UNIT 1: INTRODUCTION TO QUANTUM THEORY AND TECHNOLOGIES

1) The transition from classical to quantum physics:

The transition from **classical to quantum physics** marked one of the most profound revolutions in the history of science. It occurred primarily in the early 20th century, as physicists encountered phenomena that classical physics couldn't explain. Here's an overview of this transformation:

***** 1. Classical Physics Overview

Classical physics, based on Newtonian mechanics, Maxwell's electromagnetism, and thermodynamics, worked well for describing:

- Motion of macroscopic objects
- Planetary dynamics
- Electricity and magnetism
- Heat and energy transfer

However, it began to **fail at microscopic scales** (atoms, electrons, photons).

△ □ 2. Key Failures of Classical Physics

Classical theories could not explain:

Phenomenon	Classical Prediction	Actual Observation	
Blackbody Radiation	Infinite energy at short wavelengths ("ultraviolet catastrophe")	Energy peaks and drops at high frequencies	
Photoelectric Effect	Light energy depends on intensity	No electrons emitted below a certain frequency, regardless of intensity	
Atomic Spectra	Continuous spectrum	Discrete spectral lines (e.g., hydrogen)	
Stability of Atoms	Electrons should spiral into nucleus	Atoms are stable in nature	

? 3. Birth of Quantum Theory (Key Milestones)

Year Scientist	Discovery
1900 Max Planck	Proposed energy quantization: E=hvE = h\nu
1905 Albert Einstein	Explained photoelectric effect using photons (quantum of light)

Year Scientist Discovery

1913 Niels Bohr Quantized orbits in hydrogen atom

1924 Louis de Broglie Wave-particle duality of matter

1926 Erwin Schrödinger Developed wave mechanics (Schrödinger equation)

1927 Werner Heisenberg Introduced uncertainty principle

1928 Paul Dirac Combined quantum mechanics and relativity (Dirac equation)

4. Fundamental Differences

Aspect Classical Physics Quantum Physics

Nature Deterministic Probabilistic

Energy Continuous Discrete (quantized) **Wave-Particle Duality** Separate concepts Unified dual nature

Measurement Does not affect system Observer affects outcome **Position & Momentum** Known simultaneously Uncertainty principle applies

□ 5. Philosophical Implications

- Quantum superposition: A particle can exist in multiple states at once.
- **Entanglement**: Particles can be connected instantly across distance.
- **Observer effect**: Measurement collapses the wave function to a definite state.

These led to deep philosophical questions and interpretations (e.g., Copenhagen interpretation, Many-Worlds, etc.).

★ 6. Impact and Applications

Quantum theory laid the foundation for:

- Semiconductors and electronics
- Lasers
- MRI and other medical imaging
- Quantum computing and cryptography
- Understanding of atomic and subatomic particles

2) Fundamental principles explained conceptually: Superposition, Entanglement, Uncertainty Principle, Wave-particle duality, Classical vs Quantum mechanics – theoretical comparison, Quantum states and measurement:

Here's a **conceptual explanation** of the **fundamental principles of quantum physics**, comparing them with classical physics where needed. Each concept is broken down simply and clearly:

♦ 1. Superposition

₫ Concept:

- In quantum mechanics, a system (like an electron or photon) can exist in **multiple possible states at once** until it is measured.
- This is called a **superposition** of states.

\square Analogy:

• Imagine a spinning coin: before it lands, it's **both heads and tails** — only when you observe it (measure) does it become one or the other.

\square Example:

• An electron in an atom doesn't have a single fixed location; it exists in a **cloud of probabilities** until you look for it.

♦ 2. Entanglement

<u>s</u> Concept:

- Two quantum particles can become **entangled**, meaning their states are **strongly correlated**, no matter how far apart they are.
- Changing one instantly affects the other even if they are light-years away.

□ Analogy:
• Like a pair of gloves in separate boxes: if you open one and see a left glove, you instantly know the other box has the right glove — but with entanglement, it's more than this — the states aren't decided until one is observed.
□ Weird but true:
• Entanglement defies classical ideas of locality. It was famously called "spooky actio at a distance" by Einstein.
♦ 3. Uncertainty Principle (Heisenberg's)
₫ Concept:
 You cannot know both the position and momentum of a particle exactly at the same time. The more precisely you measure one, the less precisely you can know the other.
□ Analogy:
• Like trying to photograph a fast-moving car: if you get a clear photo of the car's location (still frame), it blurs the speed. If you capture speed (motion blur), you lose the exact position.
⊶ Formula:
Δx·Δp≥h4π\Delta x \cdot \Delta p \geq \frac{h}{4\pi}
♦ 4. Wave-Particle Duality
₫ Concept:
 Particles like electrons and photons can behave like particles and waves. They don't just travel like marbles; they can interfere and diffract like ripples in water.
□ Analogy:
• Like light being both a beam and a ripple, depending on how you observe it.
□ Double-Slit Experiment:
• If you shoot one photon at a time through two slits, it creates a wave interference pattern — as if it went through both slits simultaneously — until you measure it.

♦ 5. Classical vs. Quantum Mechanics – Theoretical Comparison

Feature	ture Classical Mechanics Quantum Me	
Determinism	Predictable outcomes	Probabilistic outcomes
State	Well-defined (e.g., position, velocity)	Described by wavefunction
Measurement	Does not affect system	Collapses wavefunction
Particles/Waves	Separate concepts	Unified (duality)
Scales	Macroscopic (planets, projectiles) Microscopic (atoms, photons	
Causality	Local cause-effect	Nonlocal correlations (entanglement)

♦ 6. Quantum States and Measurement

₫ Concept:

- A quantum state describes all possible information about a system (via a wavefunction).
- When measured, this state **collapses** to one specific outcome.

☐ Analogy:

• Like a spinning roulette wheel with all possibilities. Measurement is like the ball landing on one number — the outcome is real **only** after you observe it.

★ Key Ideas:

- Before measurement: system is in a **superposition** of states.
- After measurement: system collapses into a **definite state**.
- The act of observing **changes** the system.

✓ Summary Table

Principle	Key Idea	Classical View	Quantum View	
Superposition	Many states at once	One state only	All possible states until measured	
Entanglement	Linked particles	No long-distance influence	nstant connection regardless of distance	
Uncertainty	Limits of knowledge	Know everything precisely	Built-in fuzziness in nature	
Wave-Particle Duality	Dual behavior	Either particle or wave	Both, depending on observation	
Measurement	Observing a system	Passive action	Actively affects the system	
Quantum State	Complete description	Precise numbers	Probabilities encoded in wavefunction	

3) Nature Of Observation, Overview Of Quantum Systems:

Here's a **clear and conceptual explanation** of the **nature of observation** in quantum physics and an **overview of quantum systems**:

Q Nature of Observation in Quantum Physics

<u>4</u> 1. Observation Is Not Passive

In classical physics, observing something (like a planet) doesn't affect it. But in quantum physics, **observation changes the system**.

? 2. Wavefunction Collapse

- A quantum particle exists in a **superposition** multiple possible states.
- When you **measure** it, the wavefunction **collapses** into a single definite state.
- You don't just **discover** what was there you actually **decide** what it becomes.

☐ Analogy:

• Like a spinning dice that shows all numbers at once — but once you look, it "chooses" just one number.

● 3. Role of the Observer

- The observer doesn't have to be a human. Even a **detector or measuring instrument** counts as an observer.
- The key idea: **interaction** with the system defines the outcome.

∆ 4. Quantum Measurement Paradox

- Example: Schrödinger's Cat is **both alive and dead** until observed.
- This highlights how strange and unintuitive the quantum world is compared to everyday experience.

