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UNIT IV
PATHS, PATH PRODUCTS AND REGULAR EXPRESSIONS 

Paths,Path products and Regular expressions:- path products &pathexpression,reduction 
procedure, applications, regular expressions & flow anomaly detection.
Logic Based Testing:-overview,decision tables,pathexpressions,kv charts, specifications.

PATH PRODUCTS AND PATH EXPRESSION:

∑ MOTIVATION:
o Flow graphs are being an abstract representation of programs.
o Any question about a program can be cast into an equivalent question about an 

appropriate flowgraph.
o Most software development, testing and debugging tools use flow graphs 

analysis techniques.

∑ PATH PRODUCTS:
o Normally flow graphs used to denote only control flow connectivity.
o The simplest weight we can give to a link is a name.
o Using link names as weights, we then convert the graphical flow graph into an 

equivalent algebraic like expressions which denotes the set of all possible paths 
from entry to exit for the flow graph.

o Every link of a graph can be given a name.
o The link name will be denoted by lower case italic letters In tracing a path or 

path segment through a flow graph, you traverse a succession of link names.
o The name of the path or path segment that corresponds to those links is 

expressed naturally by concatenating those link names.
o For example, if you traverse links a,b,c and d along some path, the name for that 

path segment is abcd. This path name is also called a path product. Figure 5.1 
shows some examples:
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Figure 5.1: Examples of paths.
∑ PATH EXPRESSION:

o Consider a pair of nodes in a graph and the set of paths between those node.
o Denote that set of paths by Upper case letter such as X,Y. From Figure 5.1c,

the members of the path set can be listed as follows:
ac, abc, abbc, abbbc, abbbbc.............

o Alternatively, the same set of paths can be denoted by :
ac+abc+abbc+abbbc+abbbbc+...........

o The + sign is understood to mean "or" between the two nodes of interest, paths 
ac, or abc, or abbc, and so on can be taken.

o Any expression that consists of path names and "OR"s and which denotes a set 
of paths between two nodes is called a "Path Expression”.

∑ PATH PRODUCTS:
o The name of a path that consists of two successive path segments is

conveniently expressed by the concatenation or Path Product of the segment
names.

o For example, if X and Y are defined as X=abcde,Y=fghij,then the path 
corresponding to X followed by Y is denoted by

XY=abcdefghij
o Similarly, 

YX=fghijabcde 
aX=aabcde 
Xa=abcdea 
XaX=abcdeaabcde

o If X and Y represent sets of paths or path expressions, their product represents
the set of paths that can be obtained by following every element of X by any 
element of Y in all possible ways. For example,

o X = abc + def + ghi
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o Y = uvw + z 
Then,

XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz
o If a link or segment name is repeated, that fact is denoted by an exponent. 

The exponent's value denotes the number of repetitions:
o a1 = a; a2 = aa; a3 = aaa; an = aaaa . . . n times. 

Similarly, if X = abcde then

X1 = abcde
X2 = abcdeabcde = (abcde)2

X3 = abcdeabcdeabcde = (abcde)2abcde
= abcde(abcde)2 = (abcde)3

o The path product is not commutative (that is XY!=YX).
o The path product is Associative.

RULE 1: A(BC)=(AB)C=ABC
where A,B,C are path names, set of path names or path expressions.

o The zeroth power of a link name, path product, or path expression is also 
needed for completeness. It is denoted by the numeral "1" and denotes the 
"path" whose length is zero - that is, the path that doesn't have any links.

o a0 = 1
o X0 = 1

∑ PATH SUMS:
o The "+" sign was used to denote the fact that path names were part of the same

set of paths.
o The "PATH SUM" denotes paths in parallel between nodes.
o Links a and b in Figure 5.1a are parallel paths and are denoted by a + b. Similarly, 

links c and d are parallel paths between the next two nodes and are denoted by 
c + d.

o The set of all paths between nodes 1 and 2 can be thought of as a set of parallel 
paths and denoted by eacf+eadf+ebcf+ebdf.

o If X and Y are sets of paths that lie between the same pair of nodes, then X+Y 
denotes the UNION of those set of paths. For example, in Figure 5.2:

Figure 5.2: Examples of path sums.
The first set of parallel paths is denoted by X + Y + d and the second set by U + V
+ W + h + i + j. The set of all paths in this flowgraph is f(X + Y + d)g(U + V + W
+ h + i + j)k

o The path is a set union operation, it is clearly Commutative and Associative.
o RULE 2: X+Y=Y+X
o RULE 3: (X+Y)+Z=X+(Y+Z)=X+Y+Z
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∑ DISTRIBUTIVE LAWS:
o The product and sum operations are distributive, and the ordinary rules of 

multiplication apply; that is
RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD

o Applying these rules to the below Figure 5.1a yields
o e(a+b)(c+d)f=e(ac+ad+bc+bd)f = eacf+eadf+ebcf+ebdf

