedReader br = new BufferedReader(new FileReader("example.txt"))) { %

String line;

while ((line = br.readLine()) !=null) { // Read line-by-line. Q
System.out.println(line); Q

) Q%’

} catch (IOException e) {

e.printStack Trace(); n &E

} &Z |
} x:\)
4. BufferedWriter %

o Purpose: Wraps FileWriter t rov1da efficient character buffering while writing text.

o [t writes text to a file more effi€iently by buffering character output. It also provides convenient
methods like newLine rite line separators.

Example:
import java.io.Buf M T;
import java.io@r;
import javz@ ception;
ub QBufferedWriterExample{
blic static void main(String[] args) {
try (BufferedWriter bw = new BufferedWriter(new FileWriter("output.txt"))) {
bw.write("Hello, BufferedWriter!"); // Write text to file.

bw.newLine(); // Insert a new line.

bw.write("This is the second line.");

} catch (IOException e) {

e.printStackTrace();

}
1. Scanner Class %’
Q, int,

The Scanner class in Java is part of the java.util package. It is widely used to parse primitive %

double, float, etc.) and strings using regular expressions. A common use case for the Scan% SShis

reading input from the user, reading files, or processing input from other data sources i streams.

Common Uses: Q
1. Reading from the Console (Standard Input) 0
2. Reading from Files %

a. Reading from the Console (Standard Input) &

The Scanner class can read input from the console using th input stream (System.in).

Example: v

import java.util.Scanner; &

public class ConsolelnputExample { :X
‘in);

public static void main(String[] args)cej
Scanner scanner = new Scanner?
System.out.print("Enter your nante: ");

ine(); // Read a full line of text

String name = scan

System.out.pri \ , "+ name + "!");

Syste@%f?("Enter your age: ");

i anner.nextInt(); // Read an integer value

ystem.out.printin("You are " + age + " years old.");
H

Explanation:
e The nextLine() method is used to read a full line of text.

e The nextInt() method reads an integer value.

b. Reading from a File

The Scanner class can also be used to read data from a file by passing a File object or the file path to the
Scanner constructor.

Example:

import java.io.File;

import java.io.FileNotFoundException; %

import java.util.Scanner; :
public class FileReadingExample { @b
public static void main(String[] args) { Q
3

File file = new File("input.txt"); %
Scanner scanner = new Scanner(file); & {

while (scanner.hasNextLine()) {

String line = scanner.nextLine(); // Read @-;ine
System.out.println(line); %
| %X

} catch (FileNotFoundEx@@ption e) {

scanner.close();

e.printStackTrac

U S
L

e Scanner reads lines from the file input.txt line-by-line using the nextLine() method.

The hasNextLine() method checks if there are more lines to read.

2. Files Class

The Files class in Java is part of the java.nio.file package, which provides a variety of utility methods for
file handling, including reading, writing, creating, copying, moving, and deleting files and directories. It
supports working with Path objects, which represent file and directory locations in the file system.

Common Operations:
1. Reading a File
2. Writing to a File
3. Copying Files

4. Deleting Files

5

. Creating Files and Directories

1. Introduction to String Handling

In Java, strings are objects used to store and manipulate sequences of characters. Java provides several classes,
such as String, StringBuilder, and StringBuffer, for handling strings. Strings in Java are immutable, meaning
once created, their values cannot be changed. This immutability allows for more efficient memory usage and
easier handling of strings.

The java.lang.String class is used to create a string object.

There are two ways to create String object:
1. By string literal 0%
2. By new keyword %
1. By String Literal %
Java String literal is created by using double quotes. For Example: Q@
O

String s="welcome'';

2. By new keyword Q%’

String s=new String(""Welcome");

String methods in java E&

1. length():Returns the number of characters in the st&v
String str = "Hello, World!"'; %
int len = str.length(); // 13 l\
System.out.println(" Length of @g: " +len);

Output: Yﬂv

Length of the string: 1

2. equals():Checks if tw.

String str N ;
String,% ello";
t

= "hello";

w an isEqual = strl.equals(str2); // true

boolean isEqualCaseSensitive = strl.equals(str3); // false

System.out.println("'strl equals str2: " + isEqual);

System.out.println("'strl equals str3 (case-sensitive): " + isEqualCaseSensitive);
Output:

strl equals str2: true

strl equals str3 (case-sensitive): false

3. equalsIgnoreCase(): Compares strings, ignoring case differences.
String str1 ="Hello";
String str2 = "hello";
boolean isEquallgnoreCase = strl.equalsignoreCase(str2); // true

System.out.println("'str1 equals str2 (ignoring case): " + isEquallgnoreCase);

Output:
strl equals str2 (ignoring case): true Q%

4. startsWith(String prefix):Checks if the string starts with the specified prefix. %

String str = "Java Programming"’;
boolean startsWithJava = str.startsWith("Java''); // true %
System.out.println(" String starts with 'Java': "' + startsWithJava); 0

Output:

String starts with 'Java': true

5. endsWith(String suffix):Checks if the string ends with the spec&fﬁ;.