Overview of Quantum Systems

Quantum systems are **physical systems** that behave according to **quantum mechanics** — they are typically very small (atoms, electrons, photons, etc.) and display non-classical behaviors.

♦ 1. Basic Components of a Quantum System

Element	Description
Quantum state	Describes all possible information (via wavefunction ψ\psi)
Wavefunction	Mathematical function giving probabilities for outcomes
Observable	Measurable quantities (position, momentum, energy, spin)
Operator	Mathematical tool used to get values of observables
Hilbert space	Abstract space in which quantum states "live"

♦ 2. Types of Quantum Systems

System	Example	Behavior	
Two-level system Spin-½ particle, qubit		Only two possible states (e.g., up/down)	
Harmonic oscillator	Vibrating atom or molecule	Discrete energy levels like a quantum spring	
Multi-particle system Electrons in an atom		May be entangled, obey Pauli exclusion	
Quantum field	Photons in a field	Infinite degrees of freedom (used in QFT)	

♦ 3. Quantum Behaviors in Systems

Feature	Description	
Superposition	System exists in multiple possible states at once	
Entanglement	Parts of a system become inseparably linked	
Quantization	Energy, momentum, etc., come in discrete units	
Tunneling	Particle can pass through barriers it classically shouldn't	
Non-locality	Instant correlations between distant parts (entanglement)	
Interference	Probabilities from different paths can combine constructively or destructively	

♦ 4. Applications of Quantum Systems

Field	Application	
Quantum Computing	Qubits use superposition and entanglement for faster computing	
Quantum Cryptography	Unbreakable encryption using entangled photons	
Quantum Sensing	Ultra-sensitive sensors for magnetic or gravitational fields	
Quantum Chemistry	Predicting molecular behavior with quantum models	
Lasers and Electronics	Based on transitions in quantum energy levels	

⊘ Summary

☐ Nature of Observation

- Observation causes a **change** (collapse of wavefunction).
- Observer interaction defines reality in quantum terms.

*****□ Quantum Systems

- Built on wavefunctions, operators, and probabilities.
- Behave in non-intuitive ways (superposition, entanglement, tunneling).
- Form the foundation of modern technologies like **quantum computing** and **nanotech**.

4. Electrons, Photons, Atoms, The Concept Of Quantization: Discrete Energy Levels, Why Quantum? Strategic, Scientific, And Technological Significance, A Snapshot Of Quantum Technologies:

Here's a **comprehensive yet clear conceptual explanation** of the topics you asked for, ideal for academic notes, presentations, or general understanding:

₱☐ Electrons, Photons, Atoms – The Quantum World's Building Blocks

♦ Electrons

- **Subatomic particles** with negative charge.
- Exhibit wave-particle duality behave like both particles and waves.
- Cannot be pinned to a single location; exist in **orbitals**, not orbits.
- Have **spin**, a purely quantum property (not literal spinning).

♦ Photons

- Quantum particles of light or electromagnetic radiation.
- Massless but carry energy E=hvE=hnu and momentum.
- Always move at the speed of light.
- Show **quantum behaviors** like interference, entanglement, and the photoelectric effect.

♦ Atoms

- Basic units of matter, composed of a nucleus (protons & neutrons) and electrons.
- Electrons occupy **quantized energy levels** they can jump between levels but not exist in between.
- Atoms form the basis for understanding matter, chemistry, and light-matter interaction.

♦ The Concept of Quantization: Discrete Energy Levels

Mhat Is Quantization?

- Quantization means certain properties (like energy, angular momentum) can **only** take specific values, not any value.
- Think of it like **stairs**, not a **ramp** electrons jump from one step to another but can't be in between.

Example: The Hydrogen Atom

- Electrons around the nucleus can occupy **only specific orbits** (energy levels).
- When an electron jumps to a lower level, it emits a **photon** of a particular frequency.
- This explains **atomic spectra** unique for each element.

Why It Matters

- Quantization explains:
 - o Atomic stability
 - Spectral lines
 - o Semiconductor behavior
 - Laser operation

? Why Quantum? Strategic, Scientific & Technological Significance

Strategic Importance

- Quantum tech is a **global race** nations are investing heavily due to its defense and cybersecurity applications.
- Quantum communication enables ultra-secure data transfer, immune to hacking.
- Quantum sensors can detect changes at scales classical instruments cannot vital for **navigation**, **surveillance**, **and intelligence**.

≤ Scientific Significance

- Helps us understand the **fundamental nature** of reality.
- Essential in modern physics, chemistry, biology, and materials science.
- Explains phenomena that classical theories fail to.

□ Technological Significance

- Powers innovations in:
 - Computing: solving complex problems in seconds
 - o **Cryptography**: unhackable communication systems
 - o **Imaging**: more precise medical scans
 - o **Sensors**: atomic-scale sensitivity for navigation, geology, etc.

A Snapshot of Quantum Technologies

Quantum Technology	What It Does	Real-World Use	
Quantum Computing	Uses qubits to perform many calculations simultaneously	Drug discovery, AI, cryptography	
Quantum Cryptography	Provides secure communication using entangled photons	Military-grade data encryption	
Quantum Sensors	Detect minuscule changes in magnetic/gravitational fields	Submarine navigation, medical imaging	
	Mimic complex systems (like molecules) to study their behavior	Material science, molecular chemistry	
Quantum Imaging	Uses quantum properties of light to improve resolution	Biomedical imaging, low-light vision	
	Networks using entangled states for ultrasecure data transmission	Secure national and international communication infrastructure	

Summary

Concept	Key Idea	
Electrons, Photons, Atoms	Quantum objects with wave-particle duality	
Quantization	Physical properties exist in discrete levels, not continuous values	
Why Quantum?	Drives scientific understanding, national security, and next-gen technologies	
Quantum echnologies	Includes computing, communication, sensors, and more — transforming multiple industries	

5. Computing, Communication, and Sensing, National and global quantum missions: India's Quantum Mission, EU, USA, China

Here is a clear and structured explanation of:

- 1. Quantum applications in Computing, Communication, and Sensing
- 2. **National and global quantum missions**, including India's Quantum Mission and efforts by the EU, USA, and China.

2 Quantum Applications: Computing, Communication, and Sensing

♦ 1. Quantum Computing

- **Uses qubits** instead of classical bits (0 or 1).
- Qubits can be in **superposition** (0 and 1 at once) and **entangled** with others.
- **Massive parallelism** allows solving certain problems exponentially faster than classical computers.

Applications:

- Drug discovery and protein folding (e.g., pharma)
- Optimization in logistics and finance
- Breaking classical encryption (long-term risk)
- AI and machine learning acceleration

♦ 2. Quantum Communication

- Based on quantum entanglement and quantum key distribution (QKD).
- Any attempt to eavesdrop **destroys the entanglement**, alerting the users.
- Enables **unbreakable encryption** and **secure networks**.

Applications:

- Military & diplomatic communication
- Secure banking and finance transactions
- Future quantum internet

♦ 3. Quantum Sensing

- Uses quantum effects (superposition, entanglement, tunneling) to detect ultra-small changes.
- More sensitive and accurate than classical sensors.