∑ ABSORPTION RULE:
o If X and Y denote the same set of paths, then the union of these sets is 

unchanged; consequently,
RULE 5: X+X=X (Absorption Rule)

o If a set consists of paths names and a member of that set is added to it, the 
"new" name, which is already in that set of names, contributes nothing and can 
be ignored.

o For example,
o if X=a+aa+abc+abcd+def then

X+a = X+aa = X+abc = X+abcd = X+def = X
It follows that any arbitrary sum of identical path expressions reduces to the same path expression.

∑ LOOPS:
Loops can be understood as an infinite set of parallel paths. Say that the loop consists of a single link b. 

then the set of all paths through that loop point is b0+b1+b2+b3+b4+b5+..............

Figure 5.3: Examples of path loops.
This potentially infinite sum is denoted by b* for an individual link and by X*

Figure 5.4: Another example of path loops.
o The path expression for the above figure is denoted by the

notation: ab*c=ac+abc+abbc+abbbc+................
o Evidently,

aa*=a*a=a+ and XX*=X*X=X+
o It is more convenient to denote the fact that a loop cannot be taken more than a 

certain, say n, number of times.
o A bar is used under the exponent to denote the fact as 

follows: Xn = X0+X1+X2+X3+X4+X5+..................+Xn

RULES 6 - 16:
o The following rules can be derived from the previous rules:



74

o RULE 6: Xn + Xm = Xn if n>m 
RULE 6: Xn + Xm = Xm if m>n 
RULE 7: XnXm = Xn+m

RULE 8: XnX* = X*Xn = X* RULE 9: XnX+ = X+Xn = X+ RULE 
10: X*X+ = X+X* = X+ RULE 11: 1 + 1 = 1
RULE 12: 1X = X1 = X
Following or preceding a set of paths by a path of zero length does not change the set.
RULE 13: 1n = 1n = 1* = 1+ = 1
No matter how often you traverse a path of zero length,It is a path of zero length. RULE 14: 1++1 = 1*=1

The null set of paths is denoted by the numeral 0. it obeys the following 
rules:

RULE 15: X+0=0+X=X
RULE 16: 0X=X0=0
If you block the paths of a graph for or aft by a graph that has no paths , there won’t be any paths.

REDUCTION PROCEDURE:

∑ REDUCTION PROCEDURE ALGORITHM:
o This section presents a reduction procedure for converting a flowgraph whose 

links are labeled with names into a path expression that denotes the set of all 
entry/exit paths in that flowgraph. The procedure is a node-by-node removal 
algorithm.

o The steps in Reduction Algorithm are as follows:
1. Combine all serial links by multiplying their pathexpressions.
2. Combine all parallel links by adding their pathexpressions.
3. Remove all self-loops (from any node to itself) by replacing them with a 

link of the form X*, where X is the path expression of the link in that loop.

STEPS 4 - 8 ARE IN THE ALGORIHTM'S LOOP:
4. Select any node for removal other than the initial or final node. Replace it 

with a set of equivalent links whose path expressions correspond to all 
the ways you can form a product of the set of inlinks with the set of 
outlinks of that node.

5. Combine any remaining serial links by multiplying their path expressions.
6. Combine all parallel links by adding their path expressions.
7. Remove all self-loops as in step 3.
8. Does the graph consist of a single link between the entry node and the 

exit node? If yes, then the path expression for that link is a path 
expression for the original flowgraph; otherwise, return to step 4.

o A flowgraph can have many equivalent path expressions between a given pair of 
nodes; that is, there are many different ways to generate the set of all paths 
between two nodes without affecting the content of that set.

o The appearance of the path expression depends, in general, on the order in 
which nodes are removed.

∑ CROSS-TERM STEP (STEP 4):
o The cross - term step is the fundamental step of the reduction algorithm.
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o It removes a node, thereby reducing the number of nodes by one.
o Successive applications of this step eventually get you down to one entry and 

one exit node. The following diagram shows the situation at an arbitrary node 
that has been selected for removal:

o From the above diagram, one can infer:
o (a + b)(c + d + e) = ac + ad + + ae + bc + bd + be

∑ LOOP REMOVAL OPERATIONS:
o There are two ways of looking at the loop-removal operation:

o In the first way, we remove the self-loop and then multiply all outgoing links by 
Z*.

o In the second way, we split the node into two equivalent nodes, call them A and 
A' and put in a link between them whose path expression is Z*. Then we remove 
node A' using steps 4 and 5 to yield outgoing links whose path expressions are 
Z*X and Z*Y.