String str = "Hello, World!";

boolean endsWithWorld = str.endsWith("'W rl(?g rue
System.out.println(" String ends with "World!%," +"endsWithWorld);
Output:

String ends with "'World!": true : %X

6. StringBuffer reverse()
Reverses the contents of a StrigBuffer.

uffer("Hello");

sb.reverse(); //40
System.out-printin®'Reversed StringBuffer: " + sb);

Output:
%}StringBuffer: olleH
plac

StringBuffer sb =

ar oldChar, char newChar):Replaces all occurrences of a specified character in a string.
°
tring str = "balloon";

String replacedStr = str.replace('0', 'a'); / "ballaan"
System.out.println("Replaced String: " + replacedStr);
Output:

Replaced String: ballaan

8. concat(String str):Concatenates the specified string to the end of the current string.
String strl = "Hello";
String str2 = strl.concat(" World");

System.out.println("Concatenated String: " + str2);

Output:
Concatenated String: Hello World
9.charAt(int index):Returns the character at the specified index. Q%

String str = "Hello, World!"';

char ch =str.charAt(7); // 'W' @

System.out.println(" Character at index 7: " + ch);

&

Character at index 7: World

10. substring(int start, int end):Returns a new string containing the chracters from the specified start to
end index.

String str = "Hello, World!"';
String subStr = str.substring(7, 12); // " 4&
System.out.println("' Substring fro i‘%} 12: " + subStr);
Output: %
Substring from index 7 to 12: World %
11. toCharArray():Converts the strinwharacter array.

String str = ""Hello'"';

char|[] charArra oCharArray();
System.o % Character array: " + Arrays.toString(charArray));
Output:Char; “[H,e, 1, 1, 0]

12. comparePo(String anotherString):Compares two strings lexicographically.

g'strl = "Apple";

String str2 = "Banana'’;
int comparison = strl.compareTo(str2); // returns a negative value because "Apple" < '"Banana"
System.out.println(" Comparison result: " + comparison);

Output:

Comparison result: -1

13. concat(String str):Concatenates the specified string to the end of the current string.

String str1 = "Hello";

String str2 = “world”

System.out.println(str1l.concat(str2);

Output:
Concatenated String: Hello World

14. replaceAll(String regex, String replacement):Replaces each substring that matches the given regular
expression with the specified replacement.

String sentence = ""The rain in Spain"’;

String replacedSentence = sentence.replaceAll("ain", "oon"); // " The roon in Spoon"

System.out.println("Replaced Sentence: " + replacedSentence); %,

Replaced Sentence: The roon in Spoon %
15. toLowerCase() and toUpperCase():Converts all characters in the string to lowercase @se.

String str = "Hello, World!"';

String lower = str.toLowerCase(); / ""hello, world!" §
String upper = str.toUpperCase(); / "HELLO, WORLD!" £ E
System.out.println(" Lowercase: " + lower); Q

System.out.println(" Uppercase: " + upper);

Output: ‘é&
Lowercase: hello, world! v
Uppercase: HELLO, WORLD! &

S
™

Output:

<¢<)§

Multithreading

Multithreaded programming is a method of concurrent execution in which multiple threads, or smaller
units of a process, run simultaneously. This technique enhances the efficiency of a program, particularly
on multi-core processors, by allowing multiple tasks to execute at once. Let's break down some of the
essential concepts in multithreaded programming:

1. Need for Multiple Threads

Multiple threads enable concurrent execution, which improves program performance and respon% .
11

For example, in a GUI application, one thread can handle the user interface while another thr
calculations in the background.

2. Multithreaded Programming for Multi-core Processors (: E)
Multi-core processors can execute multiple threads in parallel, allowing program % 1l advantage
of the processor's capabilities. This enables faster computation and can reduce Qm equired for
processing tasks. Q

Thread Life Cycle %
During the life time of a thread there are many states it can entez(ﬂheyire

A. NewBorn state ‘%
B. Runnable state

C. Running State &v

D. Blocked state %\%

E. Dead state

variety of ways as shown below

A\

A thread is always in any one of theie EIVEG ;cates.lt can move from one state to another via a

New Thregd| New-born
oo T T K
| |
| | |
| |
. | i
_ Active | Running Runnable '_’stop[' Dead
Thread | o : ‘
| yield() | Killed Threod
| |
| |
1 s g e s g o g o g e oy s i v g 1
stop|]
suspend] “asume Pl
sieedit| afer ' msac
waz) |

idle Thread Blocked

|72]

New Born state

v' when we create a thread object, the thread is born and is said to be in new born state.

v' The thread is not yet scheduled for running .At this state, we can do only one of the
following things with it.

¢

Schedule it for running using start() method.

