OPERATING SYSTEM AND SYSTEM PROGRAMMING

UNIT-I

Fundamentals of Operating Systems and Process Management
Introduction to Operating Systems:

Definition:

An Operating System is a System software that manages all the resources of the computing
device.
e Acts as an interface between the software and different parts of the computer or the
computer hardware.
e Manages the overall resources and operations of the computer.
e Controls and monitors the execution of all other programs that reside in the computer,
which also includes application programs and other system software of the computer.
o Examples of Operating Systems are Windows, Linux, macOS, Android, iOS, etc.
Or
Definition: An Operating System (OS) is system software that manages computer hardware,
software resources, and provides common services for computer programs. It acts as an
intermediary between users and the computer hardware, enabling efficient execution of

applications.

Basics :

Introduction to Operating System

An operating system acts as an intermediary between the user of a computer and computer

hardware. In short its an interface between computer hardware and user.

e The purpose of an operating system is to provide an environment in which a user can
execute programs conveniently and efficiently.

e An operating system is software that manages computer hardware and software. The
hardware must provide appropriate mechanisms to ensure the correct operation of the
computer system and to prevent user programs from interfering with the proper operation of
the system.

Why do we need an Operating System?
Without an OS:

e You cannot run applications like browsers, games, or editors.

e Managing hardware like CPU, memory, and input/output devices will be complex for the
user.

e The OS makes computing easy, efficient, and secure.

Main Functions of Operating System

M) Process Management

e Aprocess is a running program.
e OS handles:
o Creation and termination of processes.
o Scheduling processes to use CPU efficiently.
o Synchronization and communication between processes.

wb) Memory Management

e OS manages primary memory (RAM):
o Allocates and deallocates memory to programs.
o Keeps track of each byte of memory.
o Ensures efficient use of memory without conflicts.

M%) File Management

e 0OS manages files and directories on storage devices:
o Creates, deletes, reads, writes, and organizes files.
o Manages file permissions and security.

MAl) Device Management

e 0OS manages input/output devices like keyboard, mouse, printer, and disk drives
using device drivers.
e Controls data transfer and error handling for devices.

V&) Security and Protection

e Protects data from unauthorized access.
e Provides user authentication (passwords, biometrics).
e Controls access rights for files and resources.

GENERATIONS OF OPERATING SYSTEMS

fL First Generation (1940s - Early 1950s) - No Operating System

e Computers used vacuum tubes and plugboards.

e Programming done in machine language (0s and 1s).

e No OS; programs loaded manually using switches and punched cards.
e Execution was slow and error-.

ZExample: ENIAC, UNIVAC.

€ $econd Generation (1955 - Mid 1960s) - Batch Processing Systems

e Computers used transistors.

e Batch Operating Systems introduced.

e Jobs collected into batches on punched cards and executed sequentially.
e No user interaction during execution.

o Used job control languages (JCL) for managing jobs.

«/Features:

e Automatic job sequencing.
e Reduced CPU idle time.

</Example: IBM 7094.

@‘hird Generation (Mid 1960s - 1970s) - Multiprogramming & Time-Sharing Systems

e Computers used Integrated Circuits (ICs).

e Multiprogramming introduced: Multiple programs reside in memory, CPU
switches between them to increase utilization.

e Time-Sharing Systems: Multiple users can interact with the computer
simultaneously, each getting CPU time slices.

e Introduction of spooling for managing [/0 efficiently.

/Features:
e Better CPU utilization.
e Interactive computing started.

e User terminals connected to central system.

«/Example: IBM System/360.

Generation Key Points

SUMMARY TABLE OF GENERATIONS IN OS

fL First No OS, manual operation, machine language.

@ Fourth Generation (Late 1970s - Present) - Personal Computer (PC) Operating Systems

e Computers use Very Large Scale Integration (VLSI) chips (microprocessors).
e Personal computers became popular, requiring user-friendly OS.

e Graphical User Interfaces (GUI) introduced, making OS easier to use.

e Networking and distributed systems development started.

«/Features:

e Support for personal computing.
o Easy user interfaces (Windows, icons, menus).
e Networking and distributed computing support.

<«“Examples: MS-DOS, Windows, MacOS, UNIX.

@‘ifth Generation (Present - Future) - Advanced & Al-Based Operating Systems

e 2Focus on parallel processing, distributed systems, cloud 0S, and Al
integration.

e Real-time OS for robotics and IoT devices.

e Increased security, stability, and efficiency.

e Virtualization and cloud computing support in OS.

/Features:
o Intelligent operating systems using Al.
e Seamless cloud integration.

e Support for mobile and embedded systems.

<« Examples: Android, i0S, Windows 11, advanced Linux distributions, cloud-based 0S
systems.

2 $econd Batch OS, job sequencing, punched cards.

B8 Third Multiprogramming, time-sharing, spooling.
@ Fourth GUI, PC OS, networking support.
6 Fifth Al integration, cloud OS, real-time OS.

Operating System Types
Main Operating System Types

1. Batch Operating System

This type of operating system does not interact with the computer directly. There is an
operator which takes similar jobs having the same requirements and groups them into
batches. It is the responsibility of the operator to sort jobs with similar needs. Batch
Operating System is designed to manage and execute a large number of jobs efficiently by
processing them in groups.

Examples of Batch Operating Systems: Payroll Systems, Bank Statements, etc.

]

()

Job 2
Operating

System CpU

Jobn }

Advantages of Batch Operating System

e Multiple users can share the batch systems.

e The idle time for the batch system is very little.

e Itis easy to manage large work repeatedly in batch systems. Ex: bank statements.
Disadvantages of Batch Operating System

e CPUis notused efficiently. When the current process is doing IO, the CPU is free and
could be utilized by other processes waiting. 1k

k2. Multi-Programming Operating System

Multiprogramming Operating Systems can be simply illustrated as more than one
program is present in the main memory and any one of them can be kept in execution.
This is used for better utilization of resources.

Advantages of, Multi-Programming Operating System

e CPU is better utilized, and the overall performance of the system improves.
e It helps in reducing the response time.

Multiprogramming

Job 1

Job 2

Job 3

Memory

Operating
System

.

P

Partitions

Example: desktop os,mobile os.applications os.” Media player

3. Multi-Processing Operating System
A Multi-Processing Operating Systemis a type of Operating System in which more than

one CPU is used for the execution of resources. It betters the throughput of the System.

CPU

Multiprocessing

CPU CPU

Examples:unix,linux.
e ltincreases the throughput of the system as processes can be parallelized.
e As it has several processors, so, if one processor fails, we can proceed with another

processor

https://www.geeksforgeeks.org/difference-between-multiprocessing-and-multiprogramming/

4. Multi-User Operating Systems

These systems allow multiple users to be active at the same time. This system can be either a
multiprocessor or a single processor with interleaving

User 4

User 3

User 5
(Active state)

User 2

User 1|

User 6
(Ready state)

Advantages of a Multi-User Operating System
Examples:unix,macos.linus,

5. Distributed Operating System

These types of operating systems are a recent advancement in the world of computer
technology and are being widely accepted all over the world and, that too, at a great pace.
Various autonomous interconnected computers communicate with each other using a shared
communication network. Independent systems possess their own memory unit and
CPU. Systems. These systems' processors differ in size and function. The major benefit of
working with these types of operating systems is that it is always possible that one user can
access the files or software which are not present on his system but on some other system
connected within this network, i.e., remote access is enabled within the devices connected to
that network.

Architecture of Distributed OS

[CPU, Memory]

I [CPU, Memory, Disk]

CPU, Memory, Disk
[U Cormiiaion e

[CPU, Memory, Disk] [CPU, Memory]

Examples: cloud computing, aws.social media platforms.

https://www.geeksforgeeks.org/difference-between-loosely-coupled-and-tightly-coupled-multiprocessor-system/

6. Network Operating System

These systems run on a server and provide the capability to manage data, users, groups,
security, applications, and other networking functions. These types of operating systems allow
shared access to files, printers, security, applications, and other networking functions over a
small private network. One more important aspect of Network Operating Systems is that all
the users are well aware of the underlying configuration, of all other users within the network,
their connections, etc., and that’s why these computers are popularly known a tightly coupled

systems.

Client 1 \
/ File Server \
B ‘

Client 3 Client 3

Examples:server operating system.

Types of Operating System Structures

Simple Structure :Simple structure operating systems do not have well-defined structures and are small,
simple, and limited. The interfaces and levels of functionality are not well separated. MS-DOS is an
example of such an operating system. In MS-DOS, application programs are able to access the basic I/0
routines. These types of operating systems cause the entire system to crash if one of the user programs
fails.

Simple OS Structure

Application Program

ROM BIOS device drivers

https://www.geeksforgeeks.org/difference-between-loosely-coupled-and-tightly-coupled-multiprocessor-system/
https://www.geeksforgeeks.org/difference-between-loosely-coupled-and-tightly-coupled-multiprocessor-system/

OS STRUCTURE:
Simple Structure

There are many operating systems that have a rather simple structure. These started as
small systems and rapidly expanded much further than their scope. A common example of
this is MS-DOS. It was designed simply for amount for people. There was no indication that
it would become so popular.

Application Programs

System Programs

Device Drivers

BIOS Device Drivers

Advantages
Following are advantages of a simple operating system structure.

1. Easy Development - In simple operation system, being very few interfaces,
development is easy especially when only limited functionalities are to be
delivered.

2. Better Performance - Such a sytem, as have few layers and directly interects
with hardware, can provide a better performance as compared to other types
of operating systems.

DIS ADVANTAGES

1. Frequent System Failures
2. Poor Maintainability

Layered Structure

One way to achieve modularity in the operating system is the layered approach. In
this, the bottom layer is the hardware and the topmost layer is the user interface.

An image demonstrating the layered approach is as follows -

Layer — N: User Interface

Layer 2
Layer 1

Hardware

j
As seen from the image, each upper layer is built on the bottom layer. All the layers
hide some structures, operations etc from their upper layers.

One problem with the layered structure is that each layer needs to be carefully
defined. This is necessary because the upper layers can only use the functionalities
of the layers below them.

Advantages
Following are advantages of a layered operating system structure.

o High Customizable - Being layered, each layer implmentation can be
customized easily. A new functionality can be added without impacting other
modules as well.

e Verifiable - Being modular, each layer can be verified and debugged easily.
Disadvantages
Following are disadvantages of a layered operating system structure.

e Less Performant - A layered structured operating system is less performant as
compared to basic structured operating system.

e Complex designing - Each layer is to planned carefully as each layer
communicates with lower layer only and a good design process is required to
create a layered operating system.

Micro-Kernel Structure

As in case monolith structure, there was single kernel, in micro-kernel, we have multiple
kernels each one specilized in particular service. Each microkernel is developed
independent to the other one and makes system more stable. If one kernel fails the
operating sytem will keep working with other kernel's functionalities.

Application Programs

|

Memony. Device Drivers ‘ File System |
Management | 1 | 1 |
Optional Kernel Operations
Basic Kernel Operations
L
Hardware
Advantages

Following are advantages of a microkernel operating system structure.

\Reliable and Stable - As multiple kernels are working simultaneously, chances of failure of
operating sytem is very less. If one functionlity is down, operating system can still provide
other functionalities using stable kernels.

\Maintainability - Being small sized kernels, code size is maintainable. One can enhance a
microkernel code base without impacting other microkernel code base.

Disadvantages

Following are disadvantages of a microkernel operating system structure.

Complex to Design - Such a microkernel based architecture is difficult to design.
Performance Degradation - Multi kernel, Multi-modular communication may hamper the
performance as compared to monolith architecture.

Monolith Structure

In monolith structured operating system, a central piece of code called kernel is
responsible for all major operations of an operating system. Such operations includes file
management, memory management, device management and so on. The kernal is the main
component of an operating system and it provides all the services of an operating system to
the application programs and system programes.

The kernel has access to the all the resources and it acts as an interface with application
programs and the underlying hardware. A monolithic kernel structure promotes
timesharing, multiprogramming model and was used in old banking systems.

Application Programs
Process | File
NManagement Management

Monolith Kernel

Drivers

|

Hardware

Advantages
Following are advantages of a monolith operating system structure.

1.Easy Development - As kernel is the only layer to develop with all major
functionalities, it is easier to design and develop.

2.Performance - As Kernel is responsible for memory management, other operations
and have direct access to the hardware, it performs better.

Disadvantages
Following are disadvantages of a monolith operating system structure.

e Crash Prone - As Kernel is responsible for all functions, if one function fails
entire operating system fails.

¢ Difficult to enhance - It is very difficult to add a new service without impacting
other services of a monolith operating system.

Operating System Services

Operating systems provide a set of essential services to:

&/ Users — for ease of using the system
/Programs — for execution and resource management
< System efficiency — to manage hardware and software resources effectively.

@Jser Services

These services help users use the computer system effectively:

e Program Execution: Load and run user programs, providing an environment for
execution.

e 1/O Operations: Handle input and output operations, hiding hardware details from the
user.

o File System Manipulation: Create, delete, read, write, and manage files and directories.

o Communication Services: Allow processes to exchange information, either on the same
system or over a network.

e Error Detection: Detect and report system and program errors for smooth operation.

@ystem Services

These services help system management and efficiency:

e Resource Allocation: Manage and allocate CPU time, memory, and /O devices to
‘various programs and users.

e Accounting: Track resource usage (CPU time, memory usage, disk usage) for
monitoring and billing (in multi-user systems).

e Protection and Security: Control access to system resources, ensuring that unauthorized
users do not interfere with the system or other users.

System Calls
o Interface between user programs and OS.

o Allow user-level processes to request OS services (e.g., file operations, process
management).

o Example:87
o fork() - create process
o exec() - execute program
o read(), write() - file operations
o wait() - wait for processf

o exit() - terminate process

Introduction to System Call

System Calls

Hardware

System Boot

e Process of loading OS into memory after the computer is powered on.

e Uses bootstrap loader (bootloader) from ROM to load the OS kernel.

o Initializes system resources and prepares the system for user operations.

Diagram:

[Power On]

[Bootstrap Loader in ROM]

[Load Kernel into Memory]

[OS Initialization]

I
[System Ready |

Types of Booting
There are two types of Booting available:

1. Cold Booting/ Hard Booting: Cold booting is the process when our computer
system moves from the shutdown state to the start by pressing the power
button. The system reads the BIOS from ROM and will eventually load the
Operating System.

2. Warm Booting/ Soft Booting: Warm booting is the process in which the
computer gets restarted due to reasons like setting the configuration for
newly installed software or hardware. Warm booting is called as rebooting.

System Programs

e System programs provide a convenient environment for program
development and execution.

Types of System Programs

1. File Management
These system programs manage the operations related to files such as:

e Create file

o Delete file

o Copy file

e Rename file
e Dump file

¢ List, etc.

Status Information
These system programs are used to retrieve the information about the system such
as:

e Date

e Time

¢ Memory

« Number of users, etc.

File Modification

These system programs are used for modifying the file stored on the hard disk or
other storage devices. Other than modification these programs are also used to
search some content on the file, or even to transform some content of the file.

Programming-Language Support

Some common system programs that support the programming languages like C,
C++, Java, Visual Basic and Pearl come with the operating system. These system
programs are:

e Compiler

e Assembler

o Debuggers

o Interpreters, etc.

Program Loading and Execution

Whenever we write a program we compile it and store it on the disk. Now when we
want to execute it we have to load it to the main memory. For this, we require some
system programs such as:

e Loader

¢ Relocatable loader
o Linkage editor

e Overlay loader

Communication
These Kkinds of system programs are used for connecting two communicating
processes, users, and computer systems.

Virtual Machines
e Virtual Machines allow multiple OS instances on the same hardware.
e Each VM behaves like a real computer with its own OS.

o Uses a Virtual Machine Monitor (VMM) to provide isolation between VMs.

Types of Virtual Machines : You can classify virtual machines into two types:

1. System Virtual Machine: These types of virtual machines gives us complete system platform and
gives the execution of the complete virtual operating system. Just like virtual box, system virtual
machine is providing an environment for an OS to be installed completely. We can see in below image
that our hardware of Real Machine is being distributed between two simulated operating systems by
Virtual machine monitor. And then some programs, processes are going on in that distributed hardware
of simulated machines separately.

System Virtual Machine

APP AFP AFP AFP AFP AFP AFPP APP
Operating System Operating System
Simulated Machine Simulated Machine

Virtual Machine Monitor (VMM)

Hardware -- "Real Machine"”

2. Process Virtual Machine : While process virtual machines, unlike system virtual machine, does not
provide us with the facility to install the virtual operating system completely. Rather it creates virtual
environment of that OS while using some app or program and this environment will be destroyed as
soon as we exit from that app. Like in below image, there are some apps running on main OS as well
some virtual machines are created to run other apps. This shows that as those programs required
different OS, process virtual machine provided them with that for the time being those programs are
krunning. Example - Wine software in Linux helps to run Windows applications.

Process Virtual Machine

APP APP APP

0s -2 0s -3

APP Virtual Machine

Operating System - 1

Hardware -- "Real Machine™

fg

Virtual Machine Language : It's type of language which can be understood by different operating
systems. It is platform-independent. Just like to run any programming language (C, python, or java) we
need specific compiler that actually converts that code into system understandable code (also known
as byte code). The same virtual machine language works. If we want to use code that can be executed
on different types of operating systems like (Windows, Linux, etc) then virtual machine language will be
helpful.

Advantages:

Asolation

/Resource sharing

Flexibility for OS development/testing

What is a Process?

Process is the execution of a program that performs the actions specified in that
program. It can be defined as an execution unit where a program runs. The OS helps
you to create, schedule, and terminates the processes which is used by CPU. A
process created by the main process is called a child process.

Process operations can be easily controlled with the help of PCB(Process Control
Block). You can consider it as the brain of the process, which contains all the crucial
information related to processing like process id, priority, state, CPU registers, etc

What is Process Management?

Process management involves various tasks like creation, scheduling, termination of
processes, and a dead lock. Process is a program that is under execution, which is an
important part of modern-day operating systems. The OS must allocate resources that
enable processes to share and exchange information. It also protects the resources of
each process from other methods and allows synchronization among processes.

It is the job of OS to manage all the running processes of the system. It handles
operations by performing tasks like process scheduling and such as resource allocation.

https://www.guru99.com/deadlock-in-operating-system.html

Process States

Mew

Ready

Waiting

Executing

h 4 h 4 h 4 h 4

Blocked Suspended

Terminated

A process state is a condition of the process at a specific instant of time. It also defines
the current position of the process.