∑ A REDUCTION PROCEDURE - EXAMPLE:
o Let us see by applying this algorithm to the following graph where we remove 

several nodes in order; that is

Figure 5.5: Example Flowgraph for demonstrating reduction 
procedure.

o Remove node 10 by applying step 4 and combine by step 5 to yield
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o Remove node 9 by applying step4 and 5 to yield

o Remove node 7 by steps 4 and 5, as follows:

o Remove node 8 by steps 4 and 5, to obtain:

o PARALLEL TERM (STEP 6):
Removal of node 8 above led to a pair of parallel links between nodes 4 and 5. combine them to create 
a path expression for an equivalent link whose path expression is c+gkh; that is

o LOOP TERM (STEP 7):
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Removing node 4 leads to a loop term. The graph has now been replaced with the following 
equivalent simpler graph:

o Continue the process by applying the loop-removal step as follows:

o Removing node 5 produces:

o Remove the loop at node 6 to yield:

o Remove node 3 to yield

o Removing the loop and then node 6 result in the following 
expression: 
a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d)*(ilhd)*e

o You can practice by applying the algorithm on the following flowgraphs and 
generate their respective path expressions:
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Figure 5.6: Some graphs and their path expressions.
APPLICATIONS:

o The purpose of the node removal algorithm is to present one very generalized 
concept- the path expression and way of getting it.

o Every application follows this common pattern:
1. Convert the program or graph into a path expression.
2. Identify a property of interest and derive an appropriate set of "arithmetic"

rules that characterizes the property.
Replace the link names by the link weights for the property of interest. The path expression has now been 
converted to an expression in some algebra, such as

1. Ordinary algebra, regular expressions, or boolean algebra. This
algebraic expression summarizes the property of interest over the set 
of allpaths.

2. Simplify or evaluate the resulting "algebraic" expression to answer the
question you asked.

∑ HOW MANY PATHS IN A FLOW GRAPH ?
o The question is not simple. Here are some ways you could ask it:

1. What is the maximum number of different paths possible?
2. What is the fewest number of paths possible?
3. How many different paths are there really?
4. What is the average number of paths?

o Determining the actual number of different paths is an inherently difficult 
problem because there could be unachievable paths resulting from correlated 
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and dependent predicates.
o If we know both of these numbers (maximum and minimum number of possible 

paths) we have a good idea of how complete our testing is.
o Asking for "the average number of paths" is meaningless.

∑ MAXIMUM PATH COUNT ARITHMETIC:
o Label each link with a link weight that corresponds to the number of paths that 

link represents.
o Also mark each loop with the maximum number of times that loop can be taken. 

If the answer is infinite, you might as well stop the analysis because it is clear that 
the maximum number of paths will be infinite.

o There are three cases of interest: parallel links, serial links, and loops.

o This arithmetic is an ordinary algebra. The weight is the number of paths in 
each set.

o EXAMPLE:
ß The following is a reasonably well-structured program.

Each link represents a single link and consequently is given a weight of "1" to start. Let’s
say the outer loop will be taken exactly four times and inner Loop Can be taken zero or 
three times Its path expression, with a little work, is:
Path expression: a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh

ß A: The flow graph should be annotated by replacing the link name with 
the maximum of paths through that link (1) and also note the number 
of times for looping.

ß B: Combine the first pair of parallel loops outside the loop and also 
the pair in the outer loop.

ß C: Multiply the things out and remove nodes to clear the clutter.
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1. For the Inner Loop:
D:Calculate the total weight of inner loop, which can execute a min. of 0 times and max. 
of 3 times. So, it inner loop can be evaluated as follows:

13 = 10 + 11 + 12 + 13 = 1 + 1 + 1 + 1 = 4
2. E: Multiply the link weights inside the loop: 1 X 4 = 4
3. F: Evaluate the loop by multiplying the link wieghts: 2 X 4 = 8.
4. G: Simpifying the loop further results in the total maximum number 

of paths in the flowgraph:

2 X 84 X 2 = 32,768.
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Alternatively, you could have substituted a "1" for each link in the path expression and then simplified, as follows:

a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh
= 1(1 + 1)1(1(1 x 1)31 x 1 x 1(1 + 1)1)41(1 x 1)31 x 1 x 1
= 2(131 x (2))413

= 2(4 x 2)4 x 4
= 2 x 84 x 4 = 32,768
This is the same result we got graphically.Actually, the outer loop should be taken exactly four times. That doesn't 
mean it will be taken zero or four times. Consequently, there is a superfluous "4" on the outlink in the last step. 
Therefore the maximum number of different paths is 8192 rather than 32,768.