Kill it using stop() method. %

o
*

X/
°e

¢ If scheduled ,it moves to the runnable state s&
Runnable State @

» The runnable state means that the thr ady for execution and is waiting for
availability of the processor .i.e the" th has joined the queue of threads that are

waiting for execution. %

» If all threads have equal prio%ty’, then they are given time slots for execution in Round

Robin fashion,i.e FC ner.

» The thread tha& shes control joins the queue at the end & again waits for its turn

vield

R Runnable Threads
4 Running

Thread

Relinquishing control using yield() method

Running State

» Running means that the processor has given its time to the thread for its execution.
» The thread runs until it relinguishes its control in one of the following situations.

1)It has been suspended using suspend().
a suspended thread can be received by using the resume() method. %
2)It has been made wait by using wait() method Q

A thread that is waiting will get resumed after notify() method

3)It has been slept for a t seconds. %\O

A thread will get invoked after t seconds

Example

<

It has been made to sleep, We can put a thread to sleep for a specified
time period using the method sleep (time) where time is in milliseconds. This
means that the thread is out of the queue during this time period. The thread re —
enters the runnable state as soon as this time period is elapsed.

2. sleep()

sleep (1)
Running Runnable Sleeping

Blocked sta x;

> T also be temporarily suspended or blocked from entering into the

e and subsequently running state by using either of the following

Qread methods.

.() // blocked for specified time

Suspended() // blocked until further orders

Wait() // blocked until certain condition occurs.

» These methods cause the thread to go into the blocked sate. The thread will
return to runnable state when the specified time is elapsed in the case of
sleep(),the resume() method is invoked in case of suspend(),and notify()

method is called in case of wait().

Dead State

> Every thread has a life cycle . Q%

» A running thread ends its life when it has completed executing its run().it is %

natural death. %

» However, we can kill it by using stop message to it at any stage. Thus caus

premature death to it. Q
Creating threads in java is simple. Threads in java can be created in % E

wo W@ys

1) By extending the thread class. &
2) By implementing the runnable interfaqﬁ.
(&

1) Creating threads by extending t class:

O Define a class that extends thréag and override its run()with the code
required by the thread.

O Steps to create thread b ing thread class are

e class

arting New Thread.
Declarin %%
Dec % ss by extending the thread
las lass MyThread extends Thread

Implementing the run() method:

* the run method is the heart and soul of any thread.

* We have to override this method in order to implement the code to be
executed by our thread.

» It makes up the entire body of a thread and is the only method in which
the threads behavior can be implemented.

* The basic implementation of run()

will look like public void run()
{ S

Thread code @
} O
When we start new thread ,java calls the threads run() method. %

Starting New Thread:

» create a thread object and call the start() meth itiate the thread execution.

* To create and run an instance of our thread clasSywe must write the

following: MyThread tl=new MyT 0;

T1.start();
* The first line instantiates a fie %ct of class MyThread.
* The second line calls st sing the thread to move into runnable state.

* Then, the java runtine will schedule the thread to run by invoking its
run().Hence the¢ thrgad’is said to be in Running state.

3
$
§

fl class & extends Thread

41
1 public wolid run()
3 {

try

i

for{int 1=1;i<=5;i++)

{
system.out.println{"From Thread A :™+1)};

E Thread.sleep{lee);
k)
catch{Interruptedexception ie)
{
system.cut.println{ie};
T
k)
k)
class B extends Thread
{
public woid run()
tryl
i
for{int 1=1;i<=5;i++)
{
system.cut.println{"From Thread B :"+i);
Thread.sleep{lee);
¥
catch{Interruptedexception ie)
i

system.cut.println{ie};
k)

3

public class Helloworld{

public static woid main(string [Jargs)

{
A obl = new A(};
B ob2 = new B(};
obl.start(};
ob2.start(};

k)

”
fjavac HelloWorld. jawa

Fjava -HmxlZ2E8M -MXms16M Hellokorld

From Thread
From Thread
From Thread
From Thread
From Thread
From Thread
“Q:f:F{}ﬁl Thread
From Thread

From Thread
From Thread

DEDEDEDE0O0
W WWRMNRE

T

Creating Thread using Runnable Interface

A) Create a Class that implements Runnable Interface

B) override run() method
create a thread by passing an object to the implementation class of runnable interface

class A implements Runnable

public woid run()
i
Ty
{
fFor{int iI=1;i<=5;1++]}
{
system.out.println{™"From Thread a: "=1i);
Thread. sleep {188} ;
¥

catch{InterruptedeException ie}
system.out.println{ie};

T
I

class B implements Runnable

i

public woid rundd}
{
tTry

For{int i=1;i<=5;i++)

{
System.cut.println{®"From Thread B: "+1);
Thread.slesp{laa);

i)

catch{Interruptedexception ie}

{
¥

System.cut.println{iel};
¥
I
public class HellowWworld{

public static wold main{String [Jargs)
{

A oba new Ald)s

B ob2 new B{);

Thread t1 new Thread(obl);

Thread t2 new Thread({ob2);

ta.start(}

ta2.start(}

S

AN
$javac HelloWorld.java

]
k]

H

$java -Xmx128M -Xms16M Hellokiorld

From Thread B: 1
From Thread &: 1
’QtFrcm Thread B: 2
From Thread &: 2
From Thread B: 3
From Thread &: 3
From Thread B: 4
From Thread &: 4
From Thread B: 5
From Thread 4A: 5

Thread Priority and Synchronization

Thread Priority is a concept in multithreaded programming that determines the relative
importance of each thread when they compete for CPU time. Thread priorities help the system’s
scheduler decide which thread to run when multiple threads are ready for execution.