There are mainly seven stages of a process which are:

New: The new process is created when a specific program calls from secondary memory/ hard
disk to primary memory/ RAM a

Ready: In a ready state, the process should be loaded into the primary memory, which is ready
for execution.

Waiting: The process is waiting for the allocation of CPU time and other resources for execution.
Executing: The process is an execution state.

Blocked: It is a time interval when a process is waiting for an event like I/O operations to
complete.

https://www.guru99.com/images/1/122319_0638_ProcessMana2.png

Suspended: Suspended state defines the time when a process is ready for execution but has
not been placed in the ready queue by OS.
Terminated: Terminated state specifies the time when a process is terminated

Process Control Blocks

PCB stands for Process Control Block. It is a data structure that is maintained by the
Operating System for every process. The PCB should be identified by an integer
Process ID (PID). It helps you to store all the information required to keep track of all the
running processes.

It is also accountable for storing the contents of processor registers. These are saved
when the process moves from the running state and then returns back to it. The
information is quickly updated in the PCB by the OS as soon as the process makes the
state transition.

The diagram helps explain some of these key data items.

Process Control Block

e Pointer: It is a stack pointer that is required to be saved when the process is switched
from one state to another to retain the current position of the process.

e Process state: It stores the respective state of the process.

e Process number: Every process is assigned a unique id known as process ID or PID
which stores the process identifier.

e Program counter: Program Counter stores the counter, which contains the address of
the next instruction that is to be executed for the process.

o Register: Reqisters in the PCB, it is a data structure. When a processes is running and
it's time slice expires, the current value of process specific registers would be stored in
the PCB and the process would be swapped out. When the process is scheduled to be
run, the register values is read from the PCB and written to the CPU registers. This is
the main purpose of the registers in the PCB.

e Memory limits: This field contains the information about memory management
system used by the operating system. This may include page tables, segment tables,
etc.

o List of Open files: This information includes the list of files opened for a process.

https://www.geeksforgeeks.org/operating-systems/what-is-program-counter/
https://www.geeksforgeeks.org/computer-organization-architecture/different-classes-of-cpu-registers/
https://www.geeksforgeeks.org/operating-systems/memory-management-in-operating-system/
https://www.geeksforgeeks.org/operating-systems/memory-management-in-operating-system/

PID PCB

O PO

(B PCB
PID 1 PID 2

Process table and process control block

Working Process Context Switching

Context Switchhing in an operating system is a critical function that allows the CPU to
efficiently manage multiple processes. By saving the state of a currently active process and
loading the state of another, the system can handle various tasks simultaneously without

losing progress. This switching mechanism ensures optimal use of the CPU, enhancing the
system's ability to perform multitasking effectively.

Process p0 ‘Operating System Process p1
Interrupt or system call

executing

1
I Idle
|
|

— — — — — executing
Interrupt or System Call

(| save state into PCB1 |

Idie

executing I

I | reload state from PCEO |

S~ —_—
State Diagram of Context

Switching

In the context switching of two processes, the priority-based process occurs in the ready

gueue of the process control block. Following are the steps:

e The state of the current process must be saved for rescheduling.

e The process state contains records, credentials, and operating system-specific information
stored on the PCB or switch.

e The PCB can be stored in a single layer in kernel memory or in a custom OS file.

e A handle has been added to the PCB to have the system ready to run.

o The operating system aborts the execution of the current process and selects a process
from the waiting list by tuning its PCB.

e Load the PCB's_ program counter and continue execution in the selected process.

e Process/thread values can affect which processes are selected from the queue, this can be
important.

Threads and Multithreading

A thread is a path that is followed during a program’s execution. The majority of programs
written nowadays run as a single thread. For example, a program is not capable of reading
keystrokes while making drawings. These tasks cannot be executed by the program at the
same time. This problem can be solved through multitasking so that two or more tasks can be
executed simultaneously.

What is Multithreading?

Multithreading is a feature in operating systems that allows a program to do several tasks at
the same time. Think of it like having multiple hands working together to complete different
parts of a job faster. Each "hand" is called a thread, and they help make programs run more
efficiently. Multithreading makes your computer work better by using its resources more
effectively, leading to quicker and smoother performance for applications like web browsers,
games, and many other programs you use every day.

https://www.geeksforgeeks.org/what-is-program-counter/
https://www.geeksforgeeks.org/what-is-a-computer-program/

How Does Multithreading Work?

Multithreading works by allowing a computer's processor to handle multiple tasks at the same
time. Even though the processor can only do one thing at a time, it switches between different
threads from various programs so quickly that it looks like everything is happening all at once.
Here's how it simplifies:

e Processor Handling : The processor can execute only one instruction at a time, but it
switches between different threads so fast that it gives the illusion of simultaneous
execution.

e Thread Synchronization : Each thread is like a separate task within a program. They
share resources and work together smoothly, ensuring programs run efficiently.

o Efficient Execution : Threads in a program can run independently or wait for their turn to
process, making programs faster and more responsive.

e Programming Considerations : Programmers need to be careful about managing threads
to avoid problems like conflicts or situations where threads get stuck waiting for each other.

Single-threaded Process Multi-threaded Process

Threads of
Execution 3

_.

N A

Single Instruction Stream / Multiple Instruction Stream
Common

Single Thread and Multi Thread Process

Operating System - Process Scheduling

Definition

The process scheduling is the activity of the process manager that handles the removal of the
running process from the CPU and the selection of another process on the basis of a particular
strategy.

Process scheduling is an essential part of a Multiprogramming operating systems. Such
operating systems allow more than one process to be loaded into the executable memory at a
time and the loaded process shares the CPU using time multiplexing.

Categories of Scheduling
There are two categories of scheduling:

1. Non-preemptive: Here the resource cant be taken from a process until the process
completes execution. The switching of resourcelos occurs when the running process
terminates and moves to a waiting state.

2. Preemptive: Here the OS allocates the resources to a process for a fixed amount of
time. During resource allocation, the process switches from running state to ready state
or from waiting state to ready state. This switching occurs as the CPU may give priority
to other processes and replace the process with higher priority with the running process.

Process Scheduling Queues

The OS maintains all Process Control Blocks (PCBs) in Process Scheduling Queues.
The OS maintains a separate queue for each of tmhe process states and PCBs of all
processes in the same execution state are placed in the same queue. When the state of
a process is changed, its PCB is unlinked from its current queue and moved to its new
state queue.

The Operating System maintains the following important process scheduling queues -

e Job queue - This queue keeps all the processes in the system.

e Ready queue - This queue keeps a set of all processes residing in main memory, ready
and waiting to execute. A new process is always put in this queue.

e Device queues - The processes which are blocked due to unavailability of an 1/O
device constitute this queue.

>
JobQueue ——— > Ready Queue >
I/0 Waitin
/o €= / 8

Queue

Operating System Scheduling algorithms

A Process Scheduler schedules different processes to be assigned to the CPU based on
particular scheduling algorithms. There are six popular process scheduling algorithms which we
are going to discuss in this chapter -

First-Come, First-Served (FCFS) Scheduling
Shortest-Job-Next (SIN) Scheduling

Priority Scheduling

Shortest Remaining Time

Round Robin(RR) Scheduling

Multiple-Level Queues Scheduling

These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms are
designed so that once a process enters the running state, it cannot be preempted until it
completes its allotted time, whereas the preemptive scheduling is based on priority where a
scheduler may preempt a low priority running process anytime when a high priority process
enters into a ready state.

First Come First Serve (FCFS)

Jobs are executed on first come, first serve basis.

It is a non-preemptive, pre-emptive scheduling algorithm.
Easy to understand and implement.

Its implementation is based on FIFO queue.

Poor in performance as average wait time is high.

Problem 1

Consider the given table below and find Completion time (CT), Turn-around time (TAT), Waiting
time (WT), Response time (RT), Average Turn-around time and Average Waiting time.

Process ID Arrival time Burst time
P1 2 2
P2 5 6
P3 0 4

P4 0 7

P5 7 4

Solution

Gantt chart

P3 P4 P1 P2 P5

\For this problem CT, TAT, WT, RT is shown in the given table

Process ID Arrival time Bursttime CT TAT=CT-AT WT=TAT-BT RT

P1 2 2 13 13-2=11 11-2=9 9
P2 5 6 19 19-5=14 14-6=8 8
P3 0 4 4 4-0=4 4-4=0 0
P4 0 7 11 11-0=11 11-7=4 4
P5 7 4 23 23-7=16 16-4=12 12

Average Waiting time| = (9+8+0+4+12)/5 = 33/5 = 6.6 time unit (time unit can be considered as
milliseconds)

Average Turn-around time/ = (11+14+4+11+16)/5 = 56/5 = 11.2 time unit (time unit can be
considered as milliseconds)

Process | Arrival Time | Execute Time | Service Time
PO 0 5 0
P1 1 3 5
P2 2 3 8
P3 3 6 16
PO P1 P2 P3
0 5 8 16 22

Wait time of each process is as follows —

Process Wait Time : Service Time - Arrival Time

PO 0-0=0
P1 5-1=4
P2 8-2=6
P3 16 -3 =13

Average Wait Time: (0+4+6+13) /4 =5.75

SJF (SHORTEST JOB FIRST) Scheduling

In the Shortest Job First scheduling algorithm, the processes are scheduled in ascending order
of their CPU burst times, i.e. the CPU is allocated to the process with the shortest execution
time.

Examples of Non-Preemptive SJF Algorithm

Example 1

Suppose that we have a set of four processes that have arrived at the same time in the order

P1, P2, P3 and P4. The burst time in milliseconds of each process is given by the following
table -

Process CPU Burst Time in ms

P1 6
P2 10
P3 4
P4 6

Let us draw the GANTT chart and find the average turnaround time and average waiting time
using non-preemptive SJF algorithm.

GANTT Chart for the set of processes using SJF

Process P3 has the shortest burst time and so it executes first. Then we find that P1 and P4
have equal burst time of 6ms. Since P1 arrived before, CPU is allocated to P1 and then to P4.
Finally P2 executes. Thus the order of execution is P3, P1, P4, P2 and is given by the following
GANTT chart -

Time in ms: 0 4 10 16 26
Process: P3 P1 P4 p2

Let us compute the average turnaround time and average waiting time from the above chart.
Average Turnaround Time

=Sum of Turnaround Time of each Process / Number of Processes

= (TATp1 + TATpo + TATes + TATps) / 4

=(10+26+4+16)/4=14ms

Average Waiting Time

= Sum of Waiting Time of Each Process / Number of processes

= (WTp1 + WTp2 + WTp3s + WTps) / 4

=(4+16+0+10)/4=75ms

Example 2

In the previous example, we had assumed that all the processes had arrived at the same time, a
situation which is practically impossible. Here, we consider circumstance when the processes

arrive at different times. Suppose we have set of four processes whose arrival times and CPU
burst times are as follows -

Process Arrival Time CPU Burst Time
P1 0 6

P2 4 10

P3 4 4

P4 8 3

Let us draw the GANTT chart and find the average turnaround time and average waiting time
using non-preemptive SJF algorithm.

GANTT Chart

While drawing the GANTT chart, we will consider which processes have arrived in the system
when the scheduler is invoked. At time Oms, only P1 is there and so it is assigned to CPU. P1
completes execution at 6ms and at that time P2 and P3 have arrived, but not P4. P3 is assigned
to CPU since it has the shortest burst time among current processes. P3 completes execution at
time 10ms. By that time P4 has arrived and so SJF algorithm is run on the processes P2 and
P4. Hence, we find that the order of execution is P1, P3, P4, P2 as shown in the following
GANTT chart -

P1 P3 P4 P2

Time of Completion 6 10 13 23
Arrival Time 0 4 8
and the Processes P1 P2, P3 P4

Let us calculate the turnaround time of each process and hence the average.
Turnaround Time of a process = Completion Time Arrival Time

TATp1 =CTp1-ATp1=6-0=6 ms

TATp2 = CTp2 - ATp2 =23 -4 =19 ms

TATpz = CTpz - ATpz=10-4=6 ms

TATps = CTps - ATpa=13-8=5ms

Average Turnaround Time

=Sum of Turnaround Time of each Process/ Number of Processes

=(6+19+6+5)/4=9ms

The waiting time is given by the time that each process waits in the ready queue. For a non-
preemptive scheduling algorithm, waiting time of each process can be simply calculated as -

Waiting Time of any process = Time of admission to CPU Arrival Time
WTp1=0-0=0ms
WTp2=13-4=9ms
WTp3=6-4=2ms
WTps=10-8=2ms
Average Waiting Time
= Sum of Waiting Time of Each Process/ Number of processes
:(WTpl+WTp2+WTP3+WTP4)/4=(O+9+2+2)/4=3.25 ms
Priority Based Scheduling
e Priority scheduling is a non-preemptive algorithm and one of the most common
scheduling algorithms in batch systems.
e Each process is assigned a priority. Process with highest priority is to be executed first
and so on.
e Processes with same priority are executed on first come first served basis.

o Priority can be decided based on memory requirements, time requirements or any other
resource requirement.

Round Robin Scheduling

¢ Round Robin is the preemptive process scheduling algorithm.

e Each process is provided a fix time to execute, it is called a quantum.

e Once a process is executed for a given time period, it is preempted and other process
executes for a given time period.

e Context switching is used to save states of preempted processes.

Example of Round Robin Scheduling

Let us consider a system that has four processes which have arrived at the same time in the
order P1, P2, P3 and P4. The burst time in milliseconds of each process is given by the following
table —

Process CPU Burst Times in ms

P1 8
P2 10
P3 6
P4 4

Let us consider time quantum of 2ms and perform RR scheduling on this. We will draw GANTT
chart and find the average turnaround time and average waiting time.

GANTT Chart with time quantum of 2ms

Timings: 0 2 4 6 8 10 12 14 16 18 20 22 24

26 28

pi (P2 (P23 |pa (Pl (P2 | P23l | P4 |P1 | P2 | P2 | P1 | P2

P2

Completed Process: P4 P3 P1

P2

Average Turnaround Time

Average TAT = Sum of Turnaround Time of each Process /| Number of Processes
=(TATP1+TATr2+TATP3+TATPr4)/4

=(24+ 28+ 22+ 16)/ 4 =22.5ms

In order to calculate the waiting time of each process, we multiply the time quantum with the
number of time slices the process was waiting in the ready queue.

Average Waiting Time
Average WT = Sum of Waiting Time of Each Process ﬂ Number of processes

=(WTpr1+WTpr2+WTpr3+WTr4)/4

= ((8*%2 + 9*2+ 8*%2+ 6*2) /4 = 15.5ms

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other
existing algorithms to group and schedule jobs with common characteristics.

e Multiple queues are maintained for processes with common characteristics.
o [Each queue can have its own scheduling algorithms.
e Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another
gueue. The Process Scheduler then alternately selects jobs from each queue and assigns them
to the CPU based on the algorithm assigned to the queue.

Multiple-Processor Scheduling

The goal of multiple processor scheduling, also known as multiprocessor scheduling, is to
create a system's scheduling function that utilizes several processors. In multiprocessor
scheduling, multiple CPUs split the workload (load sharing) to enable concurrent execution of
multiple processes. In comparison to single-processor scheduling, multiprocessor scheduling is
generally more complicated. There are many identical processors in the multiprocessor
scheduling system, allowing us to perform any process at any moment.

CPU1 «——— MainMemory <« ———> CPU2

o | L m

Processors < ? Processors
1o Vo
Units Units

Approaches to Multiple Processor Scheduling

There are two different architectures utilized in multiprocessor systems: ?

Symmetric Multiprocessing

In an SMP system, each processor is comparable and has the same access to memory and I/O
resources. The CPUs are not connected in a master-slave fashion, and they all use the same memory
and I/0 subsystems. This suggests that every memory location and I/O device are accessible to every
processor without restriction. An operating system manages the task distribution among the
processors in an SMP system, allowing every operation to be completed by any processor.

Asymmetric Multiprocessing

In the AMP asymmetric architecture, one processor, known as the master processor, has complete
access to all of the system's resources, particularly memory and I/O devices. The master processor is
in charge of allocating tasks to the other processors, also known as slave processors. Every slave
processor is responsible for doing a certain set of tasks that the master processing has assigned to it.
The master processor receives tasks from the operating system, which the master processor then
distributes to the subordinate processors.

Types of Multiprocessor Scheduling Algorithms

Operating systems utilize a range of multiprocessor scheduling algorithms. Among the most typical
types are ?

Round-Robin Scheduling ? The round-robin scheduling algorithm allocates a time quantum to each
CPU and configures processes to run in a round-robin fashion on each processor. Since it ensures that
each process gets an equivalent amount of CPU time, this strategy might be useful in systems wherein

all programs have the same priority.

Priority Scheduling ? Processes are given levels of priority in this method, and those with greater
priorities are scheduled to run first. This technique might be helpful in systems where some jobs, like

real-time tasks, call for a higher priority.

Scheduling with the shortest job first (SJF) ? This algorithm schedules tasks according to how
long they should take to complete. It is planned for the shortest work to run first, then the next
smallest job, and so on. This technique can be helpful in systems with lots of quick processes since it

can shorten the typical response time.

Fair-share scheduling ? In this technique, the number of processors and the priority of each process
determine how much time is allotted to each. As it ensures that each process receives a fair share of

processing time, this technique might be helpful in systems with a mix of long and short processes.

Earliest deadline first (EDF) scheduling ? Each process in this algorithm is given a deadline, and
the process with the earliest deadline is the one that will execute first. In systems with real-time

activities that have stringent deadlines, this approach can be helpful.

Scheduling using a multilevel feedback queue (MLFQ) ? Using a multilayer feedback queue
(MLFQ), processes are given a range of priority levels and are able to move up or down the priority
levels based on their behavior. This strategy might be useful in systems with a mix of short and long

processes.

Process Synchronization and Deadlocks

fL Race Conditions

L;!

A race condition occurs when two or more processes access shared resources
simultaneously, and the outcome depends on the order of execution.

It can lead to inconsistent data or unexpected behavior in concurrent programs.

For example, two processes incrementing a shared counter without proper control may
overwrite each other's values.

Race conditions are difficult to detect and debug as they depend on the CPU scheduling.
To avoid race conditions, synchronization techniques (locks, semaphores) are used to
control access to shared resources.

R Critical Section

A critical section is a part of the program where a process accesses shared resources
(like shared variables, files).
To prevent data inconsistency, only one process should execute in its critical section at
a time.
It requires:
o MJ[utual exclusion: Only one process in the critical section at a time.
o Progress: If no process is in the critical section, others should be allowed to enter.
o [-Bounded waiting: There should be a limit on how long a process waits to enter.
Managing critical sections is essential for process synchronization in concurrent
systems.

