UNIT -2
SOA & WEB SERVICES

Service-Oriented Architecture (SOA) is an architectural style that uses web
services to build software applications. Web services are software systems that
enable machine-to-machine interaction over a network, and are the preferred way

to implement SOA.
Here are some ways web services and SOA work together:

e Loose coupling: SOA is designed to promote loose coupling between
software components, so they can be reused. Web services allow clients to
be coupled to services, so the server can be integrated outside of the client
application programs.

e Dynamic components: Services can be incorporated dynamically during run
time.

e Standardized communication: Web services provide a standardized way for
components within an SOA to communicate over a network, using protocols
like HTTP and XML. This interoperability allows organizations to integrate

different systems, promoting reusability, flexibility, and scalability.
Web Services

Web services are applications or software that use standardized web protocols to
communicate and exchange data over the internet. They can be either a service
offered by one electronic device to another, or a server that listens for requests on a

computer device.

(OR)

Web Services are a type of internet software that use standardized messaging
protocols and are made available from an application service provider's web server
for a client or other web-based programs to use. These services are sometimes

referred to as web application services.

Response from Server to the client

Server Hosting
the web Service
Client

Request from client to the Server

Server

Web services can be used for a variety of purposes, including:

e Interoperability: Web services provide a standard way for software
applications running on different platforms and frameworks to interact with
each other.

e A2A communication: Web services can be used for application-to-
application communication.

e Streamlining connectivity: Web services can help streamline connectivity.

e Minimizing development time: Web services can help minimize
development time.

e Efficient technology distribution: Web services can help distribute
technology efficiently.

What is an example of a web service?

The World Wide Web is filled with all types of web service examples.
Amazon is a company that offers a variety of web-based services. Users can
browse Amazon's catalog of items through its search engine. Anytime
someone searches for a particular product on Amazon's website, they use

Amazon's web services.

What are the types of web services?
There are a few central types of web services: XML-RPC, UDDI, SOAP,
and REST: XML-RPC (Remote Procedure Call) is the most basic XML

protocol to exchange data between a wide variety of devices on a network.

What are the 3 roles of web services?
The architecture of web service consists of three roles:

Service Provider, Service Requester, and Service Registry.

When to use web services?

Web services let different organizations or applications from multiple
sources communicate without the need to share sensitive data or IT
infrastructure. Instead, all information moves through a programmatic

interface across a network.

What is difference between web service and web application?
A Web Application is meant for humans to read, while a Web Service is
meant for computers to read. Web Application is a complete Application

with a Graphical User Interface (GUI), however, web services do not

necessarily have a user interface since it is used as a component in an

application.

Web Services Architecture

Service Discovery
(UDDI)

Service Description
(WSDL)

Service Invocation
(SOAP)

Service Transport
(HTTP) ‘

Service Discovery: This part of the architecture is responsible for
centralizing services into a common registry and providing easy
publish/search functionality. UDDI handles service discovery.

Service Description: One of the most interesting features of Web Services
Is that they are self-describing. This means that, once a Web Service is
located, it will let us know what operations it supports and how to invoke it.
This is handled by the Web Services Description Language (WSDL).
Service Invocation: Invoking a Web Service involves passing messages
between the client and the server. SOAP (Simple Object Access Protocol)
specifies how we should format request messages to the server, and how the
server should format its response messages.

Service Transport: Finally, all these messages must be transmitted
somehow between the server and the client. The protocol of choice for this

part of the architecture is HTTP (Hyper Text Transfer Protocol) — the

protocol used to access conventional web pages on the Internet. We could
also use other protocols, but HTTP is currently the most used one.

How Web Services work?

UDDI Registry

Server] eb Servic
WSDL
e
Web Service
Listener
<
SOAP Reqdest

Message

SO
Service Response

Discovery Megsage

Client Application

1. The Service Provider generates the WSDL describing the application or
service and registers the WDSL in UDDI directory or Service Registry.

2. The Service Requestor or client application which is in need of web
service contacts the UDDI and discovers the web service.

3. The client based on the web service description specified in the WSDL
sends a request for a particular service to the web service application
listener in SOAP message format.

4. The web service parses the SOAP message request and invokes a
particular operation on the application to process that particular request.
The result is packed in an appropriate SOAP response message format

and sent to the client.