1. Priority Levels:

thread priorities range from MIN_ PRIORITY (1) to MAX_PRIORITY (10),

o Threads are assigned priority levels, typically as integers. In Java, for exampl
NORM_PRIORITY (5) as the default. %

o A higher priority thread is more likely to be selected by the CPU sch: d% ra
lower-priority thread, although this behavior is platform-dependent. %
Synchronization in multithreaded programming is crucial for managing~aé¢es9 to shared
resources to avoid data inconsistency and ensure thread safety. Q

1. The Need for Synchronization:
o When multiple threads access shared resources .,%Eared variables, files, or
memory), there is a risk of race conditions, wheré\ghe final outcome depends on
the timing of thread execution.

o Synchronization prevents threads from ing with each other and ensures that
only one thread accesses a shared res@ugce at a time.

2. Synchronized Blocks and Methods:
o In many programming la z%ynchronization is achieved using synchronized
blocks or methods. A syfichrohjzed block allows only one thread at a time to access

the code block or re%
o Forexample, inJ the’synchronized keyword locks an object, so no other thread
can access the synghronized code block or method of that object until the current

r mutex) is a mechanism used to enforce synchronization by allowing

e) C
@%@ne thread to hold the lock at a time.

hen a thread acquires a lock on a resource, other threads must wait until the lock
Q is released before they can access the same resource.
4.

eadlock:
o

o Deadlock occurs when two or more threads wait indefinitely for resources held by
each other, creating a cycle of dependencies with no resolution.

o Avoiding deadlock requires careful resource allocation and sometimes the use of
timeout-based locking mechanisms.

5. Avoiding Race Conditions:

o Race conditions occur when multiple threads attempt to modify shared data
concurrently, leading to inconsistent results. Synchronization helps avoid race
conditions by enforcing an orderly access to shared resources.

Deadlock and RaceConditions
Both deadlock and race conditions are critical concurrency issues in multithreaded programming.

Deadlock involves threads waiting indefinitely for each other, which halts progress, off
requiring a restart or intervention.

Race Conditions involve unpredictable results due to concurrent access to shared da%%lg to

data inconsistency.
Using synchronization techniques and careful resource management can e%)ent both
deadlock and race conditions, resulting in safer and more predictable mult programs.

Java Database Connectivity (JDBC)

Java Database Connectivity (JDBC) is a standard Java API that enables Java applications to
interact with a wide range of databases. It provides methods for querying and updating data in a
database and is widely used for developing Java applications that need to communicate with

databases like MySQL, PostgreSQL, Oracle, and others.
S

JDBC provides a universal data access API that is independent of any partic base or
platform, enabling developers to switch databases without altering their significantly.

1. Introduction to JDBC
JDBC allows Java programs to:
o Connect to a database.
e Send SQL queries and update statements to the database.

e Process the results retrieved from the database.

2. JDBC Architecture

The JDBC architecture consists of two main components:

1. JDBC API: This provides a standard interface
database, execute SQL queries, and retrieve r

applications to connect to the
e JDBC API includes classes and

interfaces such as DriverManager, Conn&etion,)y Statement, PreparedStatement, and
ResultSet.

2. JDBC Driver: JDBC drivers are dat (gwciﬁc implementations of the JDBC API that
communicate with the database. wers translate the API calls into database-specific

calls, making the interaction ava applications and databases possible. There are
four types of JDBC drivers:

Type 1: JDBC-O%Bridge Driver

Type 2: Na I Driver

@)

@)

ork Protocol Driver

in Driver (pure Java driver; commonly used for databases like

with MySQL, you need to install both MySQL and the MySQL Connector/J.
Hing MySQL
1. Download the MySQL installer from the MySOQL official website.

2. Run the installer and follow the installation steps.

3. Setup aroot password and configure any other settings as needed.

https://dev.mysql.com/downloads/

Installing MySQL Connector/J

The MySQL Connector/J is the JDBC driver for MySQL, which is required to connect Java
applications to a MySQL database.