B Mutual Exclusion

Mutual Exclusion ensures only one process can access the critical section at a time.
It prevents race conditions and maintains data consistency.
Methods to achieve mutual exclusion include:
o Locks (mutexes)
o Peterson’s solution
o Semaphores
o Monitors
Mutual exclusion is the foundation of process synchronization in operating systems.

@ Peterson’s Solution

o Peterson’s solution is a classical software-based solution for achieving mutual
exclusion between two processes.
e Uses two shared variables:
o flagl2]:indicates if a process wants to enter the critical section.
o turn: indicates whose turn it is.

e Working:
o Each process setsits fiag[i] = true and turn = 5 before entering the critical
section.
o The process enters the critical section only if f1ag[j] == false Or turn == i
o Satisfies:
o Mutual Exclusion
o Progress

o ;IBounded Waiting

How it works:

Peterson's Solution utilizes two shared variables:
flag[2]:
A boolean array where flag[i] indicates if process i is interested in entering the critical section.

turn:
An integer variable indicating which process has priority to enter the critical section if both are interested.
Algorithm for Process i (the other process is 5):

do {
flag[i] = true; // Declare interest in entering
turn = j; // Give priority to the other process
while (flag[j] && turn == j); // Wait if the other process 1s interested

AND it's their turn

// Critical Section
// Access shared resources here

flag[i] = false; // Indicate no longer interested
// Remainder Section
} while (true);

6 $emaphores

Semaphores are synchronization tools used to control access to shared resources in
concurrent systems.

The process of using Semaphores provides two operations:
o wait (P): The wait operation decrements the value of the semaphore
e signal (V): The signal operation increments the value of the semaphore.

Uses of Semaphores

e Mutual Exclusion : Semaphore ensures that only one process accesses a shared
resource at a time.

e Process Synchronization : Semaphore coordinates the execution order of multiple
processes.

e Resource Management : Limits access to a finite set of resources, like printers, devices,
etc.

e ‘;Reader-Writer Problem : Allows multiple readers but restricts the writers until no reader
is present.

e Avoiding Deadlocks : Prevents deadlocks by controlling the order of allocation of
resources.

6 Monitors (Classical IP)

e A Monitor is a high-level synchronization construct that provides a mechanism to
achieve mutual exclusion and condition synchronization.
e Encapsulates:
o Shared variables.
o Procedures to access those variables.
o Synchronization mechanisms.
e Only one process can execute a monitor procedure at a time, ensuring mutual
exclusion automatically.
e Provides condition variables with wait () and signal () operations for process
synchronization.
o Simplifies complex process synchronization problems like bounded-buffer and
readers-writers.

If you would like, I can also prepare clear diagrams (memory model, critical section
representation, semaphore flow) for your notes or slides to aid your revision and
presentations. Let me know!

Readers-Writers Problem
The Readers-Writers Problem is a classic synchronization issue in operating systems that

nvolves managing access to shared data by multiple threads or processes. The problem

addresses the scenario where:

Readers: Multiple readers can access the shared data simultaneously without causing any
issues because they are only reading and not modifying the data.

Writers: Only one writer can access the shared data at a time to ensure data integrity, as
writers modify the data, and concurrent modifications could lead to data corruption or

inconsistencies.

Solution of the Reader-Writer Problem
There are two fundamental solutions to the Readers-Writers problem:

Readers Preference: In this solution, readers are given preference over writers. That
means that till readers are reading, writers will have to wait. The Writers can access the

resource only when no reader is accessing it.
Writer's Preference: Preference is given to the writers. It simply means that, after arrival,
the writers can go ahead with their operations; though perhaps there are readers currently
accessing the resource.
Solution When Reader Has The Priority Over Writer
Here priority means, no reader should wait if the share is currently open for reading. There are
four types of cases that could happen here.

Case Process 1 Process 2Allowed/Not Allowed

Case 1l Writing Writing Not Allowed
Case 2 Writing Reading Not Allowed
Case 3 Reading Writing Not Allowed
Case 4 Reading Reading Allowed

Dining Philosophers Problem

Problem Statement

The Dining Philosopher Problem involves 'n' philosophers sitting around a circular table.
Each philosopher alternates between two states: thinking and eating. To eat, a philosopher
needs two chopsticks, one on their left and one on their right. However, the number of
chopsticks is equal to the number of philosophers, and each chopstick is shared between two

neighboring philosophers.
The standard problem considers the value of 'n' as 5 i.e. we deal with 5 Philosophers sitting

around a circular table.

Constraints and Conditions for the Problem

o Every Philosopher needs two forks to eat.

o Every Philosopher may pick up the forks on the left or right but only one fork at once.

e Philosophers only eat when they have two forks. We have to design such a protocol i.e. pre
and post protocol which ensures that a philosopher only eats if he or she has two forks.

e Each fork is either clean or dirty.

Solution

The correctness properties it needs to satisfy are:

e Mutual Exclusion Principle: No two Philosophers can have the two forks simultaneously.

o Free from Deadlock: Each philosopher can get the chance to eat in a certain finite time.

e Free from Starvation: When few Philosophers are waiting then one gets a chance to eat
in a while.

e No strict Alternation

e Proper utilization of time

Algorithm

loop forever
pl: think
p2: preprotocol
p3: eat
p4: postprotocol

kIDEADLOCKS:
Definition

e Adeadlock is a situation in which two or more processes are unable to proceed
because each is waiting for the other to release resources.

e It causes processes to be blocked indefinitely, leading to system inefficiency.

o Example: Process A holds Resource X and waits for Resource Y held by Process B,
while Process B waits for Resource X.

R Characteristics (Coffman Conditions)

Deadlock can occur if all the following four conditions hold simultaneously:

utual Exclusion: Mutex (Mutual Exclusion) is a type of binary semaphore that helps control access
to the shared resources. It also has a priority inheritance mechanism that avoids extended priority
inversion problems and allows tasks with higher priority to execute first. Shared resources don’t llead to

deadlocks, but resources, like printers and tape drives, need exclusive access..

‘ Allocated

2 Hold and Wait: A process holding at least one resource is waiting to acquire additional

resources held by other processes.
‘M- S
M

B No Preemption: Resources cannot be forcibly taken away; they are released only by the
process voluntarily.

Allocated Request Allocated

l Circular Wait: A circular chain of two or more processes exists, each waiting for a resource
held by the next process in the chain.

Process 1

Resource 1 Resource 2

Process 2

Deadlock in Operating System

Deadlock Prevention

e Prevent one of the Coffman conditions to avoid deadlock.

Strategies:

e Mutual Exclusion: Make resources sharable if possible.

e Hold and Wait: Require processes to request all resources at once.

e No Preemption: If a process holding resources requests another unavailable resource,
preempt the currently held resources.

e Circular Wait: Impose a resource ordering and require processes to request resources
in increasing order.

@)eadlock Avoidance

e Requires prior knowledge of resource usage and avoids deadlock dynamically.
Banker's Algorithm:

o Used for multiple instances of resources.

e The system checks the safe state before resource allocation.
o If granting a request leads to an unsafe state, it is denied.

6 Deadlock Detection

o Allows deadlocks to occur but detects and resolves them.
Detection Methods:
e For single-instance resources: Use wait-for graphs to detect cycles.
o For multiple instances of resources: Use a resource allocation graph with detection

algorithms.

If a cycle is found, a deadlock exists.

6 Deadlock Recovery

Once deadlock is detected, the system must recover:

Methods:
«/Process Termination:

o Abort all deadlocked processes.
o Abort one process at a time until the deadlock is resolved.

UNIT-I

UNIT - Il: Memory, File, and Storage Management

Memory Management: Logical vs. Physical Address Mapping, Contiguous Memory Allocation, Internal
and External Fragmentation, Compaction, Paging and Page Tables, Segmentation, Virtual Memory:
Demand Paging, Page Faults, Page Replacement Algorithms, Thrashing and Working Set Model,

File System Management: File Concepts, Access Methods, File Types and Operations, Directory
Structure, File System Structure, Allocation Methods, Free-Space Management, Directory
Implementation.

Storage Management: Mass Storage: Disk Structure, RAID Levels, Disk Scheduling Algorithms, Swap
Space Management, Stable Storage, Tertiary Storage Structure.

Memory Management:

Memory is a hardware component that stores data, instructions and information temporarily or permanently for processing. It consists of an array of bytes or
words, each with a unique address.

Memory holds both input data and program instructions needed for the CPU to execute tasks.
Memory works closely with the CPU to provide quick access to data being used.

Memory management ensures efficient use of memory and supports multiprogramming.

Logical vs. Physical Address Mapping

In computers, an address is used to identify a location in the computer memory. In operating systems,
there are two types of addresses, namely, logical address and physical address. A logical address is the
virtual address that is generated by the CPU. A user can view the logical address of a computer program.
On the other hand, a physical address is one that represents a location in the computer memory. A user
cannot view the physical address of a program.

Read this article to find out more about logical and physical address and how they are different from each
other.

What is a Logical Address?

The logical address is a virtual address created by the CPU of the computer system. The logical address
of a program is generated when the program is running. A group of several logical address is referred to
a logical address space. The logical address is basically used as a reference to access the physical
memory locations.

In computer systems, a hardware device named memory management unit (MMU) is used to map the
logical address to its corresponding physical address. However, the logical address of a program is visible
to the computer user.

What is a Physical Address?

The physical address of a computer program is one that represents a location in the memory unit of the
computer. The physical address is not visible to the computer user. The MMU of the system generates the
physical address for the corresponding logical address.

The physical address is accessed through the corresponding logical address because a user cannot directly
access the physical address. For running a computer program, it requires a physical memory space.

https://www.tutorialspoint.com/computer_fundamentals/computer_memory.htm
https://www.tutorialspoint.com/operating_system/index.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_cpu.htm

UNIT-I

Therefore, the logical address has to be mapped with the physical address before the execution of the
program.

Difference between Logical and Physical Address in
Operating System

The following table highlights all the major differences between logical and physical address in operating system ?

Z.o Logical Address Physical Address
1. This address is generated by the CPU. This address is a location in the memory unit.
P The address space consists of the set This address is a set of all physical addresses that
' of all logical addresses. are mapped to the corresponding logical addresses.
3 These addresses are generated by CPU It is computed using Memory Management Unit
' with reference to a specific program. (MMU).
4 The user has the ability to view the The user can't view the physical address of program
' logical address of a program. directly.
5. The user can use the logical address in The user can indirectly access the physical address.

order to access the physical address.

Relocation

logical register phyvsical
cPU address address Sl Memory
346 14346

14000

Contiguous Memory Allocation

Contiguous memory allocation is a memory allocation strategy. As the name implies, we utilize this technique to
assign contiguous blocks of memory to each task. Thus, whenever a process asks to access the main memory, we
allocate a continuous segment from the empty region to the process based on its size. In this technique, memory
is allotted in a continuous way to the processes. Contiguous Memory Management has two types:

Fixed (or Static) Partition

UNIT-I

Memory Management

Techniques

Contiguous Non-contiguous
Fixed Variable
Partition Partition
Scheme Scheme

Types of Contiguous Allocation:
Fixed Partitioning: In the fixed partition scheme, memory is divided into fixed number of partitions. Fixed
means number of partitions are fixed in the memory. In the fixed partition, in every partition only one process will
be accommodated. Degree of multi-programming is restricted by number of partitions in the memory. Maximum
size of the process is restricted by maximum size of the partition. Every partition is associated with the limit
registers.

50 KB
20KB | o,

Internal — |
fragmentation P P =30KB

250 KB

150 KB

70 KB

220 KB

300 KB

Memory

Variable Partitioning: In the variable partition scheme, initially memory will be single continuous free block.
Whenever the request by the process arrives, accordingly partition will be made in the memory. If the smaller
processes keep on coming then the larger partitions will be made into smaller partitions..

P1 50 KB
P2 100 KB
P3 250 KB
P4 150 KB
PS5 70 KB
P& 220 KB
fragEr’:-:;eeI:?aall:ion 300 KB

https://www.geeksforgeeks.org/operating-systems/fixed-or-static-partitioning-in-operating-system/
https://www.geeksforgeeks.org/operating-systems/variable-or-dynamic-partitioning-in-operating-system/

UNIT-I

What is Internal Fragmentation?

Internal fragmentation happens when the memory is split into mounted-sized blocks. Whenever a
method is requested for the memory, the mounted-sized block is allotted to the method. In the case
where the memory allotted to the method is somewhat larger than the memory requested, then the
difference between allotted and requested memory is called internal fragmentation. We fixed the sizes

of the memory blocks, which has caused this issue. If we use dynamic partitioning to allot space to the
process, this issue can be solved.

F 3
Assigned Fragment
Space

I Used

! Space

[Fragment
Assigned

Space

v

Internal Fragmentation Internal Fragmentation

The above diagram clearly shows the internal fragmentation because the difference between memory allocated
and required space or memory is called Internal fragmentation.

What is External Fragmentation?
External fragmentation happens when there's a sufficient quantity of area within the memory to satisfy the
memory request of a method. However, the process’s memory request cannot be fulfilled because the memory

offered is in a non-contiguous manner. Whether you apply a first-fit or best-fit memory allocation strategy it'll
cause external fragmentation.

Process 07
needs 50KB
memory space

Fragment 40 KB
Assigned
Space

agmen 1 uxe

Assigned
Space

Fragment ¥ 5KkB

External Fragmentation

https://www.geeksforgeeks.org/operating-systems/what-is-fragmentation-in-operating-system/
https://www.geeksforgeeks.org/operating-systems/what-is-fragmentation-in-operating-system/

UNIT-I

In the above diagram, we can see that, there is enough space (55 KB) to run a process-07 (required 50 KB) but
the memory (fragment) is not contiguous. Here, we use compaction, paging, or segmentation to use the free space
‘to run a process.

Compaction

Compaction is a technique to collect all the free memory present in the form of fragments into one large chunk of
free memory, which can be used to run other processes.

It does that by moving all the processes towards one end of the memory and all the available free space towards
the other end of the memory so that it becomes contiguous.

It is not always easy to do compaction. Compaction can be done only when the relocation is dynamic and done at
execution time. Compaction can not be done when relocation is static and is performed at load time or assembly
time.

Before Compaction

Before compaction, the main memory has some free space between occupied space. This condition is known
as external fragmentation . Due to less free space between occupied spaces, large processes cannot be loaded
into them.

Main Memory
Occupied space
Free space
Occupied space
Occupied space

Free space

After Compaction

After compaction, all the occupied space has been moved up and the free space at the bottom. This makes the
space contiguous and removes external fragmentation. Processes with large memory requirements can be now
loaded into the main memory.

Main Memory
Occupied space
Occupied space
Occupied space
Free space

Free space

https://www.geeksforgeeks.org/operating-systems/difference-between-internal-and-external-fragmentation/

UNIT-I

Paging and Page Tables:

The paging technique divides the physical memory(main memory) into fixed-size blocks that are known
as Frames and also divide the logical memory(secondary memory) into blocks of the same size that
are known as Pages.

This technique keeps the track of all the free frames.

The Frame has the same size as that of a Page. A frame is basically a place where a (logical) page can be
(physically) placed.

Frames

Secondary Memory

Main Memory

Each process is mainly divided into parts where the size of each part is the same as the page size.
There is a possibility that the size of the last part may be less than the page size.

o Pages of a process are brought into the main memory only when there is a requirement otherwise
they reside in the secondary storage.

e One page of a process is mainly stored in one of the frames of the memory. Also, the pages can
be stored at different locations of the memory but always the main priority is to find contiguous

frames.
Operating

System

Frame 1

Page 2 Frame 2

Page 3 :D Frame 3

Process Page 4 Frame 4

Page 5 Mapping Frame 5

Page 6 Frame 6

Pages Main Memory(Collection of Frames)

UNIT-I

PAGE TABLES:

The data structure that is used by the virtual memory system in the operating system of a computer in
ordl.er to store the mapping between physical and logical addresses is commonly known as Page Table.

As we had already told you that the logical address that is generated by the CPU is translated into the
physical address with the help of the page table.

e Thus page table mainly provides the corresponding frame number (base address of the frame)
where that page is stored in the main memory.

Frame Number

Page 1 0

Page 2
1 1

Page 3
: 2

Page 4

g 3

Logical Memory 4 3
Page Table 4

Page 2

Page 3

Physical Memory

Segmentation:

Segmentation is another way of dividing the addressable memory. It is another scheme of memory
management and it generally supports the user view of memory. The Logical address space is basically
the c.ollection of segments. Each segment has a name and a length.

Basically, a process is divided into segments. Like paging, segmentation divides or segments the memory.
But there is a difference and that is while the paging divides the memory into a fixed size and on the
other hand, segmentation divides the memory into variable segments these are then loaded into logical
memory space.

A Program is basically a collection of segments. And a segment is a logical unit such as:

main program

procedure

function

method

object

local variable and global variables.
symbol table

common block

stack

Types of Segmentation
Given below are the types of Segmentation:

e Virtual Memory Segmentation
With this type of segmentation, each process is segmented into n divisions and the most important

UNIT-I

thing is they are not segmented all at once.

e Simple Segmentation

With the help of this type, each process is segmented into n divisions and they are all together
segmented at once exactly but at the runtime and can be non-contiguous (that is they may be

scattered in the memory).

What is Segment Table?

It maps a two-dimensional Logical address into a one-dimensional Physical address. It's each table entry has:
Base Address: It contains the starting physical address where the segments reside in memory.
Segment Limit: Also known as segment offset. It specifies the length of the segment.

Logical View of Segmentation

segment O segment 2

segment 3

segment 1

segment 4

Logical Address Space

ﬁ Segment Number

AWNR O

base address

Limit

500

600

2500

800

1500

400

4600

200

3800

400

Segment Table

virtual Memory in Operating System

Virtual memory is a memory management technique used by operating systems to give the
appearance of a large, continuous block of memory to applications, even if the physical memory

segment O

segment 2

segment 4

segment 3

Physical Address Space

(RAM) is limited. It allows larger applications to run on systems with less RAM.

Objectives of Virtual Memory

To support multiprogramming , it allows more than one program to run at the same time.
A program doesn’t need to be fully loaded in memory to run. Only the needed parts are

loaded.

Programs can be bigger than the physical memory available in the system.

UNIT-I

e Virtual memory creates the illusion of a large memory, even if the actual memory (RAM) is
small.

e It uses both RAM and disk storage to manage memory, loading only parts of programs into
RAM as needed.

e This allows the system to run more programs at once and manage memory more efficiently.