Applications:

- GPS-free navigation (e.g., in submarines)
- Medical imaging (e.g., brain scans)
- Geological exploration
- Detection of gravitational waves or magnetic fields

National and Global Quantum Missions

IN India: National Quantum Mission (NQM)

- Launched: April 2023, by the Government of India
- **Budget**: ₹6003 crore (approx. \$730 million)
- **Timeframe**: 2023–2031 (8 years)
- Objective: Position India among top nations in quantum technologies

Key Targets:

- Develop quantum computers with up to 1000 qubits by 2031
- Build secure quantum communication systems
- Develop quantum sensors for precision navigation, health, and defense
- Set up **four Thematic Hubs** (**T-Hubs**) in leading institutions (IITs, IISERs, etc.)

EU European Union: Quantum Flagship

• **Launched**: 2018

• **Budget**: €1 billion over 10 years

• Goal: Strengthen Europe's position in quantum technologies

Key Areas:

- Quantum computing platforms (hardware & software)
- Quantum simulation
- Secure quantum communication (e.g., EuroQCI quantum internet)
- Quantum metrology and sensors

US USA: National Quantum Initiative (NQI)

- Launched: 2018 (signed into law by Congress)
- **Agencies involved**: NSF, NIST, DOE, and private sector (Google, IBM, etc.)
- Goal: Maintain US leadership in quantum R&D

Key Efforts:

- National Quantum Coordination Office
- \$1.2+ billion funding
- Multiple **Quantum Centers** across national labs and universities
- Public-private partnerships in quantum computing and networking

CN China: Quantum Development Roadmap

- Strong government investment and world leadership goals
- World's first **quantum satellite** (**Micius**) launched in 2016 for quantum communication
- Built the longest quantum communication network (Beijing-Shanghai)
- Leading in quantum supremacy experiments (e.g., Jiuzhang photonic computer)

Focus Areas:

- Quantum cryptography and national security
- Quantum computing and cloud access
- Quantum metrology and satellites
- Global quantum infrastructure dominance

✓ Summary Table

Country/Region	Mission	Focus Areas	Budget
IIndia IN	National Quantum Mission (NQM)	Computing (1000-qubit goal), QKD, sensors	₹6003 Cr (~\$730M)
EU EU	Quantum Flagship	All quantum pillars: compute, sense, secure	€1 billion
USA us	National Quantum Initiative	Research centers, workforce, industry	\$1.2+ billion
China CN	National Strategy	Satellite QKD, supremacy, infrastructure	Est. \$10+ billion

> Electrons behave like tiny magnets Up = 0, down =1; Quantum rules allow spin to be blend of up & down a same time (Superposition) Quat using photon polarization con be allow horizontal | vertical hori=0; ve called "polarisation" A A qubit com be tited 6/w NE diagonally to show spin

Ascientists use différent Single atoms held in placealising electro 1 Trapped ions Each atom has internal energy levels where ground state: O prencited state and by Shiring lasers (a) the ions, they gan be put in 2) Superconducting Circuits: 1> Tiny electrical circuits made from resistant materials (close to absolute zero) carry current (D) & current (D) (or) of mix of both in quantom systems & can be

controlled using nicrowane pulses encite them into different states. ort Thotous: 4 Tiny particles of light that travel super fast & rarely interact with the emisonment 1 Superposition (qubit) La Distriction Quantum Coherence & Decoherence: For a qubit to stay in a delicate balance b/w 04 1, it exists in superposition also Enour as "Coherence". The "The real life, qubits interact with their environment (air, heat, ribrations) which "disturb" the delicate balance causing the superposition to collapse known as

Theoretical Concepts: Hilbert Space: 4. The space whose all La Arena of possibilities 2. Quantum & States one specific description of the system Hilbert Space Qubit State state of superposition

3. Operators: Ly They are the rules/actions that change · States & act & produce on quantum states inside hilbert space & produce new states. Eg: Rotation, Flipping. Entanglement & non-locality tem The role of in ødystems: Entanglement - Quantum Connections; The quantum mechanics, 2 particles can become entangled (states are linked despite their distance); if one particle is measured & found to be in state of the other particle will instantly "know" it wast be 1. That ties particles together. Entanglement - 1

Non-locality-gspooky action @ a distance Ly There entangled particles can show instant Correlations even when separated by huge distance Eg:- 2 différent glores in 2 différent bones in " aties. Opening one bon will reveal the glove inside as well as the Other glove in the other bon @ the other Classical Tufo Quantum Info 4) Secure (no cloning) No cloring Ly Not secure (cloning) Ly Can copy enactly. Parallel possibilités ra La One step (a) a time superposition. O ... Entangled bits Li Tudependent bits Entongliss

Philosophical Implications: 1. Randomners in Quantum mechanics: 1) Even if everything about a system is already known, outcome of a particle! System measurement is fundamentally random". Eg: A spinning coin. 5 Determinism vs Indeterminism: Quantum Systems Clarical System (probabilistic Outcomes) (predicted outcomes) Quantum 4 Role of the Observer: Clarrical.
System System (Active) (Passive)

What is required to build a quantum conjuctor? Conceptual Overview:-It has \$6 components. They are: · Qubits (Quantum Bits) [INFORMATION CARRIERS] 4 It is a physical system that can represent

0, 1, (or) 081 (Superposition) 4 Can be trapped ions (atoms held with lasers), Superconducting Circuits (Tiny electrical coops @ near-gro Photous (light particles with polarization states) · Tuitialization [STARTING POINT] Li Starting State usually is O [Hilbert Space] · Quantum Gates [INSTRUCTIONS] 4) Quantum computers need quantim gates to

4 Flip a qubit (0 ->1) 15 Put it into superposition Le Entangle multiple orbits. · Quantum Coherence [DELICATE HARMONY]: La Qubito must stay in their quantum state long enough to compute their results/states · Error Correction [SAFETY NET]: La Qubita are very fragile - even small disturbances (heat, noise, vibrations) cause errors. 4 Spl techniques are needed to detect & correct these errors without destroying the quantum · Readout (Measurement) [FINAL SCORE]: 1. Measure qubits to get usable results (0 &1) which collapses the superposition into definite. Outcomes.

Ly Quan
envir

160

Fras

1. De

Qu

to

Environment & Infrastructure: La Quantum computers need very controlled 4/3 environments: 1. Near zera absolute zero temperatures (for superconducting qubits) 2. Ultra high vacoum & lasers (for trapped ions) 3. Optical Networks (for ghotous) Quantum Computer = Qubito + Control + Protection. Fragility of Quantum Systems: 1. Decoherence - Losing "Quantumners Quantum particles enisting in superposition to faces decoherence when the environment

peeks @ the system & forces it to behave classically. 2. Noise: Random unanted changes-that affect the quantum system. Types: Temperature fluctations, electromogrations Signals from nearby devices, ingertections in materials used to build greantum device 3. Control: Quantum computers need precise control signals to manipulate qubits; but too much Control can disturb the system

gua ga

syst

90

1. Su

2. 1

3. Er

Qua

Speci

the

dist

Quantum delvocatage relies en coherence; if decoherence / noise/ control errors ruin the the system, quantum conjuters dose their power. Qubits need below conditions to to elic 1. Supercold temp (near absolute zero). 2. Toolation chambers (Shielding from vi brations & radiation) 3. Error Correction Techniques. Quantum systems are tragile because their Special states are easily disturbed by: the environment (decoherence), random disturbances (noise), & even imperfect human

handling (control issues). 2. 80 Conditions for a functional greants Dete 2 System: decol syste 1. Joolation: Keg the quantum system segarated envo from the noisy outside world. Hou 48 Hows is this achieved in labs? Sply 4 Ultra-cold freezens. 09 La Shielding from magnetic | electric of interference. Ly Vacuum chambers to Keep out atoms nuolecules

2. Error Management: Detect & fin nislakes coursed by decoherence & noise becouse quantum system are prone to making more errors than classical systems. How is this archieved in labs? La Quantum error correction codes - Using many physical qubits to protect the information & of a single "logical qubiting combination work together as a of many physical qubits that need team to protect one piece of information.) 91-9/2 - Logical Tufornation q 3 Qubit. 95 96

La Constant monitoring without destroying Renfor the quantum state). state it -3. Scalability: Lista La Builde many quits quibits at once that work together, but more qubits · Bett mean more chances for errors & more · Des difficulty in Keeping them indated & time · Carre que Controlled: Lit is readed for drug discovery, "A < secure communication & climate modeling. iso Stal 4. Stability: (que 4) Qubits must stay coherent lang enough to

traying perform calculations because if they lose their state too quickly, the congritation fails before it finishes. lite improved by using: . Designing qubits with longer "coherence · Carefully timed control pulses to keep qubits stable. A functional quantom system needs isolation, error management, scalability & Stability so that its delicate Performance (quantum computation) can succeed.