1. Download the MySQL Connector/J from the MySQL Connector/J download page.

2. Extract the downloaded ZIP file, and locate the mysql-connector-java-<version> jar file.

this by right-clicking your project, selecting "Add External JARs," and choosing th

3. Add this .jar file to your project’s classpath. In IDEs like IntelliJ or Eclipse, you can do Q
Connector/J JAR file.

4. JDBC Environment Setup %
To set up the JDBC environment in a Java application: Q)%

1. Ensure the MySQL Connector/J JAR file is in your project’s class a(&

2. Import necessary JDBC packages: b

import java.sql.Connection; Q%

import java.sql.DriverManager;

import java.sql.ResultSet; &E

import java.sql.Statement;

import java.sql.SQLException; ; & :

5. Establishing JDBC Database Connee%

To establish a connection with a databa! va, follow these steps:
1. Load the JDBC Driver since JDBC 4.0):

. ti
Class.forName("com.mysql.cj.jdbd,Driver");

2. Establish a Coninection:

anager.getConnection() with the JDBC URL, username, and

ord.
%& JDBC URL format for MySQL is:

jdbc; ostname>:<port>/<database name>
or e ple:
[

g url = "jdbc:mysql://localhost:3306/mydatabase";
tring username = "root";

String password = "password";

Connection connection = DriverManager.getConnection(url, username, password);

https://dev.mysql.com/downloads/connector/j/

3. Create a Statement:

Statement statement = connection.createStatement();

4. Execute Queries:

ResultSet resultSet = statement.executeQuery("SELECT * FROM users");

5. Close the Connection:
resultSet.close(); %
statement.close(); Q
connection.close(); %%

6. ResultSet Interface Q)
The ResultSet interface represents the result set obtained by executing a SQL g@ery’and provides

methods to navigate and retrieve data from it. A ResultSet can be thoug s & table of data,
with rows representing each record returned by the query. Q
Commonly Used Methods of the ResultSet Interface Q
1. Navigating the ResultSet:
o next(): Moves the cursor to the next row” s false if there are no more rows.

o previous(): Moves the cursor to thepr row (only if ResultSet is scrollable).
r 1ast row

o first(), last(): Moves to the ﬁ%
2. Retrieving Data: A\

%ieves a column as a String.

rieves a column as an int.

o getString(columnLabe

o getlnt(columnLa

o getDouble(e@lumnl?abel): Retrieves a column as a double.

o Column|labels can be the column name or the column index.

Example Prog@

Here's an e)@ ogram that connects to a MySQL database, retrieves data from a table, and

display%
imp@a ql.Connection;
orf fava.sql.DriverManager;
%ﬂ java.sql.ResultSet;

import java.sql.Statement;

JDBC to Query MySQL Database

import java.sql.SQLException;

public class JDBCExample {
public static void main(String[] args) {
String url = "jdbc:mysql://localhost:3306/mydatabase";
String username = "root";

String password = "password";

try (Connection connection = DriverManager.getConnection(url, username, password
System.out.println("Database connected successfully!"); f)

Statement statement = connection.createStatement(); @
String query = "SELECT id, name, email FROM users"; Q
ResultSet resultSet = statement.executeQuery(query); Q%
System.out.println("User Details:"); é&

while (resultSet.next()) {

int id = resultSet.getInt("1d"); & :
String name = resultSet.getStr'v%l ");
String email = resultSet.g%%‘ mail");

System.out.println("ID: Z‘ +1id + ", Name: " + name + ", Email: " + email);
}

resu@

‘@ “close();

atch (SQLException e) {

e.printStackTrace();

This program:
e Connects to a MySQL database.
e Queries a table named users.

o [terates over the ResultSet to print each user’s id, name, and email.

JavaFX Scene Builder

JavaFX Scene Builder is a visual design tool used for building the user interface (UI) of JavaFX
applications without manual coding. Instead of writing Java code for UI layouts, Scene Builder
allows you to visually design the interface and automatically generates an FXML file to
represent the structure.

Key Features %
1. Drag-and-Drop Interface Q

o You can easily add UI components like buttons, labels, and text field)%
dragging them from the toolbox onto the design canvas. @

2. Set Properties for Controls %‘
o Configure Ul components by setting properties such as te@, ignment, and
style directly in Scene Builder.
3. FXML Code Generation %
o Automatically generates an FXML file baseq“%l: layout you design. This file
can be loaded in your JavaFX application fox ren@tering.

4. Link to Controller Classes v
o Allows you to assign event handl&an bind UI components to your JavaFX

application’s controller class

TS

1. Download and Install S uilder

o Download uilder from the official Gluon website.

o
Q)Add nodes like buttons, text fields, or labels by dragging them from the toolbox
Q to the design area.
. o Arrange and configure properties for each node using the Properties panel.
3. Save as FXML
o Once the design is complete, save it as an .fxml file.

o Example: MainUIL fxml.

4. Integrate FXML with Your JavaFX Application
o Use the FXMLLoader class in your JavaFX code to load the saved FXML file.