5. The client parses the SOAP response message and retrieves the result or

error messages if any.

Server-side Components of Web Services Application

HTTP (Web) Server

Application Server

SOAP Engine

Web
Service

Web
Service

Web
Service

Web service: This is the software or component that exposes a set of
operations. For example, if we are implementing our Web service in Java,
our service will be a Java class (and the operations will be implemented as
Java methods). Clients will invoke these operations by sending SOAP

messages.

SOAP Engine: Web service implementation does not know anything about
interpreting SOAP requests and creating SOAP responses. To do this, we
need a SOAP engine. This is a piece of software that handles SOAP requests
and responses. Apache Axis is an example of SOAP engine. The

functionality of the SOAP engine is usually limited to manipulating SOAP.

Application Server: To actually function as a server that can receive
requests from different clients, the SOAP engine usually runs within an
Application Server. This is a piece of software that provides a ‘living space’
for applications that must be accessed by different clients. The SOAP engine
runs as an application inside the application server. A good example is the

Apache Tomcat server — a Java Servlet and JSP container.

HTTP Server: Many application servers already include some HTTP
functionality, so we can have Web services up and running by installing a
SOAP engine and an application server. However, when an application
server lacks HTTP functionality, we also need an HTTP Server. This is more
commonly called a “Web server’. It is a piece of software that knows how to
handle HTTP messages. A good example is the Apache HTTP Server, one

of the most popular web servers in the Internet.

Web Service Platform

—

Refers to a Technology <—

— Which provides a set of Services or

Functionalities over the internet.

———>Which enables - Development

Deployment

Maintenance of Web-
Applications & Services.
(OR)

A Web Service Platform is a comprehensive environment or framework that
provides the necessary tools, services, and infrastructure for developing,
deploying, and managing web services. It typically includes both software
and hardware components that support the creation and interaction of web
services.

Here are some examples of web service platforms:

File servers

Allow clients to store and access information on a company's server, such as

YouTube and Google Drive.

Google Maps

A major service that websites can use to access and display map data. For
example, if you use Google Maps on your mobile phone to find a location,
your phone's application is the client and Google Maps is the server that

returns the data.

Web Services Platform Architecture
XML along with HTTP forms the basis of web services. XML provides a
language which can be used between different platforms and programming
languages and still express complex messages and functions. The HTTP

protocol is the most used Internet protocol.

Web services platform consists of the following components:
e UDDI (Universal Description, Discovery and Integration)
e WSDL (Web Services Description Language)
e SOAP (Simple Object Access Protocol)

uDDI
Service Registry

Publish

Search

Web Service

Bind

. . fy
(Service Requestor) SOAP XML Request/Response *‘

Client

Service Provider

UDDI

UDDI (Universal Description, Discovery and Integration) is a platform-
independent, XML based registry service where companies can register and search

for Web services.

. UDDI is a directory for storing information about web services

« UDDI communicates via SOAP

. UDDI is a directory of web service interfaces described by WSDL
WSDL

WSDL (Web Services Description Language) is an XML-based language for
locating and describing Web services. WSDL definition describes how to access a
web service and what operations it will perform along with the message format and

protocol details for the web service. WSDL is a W3C standard.

SOAP

SOAP (Simple Object Access Protocol) is an XML-based communication protocol
for exchanging structured information between applications over HTTP, SMTP or
any other protocol. In other words, SOAP is a protocol for accessing a Web

Service.
SOAP Message Structure

A SOAP message is an ordinary XML document containing the following

elements:

e An Envelope (required) element that identifies the XML document as a
SOAP message
e An optional Header element that contains header information
e A Body (required) element that contains call and response information
e An optional Fault element containing errors and status information
<?xml version="1.8"7>
<soap:Envelope xmlns:soap="http://www.w3.0org/20081/12/s0ap-envelope”
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding" >
{soap:Header:>
%};oap:Header>
<soap:Body>
..%scap:Fault>

</soap:Fault>
</soap:Body>

</soap:Envelope>

(:SOAP—ENVI Envelope)
. .
SOAP-ENV: Header
_ 4

-
SOAP-ENV: Body
: J
& J

Example SOAP Request and Response Message

Below is a sample SOAP Request message for a Stock Quote service whose
WSDL is available at http://www.webservicex.net/stockquote.asmx?WSDL. The
message is sent as a HTTP Post Request whose content is nothing but a SOAP
Request message. The soap request message contains a soap envelope and a soap

body with a stock quote request for stock symbol “GOOG” (Google).