STRUCTURED FLOWGRAPH:
Structured code can be defined in several different ways that do not involve ad-hoc rules such as not using 
GOTOs.
A structured flowgraph is one that can be reduced to a single link by successive application of the
transformations of Figure 5.7.

Figure 5.7: Structured Flowgraph Transformations.

The node-by-node reduction procedure can also be used as a test for structured code.Flow graphs that DO NOT 
contain one or more of the graphs shown below (Figure 5.8) as subgraphs are structured.

1. Jumping into loops
2. Jumping out of loops
3. Branching into decisions
4. Branching out of decisions
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Figure 5.8: Un-structured sub-graphs.
LOWER PATH COUNT ARITHMETIC:
A lower bound on the number of paths in a routine can be approximated for structured flow graphs.

The arithmetic is as follows:

The values of the weights are the number of members in a set of paths.
EXAMPLE:

ß Applying the arithmetic to the earlier example gives us the identical
steps unitl step 3 (C) as below:
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ß From Step 4, the it would be different from the previous example:

ß If you observe the original graph, it takes at least two paths to cover 
and that it can be done in two paths.

ß If you have fewer paths in your test plan than this minimum you 
probably haven't covered. It's another check.

CALCULATING THE PROBABILITY:
Path selection should be biased toward the low - rather than the high-probability paths.This raises an interesting 
question:
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What is the probability of being at a certain point in a routine?

This question can be answered under suitable assumptions primarily that all probabilities involved are 
independent, which is to say that all decisions are independent and uncorrelated. We use the same algorithm as 
before: node-by-node removal of uninteresting nodes.
Weights, Notations and Arithmetic:

ß Probabilities can come into the act only at decisions (including decisions 
associated with loops).

ß Annotate each outlink with a weight equal to the probability of going in 
that direction.

ß Evidently, the sum of the outlink probabilities must equal 1
ß For a simple loop, if the loop will be taken a mean of N times, the looping 

probability is N/(N + 1) and the probability of not looping is 1/(N + 1).
ß A link that is not part of a decision node has a probability of 1.
ß The arithmetic rules are those of ordinary arithmetic.

ß In this table, in case of a loop, PA is the probability of the link leaving the 
loop and PL is the probability of looping.

ß The rules are those of ordinary probability theory.
1. If you can do something either from column A with a probability 

of PA or from column B with a probability PB, then the probability 
that you do either is PA + PB.

2. For the series case, if you must do both things, and their 
probabilities are independent (as assumed), then the probability 
that you do both is the product of their probabilities.

ß For example, a loop node has a looping probability of PL and a probability 
of not looping of PA, which is obviously equal to I - PL.
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ß Following the above rule, all we've done is replace the outgoing 
probability with 1 - so why the complicated rule? After a few steps in 
which you've removed nodes, combined parallel terms, removed loops
and the like, you might find something like this:

because PL + PA + PB + PC = 1, 1 - PL = PA + PB + PC, and
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EXAMPLE:

which is what we've postulated for any decision. In other words, division by 1 - PL

renormalizes the outlink probabilities so that their sum equals unity after the loop is 
removed.

ß Here is a complicated bit of logic. We want to know the probability
associated with cases A, B, and C.

ß Let us do this in three parts, starting with case A. Note that the sum of 
the probabilities at each decision node is equal to 1. Start by throwing 
away anything that isn't on the way to case A, and then apply the 
reduction procedure. To avoid clutter, we usually leave out probabilities 
equal to 1.

CASE A:
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ß Case B is simpler:

ß Case C is similar and should yield a probability of 1 - 0.125 - 0.158 = 
0.717:

ß These checks. It's a good idea when doing this sort of thing to calculate all 
the probabilities and to verify that the sum of the routine's exit 
probabilities does equal 1.

ß If it doesn't, then you've made calculation error or, more likely, you've left 
out some bra How about path probabilities? That's easy. Just trace the 
path of interest and multiply the probabilities as you go.

ß Alternatively, write down the path name and do the indicated arithmetic 
operation.
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ß Say that a path consisted of links a, b, c, d, e, and the associated 
probabilities were .2, .5, 1., .01, and I respectively. Path 
abcbcbcdeabddea would have a probability of 5 x 10-10.

ß Long paths are usually improbable.