Theoretical Barriers: · B3 *Why is maintainence of entanglement lia unte difficult? 4 1 La Entanglement is ultra-delicate: · Fre Bo Entangled particles share a special · But even the timest interaction with * · No the euronment can break it. 45 L'Eurinomental issues: · Eu · Entanglement only works if the system Stays isolated.

Kee

· But the environment (air molecules, heat, light, vibrations) is constantly "bunging into particles 4 Noise: · Real - world systems are noisy because of: * Temperature fluctuations. * Material défects. * Electromagnetic Interference · Noise scrambles the delicate quantum state 4.5 caling: · Entanglement with just 2 partides can be achieved & tested. · But for many particles, (100 (or) even 1000 (or) Keeging them all entangled in engoneutially harden.

45 hielding: Li Eurinonment can be protected from noise disturbances by: · Cooling to near absolute Zeno · Vaceuum chambers to keep particles away 4 from air. · Error-correcting codes But no slield is perfect - environment always leaks a little. *Diff b/w Short lived entanglement & long lasting entanglement help quantum \$2. H

Conguting casier to · Bustavalous Short lived En long Lasting Very hard to maintain La Easy to create. Can last Henoughout Ly Flickers out fast Conjutations. Needed for quantum Ly Grood for demo. Computers. Does ht happen naturally La Happens naturally in in any engeriments. Certain enperiments. How to torn short lived entanglement. entanglement? into long lasting Es. Heat makes atoms & particles jiggle randonly. That random notion destroys entanglement.

4 Error Correction: · Even with cooling, tiny nustakes creep in (i.e., particles slip out of sync) · Use quantum error correction, which mean combining many physical qubits so they "vote" together to protect the information of Sufor Osz ion. Osz one logical qubit. Combination of many physical quests that work together as a team to protect one frece of information. 4) Shielding: · Enternal noise like vibration, stray particles electromagnetic waves constantly intexpere · Skield the system with vacuum chambers, magnetic slields & vibration isolation platforms.

"Scie

into

the

Enro

neces

· Fragi

4 gubi

Ly Source

1.) 3

2. Nois

3. Trup

4 Withou

meaning

qubit

necess

"Scientisto stretch short-lived entanglement to m into long lasting entanglement by cooling the system, error correction and shielding hey Error Correction as a theoretical necessity : · Fragile Building blocks: 4 Jubits are inherently error-prone. 4 Sources of error: 1. Déclierence (Qubits losing their quantum state) 3. Imperfect control [Tiny nistakes in laser microuaire pulses) 4) Without correction, these errors gile up so fast that no meaning ful calculation ear finish; even the best built qubit lant arrid errors forever which makes error correction necessary and not optional.

-> Classical bits are very stable in contrast to quartum bits which can flip randonly Eps "E8 lose their state in fractions of a second La Without error correction, a quantum computer collapses into useless noise. · Newshold Theorem: 4 The quantum error correction thrashed theorem 0 "If we can keep error rates below a 4 Syp Certain level (THRESHOLD), then error correction Ly Us con allow a quantum computer to run 40 congulations as long as we like". wel Lithat is, error correction is necessary for Jeanble: A closed reported all airrents

Analogy: Realist of land despite blocking

Analogy: Realist of lander (computation)

The bucket (error correction) is recessary from 10 ne LT 4 Ju ne The bucket (error correction) is recessary for the boat (quantum computer) to bail (anything to its destination. (conjutation & results)

are

tu

Correction is important to greant in composing gpses Memory Storage is to classical computing". Quantum Hardware Platforms: 4- Superconducting circuits: 4 Uses tiny electrical logos. (a) vitra-old temperatures to behave like qubits. These kind of circuits well developed & have fast operations & but needs entreme cooling & decoherence happens quickly.

Ly Trapped ions:

Ly Trapped ions are held in place by electric/

Ly Judividual ions are held in place by electric/

magnetic fields & manipulated with losers acting as

are like beads floating in space, with losers acting as

tweezers to more & connect them.

LyThey are very accurate & such qubits have long coherence times but sperations are slower & its not listed to add many L. Photous :-Qubito are carried by light particles (photon) Huough optical arouts like sending secret notes through beams of light in a fibre-optic calle. Lift is great for communication (cryptography, quantum internet) and works (a) room temperature Li But its hard to make photous interact strongly and requires special detectors. Ly Neutral Atoms: Neutral (uncharged) atoms are trapped in place by Caser beaus & manipulated individually lite arranging

mari

LIT

151

4.1

:+

w

ne

Si

marbles in a grid with invisible tweegers.

2. They can create large, regular arrays & is promising for long team systems but its still in early stages compared to ions!

superconductors.

La Topological Dubits s-4 It "braids" enotic particles to store information in a way that's naturally protected from errors; it is like tying information into a knot which won't unravel unless cut. This method could reduce need for error correction & very stable (in theory). Super conducting Circuits, Trapped ions,
3 methods

Photonics: These & properties 3 features are most competitively for building to qubits.

Each melhod is like trying to make the worlde nost delicate ice sculpture: the took 121 differ, but the good is same · Str -> Ve Ly Super conducting Circuits: (TBM, Google, Rigett) → 4 · Vision Weaknesses: -> They are noisy: qubits forget quickly.

-> They require giant refrigerators. · Me -> They can be fabricated using nicroclip $\rightarrow 0$ → 5c technology. Pe · Deality Strengths: -> Abready demonstrated hundreds of qubits 10 -> Operations are very fast. (nanoseconds) LIF -> Can be fabricated using nicroclip technology · The (3, calable in grinciple) 90+ ·Str → Th 16

2 the Li Trapped Ions: [Tong, Quantinuum) e took · Strengths: (Reality): > Very stable and occurate qubits (can keep memory for seconds (or) even minutes) , Rigetti) -> Hight fidelity operations (fewer mistakes) · Weaknesses: Vision): icands) → Operations are slow (milliseconds & net ranssecond) lip → 5 caling is hard because controlling & laser. pointing @ Housands of ions is like trying to choreograph every qubits one by one. Li Photonie Qubits: (Xanadu, Psi Quantum) · These kind of qubits use photons traveling in optical circuits as qubits Beam splitter (1) · Strengther: went on upper side (0) (or) lower side (1) > They don't interact much with the environment; they are naturally resistant to noise

-> Easy to send photons across fiber optics: · Weakinens: (quided path, low ton, low for doseint let photons orape - Hard to make photous interact atrongly escape with each other as it is needed for conjutation. -> Current systems are more like demonstrations (showing sorall- scale circuits) rather than large quantum processors Lision vs Fleality: The · Vision - A universal quantum computer with millions of error-corrected qubits solving real world problems; (Drug Discovery, Finance; Cryptography) small, compat and even me room temperature someday. · Problity - Derices have tens to bundoned noisy qubits, they are experimental, luge & power hungry fridges, lasons, optic tables). · Real