POST /stockquote.asmx HTTP/1.1

Content-type: text/xml;charset="utf-8"

Spapaction: "http://www.webserviceX.NET/GetQuote"

Accept: text/xml, multipart/related, text/html, image/gif, image/jpeg,
*; 9=.2, */*; g=.2

User-Agent: JAX-WS RI 2.1.6 in JDK &

Host: localhost

Connection: keep-alive

Content-Length: 194

<?xml version="1.8" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<5:Body>
<GetQuote xmlns="http://www.webserviceX . NET/">
{symbol>G00G</symbol>
< /GetQuote>
</5:Body>
</S:Envelope>

Below is a sample SOAP Response message for the above request. Apart from the
HTTP response headers the content is a SOAP response message with a soap
envelope and a soap body. The result is enclosed within “GetQuoteResponse” tag.
The last traded price for stock symbol “GOOG” (Google) is in “last” tag put at
$594.34 on 5/29/2012 04:00PM.

HTTP/1.1 200 OK

Cache-Control: private, max-age=0
(ontent-Length: 975

Content-Type: text/xnl; charset=utf-8
Server: Microsoft-1I5/7.0
X-Aspllet-Version: 4.0.38319
X-Powered-By: ASP.NET

Date: Wed, 30 May 2012
09:14.85 GMT

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://ww.w3.0rg/2001/XMLSchema-instance”
xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
{soap:Body>
<GetQuoteResponse xmlns="http://www.webserviceX NET/">
{GetQuoteResult>
{StockQuotes>
<Stock>
{Symbo1>G00G</Symbol>
<Last>594,34</Last>
<Date>5/29/2012¢/Date>
<Time>4:00pm</Time>
{Change>0.00<¢/Change>
<Open>N/A</Open>
<High>N/A</High>
{Low>N/A</Low>
<Volume>108</Volume>
<MktCap>193.8B</MktCap>
<PreviousClose>594.34</PreviousClose>
{PercentageChange>d.00%</PercentageChange>
<AnnRange>473.62 - 670.25</AnnRange>
<Earns>32.998¢/Earns>
<P-E>18.81</P-E>
<Name>Google Inc.</Name>
</Stock>
</S$tockQuotes>
{/GetQuoteResult>
</GetQuoteResponse>
{/soap:Body>
</soap:Envelope>

Choice of Web Service Platform for Development & Deployment

—> Picking the right tool for a job
EX:-

If you choose a platform that well known (Microsoft, AWS, Azure) & widely
used. — It might have lots of resources & support available. This can make it

easier for developers to build services.

If you pick a less popular platform——>you might struggle to find help when you

run into problems.
Here are some considerations:-

1. Compatibility & Interoperability:-
Choosing a platform with strong support for widely accepted standards like
SOAP/ REST. (How well Different systems can work together without any
Issues).
In context of web services platforms, “ it’s like asking whether they speak
the same language”. (Choosing a language that many system understand).

2. Tooling & Development Environment :-
Each web service provider has its own tools, so developer need to be
familiar with these tools.
Selecting a platform tools that align with the development team’s skill set &
preferences is crucial. (Which helps them do their work smoothly &

Confidence).

3. Security Features:- (Level of Security)
Different Platforms may have varying levels of built-in security features &
mechanisms.
Platform A: Well known for its Robust security (Protected from
Unauthorized access) measures. It offers features like audit (Check for
digital-System, N/w safety) & a built-in firewall.
Platform B: Less Established & doesn’t have as many built-in security
features (Basic security measures like password protection & some limited
firewall options).
» Choosing a Platform A with its advance security features your website
Is better protected against potential threats & attacks. (Give an extra
layer of defense).
» Choosing a Platform B, you might need to invest more time &
resources in implementing additional security measures.
(This could involve installing third-party security plugins & setting up
manual security checks. Being more vigilant (Risk of Dangers) about

potential vulnerabilities).
_—Robust ————Dbefense

Choosing —

~—— Weak——> Sensitive Data may be

exposed to the internet.

4.

Integration Capabilities:-
How well a system (or) platform can work together with other systems ,

software (or) technologies.

EX:- Like a different piece of puzzles fit together smoothly.