MEAN PROCESSING TIME OF A ROUTINE:
Given the execution time of all statements or instructions for every link in a flowgraph and the probability for 
each direction for all decisions are to find the mean processing time for the routine as a whole.
The model has two weights associated with every link: the processing time for that link, denoted by T, and the 
probability of that link P.

The arithmetic rules for calculating the mean time:

EXAMPLE:
1. Start with the original flow graph annotated with probabilities and processing time.

2.Combine the parallel links of the outer loop. The result is just the mean of the 
processing times for the links because there aren't any other links leaving the first 
node. Also combine the pair of links at the beginning of the flow graph.

3. Combine as many serial links as you can.
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4. Use the cross-term step to eliminate a node and to create the inner self - loop. 
5.Finally, you can get the mean processing time, by using the arithmetic rules as
follows:

PUSH/POP, GET/RETURN:
This model can be used to answer several different questions that can turn up in debugging. It can also help 
decide which test cases to design.
The question is:

Given a pair of complementary operations such as PUSH (the stack) and POP 
(the stack), considering the set of all possible paths through the routine, what 
is the net effect of the routine? PUSH or POP? How many times? Under what 
conditions?

Here are some other examples of complementary operations to which this model applies: GET/RETURN a 
resource block.
OPEN/CLOSE a file.

START/STOP a device or process.
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EXAMPLE 1 (PUSH / POP):
ß Here is the Push/Pop Arithmetic:

ß The numeral 1 is used to indicate that nothing of interest (neither 
PUSH nor POP) occurs on a given link.

ß "H" denotes PUSH and "P" denotes POP. The operations are 
commutative, associative, and distributive.

ß Consider the following flow graph:

P(P + 1)1{P(HH)n1HP1(P + H)1}n2P(HH)n1HPH
ß Simplifying by using the arithmetic tables,

= (P2 + P){P(HH)n1(P + H)}n1(HH)n1

= (P2 + P){H2n1(P2 + 1)}n2H2n1

ß Below Table 5.9 shows several combinations of values for the twolooping 
terms - M1 is the number of times the inner loop will be taken and M2 
the number of times the outer loop will be taken.
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Figure 5.9: Result of the PUSH / POP Graph Analysis.
ß These expressions state that the stack will be popped only if the inner 

loop is not taken.
ß The stack will be left alone only if the inner loop is iterated once, but it 

may also be pushed.
ß For all other values of the inner loop, the stack will only be pushed.

EXAMPLE 2 (GET / RETURN):
ß Exactly the same arithmetic tables used for previous example are used 

for GET / RETURN a buffer block or resource, or, in fact, for any pair of
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complementary operations in which the total number of operations in either direction 
is cumulative.

ß The arithmetic tables for GET/RETURN are:

"G" denotes GET and "R" denotes RETURN.
ß Consider the following flowgraph:

ß G(G + R)G(GR)*GGR*R
= G(G + R)G3R*R
= (G + R)G3R*
= (G4 + G2)R*

ß This expression specifies the conditions under which the resources will be 
balanced on leaving the routine.

ß If the upper branch is taken at the first decision, the second loop must be 
taken four times.

ß If the lower branch is taken at the first decision, the second loop must be 
taken twice.

ß For any other values, the routine will not balance. Therefore, the first 
loop does not have to be instrumented to verify this behavior because its 
impact should be nil.

LIMITATIONS AND SOLUTIONS:

o The main limitation to these applications is the problem of unachievable paths.
o The node-by-node reduction procedure, and most graph-theory-based algorithms work 

well when all paths are possible, but may provide misleading results when some paths
are unachievable.

o The approach to handling unachievable paths (for any application) is to partition
the graph into subgraphs so that all paths in each of the subgraphs are achievable.

o The resulting subgraphs may overlap, because one path may be common to 
several different subgraphs.

o Each predicate's truth-functional value potentially splits the graph into two
subgraphs. For n predicates, there could be as many as 2n subgraphs.
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REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION:

∑ THE PROBLEM:
o The generic flow-anomaly detection problem (note: not just data-flow 

anomalies, but any flow anomaly) is that of looking for a specific sequence of 
options considering all possible paths through a routine.

o Let the operations be SET and RESET, denoted by s and r respectively, and we 
want to know if there is a SET followed immediately a SET or a RESET followed 
immediately by a RESET (an ss or an rr sequence).

o Some more application examples:
1. A file can be opened (o), closed (c), read (r), or written (w). If the file is 

read or written to after it's been closed, the sequence is nonsensical. 
Therefore, cr and cw are anomalous. Similarly, if the file is read before 
it's been written, just after opening, we may have a bug. Therefore, or is 
also anomalous. Furthermore, oo and cc, though not actual bugs, are a 
waste of time and therefore should also be examined.