4 Algo

class

Ly Rice

(NI

Po

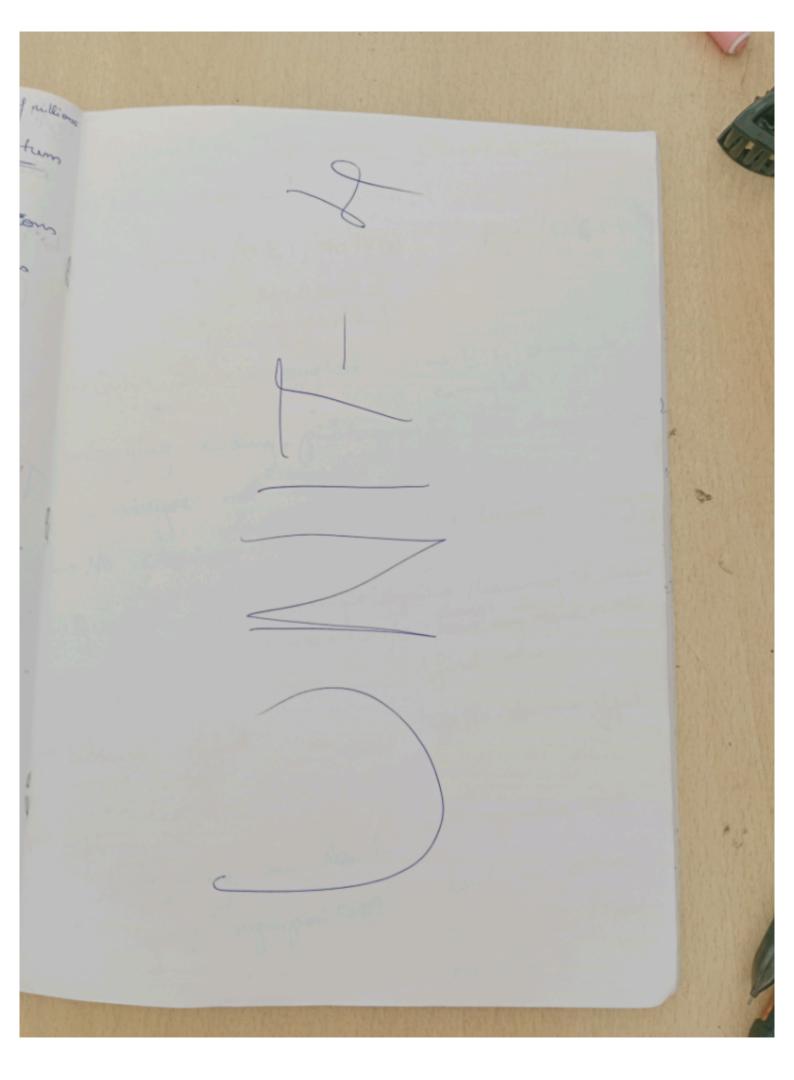
an

theo

48mo

· Hard

algor


even

1- Op+

Ly Algorithms run, but they cannot yet beat clarical supercompoters for most useful tasks Li Right now, Noisy Tutermediate Scale Quantum (NTSQ) era is in the rule where there are powerful prototypes but no practical machines are built yet. The role of Quantum Software in managing theoretical complenities is extremely high as 4 Error Mitigation: · Hardware mistakes are sported by software algorithms through patterns and "smooth them out", even if complete error consection is not possible Spring for weak hardware: for ease of use in · Real life qubits are limited, so s/w has to adapt

algorithms to what's realistically possible (instead of mile, only few hundred qubits are computed) manipulated) 4 translation from human logic to quantum Cogic: · Software translates programmer instruction into a sequence of quantum operations (Human logic code Binary/Quantum logic)

Le Simulation & lugbrid approaches: · Quantum 3/w often mixes quantum & Classical conguting called hybrid algorithms where classical conjutions handle the heavy lifting (hardware), while quantum chips tackle the conglenity of the groblem (software). Eg: phone: calculator () Scientific calculator

Quantum Information Classical Information > Information is stored in: 1 Bi+ (0/81) Subits (0 &1, 70'1(0), 307-(1)called superposition) 1 -> Bits cannot be -> Qubits can be entangled. entangled. -> Copying, reading, photocopying -> Alex single. Simple. is single not single -> clowing is easy. → No clouing. is fragile into either 1/0. I have any effect on the -> No observer effect. -) Observer effect. A spinning som A spinning com lan in lands on either heads / tails / known space (superposition). phenonenon)

Dasies of Quantum Communication: Que It uses quantum properties like entanglement & superposition to send messages more securely Li 19 9 than classical methods. · Quantum states as messengers: Tustead of sending a regular pulse of electricity/light, qubits are LOT b/w · Fragility as a feature: Anyone trying to eavesdage deci on a quantum system invitably disturbs the qubits Ly I which makes quantum communication inherently 0 fe · Entanglement Distribution: Using entangled qubits, LI Secret key can be securedy sent between a people Plu (or) verify the security of a message. Pou 4 Qu

Quantum Key Distribution (9KD): List is the most practical application of quantum communication today. b/w 2 people so they can everypt & decrypt mensages securely. good qubits, 4 In classical energytion, Keys are exchanged During matte which could be broken by future quantum conjuters. Litu QKD, Keys are exchanged using quantum Pluysics laws, which no amount of compoting power can "cheat". 4 Quantum states & of the photons/particles used in QKD som be in different soluter

I carry the information of the qubit leither person 0 & (04) 1). (0/1) Eg: Election & photon polarization. · After QKD methodo: rando BB84 protocol: [First & most famous]

This protocol is one of the roost

protocols used and also famous 9KD

protocol. the le · If du interce protocol. . It was inverted in 1984 by bernett to go person A . · A sends photons to person B, each photon 2 to Polarized en one of Jour worts: L) AJ+ → F45°(0) →-45°(1) Spo. → 0°(0) → 90°(1) (Horizontal) (Vertical) Diagonalbase side Rectilinear base can and

et/either person A randonly chooses a basis & a la cach photon. (nonjoutel/diagonal) Bit value for each photon. . After transmission of plutons, person B randomly chooses a basis and assumes مام the loit value for it. If during transmission, person 3 tries to 2KD intercept the message, the person 3 has to guerry & send a basis & a bit to person the basis & lit of person!

2 to avoid doubt on either side. ell La After completion of transmission of Photons from sendon to receiver, both sides rompare their basis (not bits which can be overlæard by anyone in prominity) and keep only the shared correct answers.

4] there are more errors than gneral normal, it means the message is receive maniquelated / intercepted by third the w party. DIM · The re A i am sending ? photon form a message de (honzontal/diagonal) moon 2001 In photon format: · After a=1 ° = → i= → basis 90/7 a=1 n= < create e = 1. 9= 7 m = 1 SO (am) (se od ing) (a)

T) (1) (-1)) +) (a) Eg: only divertions a=1 of photon and S=sea m= 1 (message) shared ria Plus Based e=T e=1 n = 1 In Case, someone interfero, S = 4 they will guess the basis (h)d) Q = 90) S = < Key E thus new the memage in

gneral, thus alerting both parties | sender & received that some third party is intercepting the message. Blu Sender & receiver: . The receives (person 2) might to not understand the mensage correctly as soon as it is transmitted. · After transmission, they share the basis they thank correctly guessed & Shared in phase, not Raw Kend, Stared in Phase.