If a system has good I-C , it can easily connect & collaborate with other
systems.

Vendor Support & Community;-

A strong community & available resources can be invaluable for trouble
shooting, learning & best practices.

A group of people & available resources i.e, (Helpful materials) can provide
support, advice & knowledge when you encounter problems.

EX:- Learning how to use a new s/w program. If there’s a strong community
around that s/w. (You can ask question when you get stuck, & experienced
users will often provide guidance (or) share solutions).

Cost & Licensing:-

Different platforms may have different pricing models, ranging from open-
source options to commercial licenses.

Long term- viability & support:-

It consider the track record & long term viability of the web service
platforms.

It is important to choose a platform that is actively maintained with roadmap

for future development & updates.

SERVICE CONTRACT

A service contract, also known as a service agreement, is a legal agreement
between two parties that outlines the terms and conditions of a service to be
provided by one party to the other. The service provider is compensated for the
service they provide. Service contracts are often used in industries like education,

healthcare, construction, and IT.
(OR)

It is a legal binding agreement between a service provider & a client that outlines

the terms & conditions of the services being offered.
Service contracts can include details such as:

e Scope and style: The scope, style, and timeline of the service, including any
deadlines for completion

e Work to be performed: What services are to be performed for which objects,

and under which conditions
e Compensation: Payment terms and agreements
e Changes: What process needs to take place if changes need to be made

e Dispute resolution: Protocols for resolving disputes
Service contracts can be used in many different situations, such as:

e Between an employer and an individual for a limited time period or scope
e Between a contractor and a homeowner

e Between a business and a freelance web designer

EX:-

When you hire someone to do a job for you

It says exactly what they’ll do

How long it’1l take,

How much you’ll pay what everyone’s supposed to do,

& what happens if things don’t go as planned.

SERVICE LEVEL DATA MODEL
A Service Level Data Model is a structured framework used to define, measure,

and manage the performance of services based on predefined criteria and

agreements. It integrates various components to ensure that services meet the
agreed-upon standards and performance levels as stipulated in Service Level
Agreements (SLAs). This model is crucial for maintaining service quality,
optimizing performance, and ensuring customer satisfaction in a service-oriented
environment.

+ Predefined criteria in a Service Level Data Model are specific, measurable
standards established beforehand to evaluate the performance and quality of
services. These criteria are often outlined in Service Level Agreements
(SLASs) and are used to set expectations for service delivery.

Ex: E-commerce Website

Service: Online Shopping Platform

Predefined Criteria:

Page Load Time:

Criteria: Web pages should load within 2 seconds.

Metric: Average time taken for a web page to fully load.

Order Processing Time:

Criteria: Orders should be processed within 1 hour of placement.

Metric: Time taken from order placement to processing completion.

Cart Abandonment Rate:

Criteria: Maintain a cart abandonment rate of less than 60%.

Metric: Percentage of shopping carts that are abandoned before purchase.
Transaction Success Rate:

Criteria: Ensure 98% of transactions are successfully completed.

Metric: Percentage of transactions completed without errors.

Definition

Service Level Data Model: A comprehensive schema that represents and
organizes data related to the performance and quality of services, encompassing

metrics, agreements, and operational details. It serves as a foundation for

monitoring, analyzing, and improving service delivery against predefined service
level objectives.

+ Operational details in a Service Level Data Model refer to the specific

elements and aspects involved in the day-to-day management, execution,

and monitoring of services. These details ensure that the services operate

smoothly, meet performance criteria, and adhere to predefined standards.
Example of Operational Details in a Email Hosting Service
Service: Email Hosting
Operational Details:
1. Service Components:

Endpoints:

e Incoming Mail Server: imap.emailservice.com

e Qutgoing Mail Server: smtp.emailservice.com
Interfaces:

e Webmail Interface: https://webmail.emailservice.com

e Email Client Configuration: IMAP/SMTP settings for email clients.
2. Performance Metrics:
Email Delivery Time:

e Criteria: Emails should be delivered within 5 minutes.
e Metric: Average time from sending an email to delivery to the recipient’s

inbox.
3. Incident Management:
Incident Detection:

e Method: Automated alerts for issues like email delivery failures or server

downtime.
Incident Response:

e Procedure: Response within 1 hour for critical issues, with escalation to

senior support if unresolved within 4 hours.
4. Service Configuration:
Settings:

e Maximum email size limit;: 25MB

e Spam filter settings: Moderate (filtering emails with known spam

characteristics)
5. Customer Interaction:
Support Channels:

e Email support: support@emailservice.com
e Phone support: 1-800-EMAIL-SUP

Service Level Agreements (SLAS):
e Support response time: Within 4 hours for non-critical issues.