2. A tape transport can do a rewind (d), fast-forward (f), read (r), write (w), 
stop (p), and skip (k). There are rules concerning the use of the transport; 
for example, you cannot go from rewind to fast-forward without an 
intervening stop or from rewind or fast-forward to read or write without 
an intervening stop. The following sequences are anomalous: df, dr, dw, 
fd, and fr. Does the flowgraph lead to anomalous sequences on any path? 
If so, what sequences and under what circumstances?

3. The data-flow anomalies discussed in Unit 4 requires us to detect the 
dd, dk, kk, and ku sequences. Are there paths with anomalous data
flows?

∑ THE METHOD:
o Annotate each link in the graph with the appropriate operator or the null 

operator 1.
o Simplify things to the extent possible, using the fact that a + a = a and 12 = 1.
o You now have a regular expression that denotes all the possible sequences

of operators in that graph. You can now examine that regular expression for 
the sequences of interest.

o EXAMPLE: Let A, B, C, be nonempty sets of character sequences whose smallest 
string is at least one character long. Let T be a two-character string of characters. 
Then if T is a substring of (i.e., if T appears within) ABnC, then T will appear in 
AB2C. (HUANG's Theorem)
As an example, let

o A = pp 
B = srr 
C = rp 
T = ss
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The theorem states that ss will appear in pp(srr)nrp if it appears in pp(srr)2rp.
o However, let

A = p + pp + ps
B = psr + ps(r + ps) 
C = rp
T = P4

Is it obvious that there is a p4 sequence in ABnC? The theorem states that we have only to look at

(p + pp + ps)[psr + ps(r + ps)]2rp

Multiplying out the expression and simplifying shows that there is no p4

sequence.
o Incidentally, the above observation is an informal proof of the wisdom of looping 

twice discussed in Unit 2. Because data-flow anomalies are represented by two-
character sequences, it follows the above theorem that looping twice is what you 
need to do to find such anomalies.

∑ LIMITATIONS:
o Huang's theorem can be easily generalized to cover sequences of greater length 

than two characters. Beyond three characters, though, things get complex and 
this method has probably reached its utilitarian limit for manual application.

o There are some nice theorems for finding sequences that occur at the beginnings 
and ends of strings but no nice algorithms for finding strings buried in an 
expression.

o Static flow analysis methods can't determine whether a path is or is not 
achievable. Unless the flow analysis includes symbolic execution or similar 
techniques, the impact of unachievable paths will not be included in the analysis.

The flow-anomaly application, for example, doesn't tell us that there will be a flow anomaly - it tells us 
that if the path is achievable, then there will be a flow anomaly. Such analytical problems go away, of 
course, if you take the trouble to design routines for which all paths are achievable.
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UNIT V 

GRAPH MATRICES AND APPLICATIONS 

 
Problem with Pictorial Graphs 
 Graphs were introduced as an abstraction of softwarestructure.

 Whenever a graph is used as a model, sooner or later we trace paths through it- to find a set of 

covering paths, a set of values that will sensitize paths, the logic function that controls the flow, 

the processing time of the routine, the equations that define the domain, or whether a state is 

reachable ornot.

 Path is not easy, and it’s subject to error. You can miss a link here and there or cover some links 

twice.

 One solution to this problem is to represent the graph as a matrix and to use matrix operations 
equivalent to path tracing. These methods are more methodical and mechanical and don’t depend 
on your ability to see a path they are morereliable.

Tool Building 

 If you build test tools or want to know how they work, sooner or later you will be implementing 

or investigating analysis routines based on thesemethods.

 It is hard to build algorithms over visual graphs so the properties or graph matrices are 

fundamental to toolbuilding.

The Basic Algorithms 

 The basic tool kit consistsof:

 Matrix multiplication, which is used to get the path expression from every node to every 

othernode.

 A partitioning algorithm for converting graphs with loops into loop free graphs or 

equivalence classes.

 A collapsing process which gets the path expression from any node to any othernode.

The Matrix of a Graph 
 A graph matrix is a square array with one row and one column for every node in thegraph. 

 Each row-column combination corresponds to a relation between the node corresponding to 

the row and the node corresponding to thecolumn. 

 The relation for example, could be as simple as the link name, if there is a link between the 
nodes. 

 Some of the things to beobserved:

 The size of the matrix equals the number of nodes.

 There is a place to put every possible direct connection or link between any and any othernode.

 The entry at a row and column intersection is the link weight of the link that connects the two 

nodes in thatdirection.

 A connection from node i to j does not imply a connection from node j to nodei.

 If there are several links between two nodes, then the entry is a sum; the “+” sign denotes parallel 

links asusual.
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A simple weight 
 A simplest weight we can use is to note that there is or isn’t a connection. Let “1” mean that there 

is a connection and “0” mean that thereisn’t. 

 The arithmetic rulesare: 
 1+1=1 1*1=1 

 1+0=1 1*0=0 

 0+0=0 0*0=0 

 A matrix defined like this is called connectionmatrix. 

Connection matrix 
 The connection matrix is obtained by replacing each entry with 1 if there is a link and 0 if there 

isn’t. 

 As usual we don’t write down 0 entries to reduce theclutter. 
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Connection Matrix-continued 

 Each row of a matrix denotes the out links of the node corresponding to thatrow.

 Each column denotes the in links corresponding to thatnode.

 A branch is a node with more than one nonzero entry in itsrow.

 A junction is node with more than one nonzero entry in its column.

 A self loop is an entry along thediagonal.

Cyclomatic Complexity 
 The cyclomatic complexity obtained by subtracting 1 from the total number of entries in each row 

and ignoring rows with no entries, we obtain the equivalent number of decisions for each row. 

Adding these values and then adding 1 to the sum yields the graph’s cyclomaticcomplexity.
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Relations 

 A relation is a property that exists between two objects of interest.

 Forexample,

 “Node a is connected to node b” or aRb where “R” means “is connectedto”.

 “a>=b” or aRb where “R” means greater than orequal”.

 A graph consists of set of abstract objects called nodes and a relation R between thenodes.

 If aRb, which is to say that a has the relation R to b, it is denoted by a link from a tob.

 For some relations we can associate properties called as linkweights.

 
Transitive Relations 

 A relation is transitive if aRb and bRc impliesaRc.

 Most relations used in testing aretransitive.

 Examples of transitive relations include: is connected to, is greater than or equal to, is less than or 

equal to, is a relative of, is faster than, is slower than, takes more time than, is a subset of, 

includes, shadows, is the bossof.

 Examples of intransitive relations include: is acquainted with, is a friend of, is a neighbor of, is 

lied to, has a du chainbetween.

 

Reflexive Relations 

 A relation R is reflexive if, for every a,aRa.

 A reflexive relation is equivalent to a self loop at everynode.

 Examples of reflexive relations include: equals, is acquainted with, is a relativeof.

 Examples of irreflexive relations include: not equals, is a friend of, is on top of, isunder.

 
Symmetric Relations 

 A relation R is symmetric if for every a and b, aRb impliesbRa.

 A symmetric relation mean that if there is a link from a to b then there is also a link from b toa.

 A graph whose relations are not symmetric are called directedgraph.
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 A graph over a symmetric relation is called an undirectedgraph.

 The matrix of an undirected graph is symmetric (aij=aji) for alli,j)

 
Antisymmetric Relations 

 A relation R is antisymmetric if for every a and b, if aRb and bRa, then a=b, or they are the same 

elements.

 Examples of antisymmetric relations: is greater than or equal to, is a subset of,time.

 Examples of nonantisymmetric relations: is connected to, can be reached from, is greater than, is 

a relative of, is a friendof

 

Equivalence Relations 

 An equivalence relation is a relation that satisfies the reflexive, transitive, and symmetric 

properties.

 Equality is the most familiar example of an equivalencerelation.

 If a set of objects satisfy an equivalence relation, we say that they form an equivalence class over 

thatrelation.

 The importance of equivalence classes and relations is that any member of the equivalence class 

is, with respect to the relation, equivalent to any other member of thatclass.

 The idea behind partition testing strategies such as domain testing and path testing, is that we can 

partition the input space into equivalenceclasses.

 Testing any member of the equivalence class is as effective as testing themall.

 
Partial Ordering Relations 

 A partial ordering relation satisfies the reflexive, transitive, and antisymmetricproperties.

 Partial ordered graphs have several important properties: they are loop free, there is at least one 

maximum element, and there is at least one minimumelement.

 

The Powers of a Matrix 

 Each entry in the graph’s matrix expresses a relation between the pair of nodes that corresponds 

to thatentry.

 Squaring the matrix yields a new matrix that expresses the relation between each pair of nodes 

via one intermediate node under the assumption that the relation istransitive.

 The square of the matrix represents all path segments two linkslong.