Demand Paging, Page Faults, Page Replacement Algorithms, Thrashing and
Working Set Model,

Demand Paging:

Demand paging is a memory management scheme used in operating systems to improve
memory usage and system performance. Let's understand demand paging with real life
example Imagine you are reading a very thick book, but you don’t want to carry the entire
book around because it’s too heavy. Instead, you decide to only bring the pages you need as
you read through the book. When you finish with one page, you can put it away and grab the
next page you need.

In a computer system, the book represents the entire program, and the pages are parts of the
program called “pages” of memory. Demand paging works similarly: instead of loading the
whole program into the computer’s memory at once (which can be very large and take up a lot
of space), the operating system only loads the necessary parts (pages) of the program when
they are needed.

What is Page Fault?

The term "page miss" or "page fault" refers to a situation where a referenced page is not
found in the main memory.

When a program tries to access a page, or fixed-size block of memory, that isn't currently
loaded in physical memory (RAM), an exception known as a page fault happens. Before
enabling the program to access a page that is required, the operating system must bring it into
memory from secondary storage (such a hard drive) in order to handle a page fault.

In modern operating systems, page faults are a common component of virtual memory
management. By enabling programs to operate with more data than can fit in physical
memory at once, they enable the efficient use of physical memory. The operating system is
responsible for coordinating the transfer of data between physical memory and secondary
storage as needed.

Working Process of Demand Paging
Let us understand this with the help of an example. Suppose we want to run a process P

which have four pages PO, P1, P2, and P3. Currently, in the page table, we have pages P1
and P3.

https://www.geeksforgeeks.org/operating-systems/page-fault-handling-in-operating-system/

UNIT-I

° Secondary Memory
os » P2 | | PO

fo
P1| f3 -
1
9 ol -
CPU | o < 3 P3
o P3| f1 4
5 P1
Page Table
16
Main Memory

The operating system's demand paging mechanism follows a few steps in its operation.

Program Execution: Upon launching a program, the operating system allocates a certain
amount of memory to the program and establishes a process for it.

Creating Page Tables: To keep track of which program pages are currently in memory
and which are on disk, the operating system makes page tables for each process.
Handling Page Fault: When a program tries to access a page that isn't in memory at the
moment, a page fault happens. In order to determine whether the necessary page is on
disk, the operating system pauses the application and consults the page tables.

Page Fetch: The operating system loads the necessary page into memory by retrieving it
from the disk if it is there.

The page's new location in memory is then reflected in the page table.

Resuming The Program: The operating system picks up where it left off when the
necessary pages are loaded into memory.

Page Replacement: If there is not enough free memory to hold all the pages a program
needs, the operating system may need to replace one or more pages currently in memory
with pages currently in memory. on the disk. The page replacement algorithm used by the
operating system determines which pages are selected for replacement.

Page Cleanup: When a process terminates, the operating system frees the memory
allocated to the process and cleans up the corresponding entries in the page tables.

https://www.geeksforgeeks.org/operating-systems/what-is-an-operating-system/
https://www.geeksforgeeks.org/operating-systems/page-table-entries-in-page-table/

UNIT-I

Common Algorithms Used for Demand Paging in OS

Demand paging is a memory management technique that loads parts of a program into
memory only when needed. If a program needs a page that isn’t currently in memory, the
system fetches it from the hard disk. Several algorithms manage this process:

FIFO (First-In-First-Out): Replaces the oldest page in memory with a new one. It's simple
but can cause issues if pages are frequently swapped in and out, leading to thrashing.
LRU (Least Recently Used): Replaces the page that hasn’t been used for the longest
time. It reduces thrashing more effectively than FIFO but is more complex to implement.
LFU (Least Frequently Used): Replaces the page used the least number of times. It helps
reduce thrashing but requires extra tracking of how often each page is used.

MRU (Most Recently Used): Replaces the page that was most recently used. It’s simpler
than LRU but not as effective in reducing thrashing.

Random: Randomly selects a page to replace. It’s easy to implement but unpredictable in
performance.

Reference string=7, o, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2
Number of frames = 3

Solution (FIFO works like a queue):

Step Reference Memory (Frames) Page Fault?

© 00 NOoO OB W NP

el ol
W N ko

7 [7] Fault
[7,0] Fault
[7,0,1] Fault
[0, 1, 2] (7 removed) Fault
[0, 1, 2] Hit

[1, 2, 3] (O removed) Fault
[2, 3, 0] (1 removed) Fault
[3, 0, 4] (2 removed) Fault
[0, 4, 2] (3 removed) Fault
[4, 2, 3] (0 removed) Fault
[2, 3, 0] (4 removed) Fault
[2,3,0] Hit

[2,3,0] Hit

N WO W NP OwoNDbNLPEFk o

1 Total Page Faults (FIFO) =9

https://www.geeksforgeeks.org/dsa/fifo-first-in-first-out-approach-in-programming/
https://www.geeksforgeeks.org/dsa/lru-cache-implementation-using-double-linked-lists/

UNIT-I

Problem 2: LRU Page Replacement

;;Same reference string: 7, o, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2
Frames = 3

Solution (replace Least Recently Used):

Step Reference Memory (Frames) Page Fault?
7 [7] Fault
[7, 0] Fault
[7,0,1] Fault
[0, 1, 2] (7 removed) Fault
[0, 1, 2] Hit
[1, 2, 3] (O removed) Fault
[2, 3, O] (1 removed) Fault
[3, 0, 4] (2 removed) Fault
[0, 4, 2] (3 removed) Fault
[4, 2, 3] (0 removed) Fault
[2, 3, 0] (4 removed) Fault
[2,3,0] Hit
[2,3,0] Hit

© 0 NOoO OB W N B

el
N R O
N WO WNDMOWONEREO

[ERN
w

1 Total Page Faults (LRU) =9

UNIT-I

Thrashing is a condition or a situation when the system is spending a major portion of its time

servicing the page faults, but the actual processing done is very negligible.

Causes of thrashing:

1. High degree of multiprogramming.

2. Lack of frames.

3. Page replacement policy.
We may also argue that as soon as the memory is full, the procedure begins to take a long
time to swap in the required pages. Because most of the processes are waiting for pages,
the CPU utilization drops again.
As a result, a high level of multi programming and a lack of frames are two of the most
common reasons for thrashing in the operating system.

r

Thrashing

CPU utllizatlon

degree of multiprogramming

1. Working Set Model -

This model is based on the above-stated concept of the Locality Model.

The basic principle states that if we allocate enough frames to a process to accommodate its
current locality, it will only fault whenever it moves to some new locality. But if the allocated
frames are lesser than the size of the current locality, the process is bound to thrash.

According to this model, based on parameter A, the working set is defined as the set of pages
in the most recent 'A' page references. Hence, all the actively used pages would always end
up being a part of the working set.

The accuracy of the working set is dependent on the value of parameter A. If A is too large,

then working sets may overlap. On the other hand, for smaller values of A, the locality might
not be covered entirely.

If D is the total demand for frames and WSSIi is the working set size for process i,

D=y WSSi

UNIT-I

Now, if 'm' is the number of frames available in the memory, there are 2 possibilities:

e (i) D>m i.e. total demand exceeds the number of frames, then thrashing will occur as some
processes would not get enough frames.

e (ii) D<=m, then there would be no thrashing.

File System Management

The File System manages how data is stored, retrieved, and organized on storage devices (like
HDD, SSD, CD/DVD). It provides a structured way for users and programs to create, read, write,
and delete files

1. File Concepts

o Afile is a collection of related data stored on a storage device.
e Itis the basic unit of storage and organization.

o File Attributes (properties):

Name — human-readable identifier.

Type — text, binary, executable, multimedia, etc.
Location — address on disk.

Size — length of file in bytes.

Protection — access rights (read, write, execute).
Time & Date — creation, last modified, last accessed.
Owner/User ID — identifies who owns the file.

O O O O O O O

2. Access Methods

Defines how data in a file can be accessed:

1. Sequential Access
o Records are accessed one after another, in order.
o Example: reading a text file line by line.
2. Direct (Random) Access
o Access any block of file directly using an index or position.
o Example: database records.
3. Indexed Access
o A special index is maintained for fast search and access.
o Example: library catalog or book index.

UNIT-I

3. File Types and Operations
File Types:

Text file — readable characters.

Binary file — machine-readable (images, executables).
Executable file — program code.

Multimedia files — audio, video, images.

1. Text Files

Contain plain readable characters (letters, numbers, symbols).
Used for storing documents, notes, source code.

Usually end with extensions like: .txt, .c, .java, .py.
Example:

Hello, this is a text file.

2. Binary Files

Contain data in binary (0s and 1s) format.

Not human-readable.

Used by programs to store data efficiently.

Examples: .bin, compiled files (.exe, .class, .o), images, audio.

3. Source Code Files

e Written by programmers in high-level languages.
o Need to be compiled or interpreted before execution.
e Extensions: .c, .cpp, .java, .py, .Jjs.

4. Executable Files

« Contain machine code (ready-to-run program).
o Directly executed by the operating system.
e Examples: .exe (Windows), .out or no extension (Linux/Unix).

5. Multimedia Files

e Image files: .jpg, .png, .gif, .bomp
o /\UdiOf“eSZ.mp3,.wav,.aac
e Video files: .mp4, .avi, .mkv

UNIT-I

File Operations:

Create — make a new file.

Open / Close — prepare file for use, then release it.
Read / Write — transfer data to/from file.

Delete — remove file permanently.

Append — add data to the end.

Seek — reposition the file pointer.

Basic File Operations

1. File Creation
o A new file is created in the file system.
The OS allocates space for the file and updates the directory with:
= File name
= File type
= Location (address on disk)
= Other metadata (size, owner, permissions).

Example: create ("myfile.txt")

2. File Writing
o Data is written into the file.
The OS manages writing from the program to the physical disk.
o If the file already exists, data may overwrite or append (depending on mode).

Example: write ("myfile.txt", "Hello World")

3. File Reading
o Data is read from the file into memory.
The OS keeps track of the file pointer (position of next read/write).

Example: read ("myfile.txt") — "Hello World"

4. File Opening
o Before reading or writing, a file must be opened.

UNIT-I

o The OS loads metadata into memory and provides a file handle (descriptor).

Example: open ("myfile.txt")

5. File Closing
o After operations, the file must be closed.
The OS updates metadata (last modified time, size, etc.) and releases resources.

Example: close ("myfile.txt")

6. File Deletion
o Removes a file from the directory structure.
The OS deallocates the disk space occupied by the file.

Example: delete ("myfile.txt")

7. File Seeking
o Moves the file pointer to a specific location.
Allows random access (jumping to middle of a file instead of reading
sequentially).

Example: seek ("myfile.txt", position=50)

4. Directory Structure

A directory is a collection of files that provides mapping between file names and storage
locations.

UNIT-I

Types of Directory Structures:

Single-Level Directory — All files in one directory. (Simple but name conflicts).
Two-Level Directory — Each user has their own directory.

Tree-Structured Directory — Hierarchical (folders & subfolders).

Acyclic Graph Directory — Allows sharing of files/subdirectories.

General Graph Directory — More complex, may contain cycles.

arownpE

1. Single-Level Directory

e Structure: All files are placed in the same directory.

e Advantages: Simple to implement and easy to understand.

o Disadvantages:
o Naming conflicts (no two files can have the same name).
o Difficult to group related files.

2. Two-Level Directory

e Structure: Each user has their own directory under the master directory.
e Advantages:

o No naming conflict between users.

o Easy user management.
o Disadvantages:

o Still limited flexibility in organizing files.

3. Tree-Structured Directory

e Structure: A hierarchical (tree) structure with directories and subdirectories.
e Advantages:

o Flexible and efficient for grouping files.

o Easy navigation (pathnames).
o Disadvantages:

o Searching can be slower compared to flat structures.

4. Acyclic Graph Directory

e Structure: Like a tree, but allows files or directories to be shared (links).
e Advantages:

o Avoids file duplication (saves space).

o Useful for software libraries.
o Disadvantages:

o Complex to implement (must handle links and deletions).

5. General Graph Directory

UNIT-I

o Structure: Extension of acyclic graph where cycles are allowed.
e Advantages:

o Maximum flexibility (a directory can be shared multiple times).
o Disadvantages:

o May lead to complexity and infinite loops while traversing.
o Requires garbage collection to manage orphan files.

1, Single-Level Directory 2. Two-Level Directory
el || 1] e s

[Docs] Iage [picn H i]

~fle Project

3. Tree-Structured Directory 4. Acyclic Graph Directory

Root

Userf User2

Project fileX

UNIT-I

5. File System Structure

The logical components of a file system are:

Boot Control Block — Info required to boot OS.

Superblock — Metadata (size, free blocks, free files).

File Control Block (FCB) — Stores details of each file (name, size, permissions).
Directory Structure — Maps file names to FCBs.

Data Blocks — Actual storage for file contents.

6. Allocation Methods

Decides how disk space is assigned to files.

1. Contiguous Allocation
o Files stored in consecutive disk blocks.
o + Fast access, simple.
o — External fragmentation, hard to grow file.
2. Linked Allocation
o Each file is a linked list of blocks (each block points to next).
o + No external fragmentation, file can grow easily.
o — Slow random access, pointer overhead.
3. Indexed Allocation
o A separate index block holds all addresses of a file’s blocks.
o + Direct access possible, no fragmentation.
o — Extraoverhead for index.

/. Free-Space Management

Keeps track of unused (free) disk blocks.

Methods:

Bit Vector (Bitmap) — 1 = allocated, 0 = free.
Linked List — Free blocks linked together.

Grouping — A free block stores addresses of other free blocks.
Counting — Store starting address + number of free blocks.

el N =

8. Directory Implementation

UNIT-I

How directories map file names to file information:

1. Linear List
o Simple list of file names with pointers to FCBs.
o Disadvantage: slow search (linear time).
2. Hash Table
o Uses hashing to quickly locate file names.
o Advantage: fast search (near constant time).

Storage Management

Storage management deals with how the operating system (OS) organizes and manages data on
storage devices to ensure efficiency, reliability, and speed.

1. Mass Storage
o Refers to large-capacity storage devices like Hard Disk Drives (HDDs) and Solid-
State Drives (SSDs).
o Stores data permanently (non-volatile).

o Provides direct/random access to data blocks.
o Used for OS, applications, and user files.

2.Disk Structure

R
|| 1 arm assembly
I 3
sector N
—— %

II 1 ©/w head

Disk Pack Structure

e A hard disk consists of:
o Platters — circular disks coated with magnetic material.
o Tracks — concentric circles on a platter.

UNIT-I

o Sectors — subdivisions of a track, smallest storage unit.
o Cylinders — same track position across platters.

Disk Addressing uses Cylinder, Head, Sector (CHS) or Logical Block Addressing
(LBA).

3. RAID Levels (Redundant Array of Independent Disks)

RAID improves performance and/or reliability by combining multiple disks.

RAID 0 (Striping):

o Splits data across multiple disks.

o + High speed, no redundancy.
RAID 1 (Mirroring):

o Duplicates data on two disks.

o + High reliability, — costly (double space).
RAID 5 (Striping with Parity):

o Data + parity information distributed across disks.

o + Reliability + performance, — slower writes.
RAID 6 (Double Parity):

o Stores two parity blocks for extra fault tolerance.
RAID 10 (Combination of RAID 1 + 0):

o Mirroring + striping, high speed & reliability.

4. Disk Scheduling Algorithms

Used to decide the order in which disk /O requests are serviced (to reduce seek time).

1.
2.
3.

FCFS (First Come First Serve): Serve requests in order of arrival.

SSTF (Shortest Seek Time First): Serve nearest track request.

SCAN (Elevator Algorithm): Head moves in one direction, servicing requests until end,
then reverses.

C-SCAN (Circular SCAN): Similar to SCAN but only services one way; jumps back
quickly.

LOOK & C-LOOK: Variants of SCAN/C-SCAN but stop at last request instead of disk
end.

UNIT-I

5. Swap Space Management

Swap Space: Portion of disk used as an extension of RAM.
Used in virtual memory systems to store inactive processes/pages.
Located either in:
o Dedicated swap partition (faster).
o Swap file inside file system.
Efficient swap management improves system performance.

6. Stable Storage

Provides reliable storage even in case of failures (power loss, crash).
Implemented using redundancy techniques (like mirroring & backups).
Ensures data is not corrupted or lost during write operations.

Used in databases and critical systems.

7. Tertiary Storage Structure

Storage devices with very large capacity but slower access time compared to
HDD/SSD.
Examples: Magnetic tapes, Optical disks (CD/DVD/Blu-ray), Cloud archival storage.
Characteristics:

o Cheap and high capacity.

o Mainly used for backups and archival.

o Access is sequential (slow).

Disk Scheduling

As mentioned earlier, disk transfer speeds are limited primarily by seek

times and rotational latency. When multiple requests are to be processed
there is also some inherent delay in waiting for other requests to be
processed.

Bandwidth is measured by the amount of data transferred divided by the total
amount of time from the first request being made to the last transfer being
completed, (for a series of disk requests.)

Both bandwidth and access time can be improved by processing requests in a
good order.

UNIT-I

o Disk requests include the disk address, memory address, number of sectors to
transfer, and whether the request is for reading or writing.

10.4.1 FCFS Scheduling

o First-Come First-Serve is simple and intrinsically fair, but not very efficient.

Consider in the following sequence the wild swing from cylinder 122 to 14 and
then back to 124:

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
} | | 1l | 1] {
A) —
S -
odt—
“»e
:’._

Figure 10.4 - FCFS disk scheduling.

10.4.2 SSTF Scheduling

o Shortest Seek Time First scheduling is more efficient, but may lead to
starvation if a constant stream of requests arrives for the same general area of
the disk.

o SSTF reduces the total head movement to 236 cylinders, down from 640
required for the same set of requests under FCFS. Note, however that the
distance could be reduced still further to 208 by starting with 37 and then 14
first before processing the rest of the requests.

UNIT-I

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
} | 1 1l 1 1l 1 {
‘__‘.
Y
B

Figure 10.5 - SSTF disk scheduling.

10.4.3 SCAN Scheduling

o The SCAN algorithm, a.k.a. the elevator algorithm moves back and forth from
one end of the disk to the other, similarly to an elevator processing requests in
a tall building.

UNIT-I

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
|
|

| | |1l | | | {

M

The

ot

Figure 10.6 - SCAN disk scheduling.

Under the SCAN algorithm, If a request arrives just ahead of the moving head
then it will be processed right away, but if it arrives just after the head has
passed, then it will have to wait for the head to pass going the other way on
the return trip. This leads to a fairly wide variation in access times which can
be improved upon.