Core Components

1. Service Definitions:
Service: The individual units or offerings that are monitored and managed.
Each service is defined by its attributes such as name, description, and
endpoint details.

2. Service Level Agreements (SLAS):
SLA: A formal agreement that specifies the expected performance standards
and metrics for a service. SLAs detail the targets for service availability,
response times, resolution times, and other performance indicators.

3. Metrics:

Performance Metrics: Quantitative measures used to evaluate the
performance of a service. Examples include response time, throughput, error

rates, and availability.

Operational Metrics: Measures related to the operational health of a

service, such as resource utilization and system uptime.

Business Metrics: Metrics that link service performance to business

outcomes, such as customer satisfaction and transaction volume.

. Data Collection:

Monitoring Tools: Systems and tools used to collect data on service
performance. This includes logs, monitoring software, and performance

dashboards.
. Reporting and Analysis:

Reports: Documents or dashboards that summarize service performance

data, compare it against SLA targets, and highlight trends or issues.

Analysis: The process of evaluating performance data to identify trends,

assess compliance with SLAs, and uncover areas for improvement.
Incident Management:

Incident: Any disruption or issue affecting service performance. The model

tracks incidents, their impact, and resolution status.

Certainly! Let’s walk through an example of a Service Level Data Model
within a fictional IT service management context. This example will
illustrate how different components fit together to monitor and manage

service performance.

Scenario

Imagine a company, TechSolutions, provides cloud-based storage services.
The company wants to ensure their service meets certain performance

standards as agreed with their customers.

Components and Example Data

1. Service Entity

« Service ID: S001
« Service Name: Cloud Storage
« Service Description: Provides scalable cloud storage for businesses.

« Service Endpoint: https://api.techsolutions.com/cloudstorage
2. SLA Entity

« SLAID: SLA001
. Service ID: S001
« SLA Name: Premium Storage SLA
« SLA Conditions:
o Uptime: 99.9% monthly
o Response Time: < 200ms
o Resolution Time: < 1 hour for critical issues
« Start Date: 2024-01-01
. End Date: 2024-12-31

3. Metric Entity

« Metric ID: M001

« Service ID: S001

« Metric Name: Average Response Time
o Metric Value: 185ms

« Measurement Unit: milliseconds
o Threshold: 200ms

o Metric ID: M002

« Service ID: S001

« Metric Name: Uptime

o Metric Value: 99.95%

« Measurement Unit: percentage

« Threshold: 99.9%

4. Incident Entity

« Incident ID: 1001

. Service ID: S001

« Incident Description: Service outage for 30 minutes
« Reported Time: 2024-08-15 14:30

« Resolution Time: 2024-08-15 15:00

« Impact Level: Critical

« Incident ID: 1002

. Service ID: S001

« Incident Description: Slow response time due to high traffic
« Reported Time: 2024-08-16 10:00

« Resolution Time: 2024-08-16 11:00

« Impact Level: Major

SERVICE DISCOVERY

Service discovery is the process of automatically detecting devices and services on
a network. Service discovery protocol (SDP) is a networking standard that
accomplishes detection of networks by identifying resources. Traditionally, service
discovery helps reduce configuration efforts by users who are presented with

compatible resources, such as a bluetooth-enabled printer or server.

More recently, the concept has been extended to network or distributed container

resources as ‘services’, which are discovered and accessed.

Service Provider

]

Service Registry Service Consumer

A

2. Lookup
;J —

3. Response

Y

Service Discovery has the ability to locate a network automatically making it so
that there is no need for a long configuration set up process. Service discovery

works by devices connecting through a common language on the network allowing
devices or services to connect without any manual intervention. (i.e Kubernetes

service discovery, AWS service discovery)

There are two types of service discovery: Server-side and Client-side. Server-side
service discovery allows clients applications to find services through a router or a
load balancer. Client-side service discovery allows clients applications to find
services by looking through or querying a service registry, in which service

instances and endpoints are all within the service registry.
How does Service Discovery Work?