Example Code Integration

FXML File (MainUI.fxml):

xml %
Copy code Q
<?xml version="1.0" encoding="UTF-8"?> q%
<?import javafx.scene.control. Button?> @

<?import javafx.scene.layout.StackPane?>

<StackPane xmlns:fx="http://javafx.com/fxml"> &
<Button text="Click Me!" fx:id="myButton"/> = F

</StackPane>

Java Application: : & 3

java

e S

import javafx.application. Application;
import javafx.fxml.FXM oader;t

import javafx.sc 'e.& ;
import java‘%g&age;
puB@%dainApp extends Application {
Qverride
public void start(Stage primaryStage) throws Exception {

Parent root = FXMLLoader.load(getClass().getResource("MainULfxml"));

Scene scene = new Scene(root, 400, 300);

http://javafx.com/fxml

primaryStage.setTitle("JavaFX with Scene Builder");
primaryStage.setScene(scene);

primaryStage.show();

launch(args);

public static void main(String[] args) { %

2. JavaFX App Window Structure Q

A JavaFX application follows a hierarchical structure where co re organized into three
main layers: Stage, Scene, and Nodes. Let’s explore these @) ts in detail:

1. Stage \ ;

o What is it?
The Stage is the top-level container repigsents the application window. It is
automatically created when a Jav plication starts.

o Key Features:
o Controls the win %, size, and visibility.

's
o Acts as the main e point for displaying the user interface.

Example:

primaryStage.setTﬁ& JavaFX Application");

primarySta tWidth(800);
primary8tage. eight(600);

Ce{l;
e Whatis it?

The Scene holds all the visual elements (nodes) of the application and represents the
content to be displayed in the Stage.

o Key Features:

o Acts as a container for the Scene Graph, which is a hierarchical tree of nodes.

o Defines properties like dimensions and styling.

o A Stage can have only one Scene at a time, but the Scene can be swapped
dynamically.

Example:

Scene scene = new Scene(rootNode, 400, 300);

primaryStage.setScene(scene); %

3. Nodes %
e What are they? %
Nodes are the building blocks of the Scene Graph. They are individua %ents like
buttons, labels, text fields, and layout panes.

e Types of Nodes: Q

o Root Node: The top-most node in the Scene Gra .24 laYout panes like
StackPane, VBox, etc.).

o Child Nodes: Ul elements (e.g., Button, :é&xt, ImageView) added to the

Root Node or other containers.

Example: Yﬁ,
Label label = new Label("Hello, JavaFX!"); &
Button button = new Button("Click Mg x%

VBox rootNode = new VBox(10, la%%n);

A

Complete Example:

Here’s a simple Jav. application demonstrating the structure:

import javafx.@ Application;

import jav@ cene;
import @ ene.control.Button;

yafx.scene.control.Label;

javafx.scene.layout.VBox;

port javafx.stage.Stage;

public class JavaFX AppStructure extends Application {
@Override

public void start(Stage primaryStage) {
/I Create Nodes
Label label = new Label("Welcome to JavaFX!");

Button button = new Button("Click Me");
// Create Root Node (Layout Pane) %
VBox rootNode = new VBox(10, label, button); Q

/I Create Scene and Set Dimensions %
Scene scene = new Scene(rootNode, 400, 300); Q

// Set Scene to the Stage Q%

primaryStage.setScene(scene); &
primaryStage.setTitle("JavaFX App Window Stru;@

primaryStage.show(); v
} %&
public static void main(String[] a)%X
launch(args); Yﬁb
}

}
3. Displayi &nd Images in JavaFX
JavaFX 1d8s straightforward ways to display both text and images in a user interface.

u can use the Label, Text, and ImageView nodes effectively:

° 7
@Taying Text

Options:
1. Label
o Used for short, non-editable text.

o Often used in forms or as a description for UI components.

Example:
Label label = new Label("Welcome to JavaFX!");
2. Text
o More flexible than Label, allowing custom fonts, styles, and multi-line text.

o Used for rich text display or larger content.

Example: %
Text text = new Text("Hello, JavaFX Text Node!"); Q
text.setStyle("-fx-font-size: 20px; -fx-fill: blue;"); %

Code Example for Text Display: Q)%

import javafx.application. Application; Q

import javafx.scene.Scene;

import javafx.scene.layout. VBox; Q%)

import javafx.scene.text. Text;

import javafx.scene.control.Label; &S

import javafx.stage.Stage; (@
public class DisplayTextExample extendy&;ilcation {

@Override
public void start(Stage primm%a»%(

Label label = new Label("Thigs is a Label!");

Text text = new isis a Text node!");

VBox @ Box(10, label, text);

% e scene = new Scene(root, 300, 200);
primaryStage.setTitle("Displaying Text");
primaryStage.setScene(scene);

primaryStage.show();

public static void main(String[] args) {

launch(args);
}
}
Displaying Images %
Using Image and ImageView: Q
1. Image: Represents the image file loaded from a URL or local file. %%

2. ImageView: Displays the image in the scene. %
Steps: Q

e Create an Image object.

o Pass it to an ImageView. Q%’

Code Example for Image Display: &
import javafx.application. Application; ‘%

import javafx.scene.Scene;

import javafx.scene.image.Image; : & :

import javafx.scene.image.ImageView; \
import javafx.scene.layout. VBox;
import javafx.stage.Stage; Yﬁb

public class DisplaylnageExample extends Application {
@Override

i %tage primaryStage) {
inipge from a file (adjust the file path as needed)
mage = new Image("file:your image path.jpg");

I! ageView imageView = new ImageView(image);

// Optional: Set image dimensions

imageView.setFitWidth(200);

imageView.setPreserveRatio(true);

VBox root = new VBox(imageView);

Scene scene = new Scene(root, 300, 300);

primaryStage.setTitle("Displaying Image");
primaryStage.setScene(scene);
primaryStage.show(); Q% '

public static void main(String[] args) { @
launch(args); Q

}
4. Event Handling in JavaFX &

Event handling in JavaFX allows you to define actions orbehaviors that occur when a user
interacts with Ul components, such as clicking a but ssing a key, or moving the mouse.
JavaFX uses an event-driven model to handle interactions.

£

v/
Key Components of Event Handli %\

1. Event Source
The UI component that g es the event (e.g., Button, TextField).

-

2. Event Handler

A method or pression that defines the response to the event.
3. Event O
Provi tlon about the event, such as the source of the event and event type.
A)

StepS A dle Events
et @ Event Handler
u can set an event handler for a Ul component using:
e A Lambda Expression
e An Anonymous Class

e A Separate Method

2. Use Event Methods

The most common method for handling events is setOnAction, which is used for buttons and
similar controls.

Examples

1. Button Click Event

Using a Lambda Expression: Q%
import javafx.application. Application; %

import javafx.scene.Scene; %

import javafx.scene.control.Button; QQ)

import javafx.scene.layout.StackPane; Q

import javafx.stage.Stage; Q%’

public class ButtonEventExample extends Application { &
@Override

public void start(Stage primaryStage) { &;
Button button = new Button("Click Me'y;
button.setOnAction(e -> System.c%l n("Button clicked!"));

StackPane root = new Stacl%rmbutton);

Scene scene = new Sc ot, 300, 200);

primary &tle("Button Click Event");
pri .setScene(scene);
@ tage.show();
[

public static void main(String[] args) {

launch(args);

2. Handling Mouse Events

JavaFX provides methods like setOnMouseEntered and setOnMouseClicked for handling mouse
interactions.

Example:

import javafx.application. Application;

import javafx.scene.Scene; %’

import javafx.scene.layout.StackPane; Q

import javafx.scene.text. Text; %%

import javafx.stage.Stage; Q@

public class MouseEventExample extends Application { %
@Override Q

public void start(Stage primaryStage) { &
Text text = new Text("Hover over me!");
text.setOnMouseEntered(e -> text.setText(" %tered! ");
text.setOnMouseExited(e -> text.setTe%'(I-gr

over me!"));

StackPane root = new StackP /

lic static void main(String[] args) {

launch(args);

3. Handling Events with a Separate Method

You can define a separate method to handle the event.
Example:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button; %

import javafx.scene.layout.StackPane;

import javafx.stage.Stage; q%

public class SeparateMethodEventExample extends Application { Q
@Override

public void start(Stage primaryStage) { Q%

Button button = new Button("Click Me");

button.setOnAction(this::handleButtonClick); é&

StackPane root = new StackPane(button & :
Scene scene = new Scene(root, 300:&

primaryStage.setTitle(”Eve’% ng with Separate Method");

primaryStage.setSceng(scene

primaryStage.show();

<§\

priva@ ndleButtonClick(javafx.event.ActionEvent event) {
@ .out.println("Button was clicked!");

}

public static void main(String[] args) {

launch(args);

Event Types
e ActionEvent: Triggered by actions like button clicks or menu item selection.

e MouseEvent: Triggered by mouse actions like clicks or movement.

o KeyEvent: Triggered by keyboard actions like key presses or releases. %

e WindowEvent: Triggered by changes in the application window (e.g., close or rf51

5. Laying Out Nodes in the Scene Graph

In JavaFX, layout panes are used to organize and position nodes (Ul com %ﬁnn the

Scene Graph. Each layout pane provides a specific way to arrange 1ts ch
Common Layout Panes \
1. HBox (Horizontal Layout) &

e Description: Arranges its children in a single horizontal row.

e Use Case: Useful for toolbars or placin@%%;

Example: %
import javafx.application. Application; %&

side-by-side.

import javafx.scene.Scene;

import javafx.scene.control.ButtoE; y

import javafx.scene.layput. ;

import javafx.sta :
public cl oxExample extends Application {
ublie’void start(Stage primaryStage) {
[
Button btn1 = new Button("Button 1");
Button btn2 = new Button("Button 2");

Button btn3 = new Button("Button 3");

HBox hbox = new HBox(10, btnl, btn2, btn3); // Spacing between nodes

Scene scene = new Scene(hbox, 300, 100);

primaryStage.setTitle("HBox Example");
primaryStage.setScene(scene);

primaryStage.show();

public static void main(String[] args) { %
launch(args); %\3
} <¢

o

b4

2. VBox (Vertical Layout) (%‘X’

o Description: Arranges its children in a single Vj@:o mn.

e Use Case: Useful for forms, menus, or stackw ols.
Example: &
import javafx.application.Application; X%
import javafx.scene.Scene; %
import javafx.scene.control.But %
import javafx.scene.layou VBoZ&y

import javafx.stage.S

,\
public class %ample extends Application {
5
d start(Stage primaryStage) {
B

tton btnl = new Button("Button 1");
Button btn2 = new Button("Button 2");

Button btn3 = new Button("Button 3");

VBox vbox = new VBox(10, btn1, btn2, btn3); / Spacing between nodes

Scene scene = new Scene(vbox, 200, 150);
primaryStage.setTitle("VBox Example");

primaryStage.setScene(scene);

primaryStage.show();

public static void main(String[] args) { %
launch(args); %\3
} <§

bd

3. GridPane (Grid Layout) (S
o Description: Arranges children in a flexible gr@w and columns.

o Use Case: Useful for complex forms or table?»

Example:

import javafx.application. Application; X%
import javafx.scene.Scene; %
import javafx.scene.control.But %
import javafx.scene.layout,Grid

ag
N

public clasM%%eExample extends Application {
@OV»@:;:
d start(Stage primaryStage) {
B

tton btnl = new Button("Button 1");
Button btn2 = new Button("Button 2");

Button btn3 = new Button("Button 3");

Button btn4 = new Button("Button 4");

GridPane grid = new GridPane();
grid.setHgap(10); // Horizontal gap between columns

grid.setVgap(10); // Vertical gap between rows

// Adding buttons to the grid (column, row)

grid.add(btn1, 0, 0); %
grid.add(btn2, 1, 0); Q
grid.add(btn3, 0, 1); %
grid.add(btn4, 1, 1); QQ)%

Scene scene = new Scene(grid, 300, 200);
primaryStage.setTitle("GridPane Example"); Q%
primaryStage.setScene(scene);

primaryStage.show(); é&

public static void main(String[] args) X)
launch(args);
} b

: Divides the layout into five regions: top, bottom, left, right, and center.

o Descripti
: Useful for creating applications with a header, footer, sidebar, and main

rt javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.BorderPane;

import javafx.stage.Stage;

public class BorderPaneExample extends Application {

@Override
public void start(Stage primaryStage) {

Button topButton = new Button("Top");

Button bottomButton = new Button("Bottom");

Button leftButton = new Button("Left"); Q% '
Button rightButton = new Button("Right"); %
Button centerButton = new Button("Center"); @%
BorderPane borderPane = new BorderPane(); §

borderPane.setTop(topButton); %

borderPane.setBottom(bottomButton);
borderPane.setLeft(leftButton); &
borderPane.setRight(rightButton); %
borderPane.setCenter(centerButton); &v

Scene scene = new Scene(borderBan , 300);
primaryStage.setTitle("Borde ample");
primaryStage.setScene(scen%V
primaryStage.show();

h ,\

public vojd main(String[] args) {
%&s);

j 3

6. Handling Mouse Events in JavaFX

JavaFX provides a rich set of mouse events to handle interactions such as clicks, drags, and
hover actions. These events are defined in the MouseEvent class, and you can attach event
handlers to any node in your scene.

Common Mouse Events
1. Mouse Click Events %f
o setOnMouseClicked: Triggered when a mouse button is clicked on a node Q
2. Mouse Hover Events %%
o setOnMouseEntered: Triggered when the mouse enters a node %
o setOnMouseExited: Triggered when the mouse leaves a n Q
3. Mouse Drag Events Q

o setOnMouseDragged: Triggered when the mouse@g;d while pressing a

button.

o setOnMousePressed / setOnMouseReleased I riggered when the mouse button is
pressed/released.

v
< y
Example 1: Handling a Mouse Click %

This example changes the text of a Lal@, icked.

import javafx.application. Applicati

import javafx.scene.Scene; Yﬁ

import javafx.scene.contro 1;

import javafx.sceng: ackPane;

import javaﬁ(@:@e;
publ'g—l@ouseﬂickExample extends Application {

@ de
[
lic void start(Stage primaryStage) {
Label label =new Label("Click Me!");

/I'Set Mouse Click Event
label.setOnMouseClicked(e -> label.setText("Label Clicked!"));

StackPane root = new StackPane(label);

Scene scene = new Scene(root, 300, 200);

primaryStage.setTitle("Mouse Click Example");

primaryStage.setScene(scene);

primaryStage.show(); 0% '

public static void main(String[] args) { @
launch(args); Q

S
S
S
w

o
$
§