Consider, for example, when the head reaches the high end of the disk:
Requests with high cylinder numbers just missed the passing head, which
means they are all fairly recent requests, whereas requests with low numbers
may have been waiting for a much longer time. Making the return scan from
high to low then ends up accessing recent requests first and making older
requests wait that much longer.

10.4.4 C-SCAN Scheduling

The Circular-SCAN algorithm improves upon SCAN by treating all requests in a
circular queue fashion - Once the head reaches the end of the disk, it returns

to the other end without processing any requests, and then starts again from

the beginning of the disk:

UNIT-I

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
(— | L1l 1 1 L
i‘.‘
1

e e o W

*%
Figure 10.7 - C-SCAN disk scheduling.
12.4.5 LOOK Scheduling

e LOOK scheduling improves upon SCAN by looking ahead at the queue of
pending requests, and not moving the heads any farther towards the end of
the disk than is necessary. The following diagram illustrates the circular form
of LOOK:

UNIT-II

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199

Figure 10.8 - C-LOOK disk scheduling.

UNIT-II

UNIT-II

UNIT - H1: 1/O Systems, Security, and Unix/Linux Overview

I/0 System Management: I/O Hardware: Devices, Device Controllers, Direct Memory Access,
I/O Software: Interrupt Handlers, Device Drivers, Device-Independent 1/0 Software,

System Protection and Security: Security Environment, Security Design Principles, User
Authentication, Protection Mechanisms, Protection Domain, Access Control List,

Unix/Linux Overview & Case Studies: Development of Unix/Linux, Role of Kernel, System
Calls, Elementary Linux Commands, Shell Programming, Directory Structure, System
Administration.

I/0 System Management:

I/0 (Input/Output) System Management refers to the techniques and mechanisms an operating
system uses to efficiently handle the flow of data between the computer's CPU and external
hardware devices like keyboards, disks, and network interfaces. This involves managing device
controllers, handling different types of 1/0 operations (character, block, network), employing
buffering and caching, and implementing 1/O scheduling algorithms to optimize performance and
reduce wait times for applications.

(@) 1/O Devices
o Devices are classified into two main categories:

1. Block devices
o Store data in fixed-size blocks (sectors or clusters).
o Data can be read/written in any order (random access).
o Examples: Hard Disk, SSD, CD-ROM.
2. Character devices
o Stream data one character at a time (sequential access).
o No block structure.
o Examples: Keyboard, Mouse, Serial ports.
3. Network devices
o Transmit/receive data packets across a network.
o Example: Ethernet card, Wi-Fi adapter.

(b) Device Controllers

e Every I/O device is controlled by a device controller (electronic circuitry).
e Acts as an interface between CPU < Device.
e Responsibilities:

1. Receives commands from CPU.

2. Converts commands into device-specific actions.

3. Stores data temporarily in buffers (in controller memory).
4. Reports device status via status register.

Reqgisters in a device controller:

o Data register — holds data to be transferred.
o Control register — stores command from CPU (e.g., Read/Write).
e Status register — indicates device status (Ready/Busy/Error).

Example:
A disk controller manages reading/writing sectors from a hard disk. The OS sends "Read sector

5," and the controller handles actual head movement and data transfer.

Memory Monitor Keyboard USB Drive Disk Drive
CPU Memory Video Keyboard USB Disk
Controller Controller Controller Controller Controller
| u L X : Y
§ g Y | el &

Direct Memory Access (DMA)

Direct Memory Access is a feature that allows 1/0 devices (like disk drives,
network cards, sound cards) to directly transfer data to/from the main memory
(RAM) without continuous involvement of the CPU

Steps in DMA transfer:

CPU programs DMA controller (gives source, destination, size).
DMA controller takes control of the system bus.

Transfers data directly between device and main memory.
When done, DMA sends an interrupt to notify CPU.

WP

Advantages:

e Reduces CPU overhead.
e Increases throughput (CPU can execute other processes during 1/0).

Example:
Copying a 4 GB movie file from HDD — RAM using DMA is faster than CPU doing each
transfer.

Main
crPuU | Memory
] 1
Data Bus
Device Device Device
Controller Controller { Controller
USB Drive Disk l Printer

I/0 Software

A key concept in the design of I/O software is that it should be device independent where it
should be possible to write programs that can access any 1/O device without having to specify
the device in advance. For example, a program that reads a file as input should be able to read a
file on a floppy disk, on a hard disk, or on a CD-ROM, without having to modify the program for
each different device.

OS hides hardware complexities using 1/0 software layers.

User — User I/O Libraries

Device Independent 1/O

Kernel

Device Driver Device Driver Device Driver
—
Device Controller ’ Device Controller Device Controller
)
Hardware -] I T
USB Drive J Disk Printer
- J

(a) Interrupt Handlers

e When a device completes an operation, it sends an interrupt signal to CPU.
o CPU pauses current execution, runs the interrupt service routine (ISR).

e ISR responsibilities:

Save current process state.

Identify which device caused interrupt.

Service the device (e.g., fetch key pressed).

Restore process state.

O O O O

Example:
When you press a key, the keyboard controller raises an interrupt — CPU runs keyboard ISR —
character stored in buffer.

(b) Device Drivers

o Device-specific software inside OS.

e Role: Convert high-level OS commands — low-level hardware instructions.
o Each device type has a driver (keyboard driver, printer driver, NIC driver).
e Without drivers, the OS cannot communicate with hardware.

Example:
When you click "Print" — OS calls printer driver — driver sends instructions to printer
controller — printer prints document.

(c) Device-Independent 1/0 Software

« Provides a uniform interface for all devices, hiding differences.
e Responsibilities:
1. Buffering — Temporary storage to match speed difference between device and

CPU.

= Example: Printing characters stored in buffer before printing one-by-one.
Error reporting — Detect & notify errors (disk failure, printer offline).
Naming — Uniform naming of files/devices (e.g., C:\file.txt OF /dev/tty).
4. Access control & protection — Ensures only authorized users/processes access

device.

wn

(d) User-Level 1/0 (System Calls)

o Applications use system calls (like read (), write()) to request I/O operations.
o OS translates these requests into device-specific operations via drivers.

Example:
C program:

read (fd, buffer, 100); // system call

e This requests OS to read 100 bytes from file/device linked with fd.

3. Layered I/0 Structure

tomm + « Application Programs

| User Programs |

o +

| System Calls | < Interface for I/O
o +

| Device-Independent I/0 | < Buffering, Naming, Error Handling
o +

| Device Drivers | «— Hardware-specific translation
e +

| Interrupt Handlers | < Handle device interrupts
e +

| Hardware Controllers | < Actual I/O hardware
e +

System Protection and Security: Security Environment, Security Design Principles, User
Authentication, Protection Mechanisms, Protection Domain, Access Control List,

System Protection and Security

1. Security Environment
The security environment in an operating system refers to a system of policies,
mechanisms, and practices that protect hardware, software, and data from
unauthorized access, modification, and disruption by malicious attacks or
misconfigurationss

o Refers to the overall framework in which security policies, mechanisms, and tools
operate.
e Includes:
o Threats: Malware, unauthorized access, data leaks.
o Vulnerabilities: Weak passwords, unpatched software, insecure networks.
o Attacks: Phishing, DoS (Denial of Service), privilege escalation.

o Security Goals:
= Confidentiality — only authorized users can access data.
= Integrity — data cannot be modified without authorization.
= Availability — resources are available when needed.

2. jSecurity Design Principles
1. Least Privilege

=> Give minimum rights needed to perform a task.

The principle of least privilege is a security design principle that requires that users be given the bare
minimum permissions necessary to perform their tasks. So, this principle is also sometimes referred to
as the principle of least authority

"1 Example: In a college computer lab, students can use lab PCs but cannot install new
software. Only the admin has that right.

2. Fail-Safe Defaults

= Default should deny access until explicitly allowed.

Fail-safe defaults are security settings that are configured to prevent unauthorized access or use of
resources. By default, all users should have the least amount of privileges necessary to perform their job
function.

1 Example: When you join a new Wi-Fi network, it asks for a password. You cannot connect
by default unless the admin allows you.

3. Economy of Mechanism

= Keep security design simple and small.

The principle of economy of mechanism states that a system should be designed to minimize the
number of distinct components (Eg. processes, machines, nodes, etc.) that must interact to perform a
given task. This principle is also known as the principle of least action. The design of a security system
should be as simple and efficient as possible.

"1 Example: Instead of a complicated 10-step login, a system just asks for a username +
password. Simple — fewer chances of errors.

4. Complete Mediation

=> Every access to a resource must be checked.

Security design principles should be comprehensive and address all potential security risks. It should be
integrated into the overall design of the system and implemented in a way that minimizes the impact on
performance and usability. It should be reviewed and updated on a regular basis.

71 Example: Every time you open WhatsApp, it checks your fingerprint/face lock (not just
once). It re-checks every time.

5. Open Design

=» Security should depend on keys/passwords, not secret design.

Open design is a security design principle that advocates for the openness of security systems. The
principle of open design states that security systems should be designed in such a way that they can be
easily inspected, analyzed, and modified by anyone with the necessary skills and knowledge.

"1 Example: The ATM system is public knowledge, but security depends on your ATM PIN
(not on keeping ATM’s design secret).

6. Separation of Privilege

= Require more than one condition.

The principle of separation of privilege states that a user should not be able to access all areas of a
system
1 Example: For online banking, you need both:

e Password </
« OTP sent to your mobile <7
— Both must be correct.

7. Least Common Mechanism

The principle of least common mechanism states that security should be designed so that there is a
minimum number of mechanisms that are shared by all users. This principle is important because it
reduces the chances that a security flaw will be exploited by more than one user.

=> Minimize sharing to reduce attacks.

"1 Example: In a hostel mess card system, each student has their own card instead of a
common password for everyone. Shared access = higher risk.

8. Psychological Acceptability

=» Security should not be too complex for users.

The psychological acceptability of security design principles refers to the extent to which users are
willing to accept and comply with the security measures implemented in a system

71 Example: Instead of asking you to change password daily, Gmail allows you to stay signed
in but warns you when there’s unusual activity. Easy for users.

e ATM PIN

e A 4-digit PIN is easy to remember and quick to type — students actually use it.
e If the bank forced a 16-digit PIN — students would write it down or forget it.

e College Wi-Fi Login

e If Wi-Fi asks for your roll number + one-time password — easy to access and secure.
o Ifit asked you to type 10 different codes every time — students won’t use it.

e Online Exam Portal

e Iflogin requires just a username, password, and maybe OTP — acceptable.
o Ifit required 5 layers of login (face scan + fingerprint + password + OTP + security
questions) — too hard, students get frustrated.

User Authentication

User authentication is the process of establishing the identity of an individual who wants to
have access to a particular system or service. It involves a process of ensuring that the user
claiming to be a specific personality is substantial through proving credentials like passwords,
biometric data, security tokens, or other authenticity factors. This verification step is essential in
safeguarding systems and systems’ components from access and use by unauthorized
individuals and entities and in preventing misuse of information that is considered confidential
or sensitive.

e Process of verifying user identity.
e Methods:
1. What you know — Passwords, PINs.
2. What you have — Smart card, OTP, security token.
3. What you are — Biometrics (fingerprint, face recognition).
4. Where you are — Location-based authentication (IP, GPS).
o Example: Online banking uses multi-factor authentication (password + OTP).

5. Protection Mechanisms

e System protection in an operating system refers to the mechanisms implemented by
the operating system to ensure the security and integrity of the system. System
protection involves various techniques to prevent unauthorized access, misuse, or
modification of the operating system and its resources.

e There are several ways in which an operating system can provide system protection:

e User authentication: The operating system requires users to authenticate themselves
before accessing the system. Usernames and passwords are commonly used for this
purpose.

e Access control: The operating system uses access control lists (ACLS) to determine
which users or processes have permission to access specific resources or perform
specific actions.

e Encryption: The operating system can use encryption to protect sensitive data and
prevent unauthorized access.

o Firewall: A firewall is a software program that monitors and controls incoming and
outgoing network traffic based on predefined security rules.

e Antivirus software: Antivirus software is used to protect the system from viruses,
malware, and other malicious software.

e System updates and patches: The operating system must be kept up-to-date with the
latest security patches and updates to prevent known vulnerabilities from being
exploited.

Access Control — Determines who can use what resources.

Encryption — Protects data in storage or during transmission.
Sandboxing — Restricts program execution in an isolated environment.
Firewalls & Intrusion Detection — Control and monitor network access.

O O O O

5. Protection Domain

o Defines a set of resources (objects) and the operations (rights) that a process or user can
perform.
e Each domain specifies:
o Obijects: files, printers, memory.
o Rights: read, write, execute, delete.

https://www.geeksforgeeks.org/computer-networks/access-lists-acl/

Example:

o Domain A — Read/Write filel, Execute programl.

o Domain B — Only Read filel.
Domain Switching: A process can move between domains (e.g., user mode <> kernel
mode).

6. Access Control List (ACL)

ACL = A table that specifies which users/processes have what access rights to an
object.
Stored with each object (e.g., file, directory).
Example (File.txt ACL):
Userl: Read, Write
User2: Read
Admin: Read, Write, Execute
Others: No Access
Advantages:
o Fine-g rained control. . security approach that allows for precise permissions on specific data or actions
o Easy to audit.
Disadvantage:
o Can get large and hard to manage.

Unix/Linux Overview & Case Studies: Development of Unix/Linux, Role of Kernel, System
Calls, Elementary Linux Commands, Shell Programming, Directory Structure, System
Administration

Unix/Linux Overview & Case Studies

1. Development of Unix/Linux

Unix
o Developed in 1969 at AT&T Bell Labs by Ken Thompson, Dennis Ritchie,
and others.
Originally written in assembly, later rewritten in C — portable across machines.
Key features: multitasking, multiuser, hierarchical file system.

Important Features Introduced

Multiuser: Many users can log in and use at the same time.

Multitasking: Multiple programs run together.

Hierarchical File System: Files organized into directories and subdirectories.
Security: User authentication and file permissions.

Portability: Easy to adapt to new hardware.

Linux

o Created by Linus Torvalds in 1991 as a free, open-source Unix-like OS.

o Uses the GNU utilities + Linux kernel — called GNU/Linux.

o Popular distributions: Ubuntu, Fedora, Red Hat, Debian, Arch.
Based on the principles of Unix, but available for everyone under the GNU General
Public License (GPL).

Key Features of Linux

Open Source — Source code is free for anyone to use, modify, and distribute.
Multiuser — Multiple users can work at the same time.

Multitasking — Runs many programs simultaneously.

Security — Provides strong user authentication and file permissions.
Portability — Runs on desktops, servers, mobiles, IoT devices.

Stability & Reliability — Rarely crashes, used in servers and supercomputers.

Difference between Unix and Linux

Point Unix Linux

A proprietary multitasking, multiuser OS An open-source Unix-like OS developed by

Definition
developed in 1969 at Bell Labs. Linus Torvalds in 1991.
License Mostly proprietary (paid). Free and open-source (GPL license).
Source Code Closed (not freely available). Open (anyone can view, modify, and share).

Developed by AT&T Bell Labs and later Developed by Linus Torvalds with worldwide

Development

Cost

companies (IBM, HP, etc.). community support.

. Free (some enterprise editions may charge for
Usually expensive.
support).

Highly portable — runs on desktops, servers,

Portability Limited to specific hardware.

Distributions

mobiles, 10T devices.

Various vendor versions: Solaris, AIX, HP- Many distros: Ubuntu, Fedora, Red Hat,
UX, BSD. Debian, Kali Linux, etc.

Usage Today Mostly in large servers, mainframes, and Widely used in servers, desktops, Android

Point Unix Linux

special-purpose systems. phones, cloud, loT, supercomputers.

2. Role of Kernel

1. Definition of Kernel

e The kernel is the core part of an operating system.
o It works as a bridge between hardware and software.
o Without the kernel, applications cannot directly interact with hardware.

2. Main Roles of Kernel

1. Process Management

o Creates, schedules, and terminates processes.

o Handles multitasking (running many programs at the same time).
2. Memory Management

o Allocates and frees memory for processes.

o Ensures no process uses memory of another.
3. Device Management

o Controls input/output devices (keyboard, disk, printer, etc.) using device drivers.

o Acts as a mediator between software and hardware devices.
4. File System Management

o Organizes data in files and directories.

o Manages permissions (who can read/write/execute).
5. System Calls / Communication

o Provides system calls for applications to request services (like read, write, open).

o Ensures safe interaction between user programs and hardware.

1. Monolithic Kernel

e All OS services (memory, process, device drivers, file system) run in one large kernel

space.
o Advantages: Fast execution (no switching overhead).

o Disadvantages: Large size, harder to maintain, one error may crash the whole system.

o Example: Linux, Unix.

2. Microkernel

e Only essential services (CPU scheduling, memory management, inter-process
communication) are inside the kernel.

e Other services (drivers, file system, etc.) run in user space.

e Advantages: More secure, stable, easier to maintain.

« Disadvantages: Slower due to extra communication between kernel and user space.

o Example: Minix, QNX, Mach.

3. Hybrid Kernel

o Combination of Monolithic and Microkernel features.

o Core functions in kernel space, but some services run in user space.
e Advantages: Faster than microkernel, more stable than monolithic.
o Disadvantages: More complex design.

o Example: Windows NT/XP/10, macOS (XNU kernel).-

3. System Calls

e Interface between user programs and the kernel.

o Asystem call is a way for a program to request a service from the operating system’s

kernel.
e Since user programs cannot directly access hardware, they use system calls to
communicate with the OS.

"1 Example: When you save a file, your program uses a system call to ask the OS to write data to

disk.

Categories of System Calls

1. Process Control
o Create, end, or manage processes.
o Examples: fork (), exit (), wait ().
2. File Management
o Create, open, read, write, close files.
o Examples: open (), read(), write (), close().
3. Device Management
o Request and release devices, perform I/O operations.
o Examples: ioctl (), read(), write().
4. Information Maintenance
o Get or set system data (date, time, system info).
o Examples: getpid(), alarm(), sleep().
5. Communication
o Transfer information between processes.
o Examples: pipe (), shmget (), mmap (), SOCKets.