There are three components to Service Discovery: the service provider, the service

consumer and the service registry.

1) The Service Provider registers itself with the service registry when it enters the

system and de-registers itself when it leaves the system.

2) The Service Consumer gets the location of a provider from the service registry,

and then connects it to the service provider.

3) The Service Registry is a database that contains the network locations of service
instances. The service registry needs to be highly available and up to date so clients
can go through network locations obtained from the service registry. A service
registry consists of a cluster of servers that use a replication protocol to maintain

consistency.

Example: Smart Home Device Control

Scenario:

You have a smart home app (service consumer) that controls various smart devices

in your home, like smart lights (service provider).
Process:

1. Device Registration:

o When you set up your smart light bulb, it registers itself with a service
discovery protocol (like mDNS or SSDP). It provides information
such as its unique identifier, IP address, and the types of commands it
can respond to (e.g., turn on/off, change color).

2. Service Discovery:

o When you open the smart home app, it automatically scans the local
network for registered smart devices.

o The app retrieves a list of available devices, including the smart light
bulb.

3. Service Consumption:

o You select the smart light bulb from the app interface and choose to
change its color or brightness.

o The app sends a command to the bulb using the information obtained
during the discovery process.

4. Response:
o The smart light bulb receives the command and adjusts its settings

accordingly. It may also send a confirmation back to the app.

Summary:

In this simple example, the smart home app discovers and interacts with a smart
light bulb without needing to know its exact network address beforehand. This
seamless interaction enhances user experience and simplifies device management

in smart homes.
SERVICE LEVEL INTEGRATION PROCESS

Service Level Integration (SLI) refers to the process of ensuring that various
services work together effectively, meeting defined service level agreements

(SLAs) and performance metrics. Here’s a general outline of the SLI process:
1. Define Services and Interfaces

« Identify the services that need to be integrated.
. Define the interfaces, APIs, and protocols that these services will use to

communicate.
2. Establish Service Level Agreements (SLAS)

« Define clear SLAs for each service, including performance metrics such as
response times, availability, and reliability.

« Ensure that all stakeholders agree on these SLAS.
3. Design Integration Architecture

. Create an architecture that outlines how the services will interact, including
data flows and dependencies.

« Consider using middleware or service orchestration tools if necessary.

4. Implement Integration

« Develop the necessary code and configuration to enable communication
between services.
« Ensure that all services can handle the data formats and protocols defined in

the earlier steps.
5. Testing and Validation

. Perform integration testing to ensure that services work together as expected.

« Validate that SLAs are being met under various load conditions.
6. Monitoring and Performance Management

« Implement monitoring tools to track the performance of integrated services
against the defined SLAs.

« Set up alerts for any SLA breaches or performance issues.
7. Continuous Improvement

« Regularly review performance data to identify areas for improvement.
« Update SLAs and integration strategies as needed based on changing

requirements or service performance.
8. Documentation and Training

. Document the integration process, architecture, and any specific
configurations.
« Provide training for relevant personnel to ensure they understand how the

integrated services operate.

This structured process helps ensure that services not only integrate smoothly but
also meet the expected performance standards, providing a reliable and efficient

user experience.

Example: E-Commerce Platform Integration

Scenario:

An e-commerce platform needs to integrate several services, including user

authentication, product inventory, payment processing, and order management.
1. Define Services and Interfaces

« Services ldentified:
o User Authentication Service
o Product Inventory Service
o Payment Processing Service
o Order Management Service
« Interfaces Defined:
o RESTTful APIs for each service, with clear endpoints for each function

(e.g., /login, /products, /checkout).
2. Establish Service Level Agreements (SLAS)

« SLAs Defined:
o User Authentication: 99.9% uptime, response time under 200 ms.
o Product Inventory: 99% accuracy in product availability, response
time under 300 ms.
o Payment Processing: 99.5% transaction success rate, response time

under 500 ms.

o Order Management: 99% order processing success rate, response time
under 300 ms.

3. Design Integration Architecture

« Architecture Created:
o Use of a microservices architecture where each service operates
independently but communicates through a centralized APl Gateway.
o Data flow diagram created to illustrate how user requests are

processed across services.
4. Implement Integration

« Development:
o APIs are developed and tested.
o Authentication service handles login and token generation.
o Payment service integrates with third-party payment gateways.

o Order management service handles order placement and tracking.
5. Testing and Validation

« Integration Testing:
o Simulate user actions like logging in, adding products to a cart, and
completing a purchase.
o Verify that all services communicate correctly and meet SLA
performance metrics.