Row Kend, Stared in Phase. Raw Key (I am seig a) Based on the raw key, the final Key is understood by both parties without any interference.

Cos } Step -(Sender) (Receiver) (Transmission of Ohotous) The ' A phone B [Keep only the photons want A: ->(I) ? Keep as part of raw key.

B: ->(I) } rand 40 This Step A: (a) B: random noise } remove from raw key. which (no answer) is to men.

Cos of anyone is intercepting the message: the ge) $\rightarrow A - C \rightarrow B$ (Receiven) (Sender) Third person The 3rd person doesnot know what A wanted to send, so they will guess a random doosis & send the information to B to arrive doubt on both sides This will load in errors in comparsion of bosis values on both values Aphone B A: -> Jx multiple
B: Tgoen) Jx times which alerts both sides that a 3rd party is trying to interfere & intercept the mersage.

Eg: Coins & glores; y honzontal flipped (uld) (uld) Très coin is caught with diagonal glore, the coin is nissed & random noise insta is created later glove choices are which waintips compared to figure the secret log Eg: P both wadens tood & create a raw key to understand the secret E91 proto col: (Entanglement-based)] > Timentor: Artur Ekert, 1991. and Idea: Tustead of sending photons directly, both parties receive photon Sluon any from a source that creates entangled woul Parti

Ripped more, than BB84 as disturbing the entanglement will alert both parties instantly of someone's interference. Person 2 flips Eg: Person 1 apair of magic dice ulichare entangled with each other to give appoint results when rolled. cret (sed) [person 1 gets 1, person 2 gets 6. and so on Tuterfering between them would require guessing the value of any one's (grevson 1/ person 2) value jubich would confuse both parties & alert both gled Parties of the enterference.

Decoy State Protocol: (Upgrade of 8884 ADODDOD B Expectation of des quantum Key transmission. Ly In real life, making a source that spits out exactly one photon at a time is hard & engensive; thus, many real QKD systems use weak laser gulses instead. - In theory, QKD works best if A sends 1 photon @ a time to B. Decause one photon can only be measured once, if anyone tries to intercept it, the photon's state changes Ly

. I weak laser pulse is like a very faint flash of light. On average, it contains less than I photon, but sometimes it contains 0,1,(on) 2+ photons Is the person trying to converse conversions will try to stead one photon & let other photons gas. This ensures photon loss & successful caresday ping inthest latting either side get suspicions for lon of a photon is not enough to graine suspicion and is 'enstand considered to be lost / nisenterpreted by both sides. 4 Therefore, the sender sends real signals mixed with decop fake signals with weaker intensity.

Lake: real signals & A range signals lot Anal guess of there's an attack on the information >The file 4 grantom rules ensure that no one's able to eavesdrop without being caught in some way (or) the other. Continuous Variable QKD (CV-QKD):--> Instead of sending single photons, person A sends continuous vanes of light. timing intensity & Laser/Lightof: (no of seconds (strong Iweak) Reses that the laser is lighted) 0

Analogy | Eg: fiano tonés timing & loudness. Monnation These pulses are sent down the optical fiber channel attenuates (dangs) the signals and adds noise. Person B. measures the incoming pulse gut through a turing fork. Person A (2/8) light waves person B Strong | weak signals (Pitch)
Loud | Slow signals (Loudness) In light noves, these concepts are of the light hores which can be measured

In CV-9KD content, Angolitude = Strengte share of the light wave and phase = position · Unb of the name in its cycle. mea thole of Entanglement in communication bece Entanglement has 2 particles that Dot are connected so strongly that knowing · Tele one particles outcome teste decides the allo outcome of the other connected particle 10 despite their distance. The? · Instant Correlation: Entanglement does not Secu send mensages faster than light, but > The it enseures that a distant particles con as sign

share genfectly linked information. . Unbreakable & Security: Anyone trying to measure) interfere with the entangled particles wation: breaks the link between them and alents. both parties involved. · Telegror tation of Information: Entanglement allows teleportation of a gearticle's state to another place. The Idea of the Quantum Tuternett-Secure Global Networking: > The classical internet sends information as bits: 0's and 1's, carried by light signals in optical fileers but quantum

internet will send qubits which can be. (classicon) (classicon) (classicon) · Entarigle un'th other particles for a specifie which - Intre time limit. y Vali Why Quantum Tuternet? aliel -> Un kackable Communication: It doesn't both allow eanesdropping / interference without + 3 being rought. Es · Sup -> Global Quantum Keys: QKD Uses entanglement mas to share secret keys worldwide. · Ent - Distributed Quantum Computing: Small quantum computers are connected to work as a g'ant suger- quantum computer Eg: 16 Sef- destructing letters in cases of tangering (Quartum physics)

tion) (classical physics-letters sealed in enveloper, which can be still grened secretly) · Introduction of Quantum Computing: Volike natural computers which use bits (0/1), quantum computers use 0,1641) both @ once. (Supergranition) -> 3 Key Quantum Powers: · Superposition - lets quantum computers test many possibilitées in parallel · Entanglement - Qubito can de linked so that changing one qubit's outcome affects the other qubits " instantly & makes teamwork Down questos extremely powerful.

· Interference - Quantum states com add up (on) cancel out like women night which helps highlight the two 1 eve answer & cancel wrong ones: the 900 Why Quantum Computers Matter: on -> Breaking codes: Can solve groblems much faster. Que -> Medicine Discovery: Can stimulate nudecules
perfectly (new daugs). at Clas -> Optimization: Better avoline routes, supply chains (or) stock predictions >B -> AI Boost: Trains ML models way oxider > The faster. سدر the que

if classical computers are like reading every book in a library one by one, then quantum computers are like granding all books @ once, then keeping only the pages needed Quantum Parallelism (Many States at once): classical computers Bubit (0 & 1) is in >Bi+(0/1); they dock Esuperposition. either 0(01). They Jollow all They don't have rules of quantum superposition i.e.) physics laws. they do not hove follow quantum physics laws

-> A quantum computer can test many so Cl possibilities (a) the same time because qubits exist in multigle states simultaneous S. 100 do The ability of a quantum computer to A. CO englore many solutions in garallel'in int called grantum forallelism. Clas > If quantum computers only used > Bott superposition, they would just englode into on a claud of random possibilities when met measured which is not useful, therefore, >The interference is necessary. bita Quantum System. CVA. (0)~(1){ ~~~~~ · OR mare noise · NOT (0) (1) gives 20 167)0

o Classical (Vs) Quantum Keyers Grates: andy of flow does your computer know what to do when a key is premed? A Classical computers break every task into tiny yes/no questions called "BITS". Classical Grates: > Both O's and I's are used to switch on & off a function (pressing a key >1, mot vice versa > 0) very quickly. These decisions to use/not use these bûts are done by logic gates: ·AND: Both stateles ON · OR: At least one ipon · NOT: Flips from ON-OFF and vice versa!

These gates are deterministic: biven the Eg: - AND, NOT, OR, NOR - process Quantum Grates: somet > Here, instead of bits, they have qubits do E which are in supergosition. Class -> Quantum gates are machines that manipulate Clas sugresposition because: · They don't just flip ON/OFF. > Wox · They rotate, entangle and interfere with qubits states. -> Trr -> The Best part is that quantum gates are reversible & manipulate probability wares -) Dete rather than definite states. resul * ANALOGY : classical: xailway tracks with fixed direction Quantum: water nones which can overlop > Eg: - for cancel (or) reinforce with each other = for force with each other = force ged. Key Idaa: Quantum Grates allows for processing of many possible answers @ once, something which classied computers count do Eg: Superposition, Entanglement, Interference Classi Ego X, H, X -Quantum Grates. Classical Grates Works with Qubits/0,1, > Works with loits (0/1) (130·(E) Reversible. (O/p can be changed -) Trreversible. (O/P does not change) back to ip. Probabilistic (results) eterministic (same depend on measurement) result in every case) Engleres multiple roads → g:-follows a single road at a time. at a time.

ADT Classical Quantum Chall 1> > ground / starting state NOT: flips 0-1 (pauli-x) (polo>) 1) (written in braket no tation) ·1) eas ~ go (CONOT: flips only of quantum state (Controlled first value is 11) AND: needs both i's Dy H': allows both O & 1 (Hadamard gate) + (Supergon non maken) OR : either I works Pas > 60 Z: flips direction (+++to(-)) No Equivalent classical gate is found. (pauli-z) (180 rotation) only of quantum state [+1> to 1-1>] 200 (a) Note: Superposition is denoted by (1.) (1.) and definite quantum states are done by (b) 10> & 11>1

Challenges: Decoher ence - The fragility of Julits , gobits powers in security are offset By their fragility to stay in their positions boyand a time limit. -> Collagse of a qubit's special state in called "DECORERENCE" grantom Grates: (a) Pauli x Grate : (Quantum NOT) It is like flipping a light switch & turns 0 -> 1 and vice versa (b) It Gate: (Hadamard gate - Superposition maker) a définite "0" into "0+1 (50/50 min)". opposite glass).

This gate lets quantum congutors englore many possibilities in parallel. CN que (c) Pauli- Z Gate : (phase flip) ch -> leaves O we unchanged, but fligs the (Su segn of 1. Pa (d) CNOT gate: (CONTROLLED NOT-Entanglement (a -> Works on 2 quaits. -> I first qubit =0 -> 2nd qubit stays the same an quantum state. (e) (3 " 21 -> 2 nd qubit's quantum state is flipped. Eg: --> Start with both qubits at O -> By applying hadamard gate on the first gate (i.e., definite 0 -> 0/1) then apply

CNOT because 1st qubit = 0 & 1, 2nd qubit's
quantum state is flipped from 0 > 1, thus maplore changing both qubits to 0 &1 and 0&1 (1st) (1st) (2nd)
(Superposition), thus creating an entangled the pair. This is called the "BELL STATE". (a building block for quantum telegrortation alex) and cryptography) (e) Botation galles: (Qx, Ry, Rz) same -> These gates votate the qubit's state state anound different area. Eg: Qubit: +7 rotation They allow very fine control over probabilities

(1) Toffeli gate (CCNOT): Qua -) It works on 3 questo -> If the first 2 (quibits quantum states) > Core are 1, it flips the third. man -) Tugortant for environal quantum computation delec [Toffoli+ Hadamard = Quantum Algorithm] the Eg:Sl Consequences: -> Conquitations lose quantum advantage & → A errors occumulate rapidly. bei -thi Exmor types: → Bi+-flip (10> → 11>); → phase flip (+0> → 1-0>) > Fin - Heavement orrers (19 -) Amplitude danging leakage in quantum euronment.

Quantum Error Correction (DEC): , Core idea: Encode a logical qubit into many physical qubits so errors can be tion detected and corrected without measuring 7 the logical state directly. Eg: Shor code & surface code. · Shor code: (Backup in layers) -> A message is always en danger of being messed / interfered / copied by Hird party sources. > First quantum error correcting codes. (1995, peter shor)

It is used for protection of information by creating multiple backups of a qubito information. (9) (9) 9 5 9 5 It prevents bit flip errors (O() and phase flip (+0 0) errors. Z1 - Z3 -> Same greantum state, then no bit flip has occurred. 94 (Z, Z, Z3) 2 (999) => Z, Z2 Z3 2 (9, random, 9) => the interference has happened & nate value as 9.

Simi

Hac

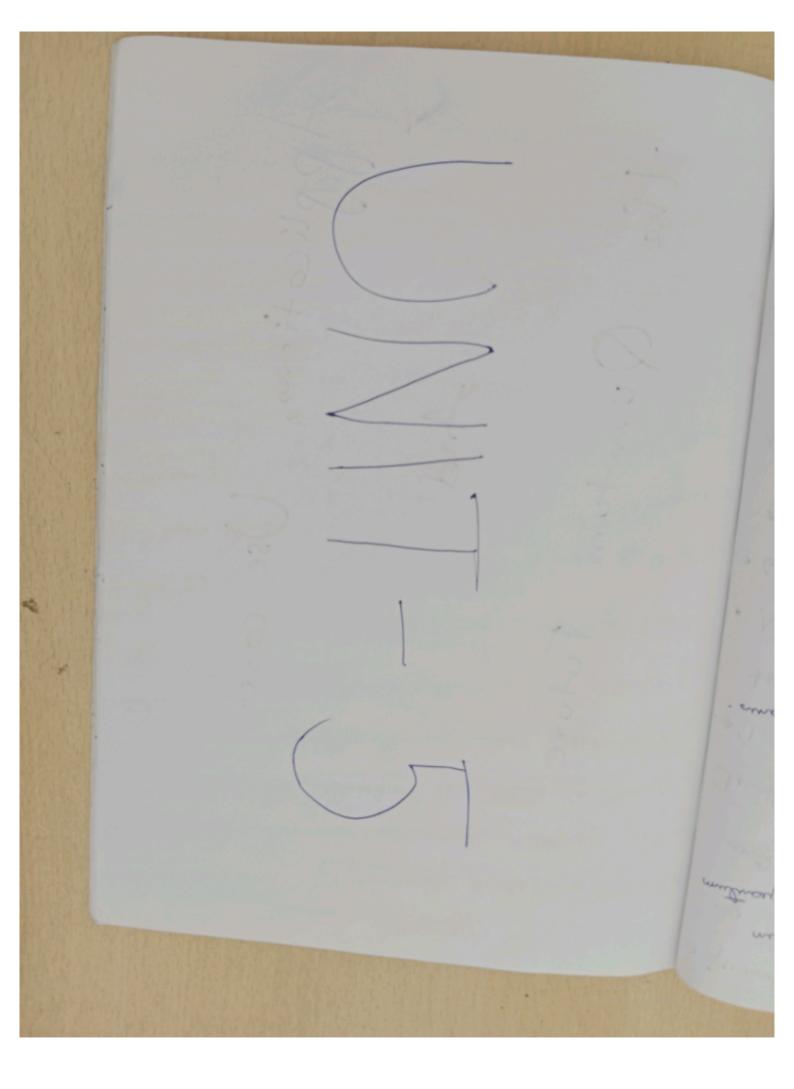
-> 1.

similarly, phase flips are also checked using nation Kadamard gates. 11 110> = 10>+ 11> H1>= Eg:- [+0] [+0] > This is detected as FO (+0) (+0) phase flip (+ -> -) [+0] [+0] and changed to + again. untion:9. · Steame code: -> It is an improvement on shor code by using 7 qubits intend of 9 qubits to store and protect information · Surface codes: (Topological codes) -> It is modern and most practical for real hardware (used by google, IBM, etc.)