Example:

int fd = open("file.txt", O_RDONLY); // Open file
read (fd, buffer, 100); // Read 100 bytes
close (fd) ; // Close file

4. Elementary Linux Commands

Some basic commands (used daily):

o File & Directory
1s — list files
pwd — show current directory
cd dir — change directory
mkdir dir — create directory
rm file — delete file
o File Operations
o cp filel file2 — COpPY
o mv filel file2 — move/rename
o cat file — display file content
o touch file — create empty file
e Process Control
o ps — show processes
o kill pid — terminate process
o top — real-time process monitor

o O O O O

6. Shell Programming

The shell acts as an interface between the user and the operating system. It interprets commands
and translates them into actions the OS can understand. Examples include Bash (Bourne Again
Shell), Zsh, Csh, and Ksh in Unix-like systems, and the Command Prompt or PowerShell in
Windows.

e Shell = Command interpreter (e.g., bash, sh, zsh).
o Shell script = file containing a series of shell commands.

Example (simple script):

#!/bin/bash
echo "Enter your name:
read name

"

echo "Hello, S$name!"

Run using:

chmod +x script.sh
./script.sh

6. Directory Structure

Unix/Linux follows a tree-structured hierarchy with root (/) at the top.

Key directories:

/ — Root directory

/bin — Essential binaries (Is, cp, mv)
/etc — Configuration files

/home — User home directories

/usr — User programs, libraries
/var — Logs, spool files

/tmp — Temporary files

/dev — Device files

/boot — Boot loader & kernel

7. System Administration

Tasks performed by system administrators:

ocoukrwnE

User Management — adduser, passwd, deluser

File System Management — Mount/unmount disks (mount, umount).
Backup & Recovery — tar, rsync.

Process & Resource Monitoring — ps, top, df, du.

Security Management — Permissions (chmod, chown), firewall, updates.
Networking — Configuring IP (ifconfig, ip), Services (systemct1).

UNIT IV: System Software and Language Processing

Overview of System Software: Software and Software Hierarchy, Systems Programming and
Machine Structure, Interfaces, Address Space, and Computer Languages, System Software
Development and Recent Trends,

Language Processors: Programming Languages and Language Processing, Symbol Tables and
Data Structures for Language Processing, Search and Allocation Data Structures,

Assemblers and Macro Processors: Elements of Assembly Language Programming, Design
and Types of Assemblers, Macro Definitions, Expansion, Nested Macros, and Advanced Macro
Features, Design of Macro Assemblers and Macro Processors,

Linkers and Loaders: Concept of Linking and Relocation, Linking in MS-DOS, Dynamic
Linking, Loading Schemes: Sequential, Direct, Absolute, Relocating, and Linking Loaders,
Comparison of Linkers and Loaders.

Overview of System Software:

Software and Software Hierarchy:

Software
Software is a collection of programs, procedures, and documentation that perform specific tasks
on a computer system. It provides instructions to the hardware and enables users to interact with

the system. In simple terms, hardware is the body of the computer, and software is its brain that
tells the hardware what to do. Without software, hardware is useless.

Types of Software / Software Hierarchy
Software is broadly divided into two categories:
1. System Software
o System software is designed to control and manage the hardware of a computer and
provide a platform for running application software.
« It acts as an interface between the user and hardware.
Main components of system software:
1. Operating System (OS):

o Manages computer resources such as CPU, memory, input/output devices.
o Examples: Windows, Linux, macOS, Android.

2. Device Drivers:
o Special programs that allow the operating system to communicate with hardware
devices.
o Example: Printer driver, Sound driver.
3. Utility Programs:
o Perform maintenance tasks like antivirus scanning, file management,
compression, and backup.
o Example: WIinRAR, Disk Cleanup, Antivirus software.

2. Application Software

e Application software is developed to perform specific tasks for the user.
e These are the programs we use in our daily life.

Types of application software:

1. General Purpose Application Software:
o Used for common tasks such as typing documents, making presentations,
browsing, or calculations.
o Example: MS Word, Excel, PowerPoint, Google Chrome.
2. Special Purpose Application Software:
o Developed for a particular purpose or organization.
o Example: Banking software, Railway reservation system, Hospital management
software.

Software Hierarchy Diagram

SOFTWARE
|
v v
System Software Application Software
|
|
Operating Device Utility General Purpose Special Purpose

System Drivers Programs Software Software

Systems Programming and Machine Structure

1. Introduction

A computer system is made up of hardware and software.

e Hardware consists of the physical components such as CPU, memory, input/output
devices.
o Software consists of programs that make hardware useful.

To use the hardware effectively, special kinds of programs known as system software are
required. The development of this software is studied under Systems Programming, while the
physical and logical arrangement of hardware is described by Machine Structure.

2. Systems Programming

o Definition:
Systems programming is the process of designing and implementing system software
that controls the hardware and provides a platform for application programs.

o It deals with programs that interact directly with computer hardware and provide
services to the user and application software.

Examples of System Software

Assembler — Converts assembly language into machine code.

Compiler/Interpreter — Converts high-level language into machine code.

Loader & Linker — Loads programs into memory and links different modules.
Operating System — Manages hardware resources and provides services.

Device Drivers — Enable communication with hardware devices like printers, keyboards.

AR

Characteristics of Systems Programming

e Written in low-level languages like C and Assembly.

« Concerned with efficiency, speed, and resource management.
e Closer to hardware compared to application programming.

e Provides a base for application programs.

Machine Structure

o Definition:
Machine structure describes the organization and architecture of a computer system.
It explains how hardware components (CPU, memory, 1/0O devices) interact with each
other and how software communicates with hardware.

Components of Machine Structure

1. Hardware:
o CPU, memory, input/output devices, and storage units.
o Executes machine instructions.
2. System Software:
o Works as a bridge between hardware and applications.
o Examples: Operating system, compilers, assemblers.
3. Application Software:
o Programs written for end-users to perform specific tasks.
o Examples: MS Word, Photoshop, Web browsers.
4. User:
o The person who interacts with the computer through application software.

4. Relationship Between Systems Programming and Machine Structure

e Systems programming produces the software that controls the hardware described by
machine structure.
e Machine structure defines the instruction set architecture (ISA), registers, and memory
organization, which system software must understand to work correctly.
e Example:
o Anassembler (systems programming) translates assembly instructions into
binary machine instructions (machine structure).
o A compiler generates macjhine code based on the machine’s architecture.
Diagram

-
|

Interfaces

o Definition:
An interface is a boundary where two systems, components, or software layers

communicate with each other.
« In computer systems, interfaces ensure that hardware, software, and users can interact

smoothly.

Types of Interfaces

1. User Interface (Ul):
o Allows the user to communicate with the computer.

o Types: Command Line Interface (CLI), Graphical User Interface (GUI).

2. Hardware Interface:
o The interaction between hardware components (CPU < memory, CPU < 1/O

devices).

3. Software Interface (API):
o Defines how software components communicate with each other.

o Example: Application Programming Interfaces (APIs).

2. Address Space

o Definition:
Address space refers to the range of memory addresses that a process or program can
use.
Types of Address Space

1. Logical Address Space:
o Generated by the CPU (used in programs).
o Independent of physical memory.

2. Physical Address Space:
o Actual addresses in main memory (RAM).
o Handled by Memory Management Unit (MMU).

1 Example: A program may think it uses addresses from 0x0000 to 0xrrFF (logical), but
physically those addresses may map to actual RAM locations.

3. Computer Languages
Computer languages allow humans to give instructions to computers.

Levels of Languages

1. Machine Language:
o Binary instructions (Os and 1s).
o Directly understood by CPU.
o Example: 10110000 01100001
2. Assembly Language:
o Symbolic representation of machine instructions.
o Example: mov a, B
o Requires an assembler to convert into machine code.
3. High-Level Languages (HLL):
o Closer to human language, easy to use.
o Example: C, C++, Java, Python.
o Requires a compiler/interpreter.

4. System Software Development
System software is developed to manage hardware and run application programs.

Steps in System Software Development

What are the 10 Software Development Processess?

Testing Coding

Integration Software Design

Implementation System Analysis

(A planning phase)
Communication

1 2

Requirement s
Ga?hering Feasibility Study Operation and

Maintenance

Software development process =

Software Developement Process

The software development process is the sequence of activities that leads to the production of a
software product. The steps of software development process are as follows:

1. Communication

The first and foremost step is where the user contacts the service provider i.e. software organization
and initiates the request for a desired software product. The software organization talks with the
customer about its requirement and then work according to its needs.

2. Requirement Gathering

In this step, the team of software developers holds discussions with various stakeholders from the
problem domain and provides as much as information possible for the requirement of the software
product. The requirements can be of different forms like user requirements, system requirements,
functional requirements, etc.

3. Feasibility Study

After requirement gathering, with the help of many algorithms, the team analyzes that if the software
can be designed to fulfil all requirements of the user and also analyzes if the project is financially,
practically and technologically feasible for the organization or not.

4. System Analysis(A planning phase)

Software developer decides on a roadmap for their plan and tries to bring up the best software model
stable for the project. System analysis may also include understanding product limitations and
identifying and addressing the impact of the project on the organization. The project analyzes the
scope of the project and plans the resources accordingly.

5. Software Design

Software design whole knowledge of requirements and analyses are taken together to plan up design
of software products. It takes input from the user and information gathered in the requirement-
gathering phase. It gives output in the form of logical and physical design.

6. Coding

This step is also known as the programming phase. The implementation of software design starts in the
form of writing code in suitable programming and developing error-free programs efficiently.

7. Testing

Software testing is done while coding by the testers' developing team members. Testing is done at
various levels i.e. module testing, product testing, program testing and user-end testing.

8. Integration

After writing all the codes for the software such as frontend, backend, and databases, The software is
integrated with libraries, databases and other programs.

9. Implementation

In this step, the software product is finally ready to be installed on the user's machine. Software is
tested for profitability, integration, adaptability, etc.

10. Operation and Maintenance

This phase confirms the software operations in terms of more efficiency and fewer errors. If required,
the users are trained or aided with the documentation on how to operate the software and how they
keep the software operational. This software is maintained timely by updating the code according to
the changes taking place in the user and environment or technology.

https://www.geeksforgeeks.org/software-engineering/requirements-gathering-introduction-processes-benefits-and-tools/

Examples of System Software Developed

Operating Systems (Windows, Linux, Android)
Assemblers, Compilers, Interpreters

Loaders & Linkers

Device Drivers

Database Management Systems

5. Recent Trends in System Software
System software is continuously evolving with new technologies.

Recent Developments

1. Virtualization & Cloud Computing:
o Virtual machines and cloud OS allow efficient resource sharing.
o Example: VMware, Docker, Kubernetes.
2. Mobile Operating Systems:
o Android, iOS designed for smartphones and 10T devices.
3. Security-Oriented OS:
o Focus on cybersecurity, intrusion detection, and safe execution.
4. Open-Source System Software:
o Linux, FreeBSD, and other open-source OS are widely used.
5. Al & Machine Learning Integration:
o Intelligent system software for self-healing, prediction, and automation.
6. Edge & loT Computing:
o Lightweight operating systems designed for smart devices (Raspberry Pi OS,
TinyOS).

Language Processors

1. Programming Languages and Language Processing

Programming Languages

e A programming language is a formal language used to write computer programs.
e It provides a way for humans to give instructions to the computer.

Types of Programming Languages:

1. Machine Language — Binary code (0s & 1s), directly executed by CPU.

2. Assembly Language — Uses mnemonics (e.g., MOV A, B). Needs an assembler.
3. High-Level Language (HLL) — Close to human language (e.g., C, C++, Java, Python).
Needs compiler/interpreter.

Language Processing

o The process of translating high-level or assembly language into machine code that
hardware can understand.
e Done by language processors.

Types of Language Processors:
1. Assembler — Converts assembly code — machine code.

2. Compiler — Translates entire high-level program — machine code.
3. Interpreter — Translates and executes high-level program line by line.

2. Symbol Tables and Data Structures for Language Processing

Symbol Table

o Asymbol table is a data structure used by language processors (compiler/assembler) to
store information about identifiers (variables, functions, objects, labels).

Information stored in Symbol Table:

Name of variable/function
Type (int, float, char, etc.)
Scope (local, global)
Memory location (address)
Value (if constant)

Functions of Symbol Table:
1. Stores information about all identifiers.

2. Helps in semantic analysis.
3. Supports code generation by mapping identifiers to memory addresses.

Data Structures for Language Processing

Language processors need efficient data structures for storing and retrieving information
quickly.

Criteria for Classification of Data Structure of LP:
* 1. Nature of Data Structure: whether a “linear” or “non linear”.
* 2. Purpose of Data Structure: whether a “search” DS or an “allocation” DS.

« 3. Lifetime of a data structure: whether used during language processing or during target
program execution.

1. Linear Data Structures:

o Arrays, Linked Lists — Used for intermediate code storage and token handling.
2. Non-linear Data Structures:

o Trees — Used in syntax analysis (Parse Tree, Abstract Syntax Tree).

o Graphs — Used in code optimization and flow analysis.
3. Hash Tables:

o Widely used for symbol tables because of fast insertion and searching.

3. Search and Allocation Data Structures

Search Data Structures
Used to find identifiers or instructions quickly during compilation.

e Linear Search — Simple but slow (used for small tables).
e Binary Search — Faster, requires sorted data.
e Hashing — Best method for symbol tables (O(1) average time).

Allocation Data Structures
Used by language processors to manage memory allocation for programs.

1. Stack Allocation:

o Used for local variables and function calls.

o Memory is allocated/deallocated in LIFO (Last-In-First-Out) order.
2. Heap Allocation:

o Used for dynamic memory (malloc/free in C, new/delete in C++).

o Variables exist until explicitly freed.
3. Static Allocation:

o Memory allocated at compile-time.

o Example: Global variables.

Diagram: Role of Language Processor

ASSEMBLERS AND MACRO PROCESSORS

1. Elements of Assembly Language Programming

Definition:

Assembly language is a low-level programming language that uses symbolic names
(mnemonics) to represent machine instructions. It provides a way for programmers to write
instructions that are closer to the hardware but easier to read than pure binary or hexadecimal
code.

Key Elements:

1.

Mnemonics:
These are symbolic names for machine instructions.
Example:

o mov for move

o app for addition

o sus for subtraction
Operands:
These specify the data to be operated on or the memory locations involved.
Example: app ax, Bx — Adds the contents of register BX to AX.
Labels:
Used to identify a line of code, usually for jump or branch instructions.
Example:

. START: MOV AX, BX

Directives:
Instructions to the assembler (not executed by CPU).
Example:

o DB — Define Byte

o pw— Define Word

o ORG — Origin (starting address)
Comments:
Used to describe the purpose of instructions for readability.
Example:

. MOV AX, 05H ; Load 5 into AX

Symbol Table:

During assembly, the assembler creates a symbol table that keeps track of all labels and

variables with their corresponding memory addresses.

2. Design of an Assembler

What is an Assembler?

An assembler is a system program that converts an assembly language program into machine
code (object code).

Functions of an Assembler:

Translation: Converts mnemonics into machine instructions.

Symbol Resolution: Assigns addresses to all symbols and labels.
Program Relocation: Adjusts address references for relocatable programs.
Error Handling: Detects and reports syntax or semantic errors.

Listing and Output Generation: Produces a listing file and an object file.

agrONME

3. Types of Assemblers
Assemblers are classified based on how they process the source code:

(a) One-Pass Assembler
e The entire assembly process is completed in one scan of the source program.
e Symbols must be defined before they are used.
« Faster but cannot handle forward references.
e Used in small programs.
Advantages:

e Fast translation.
e Requires less memory.

Disadvantages:

e Cannot handle forward references.

(b) Two-Pass Assembler

o The assembler scans the source code twice.

Pass 1:
e Builds the symbol table.
e Assigns addresses to all labels.
o Handles directives and computes addresses.

Pass 2:

e Generates machine code using the symbol table.
o Replaces symbolic names with actual addresses.

Advantages:

e Can handle forward references.
e Produces more accurate code.

Disadvantages:

o Slightly slower because of two passes.

4. Macro and Macro Processor

Definition of Macro:

A macro is a single instruction or name that represents a sequence of instructions. It helps in
reusing code and reducing repetition.

Example:

MACRO INCR X
ADD X, 1
ENDM

When the assembler sees INCR &, it replaces it with app a, 1.

Macro Processor:

A macro processor is a system program that recognizes macro definitions and replaces
(expands) macro calls with the corresponding sequence of instructions before actual assembly.

5. Macro Definitions and Expansion

Macro Definition:

A macro is defined using macro and expm directives.

MACRO NAME [parameters]
; body of macro
ENDM

Macro Call:

When a macro is invoked (called), the assembler expands it by inserting the macro body in place
of the macro name.

Example:

MACRO MULT2 ARG
MOV AX, ARG
ADD AX, AX
ENDM

MULT2 NUM
— During macro expansion, this becomes:
MOV AX, NUM

ADD AX, AX

Nested Macros

Definition:
A nested macro occurs when one macro calls another macro within its definition.

Example:

MACRO MAC1
MAC2
ENDM

MACRO MAC2
MOV AX, BX
ENDM

When vac1 is called, it also expands mac2.
Assemblers must carefully handle nesting to avoid infinite expansion or ambiguity.

7. Advanced Macro Features

(a) Parameters:

Macros can accept parameters, making them reusable with different arguments.
Example:

MACRO ADDNUM X, Y
MOV AX, X
ADD AX, Y

ENDM

(b) Default Arguments:

If parameters are not given, macros can have default values.
Example:

MACRO INCX X=1
ADD AX, X
ENDM

(c) Conditional Macros:

Conditional assembly can be done using directives like 1F, ELSE, ENDIF.
Example:

IF FLAG
MOV AX, BX
ENDIF

(d) Macro Expansion Control:

The assembler can limit how deep nested expansions go or allow selective expansion.

8. Design of Macro Assemblers and Macro Processors

A macro assembler combines the functions of an assembler and a macro processor. It first
expands all macros and then translates the program into machine code.

Steps in Macro Processing:

1. Macro Definition Processing:

o The macro definitions are stored in a Macro Definition Table (MDT).
o Each macro name and parameters are stored in the Macro Name Table (MNT).
o Parameters and their values are stored in Argument Lists (ALA).
2. Macro Expansion:
When a macro call is found:
e The macro name is searched in the MNT.
e The corresponding definition is fetched from MDT.
e Arguments are replaced using the ALA.
o The expanded code is inserted into the source code.
3. Assembly of Expanded Code:

After all macros are expanded, the assembler translates the expanded code into object code.

Tables Used in Macro Processing:
Table Name Purpose
MNT (Macro Name Table) Stores macro names and pointers to MDT entries
MDT (Macro Definition Table) Stores macro body (actual instructions)
ALA (Argument List Array) Stores parameters and their corresponding arguments

EVT (Expansion Variable Table) Used for handling expansion-time variables

9. Advantages of Using Macros

Saves time: Frequently used code can be written once and reused.