6. Monitoring and Performance Management

« Monitoring Tools Implemented:

o Use of monitoring tools like Prometheus and Grafana to track
response times, uptime, and error rates for each service.
o Alerts set up to notify the development team of any SLA breaches.

7. Continuous Improvement

. Review Meetings Held:
o Monthly reviews of performance data to discuss any SLA breaches or

performance issues.
o Adjustments made to the architecture or code based on feedback and

data analysis.
8. Documentation and Training

« Documentation Created:
o Comprehensive documentation covering APl specifications,
integration architecture, and troubleshooting guidelines.
« Training Provided:
o Workshops conducted for the development and operations teams to

ensure everyone understands the integrated services and how to

manage them.

ATOMIC & COMPOSITE SERVICES
In SOA, Services can be categorized into two main types:-
They are:-

1. Atomic
2. Composite
1. Atomic Service: It is a standalone, self-contained unit of functionality that
performs a specific task (or) operation.
Ex:- Calculate Total Cost (Service take item prices & quantities as input
returns the total cost).
Characteristic: It doesn’t rely on (or) call other services, it handles its task
independently.
2. Composite Service: It is higher-level Service that composed of multiple
atomic (or) other composite services.
Ex:- Process Order (it might use check inventory & charge customer along
with other composite services to handle the entire order process).
Characteristic: it orchestrates the work of multiple services to accomplish a

broader business goal.

ATOMIC COMPOSITE
Nature of Functionality: 1. Orchestrates & Coordinates
1. Performs a specific standalone multiple services to achieve a
task (or) operation. broader business goal.
Independence: 2. Relies on the collaboration of
2. Operates Independently & doesn’t | multiple services to accomplish its
rely on other services. task.

Granularity: (level of detail)
3. Represents a fine-grained single

unit of functionality.

3. Represents a coarse-grained
service, combining several atomic
(or) other composite services to

fulfill a complex operation.

Complexity of Task:
4. Handles a relatively simple, well-
defined task.

4. Handles more complex business
processes by coordinating multiple

Services.

Reusability & Flexibility:
5. Often highly reusable across
different business process (or)

applications

5. May be more tailored to specific
business processes & may have less

general reuse potential.

/RETROSPECTIVE ON SOA

Review (or) Past Events (or) Actions

Involves on looking back & evaluating the Success & what are the

Challenges Faced, Lessons Learned from implementing this architectural

approach.

» 1It’s a reflective process to understand what worked well & what could

be improved for future projects.

Success:-

1. Interoperability
2. Reusability
3. Scalability
4. Modularity

Challenges:-

1. Complexity (Designing & Managing SOA requires careful
planning)

2. Integration Challenges (with new services expecially in
organizations with existing infrastructure)

3. Governance & Standards (Consistent standards to be provided
could be a struggle)

4. Change Management (Moving from a large (centralized team)
to smaller (specialized teams) with different roles &

responsibilities (change the behavior))
Lessons Learned:-

1. Clear Business Alignment (success)
2. Effective Governance (consistency & complexity)
3. Modularity & Loosely Coupling

4. Continious Monitoring & Improvement.

	UDDI
	WSDL
	SOAP
	Components and Example Data
	1. Service Entity
	2. SLA Entity
	3. Metric Entity
	4. Incident Entity

	Example: Smart Home Device Control
	Scenario:
	Process:

	Summary:
	1. Define Services and Interfaces
	2. Establish Service Level Agreements (SLAs)
	3. Design Integration Architecture
	4. Implement Integration
	5. Testing and Validation
	6. Monitoring and Performance Management
	7. Continuous Improvement
	8. Documentation and Training
	Example: E-Commerce Platform Integration
	Scenario:

	1. Define Services and Interfaces (1)
	2. Establish Service Level Agreements (SLAs) (1)
	3. Design Integration Architecture (1)
	4. Implement Integration (1)
	5. Testing and Validation (1)
	6. Monitoring and Performance Management (1)
	7. Continuous Improvement (1)
	8. Documentation and Training (1)