 The third power represents all path segments three linkslong.
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Matrix Powers and Products 

 Given a matrix whose entries are aij, the square of that matrix is obtained by replacing every entrywith

 n 

 aij=Σ aikakj 

 k=1 

 more generally, given two matrices A and B with entries aik and bkj, respectively, their product is a new matrix C, whose 

entries are cij,where:

 n 

 Cij=Σ aikbkj 

 k=1 

 

 
3.1. The Set of AllPaths 

 
Our main objective is to use matrix operations to obtain the set of all paths between all nodes or, 

equivalently, a property (described by link weights) over the set of all paths from every node to every 

other node, using the appropriate arithmetic rules for such weights. The set of all paths between all nodes 

is easily expressed in terms of matrix operations. It’s given by the following infinite series of matrix 

powers: 

 

 
This is an eloquent, but practically useless, expression. Let I be an n by n matrix, where n is the number 

of nodes. Let I’s entries consist of multiplicative identity elements along the principal diagonal. For link 

names, this can be the number “1.” For other kinds of weights, it is the multiplicative identity for those 

weights. The above product can be re-phrased as: 

 
   A(I + A + A

2
 + A

3
 + A

4
 . . . A

∞
) 

 
But often for relations, A + A = A, (A + I)

2
 = A

2
 + A +A + I A

2
 + A + I. Furthermore, for any 

finite n, (A + I)
n
= I + A + A

2
 + A

3
 . . . A

n.
 

Therefore, the original infinite sum can be replaced by 

   ∞ 

∑ A
i 
 =A(A+I)

∞ 

    i=1 
This is an improvement, because in the original expression we had both infinite products and infinite sums, 

and now we have only one infinite product to contend with. The above is valid whether or not there are 

loops. If we  restrict our interest for the moment to paths of length n – 1, where n is the number of nodes, 

the set of all such  paths is givenby 

 

n-1 

∑ A
i 
 =A(A+I)

n -2 

    i=1 
 

 
This is an interesting set of paths because, with n nodes, no path can exceed n – 1 nodes without 

incorporating some path segment that is already incorporated in some other path or path segment. 

Finding the set of all such paths is somewhat easier because it is not necessary to do all the intermediate 
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products explicitly. The following algorithm iseffective: 

 
1. Express n – 2 as a binarynumber. 

2. Take successive squares of (A + I), leading to (A + I)
2
, (A + I)

4
, (A + 1)

8
, and soon. 

3. Keep only those binary powers of (A + 1) that correspond to a 1 value in the binary representation ofn– 2. 
4. The set of all paths of length n – 1 or less is obtained as the product of the matrices you got in step 3 

with the original matrix. 

 
As an example, let the graph have 16 nodes. We want the set of all paths of length less than or equal to 15. 

The binary representation of n – 2 (14) is 2
3
 + 2

2
 + 2. Consequently, the set of paths is given by 

 
 

 15   

∑ Ai  =A(A+I)8(A+I)4(A+I)2 

i=1
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Partitioning Algorithm 

 Consider any graph over a transitive relation. The graph may haveloops.

 We would like to partition the graph by grouping nodes in such a way that every loop iscontained 

within one group oranother.

 Such a graph is partiallyordered.

 There are many used for an algorithm that doesthat:

 We might want to embed the loops within a subroutine so as to have a resulting graph which is 

loop free at the toplevel.

 Many graphs with loops are easy to analyze if you know where to break theloops.

 While you and I can recognize loops, it’s much harder to program a tool to do it unless you have  

a solid algorithm on which to base thetool.
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Node Reduction Algorithm (General) 

 The matrix powers usually tell us more than we want to know about mostgraphs.

 In the context of testing, we usually interested in establishing a relation between two nodes- 

typically the entry and exitnodes.

 In a debugging context it is unlikely that we would want to know the path expression between 

every node and every other node.

 The advantage of matrix reduction method is that it is more methodical than the graphical method 

called as node by node removalalgorithm.

1. Select a node for removal; replace the node by equivalent links that bypass that node and add 

those links to the links theyparallel. 

2. Combine the parallel terms and simplify as youcan. 

3. Observe loop terms and adjust the out links of every node that had a self loop to account for the 

effect of theloop. 

4. The result is a matrix whose size has been reduced by 1. Continue until only the two nodes of 

interestexist. 
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Removing the loop term yields (bfh*e) 
 

   

 

       a 

   

 
(bfh*e)*x(d+bc+bfh*g) 

 

 

The final result yields to : 

a(bfh*e)*(d  +  bc  + bfh * g) 
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BUILDING TOOLS: 
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NODE – REDUCTION OPTIMIZATION: 

 