Reduces errors: Common code does not need to be retyped each time.

Improves readability: Replaces long code blocks with meaningful names.

Easier modification: Changes in the macro definition automatically apply everywhere.

10. Difference Between Macro and Subroutine

Feature Macro Subroutine

Definition Sequence of instructions inserted during assembly Separate block of code executed by a call

Execution Expanded inline before assembly Called and executed at runtime
Speed Faster (no call overhead) Slightly slower

Code Size Larger (code repeated each time) Smaller (only one copy)
Parameters Passed as arguments during expansion Passed using registers or stack
LINKERS AND LOADERS

1. Introduction

When a program is written in a high-level language (like C, C++, or Java), it must go through
several stages before execution.

The compiler translates the source code into object code, which still may not be directly
executable.

To make it executable, the system uses linkers and loaders.

e Linker: Combines multiple object files and resolves references between them.
e Loader: Loads the linked program into main memory for execution.

Both are essential parts of the program translation and execution process.

2. Concept of Linking

Definition:

Linking is the process of combining multiple object modules (produced by the compiler or
assembler) into a single executable program.

Each source file may contain functions, variables, or procedures that refer to other files.
The linker resolves these external references.

Example:
Let’s say:

e main.c callsafunction sum() defined in math.c
e The compiler generates:

o main.obj (object file for main)

o math.obj (object file for math)

The linker combines them:

main.obj + math.obj — program.exe
Functions of the Linker:

1. Combines Object Modules:
Joins multiple .ob5 files into one executable.
2. Symbol Resolution:
Matches function and variable names used across modules.
3. Address Binding:
Assigns absolute memory addresses to program segments.
4. Library Linking:
Links required system or user-defined libraries (like stdio.n or math libraries).
5. Relocation:
Adjusts addresses when modules are moved in memory.

3. Concept of Relocation
Definition:

Relocation is the process of modifying address-dependent code and data in a program so it
can be correctly executed from a different memory location than the one originally assumed.

Need for Relocation:
e When the exact memory location for execution is not known at compile time.

e When multiple programs share memory space.
e When dynamic memory allocation or paging is used.

Example:

If a program assumes it will start at address 1000 but the loader places it at address 3000, every
instruction and data address must be increased by (3000 — 1000) = 2000.

This is done by the relocation loader or linker.

4. Linking in MS-DOS
In MS-DQS, the linking process is handled by the LINK.EXE utility.

Steps:

1. Compilation:

Each .c file is compiled into an object file (.OBJ) using the compiler:
2. C:\> CL MAIN.C

3. Linking:
The object file is linked using the linker:
4. C:\> LINK MAIN.OBJ

The linker produces:
o Executable file ((EXE) — the final runnable program.
o Map file (MAP) — lists memory layout and address assignments.

5. Execution:

The executable file is loaded and executed in memory by the loader:
6. C:\> MAIN.EXE

Characteristics of Linking in MS-DOS:
e Static linking (functions combined at compile time).

e Relocation records maintained by linker.
o Symbol resolution done before execution.

5. Dynamic Linking

Definition:

Dynamic linking is a technique where linking of program modules is performed at runtime,
rather than during compilation or assembly.

Features:

e Modules (like libraries) are linked only when needed.
e Saves memory because multiple programs can share the same library in memory.
e Common in modern operating systems like Windows, Linux, etc.

Example:

e Shared libraries in Windows — .p1L (Dynamic Link Library)
e Shared libraries in Linux — . so (Shared Object)

Advantages:
1. Memory Efficient: Shared code is loaded only once.
2. Easy Updates: If a library is updated, all programs using it get the new version

automatically.
3. Faster Loading: Initial loading time reduced since not all modules are loaded upfront.

Disadvantages:

o Slightly slower execution when functions are first called.
e Programs depend on the external shared libraries being present.

6. Loading Schemes

Loading means placing a program into memory for execution.
A loader is the system program responsible for this task.

There are various loading schemes, depending on how the addresses are managed.

(a) Sequential Loading
e The program is loaded into memory from the first address available.
« Instructions and data are placed sequentially.
e No relocation or linking is needed.

Use: Simple embedded or batch systems.

Example:
If memory starts at 1000, program is loaded at 1000, 1001, 1002, etc.

(b) Direct Loading

e The loader reads absolute addresses directly from the object file.
e The programmer or assembler must know where the program will be loaded.

e The program cannot be moved to another memory location.

Advantage: Fast loading.
Disadvantage: No flexibility, not relocatable.

(c) Absolute Loader

e The loader places the object code into specific memory locations as indicated in the
object program.
e No relocation or linking is done.

Steps:
1. Read the object file.
2. Place instructions into specified memory addresses.

3. Transfer control to the start address.

Limitation:
Cannot handle programs that refer to external symbols or multiple modules.

Example:
Used in simple microcontrollers and early assembly systems.

(d) Relocating Loader
e Adjusts the addresses of instructions and data while loading to match the available
memory space.
o Performs relocation using relocation information from the linker.

Features:

e Can load the same program at different memory locations.
e Supports multiprogramming (several programs in memory simultaneously).

Example:

If program expects to start at 1000 but is loaded at 2000, the loader adds 1000 to all address-
sensitive instructions.

(e) Linking Loader

o Performs both linking and loading at the same time.

o It reads multiple object modules, links them, relocates them, and loads them into

memory.

Steps:

agrONME

Advantages:

Read all object files.

Resolve external symbols (linking).
Adjust addresses (relocation).

Load into memory (loading).

Start execution.

o No separate linker needed.
e More efficient memory management.

Example: Used in modern operating systems and language runtime systems.

7. Comparison of Linkers and Loaders

Feature

Definition

Main Function

Input
Output

Time of
Operation

Relocation

Symbol
Resolution

Linker

Loader

Combines multiple object modules into a single Loads the executable program into

executable file

Linking and relocation

Object files (.obj)

Executable file (.exe)

Before execution (compile time)

Done by linker or passed to loader

Yes

Example Utility LINK.EXE (MS-DQS)

main memory

Memory allocation and program
execution

Executable file (.exe)

Program in memory

At execution time (runtime)

Done by relocating loader

No

LOAD.EXE, part of OS

8. Summary of All Concepts

Concept Description
Linking Combining multiple object modules into a single executable
Relocation Adjusting addresses when the program is moved to a new memory location

Dynamic Linking Linking done at runtime using shared libraries

Loader Places executable program into memory for execution
Sequential Loader Loads program sequentially in memory

Absolute Loader Loads code at fixed addresses (no relocation)
Relocating Loader Adjusts addresses based on new memory location

Linking Loader Performs both linking and loading at runtime

9. Real-World Example

When you compile and run a program in C:

1. Compilation:
2. gcc main.c add.c -c

— Produces object files main.o and add.o.

3. Linking:

4. gcc main.o add.o -o program
— Linker combines them into an executable.

5. Loading:
6. ./program

— Loader loads it into memory, relocates addresses, and starts execution.

10. Advantages of Linkers and Loaders

Advantages of Linker:

o Simplifies program development by allowing modular programming.
e Supports use of libraries and reusable code.
« Handles symbol resolution and relocation efficiently.

Advantages of Loader:
o Provides flexibility in program placement.

e Supports dynamic memory management.
o Makes program execution easier and faster.

Execution

UNIT V: System Programming
Scanning and Parsing: Programming Language Grammars and Classification, Ambiguity in Grammatic

Specification, Scanning, Parsing,

Compilers and Interpreters: Compilation Process, Semantic Gap, Binding, and Scope Rules, Memory
Allocation, Compilation of Expressions & Control Structures, Code Optimization, Overview of
Interpreters and Debuggers,

Operating System Command & Shell Basics: C Development Tools, Machine-Level Representation of
Data and Programs,

System-Level Programming and Concurrency: File /0, Process Creation & Control (fork, exec), Pipes,
Signals, and Basic Threading.

System Programming can be defined as the act of building Systems Software using System
Programming Languages. According to Computer Hierarchy, Hardware comes first then is
Operating System, System Programs, and finally Application Programs.

In the context of an operating system, system programs are nothing but a special software
which give us facility to manage and control the computer's hardware and resources.

As we have mentioned earlier these programs work more closely with the operating system so
it executes the operation fast and helpful in performing essential operation which can't be
handled by application software.

USER

A

h 4

USER INTERFACE

SYSTEM APPLICATION
PROGRAMS PROGRAMS

SYSTEM CALLS

KERNEL

UNIT: Scanning and Parsing

1. Programming Language Grammars and Classification

Definition:

A grammar is a set of rules that define the syntactic structure of a programming language.
It tells how statements and expressions are formed.

Components of a Grammar (in compiler design):

A grammar G can be represented as a 4-tuple:
G=(V,T,P,9S)
where,

e 'V — Variables (non-terminals)

e T —Terminals (symbols or tokens)
e P —Production rules

e S — Start symbol

Example Grammar:

S E 4+ T |
ST % F |

E
T
JE - (E) | 1

o3

1 This grammar defines arithmetic expressions.

Classification of Grammars (Chomsky Hierarchy):

Type Name Example Language Description

Type Turing Machine

Unrestricted Grammar No restriction on production rules

0 languages

Type . _

1 Context-Sensitive Grammar L = {a"b"cn} Rules depend on context
Type Context-Free Grammar Proaramming lanquages Used for parsing and syntax
2 (CFG) g g languag analysis

Type Regular Grammar Regular expressions Used n lexical analysis

3 (scanning)

Use in Compiler:

e Regular Grammar — Used by Scanner (Lexical Analyzer)
o Context-Free Grammar — Used by Parser

2. Ambiguity in Grammatic Specification

Definition:

A grammar is said to be ambiguous if there exists more than one parse tree (or derivation) for
the same string.

Example:

Grammar:
E-E+E | E*E | id
String: id + id * id

1 Two possible parse trees:

1. id + (id * id)
2. (id + id) * id

Hence, grammar is ambiguous.

Problems Caused by Ambiguity:
e Confusing compiler behavior.
o Multiple interpretations of the same statement.
« Difficulty in syntax analysis.

Solution to Ambiguity:

e Modify grammar to make it unambiguous.
o Use operator precedence and associativity rules.

Example (Unambiguous Grammar):

=

+ T | T
*F | F

L= R |
Lol

d

-

Now = has higher precedence than +.

3. Scanning (Lexical Analysis)
Definition:

Scanning or Lexical Analysis is the first phase of a compiler.
It converts source code into a sequence of tokens.

Main Functions:
1. Remove whitespaces and comments
2. ldentify tokens (keywords, identifiers, literals, operators, etc.)
3. Generate symbol table entries

Token Example:

For input:

sum = a + b;

Tokens generated are:
<id, sum>, <=, assign>, <id, a>, <+, plus>, <id, b>, <;, semicolon>

Lexical Analyzer Diagram:

Source Program — [Lexical Analyzer] — Tokens

1
Symbol Table

Tool Used:

Lex / Flex (Lexical Analyzer Generator)

4. Parsing (Syntax Analysis)

Definition:

Parsing is the second phase of the compiler.

It checks whether the sequence of tokens follows the grammar rules of the programming
language.

Purpose:

e To ensure the syntax of the source code is correct.
e To build a parse tree or syntax tree.

Phases Relationship:

Source Code - Scanner - Tokens — Parser — Parse Tree

Types of Parsers:

Parser Type Technique Direction Example

Parser Type Technique Direction Example

Top-Down Start from root (start symbol) and try to Left to Recursive Descent, LL
Parser reach input string right Parser

Bottom-Up Start from input symbols and try to reach Left to Shift-Reduce, LR
Parser the start symbol right Parser

Parse Tree

Definition:

A parse tree is a tree representation showing how a string is derived from the start symbol using
grammar rules.

Example Grammar:

E-E+T]| T
T - id

For input: id + id

Parse Tree:

Unit: Compilers and Interpreters

1. Introduction

A compiler and an interpreter are both language processors that convert high-level programs
(like C, Java, Python) into machine code that the computer can understand.
However, they differ in how and when they perform this translation.

2. Compiler vs Interpreter

Feature
Translation

Execution speed

Output
Error handling

Example
Languages

Example:

Code:

Compiler

Converts the entire program into machine code
at once

Faster (code is already compiled)

Produces an executable file

Shows all errors after full compilation

C, C++, Java

print ("Hello World")

Interpreter

Translates one line at a time

Slower (translates while executing)
No separate executable file

Stops immediately when an error
occurs

Python, BASIC, JavaScript

e Incompiler-based languages (C, C++), the entire program is compiled first before

execution.

e Ininterpreted languages (Python), each line is executed immediately.

3. Compilation Process

The compilation process involves several phases, each transforming the program step-by-step.

Phases of Compilation:

1. Lexical Analysis (Scanning):
o Breaks source code into tokens (keywords, identifiers, symbols).
o Example:

@) a

= Db + 5;

Tokens — a, =, b, +, 5, ;

2. Syntax Analysis (Parsing):
o Checks whether the tokens form a valid syntax according to grammar rules.
o Example: Detects missing semicolon or wrong order of operators.

3. Semantic Analysis:

Ensures meaning of the program is correct.
Example: Checks variable types.

int a;
a = "hello"; // Error: type mismatch
4. Intermediate Code Generation:
o Creates an intermediate code between source and machine code.

O O O O

o Example:
o tl =Db+ 5
o a = tl

5. Code Optimization:
o Improves the efficiency of the intermediate code (reduces redundancy).
o Example:

Before:
o tl =Db + 0
o a = tl

After Optimization:
a=>,
6. Code Generation:
o Converts optimized code into machine code.

7. Code Linking and Loading:
o Combines all program parts and loads them into memory for execution.

4. Semantic Gap
Definition:

The semantic gap is the difference between how humans think and write code and how
machines understand instructions.

« High-level languages (like C, Java) are closer to human thinking.
e Machine language is binary, hard for humans to understand.

Example:

sum = a + b;

e Human meaning: Add two variables.
e Machine view: Perform specific load, add, and store operations in registers.

Reducing the Gap:

Compilers and interpreters bridge this gap by translating human-friendly code into machine
instructions.

5. Binding and Scope Rules
Binding:

Binding refers to associating program elements (like variables, functions) with their properties
(like type, value, location).

Types of Binding:
1. Static Binding (Early Binding):
Done at compile time.

Example:

int x = 10; // data type and value known at compile time
2. Dynamic Binding (Late Binding):

Done at run time.
Example:

Shape s = new Circle(); // Actual type known at runtime

Scope Rules:

Scope defines where a variable can be accessed in a program.

Types:
1. Local Scope: Variable declared inside a function or block.
Example:
void fun () {
int a = 10; // local variable

}
2. Global Scope: Variable declared outside all functions.
int a = 20; // global variable

Rule:
Local variables override global variables if they share the same name.

6. Memory Allocation
Memory allocation decides where variables and data are stored during program execution.

Types:

1. Static Allocation:

o Done at compile time.

o Example: Global variables, constants.
2. Stack Allocation:

o Used for local variables and function calls.

o Allocated when function is called, freed when function ends.
3. Heap Allocation:

o Done dynamically at runtime using pointers.

o Example (C language):

o int *p = (int*) malloc(sizeof (int))

7. Compilation of Expressions and Control Structures

Expressions:

The compiler converts arithmetic expressions into machine instructions.
Example:

Xx =a + b * c;

Intermediate Code:

tl = b * ¢
x = a + tl

Control Structures:
Compilers convert loops and conditionals into jumps and branches.

Example:

if (x >
max

else
max = y;

=

I
X

Intermediate Code:

if x <= y goto L1
max = X

goto L2

Ll: max =y

L2:

Code Optimization
Definition:

Code optimization makes the compiled program run faster or use less memory without
changing its output.

Examples of Optimizations:

1. Constant Folding:
Replace constant expressions with their results.
Example:
a=>5%*4; >a = 20;
2. Dead Code Elimination:
Remove code that never executes.
Example:

if (0) { ... } // Removed

3. Common Subexpression Elimination:
Avoid repeating calculations.

Example:

a =Db * c;
d=Db *c + e;
H

t=Db * c;

a = t;

d=t + e;

9. Overview of Interpreters and Debuggers

Interpreters:

o Translate line by line and execute immediately.

o Useful for testing and rapid development.
o Example: Python Interpreter (IDLE)

Debuggers:

e Help programmers find and fix errors.
o Features:

o Breakpoints

o Step-by-step execution

o Variable watching

Example:
In C/C++ — GDB (GNU Debugger)
In Java — Eclipse Debugger

Diagram: Compilation Process

Source Code
l

Lexical Analysis
l

Syntax Analysis
l

Semantic Analysis

l
Intermediate Code Generation

l
Code Optimization

l
Code Generation

l
Executable Code

UNIT: Operating System Command & Shell Basics

1. Introduction

An Operating System (OS) provides an interface between the user and computer hardware.
One of the main ways users interact with an OS is through the Command Line Interface (CLI)
or Shell.

A Shell is a command interpreter that executes commands entered by the user.

Examples of Shells:
e Bash (Bourne Again Shell) — Linux default shell

¢ PowerShell — Windows shell
e Zsh, Ksh, Tcsh — other Unix/Linux shells

2. Shell Basics

2.1 What is a Shell?

A shell acts as a middle layer between the user and the kernel.
It takes commands from the user and passes them to the kernel for execution.

Diagram:
User - Shell - Kernel - Hardware

k2.2 Common Shell Commands

Command Meaning Example

pwd Show current working directory pwd

1s List files in directory 1s -1

cd Change directory cd /home/user

mkdir Create new directory mkdir project

rm Remove files rm file.txt

cp Copy file cp a.txt b.txt

mv Move or rename file mv old.txt new.txt
cat Display contents of file cat file.txt

grep Search text in files grep "main" program.c

echo Print message echo Hello

3. C Development Toolsi C Development Tools

1. Introduction

C Development Tools are the software components and utilities that help programmers write,
compile, debug, and run C programs efficiently.

They provide everything required to convert human-readable C code into machine-executable
programs.