I Logical qubit
protected by worken grid pattern The information is stored in the surface pattern, instead of individual qubits which can lose information due to interference > This ensures security and privacy better than above 2 methods as it is easy to steal (or) guess a fiece of information stored in qubits, but guessing | stealing a entire surface pattern 3 is impossible because each small grid to carries only a facil of the entire pattern but inthemt

knowing the pattern as a whole, it is impossible to guess which grid part represents which part of the surface pattern. > In case of any flip errors, the nearest neighbours interact to correct the errors; the logical qubits are used to represented by loops across the surface. I surface. 100's of qubits are used -> But, here I logical qubits information,. preferred by larger networking to protect so it is systems. -> Groal of error correction is to detect &

The qubit's state".


Real world importance and future potadial. . Ma heal world Importance: -> Quantum computing can revolutionize area, where classical computers fail (or) take too long. ## Eg -) In real life, there are many areas desi in which quantum computing plays a · Log > Op luge vole in: war · Healthcare and Drug Discovery: > Qu -> Quantum computers can simulate molecules am exactly as they believe in nature. com -> Helps design new dougs (cancer, covid etc.,) · Fine by predicting reactions faster & chappen > Quo -> Pharma companies do not reed human opti in subjects/animal subjects. Eg: 6

tadial: Material Science: , Helps discover new naterials for batteries, solar cells, superconductors. long. # Eg: Volkswagen uses quantum computers to design better litlium- ion balleries. · Logistics & Optimization: > Optimizes delivery routes, flight schedules & warehouse operations. -> Quantum algorithms can find the best solution among billions of options faster than classical · Finance & Risk Hodeling: → Quantum systems can simulate stock markets, Optimize investment portfolios and detect fraud Eg: Goldman Sacher and JP Horgan use quantum algorithms for sist analysis

· Artifical Tutelligence: - qua - Quantum machine learning (QML) con process +0 huge datasets quickly. -> Enables smarter AT for language processing, كمعط pattern recognition and data mining. Tud > Tue · Energy production: tec -> Quantum elements luele create new · Na materials for clean energy and superconductors → 60°C · Espace and Narigation: 50->The -) The quantum machines are used to create quantum environments which regressent real life space and realities and calculation of quantum states luly understand space in more detail.

ocess ; quantum computing allows multiple noutes to be englored parallely to facilitate sing, best optimized routes. India's role in the grantum Future: > Judia is actively investing in quantum technology. · National Quantum Mission (2023-2030) -> 6000 croses initiative is done to develop 50-100 qubit quantum computers. -> The Key idea is to build quantum à communication n/w's avon major cities -> Encourage startuges in quantum tech! like Boson & Psi, ApiAI). → Create new quantum education & research programs

- · Academia & Tudustry partnerships:
- → ISRO, DRDO are all working on quantum sensors, quantum communication and quantum communication and quantum
- There are many collaborations between 18M, Microsoft and google quantum programs.

heal world Application domains:

Healthcare (drug discovery):

The quantum computer can naturally represent quantum states of molecules, which makes simulating molecular structures and electronic properties exponentially more efficient for certain hard problems

algorithms speed up parts of simulation and error-mitigated small quantum processors bulg validate models.

2. Material & Science:

Juantum computers lulp create accurate simulation of electronic structure, defects

and encited states in materials which is crucial for batteries, sugerconductors, catalys -) It helps in discovering better battery electrodes, modeling defects in semiconductors designing materials with targeted optical/ electronic proporties. 3. Logistics & Optimization: -> Quantum algorithmes can tackle combinatorial optimization problems faster. -> Vehicle nouting, supply chain optimization, 5.6 traffic flow are some of the uses of > Q quantum computing. Co -> Hy brid algori Hims (classical + us quantum system) are the future pathway.

4 Juantum Sensing & Precision timing: , Sensores engloiting quantum coherence & entanglement produce measurements with much higher sendinty sensitivity (or) resolution. - It helps in detection of weak signals, medical imaging end enhancements, magnetic and electric field sensing at nanoscole levels. -> Buch applications can be deployed to enable new measurement capabilities. 5. Gypotography and communications: -> Quantum Key distribution and grost quantum cryptography provide alternatives (surface code) to shows code which could be widely used to break public key cryptosystems in large, fault-tolerant greautum computers.

Its used for secure communication links in governments, finance, critical infrastructure, and aids in long-term confidentality.

Industrial Case Studies:

-> Approach: Build superconducting-qubit Ww, Ils open cloud access to quantum processors and a full s/w stack with emphasis on ecosystem, developer occes & incremental h/wscaling

2. Google:

-> Approach: Topological qubits vision, entensive S/w, more platform/developer ecosystem focus, cloud integration

3. Psi Quantum:

-> Approach: photonics based quantum conjuting

ained

compon

high All

Ww

to me SAR

S/w,

large

Ethi

-1. Secur

Fatu

1. Secu

Post date nhis aimed at scalability & room-temperature rection congenents with focus on fault-tolerant, high volume manufacturing. "All large scale companies use différent Ww approaches super conducting, photonic & to more from the short term commercial value through S/w, by bound services & sensing va then than Ding large grantum machines! L'Hical, Societal & Policy considerations - Security & poisocy: 1. Security & privacy 2. Equity & access Fature grantum congre (Post quantum cryptography, (cloud access to all, data protection timelines) open research)

3. Workforce & econômic disruption 4. Dual use & misuse & ExLO (Human reed is decreased (Transparent research faul as AT increases in accuracy) practices orale 5. Research ethics of Ethics training for researchers, open toolchains). leg: 1 Challenges to adoption: De -> Cost: Hardware, photonics manufacturing & error correction overheads are engensive L. -> Skills gage: Shortage of engineers, physicists & sports of engineers, p : es Er SK algorithus, hourigineouing & hybrid system 1-8 -> Standavization) iverse gh/w platforms mean lack E of standards for qubit metailes, 2.8 Tuteroperability benchmarks, 3/w Api's which 3. Q in turn slows industry uptake 4.6

soc Eq , Estos sales & scale: Current qubits are noisy, serve went fault - tolerant quantum computing requires de orders of magnitude more physical quelits per 00 logical qubit. - Jutegration with classical systems: Real berefit eten requires hybrid classical quantum pipelines and new s/w tooling. : Ernerging careers in quantum-Roles, sive Skills, and how to greg and 3 8 pearlus 1. Quantum algorithm developer ystems 2. Quantum hardware engineer ack 3. Quantum s) w engineer | stock developer 4. Quantum applications | domain specialist

5. Quantum Systems) integration engineer. Lieba. 6. Quantum product manager) policy analys be d ethics lead. → Shor All these roles specifically read: -> Harre Basic understanding of quantum -> Colla plysies, programming languages, automation in various fields. -> Linear algebra, complen numbers & -> Jud -> Classical algorithms & optimization, numerical probability. · Stron methods -> Ability to learn software development capa Kets (Pisket, CerQ, Q#, Pennylane) · Work

Ede

Tue

· Manuel

-> Stra

analyst) Preparation for these positions can be done by: -> Short courses -> University programmes -> Hands- on practice -> Internslips - Gess training -> Collaborations L'ducational & Research Landscape -Indias opportunity: -> Judia's strengths: · I'T ecosystem. · Strong STEM talent pool. Growing startup · Manufacturing & photonic E research environments capabilities. -> Strategic focus areas: · Workforce development at scale

- · Industry academia Consortia.
- · Targeted application domains
- · Quantum sensing & metrolog y
- · Quantum s/w and cloud services
- · Manufacturing & component · Policy, standards, and cryptotransition supply chain

- Tustitutional actions:

- · Creation of centers of excellence with shares hardware & multi-disciplinary teams
- · Public sector pilots use guldic infrastructure (transport, energy, healtheave) as labs to trial quantum-inspired optimization
- · Scholarships & fellowships to help quick spread of quantum disciplines.