2. Components of a C Development Environment

A C development environment generally includes:

Tool Description Example
Editor Used to write C source code Notepad, VS Code, Code::Blocks
Compiler Translates C code to machine code GCC, Turbo C, Clang
Assembler Converts assembly code to object code NASM, GAS
Linker Combines multiple object files into a single executable 1d (GNU linker)
Loader Loads the executable into memory for execution OS Loader
Debugger Helps to test and remove errors GDB, Turbo Debugger

3. Diagram — Phases of C Program Development

| Source |--->| Compiler |--->| Assembler| --->| Linker |--->| Loader |
| Code ()] [(obj/.0) | [(obj) | [(exe) | [(inRAM)|

4. Major C Development Tools

a) Text Editors

Used for writing and saving C source code files (. c extension).
Examples:

o Notepad, Sublime Text, Atom, VS Code, Vim
Features:

e Syntax highlighting

e Auto-completion
e Code indentation

b) Compiler
A compiler converts the C program into object code (machine-understandable format).
Popular C Compilers:
e GCC (GNU Compiler Collection) — Linux/Windows
e Turbo C - Legacy Windows IDE
e Clang — Fast modern compiler for macOS/Linux
Compilation Command (GCC Example):

gcc program.c —-oO program

= Creates an executable file named program.

c¢) Assembler
e The compiler first generates assembly code, which the assembler translates into object
code.
« Converts mnemonics (assembly instructions) to binary machine code.

Example:
Assembly instruction Mmov ax, Bx — Machine code 89 D8

d) Linker

o Combines multiple object files and required library files to produce a single executable
program.

¢ Resolves external references (like printf () from standard libraries).

Example:
If your program uses printf (), the linker includes code from the C standard library (libc).

e) Loader

o Loads the executable file into main memory (RAM).
e Assigns memory to code and data segments and starts program execution.

) Debugger

e Used to detect and fix errors (bugs) in programs.
« Allows step-by-step execution, setting breakpoints, and checking variable values.

Example Debugger:

o GDB (GNU Debugger)
e Turbo Debugger

Common GDB Commands:

gdb program

gdb) break main
) run
) print x

gdb) next
) quit

5. Popular Integrated Development Environments (IDES)

IDE Platform Features
Turbo C/C++ Windows Simple, used for learning
Code::Blocks Cross-platform Modern GUI, debugger, compiler integration

Dev-C++ Windows Lightweight and fast

IDE Platform Features
Visual Studio Code (VS Code) Cross-platform Extensions for C/C++, Git integration
Eclipse CDT Cross-platform Industrial-grade IDE

Xcode macOS Used for Apple development

6. Workflow of a C Program

Example Program: neilo.c

#include <stdio.h>

int main () {
printf ("Hello, System Programming!\n");
return 0;

Compilation Steps:
Step Command Description
Preprocessing gcc -E hello.c -o hello.i Expands macros and includes header files
Compilation gcc -S hello.i -o hello.s Converts C code to assembly
Assembly gcc -c hello.s -o hello.o Converts assembly to object code

Linking gcc hello.o -o hello Creates final executable file

7. Errors in C Development

Error Type Meaning Example
Syntax Error Mistake in code syntax Missing semicolon
Linker Error Missing function definition Undefined reference to printf

Runtime Error Occurs during program execution Division by zero

Error Type Meaning Example

Logical Error Incorrect logic Wrong formula used

8. Advantages of Using Development Tools

« Faster program creation and debugging

« Efficient memory and resource management
o Easier code navigation

o Integrated testing and version control support

9. Summary Table

Tool Function Example
Editor Write code VS Code
Compiler Translate code GCC

Assembler Convert assembly to object code GAS

Linker Combine object files Id
Loader Load program into memory OS Loader
Debugger Find and fix errors GDB

10. Real-Time Example (GCC in Action)

Step 1l: Create source code
nano test.c

Step 2: Compile
gcc test.c -o test

Step 3: Run
./test

] Output:

Hello, System Programming!

11. Conclusion
C Development Tools form the foundation for system-level and application-level
programming.

Understanding these tools helps students learn how source code becomes executable, manage
errors, and optimize performance.

4. Machine-Level Representation of Data and Programs

4.1 Data Representation

All data (numbers, characters, instructions) are represented in binary (Os and 1s) inside the
computer.

Data Type Representation Example
Integer 10 -> 00001010 (binary)
Character 'A' - 65— 01000001

Float Represented using IEEE-754 format

4.2 Program Representation
When a program is compiled:

Source Code (.c) — Human-readable

Assembly Code (.s) — Low-level instructions
Object Code (.0) — Machine-readable binary
Executable File (.out) — Ready for execution

el NS =

Compilation Process:

Source Code — Compiler — Object Code - Linker — Executable

System-Level Programming

System-level programming involves writing programs that interact directly with the operating
system using system calls (like file handling, process control, etc.).

6. File 1/0 in System Programming

System calls used for file operations are lower-level than standard library functions (fopen,
fclose, etc.).

Important System Calls:
Function Purpose

open () Open afile

read () Read datafrom afile
write () Write data to a file

close () Close the file

Example: File Write and Read

#include <fcntl.h>
#include <unistd.h>

int main() {
int fd;
char buffer([100];

// Open or create file

fd = open("demo.txt", O CREAT | O WRONLY, 0644);
write (fd, "Hello, OS Programming!", 22);

close (fd) ;

// Read file

fd = open("demo.txt", O RDONLY) ;

read (fd, buffer, 22);

write (1, buffer, 22); // write to standard output
close (fd) ;

return 0;

Explanation:

e 0 CREAT — Create file if not exist
e 0O _WRONLY — Open in write mode
e 0644 — File permission bits

7. Process Creation and Control

A process is an executing instance of a program.
Linux provides system calls like fork () and exec () to create and control processes.

7.1 fork() System Call

e Used to create a new process (child process).
e After fork (), two processes run concurrently:
o Parent process
o Child process

Example:

#include <stdio.h>
#include <unistd.h>

int main () {
int pid = fork();
if (pid == 0)
printf ("Child Process\n");
else
printf ("Parent Process\n");

return 0;

}

Output:

Parent Process
Child Process

(order may vary)

7.2 exec() System Call

e Used to replace the current process with a new program.

Example:

#include <unistd.h>

int main () {
char *args[] = {"1ls", "-1", NULL};
execvp ("1ls", args);
return 0;

}

Explanation:
The current program is replaced by 1s -1.

8. Pipes (Inter-Process Communication)

A pipe allows two processes to communicate by reading/writing through a shared buffer.
Diagram:

Process 1 - [Pipe] — Process 2

Example:

#include <unistd.h>
#include <string.h>

int main () {
int f£d[2];
char msg[] = "Hello Pipe";
char buffer[20];

pipe (fd); // create pipe

if (fork() == 0) {
// Child reads
read (£fd[0], buffer, sizeof (buffer));
printf ("Child received: %s\n", buffer);
} else {
// Parent writes
write (fd[1l], msg, strlen(msg)+1l);
}

return 0;

9. Signals

Signals are software interrupts sent to a process to notify it of an event.
Common Signals:
Signal Meaning
SIGINT Interrupt (Ctrl + C)
SIGKILL Forcefully kill process
SIGTERM Termination request

SIGSEGV Segmentation fault

Example: Handling Signals

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void handler (int signum) {
printf ("Caught signal %d\n", signum);
}

int main () {
signal (SIGINT, handler);
while (1) {
printf ("Running...\n");
sleep (1)
}

return 0;

}

Explanation:
When user presses Ctrl + C, it prints “Caught signal 2” instead of exiting.

10. Basic Threading

A thread is a lightweight sub-process that runs within the same memory space of a program.

Advantages of Threads:

o Faster context switching
e Shared memory
o Efficient for parallel tasks

Example:

#include <pthread.h>
#include <stdio.h>

void* printMsg(void* arg) {
printf ("Hello from thread!\n");
return NULL;

}

int main () {
pthread t tl1;
pthread create(&tl, NULL, printMsg, NULL);
pthread join(tl, NULL);
printf ("Thread finished.\n");
return 0;

Output:

Hello from thread!
Thread finished.

	OPERATING SYSTEM AND SYSTEM PROGRAMMING
	UNIT-I

	Fundamentals of Operating Systems and Process Management
	Basics :

	Introduction to Operating System
	Why do we need an Operating System?
	Main Functions of Operating System
	✅ a) Process Management
	✅ b) Memory Management
	✅ c) File Management
	✅ d) Device Management
	✅ e) Security and Protection

	1️⃣ First Generation (1940s – Early 1950s) – No Operating System
	2️⃣ Second Generation (1955 – Mid 1960s) – Batch Processing Systems
	3️⃣ Third Generation (Mid 1960s – 1970s) – Multiprogramming & Time-Sharing Systems
	4️⃣ Fourth Generation (Late 1970s – Present) – Personal Computer (PC) Operating Systems
	5️⃣ Fifth Generation (Present – Future) – Advanced & AI-Based Operating Systems
	1. Batch Operating System
	Advantages of Batch Operating System
	Disadvantages of Batch Operating System

	k2. Multi-Programming Operating System
	Advantages of, Multi-Programming Operating System

	3. Multi-Processing Operating System
	4. Multi-User Operating Systems
	Advantages of a Multi-User Operating System

	5. Distributed Operating System
	6. Network Operating System
	Micro-Kernel Structure
	Advantages
	Disadvantages

	Monolith Structure
	Operating System Services
	1️⃣ User Services
	2️⃣ System Services

	What is a Process?
	What is Process Management?
	Process Control Blocks
	Working Process Context Switching
	What is Multithreading?
	How Does Multithreading Work?

	Operating System - Process Scheduling
	Operating System Scheduling algorithms
	Problem 1
	Solution
	Example of Round Robin Scheduling
	GANTT Chart with time quantum of 2ms
	Average Turnaround Time
	Average Waiting Time

	Multiple-Processor Scheduling
	Approaches to Multiple Processor Scheduling
	Symmetric Multiprocessing
	Asymmetric Multiprocessing

	1️⃣ Race Conditions
	2️⃣ Critical Section
	3️⃣ Mutual Exclusion
	4️⃣ Peterson’s Solution
	5️⃣ Semaphores
	Uses of Semaphores
	6️⃣ Monitors (Classical IP)

	Readers-Writers Problem
	Solution of the Reader-Writer Problem
	Solution When Reader Has The Priority Over Writer

	Dining Philosophers Problem
	Problem Statement
	Constraints and Conditions for the Problem
	Solution
	Algorithm

	Definition
	2️⃣ Characteristics (Coffman Conditions)
	Deadlock Prevention
	4️⃣ Deadlock Avoidance
	Banker's Algorithm:

	5️⃣ Deadlock Detection
	6️⃣ Deadlock Recovery

	What is a Logical Address?
	What is a Physical Address?
	Difference between Logical and Physical Address in Operating System
	What is Internal Fragmentation?
	What is External Fragmentation?
	Before Compaction
	After Compaction
	Types of Segmentation
	What is Segment Table?
	virtual Memory in Operating System
	Objectives of Virtual Memory
	What is Page Fault?
	Working Process of Demand Paging
	Common Algorithms Used for Demand Paging in OS
	Problem 2: LRU Page Replacement

	File System Management
	1. File Concepts
	2. Access Methods
	3. File Types and Operations
	File Types:

	1. Text Files
	2. Binary Files
	3. Source Code Files
	4. Executable Files
	5. Multimedia Files
	File Operations:

	🔹 Basic File Operations
	4. Directory Structure
	Types of Directory Structures:

	1. Single-Level Directory
	2. Two-Level Directory
	3. Tree-Structured Directory
	4. Acyclic Graph Directory
	5. General Graph Directory
	5. File System Structure
	7. Free-Space Management
	8. Directory Implementation

	Storage Management
	1. Mass Storage
	2.Disk Structure
	3. RAID Levels (Redundant Array of Independent Disks)
	4. Disk Scheduling Algorithms
	5. Swap Space Management
	6. Stable Storage
	7. Tertiary Storage Structure
	Disk Scheduling
	10.4.1 FCFS Scheduling
	10.4.2 SSTF Scheduling
	10.4.3 SCAN Scheduling
	10.4.4 C-SCAN Scheduling
	12.4.5 LOOK Scheduling

	(a) I/O Devices
	(b) Device Controllers
	Direct Memory Access (DMA)
	Direct Memory Access is a feature that allows I/O devices (like disk drives, network cards, sound cards) to directly transfer data to/from the main memory (RAM) without continuous involvement of the CPU
	I/O Software
	(a) Interrupt Handlers
	(b) Device Drivers
	(c) Device-Independent I/O Software
	(d) User-Level I/O (System Calls)

	3. Layered I/O Structure
	System Protection and Security
	1. Security Environment
	2. jSecurity Design Principles
	1. Least Privilege
	2. Fail-Safe Defaults
	3. Economy of Mechanism
	4. Complete Mediation
	5. Open Design
	6. Separation of Privilege
	7. Least Common Mechanism
	8. Psychological Acceptability

	5. Protection Mechanisms
	5. Protection Domain
	6. Access Control List (ACL)
	1. Development of Unix/Linux
	Important Features Introduced
	Key Features of Linux

	Difference between Unix and Linux
	2. Role of Kernel
	1. Definition of Kernel
	2. Main Roles of Kernel
	1. Monolithic Kernel
	2. Microkernel
	3. Hybrid Kernel

	3. System Calls
	Categories of System Calls

	4. Elementary Linux Commands
	6. Shell Programming
	6. Directory Structure
	7. System Administration

	Software
	Types of Software / Software Hierarchy
	1. System Software
	2. Application Software

	Software Hierarchy Diagram
	Systems Programming and Machine Structure
	1. Introduction
	2. Systems Programming
	Examples of System Software
	Characteristics of Systems Programming

	Machine Structure
	Components of Machine Structure

	4. Relationship Between Systems Programming and Machine Structure

	Interfaces
	Types of Interfaces

	2. Address Space
	Types of Address Space

	3. Computer Languages
	Levels of Languages

	4. System Software Development
	Steps in System Software Development
	What are the 10 Software Development Processess?
	1. Communication
	2. Requirement Gathering
	3. Feasibility Study
	4. System Analysis(A planning phase)
	5. Software Design
	6. Coding
	7. Testing
	8. Integration
	9. Implementation
	10. Operation and Maintenance
	Examples of System Software Developed

	5. Recent Trends in System Software
	Recent Developments

	Language Processors
	1. Programming Languages and Language Processing
	Programming Languages
	Language Processing

	2. Symbol Tables and Data Structures for Language Processing
	Symbol Table
	Data Structures for Language Processing

	3. Search and Allocation Data Structures
	Search Data Structures
	Allocation Data Structures

	Diagram: Role of Language Processor

	ASSEMBLERS AND MACRO PROCESSORS
	1. Elements of Assembly Language Programming
	Definition:
	Key Elements:

	2. Design of an Assembler
	What is an Assembler?
	Functions of an Assembler:

	3. Types of Assemblers
	(a) One-Pass Assembler
	(b) Two-Pass Assembler

	4. Macro and Macro Processor
	Definition of Macro:
	Macro Processor:

	5. Macro Definitions and Expansion
	Macro Definition:
	Macro Call:

	Nested Macros
	Definition:

	7. Advanced Macro Features
	(a) Parameters:
	(b) Default Arguments:
	(c) Conditional Macros:
	(d) Macro Expansion Control:

	8. Design of Macro Assemblers and Macro Processors
	Steps in Macro Processing:
	1. Macro Definition Processing:
	2. Macro Expansion:
	3. Assembly of Expanded Code:

	Tables Used in Macro Processing:

	9. Advantages of Using Macros
	10. Difference Between Macro and Subroutine

	LINKERS AND LOADERS
	1. Introduction
	2. Concept of Linking
	Definition:
	Example:
	Functions of the Linker:

	3. Concept of Relocation
	Definition:
	Need for Relocation:
	Example:

	4. Linking in MS-DOS
	Steps:
	Characteristics of Linking in MS-DOS:

	5. Dynamic Linking
	Definition:
	Features:
	Example:
	Advantages:
	Disadvantages:

	6. Loading Schemes
	(a) Sequential Loading
	(b) Direct Loading
	(c) Absolute Loader
	(d) Relocating Loader
	(e) Linking Loader

	7. Comparison of Linkers and Loaders
	8. Summary of All Concepts
	9. Real-World Example
	10. Advantages of Linkers and Loaders
	Advantages of Linker:
	Advantages of Loader:

	UNIT: Scanning and Parsing
	1. Programming Language Grammars and Classification
	Definition:
	Components of a Grammar (in compiler design):
	Example Grammar:
	Classification of Grammars (Chomsky Hierarchy):
	Use in Compiler:

	2. Ambiguity in Grammatic Specification
	Definition:
	Example:
	Problems Caused by Ambiguity:
	Solution to Ambiguity:

	3. Scanning (Lexical Analysis)
	Definition:
	Main Functions:
	Token Example:
	Lexical Analyzer Diagram:
	Tool Used:

	4. Parsing (Syntax Analysis)
	Definition:
	Purpose:
	Phases Relationship:
	Types of Parsers:

	Parse Tree
	Definition:
	Example Grammar:

	Unit: Compilers and Interpreters
	1. Introduction
	2. Compiler vs Interpreter
	Example:
	Code:

	3. Compilation Process
	Phases of Compilation:

	4. Semantic Gap
	Definition:
	Example:
	Reducing the Gap:

	5. Binding and Scope Rules
	Binding:
	Scope Rules:

	6. Memory Allocation
	Types:

	7. Compilation of Expressions and Control Structures
	Expressions:
	Control Structures:

	Code Optimization
	Definition:
	Examples of Optimizations:

	9. Overview of Interpreters and Debuggers
	Interpreters:
	Debuggers:

	Diagram: Compilation Process

	🧠 UNIT: Operating System Command & Shell Basics
	1. Introduction
	Examples of Shells:

	2. Shell Basics
	2.1 What is a Shell?
	Diagram:
	k2.2 Common Shell Commands

	3. C Development Tools🧠 C Development Tools
	1. Introduction (1)
	2. Components of a C Development Environment
	3. Diagram – Phases of C Program Development
	4. Major C Development Tools
	a) Text Editors
	b) Compiler
	c) Assembler
	d) Linker
	e) Loader
	f) Debugger

	5. Popular Integrated Development Environments (IDEs)
	6. Workflow of a C Program
	Example Program: hello.c
	Compilation Steps:

	7. Errors in C Development
	8. Advantages of Using Development Tools
	9. Summary Table
	10. Real-Time Example (GCC in Action)
	11. Conclusion
	4. Machine-Level Representation of Data and Programs
	4.1 Data Representation
	4.2 Program Representation

	System-Level Programming
	6. File I/O in System Programming
	Important System Calls:
	Example: File Write and Read

	7. Process Creation and Control
	7.1 fork() System Call
	Example:
	7.2 exec() System Call
	Example: (1)

	8. Pipes (Inter-Process Communication)
	Diagram:
	Example:

	9. Signals
	Common Signals:
	Example: Handling Signals

	10. Basic Threading
	Advantages of Threads:
	Example:

