UNIT IV

PATHS, PATH PRODUCTS AND REGULAR EXPRESSIONS

Paths,Path products and Regular expressions:- path products &pathexpression,reduction
procedure, applications, regular expressions & flow anomaly detection.
Logic Based Testing:-overview,decision tables,pathexpressions,kv charts, specifications.

PATH PRODUCTS AND PATH EXPRESSION:

e MOTIVATION:
o Flow graphs are being an abstract representation of programs.
o Any question about a program can be cast into an equivalent question about an
appropriate flowgraph.
o Most software development, testing and debugging tools use flow graphs
analysis techniques.

« PATHPRODUCTS:

o Normally flow graphs used to denote only control flow connectivity.

o The simplest weight we can give to a linkisa name.

o Using link names as weights, we then convert the graphical flow graph into an
equivalent algebraic like expressions which denotes the set of all possible paths
from entry to exit for the flow graph.

o Every link of a graph can be given a name.

o The link name will be denoted by lower case italic letters In tracing a path or
path segment through a flow graph, you traverse a succession of link names.

o The name of the path or path segment that corresponds to those links is
expressed naturally by concatenating those link names.

o For example, if you traverse links a,b,c and d along some path, the name for that
path segment is abcd. This path name is also called a path product. Figure 5.1
shows some examples:

70

71

O—C) " &Y oO—0O

b d
eact, eadf, ebecf, ebdf

ia)

m

1 k]

a -] (= d L
abcde, abgjfbode, abecdimfbede
(1]

; . :
@ 2 e
a \—_J =«
ac, abe, abbe, abbbe, abbbbe

{cl

ey, Gy o~
abxd, abcbhd, abecbebd, abecbebebd

id)

Figure 5.1: Examples of paths.

PATH EXPRESSION:
o Consider a pair of nodes in a graph and the set of paths between those node.
o Denote that set of paths by Upper case letter such as X,Y. From Figure 5.1c,
the members of the path set can be listed as follows:
ac, abc, abbc, abbbc, abbbbc.............
o Alternatively, the same set of paths can be denoted by :
act+abc+abbc+abbbc+abbbbc+...........
o The +signis understood to mean "or" between the two nodes of interest, paths
ac, or abc, or abbc, and so on can be taken.
o Any expression that consists of path names and "OR"s and which denotes a set
of paths between two nodes is called a "Path Expression”.

PATH PRODUCTS:

o The name of a path that consists of two successive path segments is
conveniently expressed by the concatenation or Path Product of the segment
names.

o For example, if Xand Y are defined as X=abcde,Y=fghij,then the path
corresponding to X followed by Y is denoted by

XY=abcdefghij

o Similarly,

YX=fghijabcde
aX=aabcde
Xa=abcdea
XaX=abcdeaabcde

o IfXandY represent sets of paths or path expressions, their product represents
the set of paths that can be obtained by following every element of X by any
element of Y in all possible ways. For example,

o X = abc + def + ghi

o} Y=uvw +z
Then,
XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz
o Ifalink or segment name is repeated, that fact is denoted by an exponent.
The exponent's value denotes the number of repetitions:
o) al=a;a’=aa; a>=aaa; a"=aaaa...n times.
Similarly, if X = abcde then

X! = abcde
X2 = abcdeabcde = (abcde)?
X3 = abcdeabcdeabcede = (abcde)?abede
= abcde(abcde)? = (abcde)?
o The path product is not commutative (that is XY!=YX).
o The path product is Associative.
RULE 1: A(BC)=(AB)C=ABC
where A,B,C are path names, set of path names or path expressions.
o The zeroth power of a link name, path product, or path expression is also
needed for completeness. It is denoted by the numeral "1" and denotes the
"path" whose length is zero - that is, the path that doesn't have any links.

0 a%=1
0 X0=1
e PATH SUMS:

o The "+" sign was used to denote the fact that path names were part of the same
set of paths.

o The "PATH SUM" denotes paths in parallel between nodes.

o Linksaandbin Figure 5.1a are parallel paths and are denoted by a + b. Similarly,
links c and d are parallel paths between the next two nodes and are denoted by
c+d.

o The set of all paths between nodes 1 and 2 can be thought of as a set of parallel
paths and denoted by eacf+eadf+ebcf+ebdf.

o IfXandY are sets of paths that lie between the same pair of nodes, then X+Y
denotes the UNION of those set of paths. For example, in Figure 5.2:

Figure 5.2: Examples of path sums.
The first set of parallel paths is denoted by X + Y + d and the second set by U + V
+W +h +i+j. The set of all paths in this flowgraph is f(X +Y + d)g(U +V + W

+h+i+jk
o The pathisa set union operation, it is clearly Commutative and Associative.
o RULE 2: X+Y=Y+X
o RULE 3: (X+Y)+Z=X+(Y+Z)=X+Y+Z

72

« DISTRIBUTIVE LAWS:
o The product and sum operations are distributive, and the ordinary rules of
multiplication apply; that is
RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD
o Applying these rules to the below Figure 5.1a yields
o) e(a+b)(c+d)f=e(ac+ad+bc+bd)f = eacf+eadf+ebcf+ebdf

« ABSORPTION RULE:
o IfXandY denote the same set of paths, then the union of these sets is
unchanged; consequently,
RULE 5: X+X=X (Absorption Rule)
o If a set consists of paths names and a member of that set is added to it, the
"new" name, which is already in that set of names, contributes nothing and can

be ignored.
o For example,
o) if X=a+aa+abc+abcd+def then

X+a = X+aa = X+abc = X+abcd = X+def = X
It follows that any arbitrary sum of identical path expressions reduces to the same path expression.

« LOOPS:

Loops can be understood as an infinite set of parallel paths. Say that the loop consists of a single link b.

then the set of all paths through that loop point is bO+b1+b2+b3+b4+b5+
bﬂ

L

Figure 5.3: Examples of path loops.
This potentially infinite sum is denoted by b* for an individual link and by X*

b

® - ® @

Figure 5.4: Another example of path loops.
o The path expression for the above figure is denoted by the
notation: ab*c=ac+abc+abbc+abbbc+................
o Evidently,
aa*=a*a=a+ and XX*=X*X=X+
o Itis more convenient to denote the fact that a loop cannot be taken more than a
certain, say n, number of times.
o Abarisused under the exponent to denote the fact as
fotlows: X" = X0+ X4+ XZH X34+ X 44X e +X0

RULES 6 - 16:
o The following rules can be derived from the previous rules:
73

o RULE 6: X"+ XM = X* if n>m
RULE 6: X"+ XM = XM if m>n
RULE 7: X"XM = Xx+m

RULE 8: X"X" = X"X" = X" RULE 9: X"X* = X*X" = X* RULE

10: XX =X*X"=X*RULE11:1+1=1

RULE 12: 1X=X1=X

Following or preceding a set of paths by a path of zero length does not change the set.

RULE13:1"=1"=1"=1*=1 -

No matter how often you traverse a path of zero length, |t is a path of zero length. RULE 14: 1*+1 = 1"=1
The null set of paths is denoted by the numeral O. it obeys the following
rules:

RULE 15: X+0=0+X=X

RULE 16: 0X=X0=0

If you block the paths of a graph for or aft by a graph that has no paths, there won’t be any paths.

REDUCTION PROCEDURE:

o REDUCTION PROCEDURE ALGORITHM:

o This section presents a reduction procedure for converting a flowgraph whose
links are labeled with names into a path expression that denotes the set of all
entry/exit paths in that flowgraph. The procedure is a node-by-node removal
algorithm.

o The steps in Reduction Algorithm are as follows:

1. Combine all serial links by multiplying their path expressions.

2. Combine all parallel links by adding their path expressions.

3. Remove all self-loops (from any node to itself) by replacing them with a
link of the form X*, where X is the path expression of the link in that loop.

STEPS 4 - 8 ARE IN THE ALGORIHTM'S LOOP:

4, Select any node for removal other than the initial or final node. Replace it

with a set of equivalent links whose path expressions correspond to all

the ways you can form a product of the set of inlinks with the set of
outlinks of that node.

Combine any remaining serial links by multiplying their path expressions.

Combine all parallel links by adding their path expressions.

Remove all self-loops as in step 3.

Does the graph consist of a single link between the entry node and the

exit node? If yes, then the path expression for that link is a path

expression for the original flowgraph; otherwise, return to step 4.

o A flowgraph can have many equivalent path expressions between a given pair of
nodes; that is, there are many different ways to generate the set of all paths
between two nodes without affecting the content of that set.

o The appearance of the path expression depends, in general, on the order in
which nodes are removed.

© No o

o« CROSS-TERM STEP (STEP 4):
o The cross - term step is the fundamental step of the reduction algorithm.
74

75

(o}
(o}

It removes a node, thereby reducing the number of nodes by one.

Successive applications of this step eventually get you down to one entry and
one exit node. The following diagram shows the situation at an arbitrary node
that has been selected for removal:

From the above diagram, one can infer:
(a+b)(c+d+e)=ac+ad++ae+bc+bd+be

« LOOP REMOVAL OPERATIONS:

(0]

(o}

There are two ways of looking at the loop-removal operation:

S 0 <E
B o e © ok

In the first way, we remove the self-loop and then multiply all outgoing links by
Z*.

In the second way, we split the node into two equivalent nodes, call them A and
A' and put in a link between them whose path expression is Z*. Then we remove
node A' using steps 4 and 5 to yield outgoing links whose path expressions are
Z*X and Z*Y.

« AREDUCTION PROCEDURE - EXAMPLE:

(0]

(o}

Let us see by applying this algorithm to the following graph where we remove
several nodes in order; that is

Figure 5.5: Example Flowgraph for demonstrating reduction
procedure.

Remove node 10 by applying step 4 and combine by step 5 to yield

76

o Remove node 9 by applying step4 and 5 to yield

o Remove node 7 by steps 4 and 5, as follows:

o PARALLEL TERM (STEP 6):

Removal of node 8 above led to a pair of parallel links between nodes 4 and 5.combine them to create
a path expression for an equivalent link whose path expression is c+gkh; that is

o LOOP TERM (STEP 7):

77

Removing node 4 leads to a loop term. The graph has now been replaced with the following
equivalent simpler graph:

o Removing node 5 produces:

ithd
®_'O (baif)*b(c+akh)d (X

imf
o Remove the loop at node 6 to yield:

(bgif)*b(c+akh)d (ilhd)*e
@‘-U—‘@

(ithd)* imf

0 Remove node 3 to yield

@ a(bgijf)*b(c+gkh)d ” (ilhd)*e

(ithd)* imf (baif)*b(c+akh)d
o Removing the loop and then node 6 result in the following

expression:
a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d)*(ilhd)*e

o You can practice by applying the algorithm on the following flowgraphsand
generate their respective path expressions:

c
b
a d

alb ¢+ c*)d

alclg + h} + dli+ JI)

blelk +1) + f(m + n))

Figure 5.6: Some graphs and their path expressions.

APPLICATIONS:
o The purpose of the node removal algorithm is to present one very generalized
concept- the path expression and way of gettingit.
o Every application follows this common pattern:
1 Convert the program or graph into a path expression.
2. ldentify a property of interest and derive an appropriate set of "arithmetic

rules that characterizes the property.
Replace the link names by the link weights for the property of interest. The path expression has now been
converted to an expression in some algebra, such as

1. Ordinary algebra, regular expressions, or boolean algebra. This
algebraic expression summarizes the property of interest over the set
of all paths.

2. Simplify or evaluate the resulting "algebraic" expression to answer the
guestion you asked.

« HOW MANY PATHS IN A FLOW GRAPH ?

o The question is not simple. Here are some ways you could ask it:
1. What is the maximum number of different paths possible?
2. What is the fewest number of paths possible?
3. How many different paths are there really?
4. What is the average number of paths?

o Determining the actual number of different paths is an inherently difficult

problem because there could be unachievable paths resulting from correlated

79

and dependent predicates.

o If we know both of these numbers (maximum and minimum number of possible
paths) we have a good idea of how complete our testing is.

o Asking for "the average number of paths" is meaningless.

MAXIMUM PATH COUNT ARITHMETIC:
o Label each link with a link weight that corresponds to the number of paths that
link represents.
o Also mark each loop with the maximum number of times that loop can be taken.
If the answer is infinite, you might as well stop the analysis because it is clear that
the maximum number of paths will be infinite.
o There are three cases of interest: parallel links, serial links, and loops.

Case Path Weight
expression | expression

Parallels A+B W,+Wy

Series AB W,Wg
Loo n n ;
P AR z Wy
1=0
o This arithmetic is an ordinary algebra. The weight is the number of paths in
each set.
o EXAMPLE:

= The following is a reasonably well-structured program.

b * cha (el fi)* Sl &)k) “effi) " fgh

Each link represents a single link and consequently is given a weight of "1" to start. Let’s
say the outer loop will be taken exactly four times and inner Loop Can be taken zero or
three times Its path expression, with a little work, is:
Path expression: a(b+c)d{e(fi) *fgj(m+I)k}*e(fi) *fgh

= A The flow graph should be annotated by replacing the link name with
the maximum of paths through that link (1) and also note the number
of times for looping.

= B: Combine the first pair of parallel loops outside the loop and also
the pair in the outer loop.

= C: Multiply the things out and remove nodes to clear the clutter.

(4-4) (C]

1
0~3)
2 1 m 1 1

1. For the Inner Loop:
D:Calculate the total weight of inner loop, which can execute a min. of 0 times and max.
of 3 times. So, it inner loop can be evaluated as follows:

132=10+11+12+13=1+1+1+1=4

E: Multiply the link weights inside the loop: 1 X4 =4

F: Evaluate the loop by multiplying the link wieghts: 2 X 4 = 8.

4. G: Simpifying the loop further results in the total maximum number
of paths in the flowgraph:

wn

2X8%X2=32,768.

2
“-4 (D)
2 /—\ 1
2 (E)
(4-4)
2 ;”-:-h\\\ 1
214)~8
(4-4) (F)
& i
(G)
2 g - 32.768

80

81

Alternatively, you could have substituted a "1" for each link in the path expression and then simplified, as follows:

a(b+c)d{e(fi)*fgj(m+)Kk}*e(fi)*fgh

=1(1+1)2(1(1x1)3 1 x1x1(1 +1)1)41(1x1)31x1x1

=2(131 x (2))413 -

=2(4x2)*x4

=2x8%x4=32,768

This is the same result we got graphically.Actually, the outer loop should be taken exactly four times. That doesn't
mean it will be taken zero or four times. Consequently, there is a superfluous "4" on the outlink in the last step.
Therefore the maximum number of different paths is 8192 rather than 32,768.

STRUCTURED FLOWGRAPH:

Structured code can be defined in several different ways that do not involve ad-hoc rules such as not using
GOTOs.

A structured flowgraph is one that can be reduced to a single link by successive application of the
transformations of Figure 5.7.

o—0— -O—

PROCESS
-l o A
o —O0—0
IF-THEN-ELSE

3 o) ®
WHILE-DO

FT—— D

Figure 5.7: Structured Flowgraph Transformations.

The node-by-node reduction procedure can also be used as a test for structured code.Flow graphs that DO NOT
contain one or more of the graphs shown below (Figure 5.8) as subgraphs are structured.

1 Jumping into loops

2 Jumping out of loops

3. Branching into decisions
4 Branching out of decisions

W .
/

Jumpang Intos Loops

Branching Out of Decisions

Figure 5.8: Un-structured sub-graphs.
LOWER PATH COUNT ARITHMETIC:

A lower bound on the number of paths in a routine can be approximated for structured flow graphs.
The arithmetic is as follows:

Case Path Weight
expression | expression
Parallels A+B W, +Wg
Series AB max(Wx,Wg)
Loop Ao 1, W,

The values of the weights are the number of members in a set of paths.
EXAMPLE:
= Applying the arithmetic to the earlier example gives us the identical
steps unitl step 3 (C) as below:

aln « cha (el i) Sguim o ()i) *elfi) *fgh

82

2
" o (4-4) Ic}
2 1 m 1 1

= From Step 4, the it would be different from the previous example:

(4-4)

2

o e

= If you observe the original graph, it takes at least two paths to cover
and that it can be done in two paths.

= If you have fewer paths in your test plan than this minimum you
probably haven't covered. It's another check.

CALCULATING THE PROBABILITY:

Path selection should be biased toward the low - rather than the high-probability paths.This raises an interesting
question:

83

What is the probability of being at a certain point in a routine?

This question can be answered under suitable assumptions primarily that all probabilities involved are
independent, which is to say that all decisions are independent and uncorrelated. We use the same algorithm as
before: node-by-node removal of uninteresting nodes.

Weights, Notations and Arithmetic:

Probabilities can come into the act only at decisions (including decisions
associated with loops).

Annotate each outlink with a weight equal to the probability of going in

that direction.

Evidently, the sum of the outlink probabilities must equal 1

For a simple loop, if the loop will be taken a mean of N times, the looping
probability is N/(N + 1) and the probability of not looping is 1/(N +1).

A link that is not part of a decision node has a probability of 1.

The arithmetic rules are those of ordinary arithmetic.

Case Path Weight
expression | expression

Parallel A+B Py+Pg
Series AB P.Pg
Loop A* P/ (1-P)

In this table, in case of a loop, Pa is the probability of the link leaving the
loop and Py is the probability of looping.
The rules are those of ordinary probability theory.

1. If you can do something either from column A with a probability
of Pa or from column B with a probability Ps, then the probability
that you do either is Pa + Ps.

2. For the series case, if you must do both things, and their
probabilities are independent (as assumed), then the probability
that you do both is the product of their probabilities.

For example, a loop node has a looping probability of P, and a probability
of not looping of Pa, which is obviously equal to | - PL.

L
P, = 1—P,
e ag R
New = J=p, T T—p, "

Following the above rule, all we've done is replace the outgoing
probability with 1 - so why the complicated rule? After a few steps in
which you've removed nodes, combined parallel terms, removed loops
and the like, you might find something like this:

P‘ -
1=9,

’ / :

’.] -9‘

< __'c
1=9

because PL+ Pa+Pg+Pc=1,1-P.=Pa+Ps+Pc and

PA + P' + Pg -PA+PU+PC=1
=L ' T-E*T=k =5

EXAMPLE:

86

which is what we've postulated for any decision. In other words, division by 1 - P,
renormalizes the outlink probabilities so that their sum equals unity after the loop is
removed.

Here is a complicated bit of logic. We want to know the probability
associated with cases A, B, and C.

A

.—-—

Let us do this in three parts, starting with case A. Note that the sum of
the probabilities at each decision node is equal to 1. Start by throwing
away anything that isn't on the way to case A, and then apply the
reduction procedure. To avoid clutter, we usually leave out probabilities
equal to 1.

CASE A:

. /"’._._._ -
\/:/C'_)B‘)

» e
T .
N?\ a -

87

Case B is simpler:

.05 5 2 .
85 //
9 -
025 2
il
459
306
484 2
1306
79 -
Case Cis similar and should yield a probability of 1 - 0.125-0.158 =
0.717:
05 5
9 8
\
¢
025
459
306 .
085 <

3

=0.717

&
?(ﬁga

These checks. It's a good idea when doing this sort of thing to calculate all
the probabilities and to verify that the sum of the routine's exit
probabilities does equal 1.

If it doesn't, then you've made calculation error or, more likely, you've left
out some bra How about path probabilities? That's easy. Just trace the
path of interest and multiply the probabilities as you go.

Alternatively, write down the path name and do the indicated arithmetic
operation.

= Say that a path consisted of links a, b, ¢, d, e, and the associated
probabilities were .2, .5, 1., .01, and | respectively. Path
abcbcbcdeabddea would have a probability of 5 x 1071°,

*= Long paths are usually improbable.

MEAN PROCESSING TIME OF A ROUTINE:
Given the execution time of all statements or instructions for every link in a flowgraph and the probability for
each direction for all decisions are to find the mean processing time for the routine as a whole.
The model has two weights associated with every link: the processing time for that link, denoted by T, and the
probability of that link P.

The arithmetic rules for calculating the mean time:

Case Path Weight expression
expression
Parallel A+B Tasa=(PaTa+PgTg)/(Ps+Pg)
Pasg= PatPy
Series AB Tag=Tat+Tg
Pas =PaPs
Loop An Ta= Ta+ TPJ/(1-P)
Py =PJ(1-P)

EXAMPLE:
1. Start with the original flow graph annotated with probabilities and processing time.
20

25

“n

£0
L7

2.Combine the parallel links of the outer loop. The result is just the mean of the
processing times for the links because there aren't any other links leaving the first
node. Also combine the pair of links at the beginning of the flow graph.

61.5

3. Combine as many serial links as you can.

88

(3
12

10 /T\m s ?

4] &N
4. Use the cross-term step to eliminate a node and to create the inner self - loop.

5.Finally, you can get the mean processing time, by using the arithmetic rules as
follows:

61.5

61.5

61.5

615 60

81.5 49.714 60 E:> ——

PUSH/POP, GET/RETURN:

This model can be used to answer several different questions that can turn up in debugging. It can also help
decide which test cases to design.
The question is:

Given a pair of complementary operations such as PUSH (the stack) and POP
(the stack), considering the set of all possible paths through the routine, what
is the net effect of the routine? PUSH or POP? How many times? Under what

conditions?
Here are some other examples of complementary operations to which this model applies: GET/RETURN a
resource block.
OPEN/CLOSE a file.
START/STOP a device or process.

89

EXAMPLE 1 (PUSH / POP):
= Hereisthe Push/Pop Arithmetic:

Case Path Weight
expression | expression
Parallels A+B W,+Wg

Series AB W, Wy
Loop A W;

= The numeral 1 is used to indicate that nothing of interest (neither
PUSH nor POP) occurs on a given link.

= "H" denotes PUSH and "P" denotes POP. The operations are
commutative, associative, and distributive.

PUSH/POP MULTIPLICATION TABLE PUSH/POP ADDITION TASLE
* 9:.;;04 9:;9 NO‘NE " PUSH N’;P NONE
- HT] L H - P+ H H+1
P 1 P P e Pem ' Pet
1 H P 1 1 el P 1

= Consider the following flow graph:

P(P + 1)1{P(HH)"*HP1(P + H)1}"?P(HH)"*HPH

= Simplifying by using the arithmetic tables,
= (P2 + P){P(HH)"(P + H)}" (HH)"
= (P2 + P){H2"L(P2 + 1)}"2H2

= Below Table 5.9 shows several combinations of values for the twolooping
terms - M1 is the number of times the inner loop will be taken and M2
the number of times the outer loop will be taken.

90

91

0 0 Pep?
0 1 PepP? apP 4 pt
[
0 2 B
1
.
0 3 3, @
]
1 0 1+H

2 3

Figure 5.9: Result of the PUSH / POP Graph Analysis.
= These expressions state that the stack will be popped only if the inner

loop is not taken.
= The stack will be left alone only if the inner loop is iterated once, but it

may also be pushed.
= For all other values of the inner loop, the stack will only be pushed.

EXAMPLE 2 (GET / RETURN):

= Exactly the same arithmetic tables used for previous example are used
for GET / RETURN a buffer block or resource, or, in fact, for any pair of

92

complementary operations in which the total number of operations in either direction
is cumulative.

» The arithmetic tables for GET/RETURN are:

Multiplication Table Addition Table
= G L 1 - G R 1
G G? 1 G G G G+*R |G+
" 1 R? R R G+ R R R+
1 G R 1 1 G+1 A+ 1

"G" denotes GET and "R" denotes RETURN.
= Consider the following flowgraph:

* G(G+R)G(GR)*GGR*R
= G(G + R)G3R*R
= (G + R)G3R*
= (G* + G?)R*

= This expression specifies the conditions under which the resources will be
balanced on leaving the routine.

= If the upper branch is taken at the first decision, the second loop must be
taken four times.

= If the lower branch is taken at the first decision, the second loop must be
taken twice.

= For any other values, the routine will not balance. Therefore, the first
loop does not have to be instrumented to verify this behavior because its
impact should be nil.

LIMITATIONS AND SOLUTIONS:

0 The main limitation to these applications is the problem of unachievable paths.

0 The node-by-node reduction procedure, and most graph-theory-based algorithms work
well when all paths are possible, but may provide misleading results when some paths
are unachievable.

0 The approach to handling unachievable paths (for any application) is to partition
the graph into subgraphs so that all paths in each of the subgraphs are achievable.

0 The resulting subgraphs may overlap, because one path may be common to
several different subgraphs.

0 Each predicate's truth-functional value potentially splits the graph into two
subgraphs. For n predicates, there could be as many as 2" subgraphs.

93

REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION:

o THE PROBLEM:

(o}

(o}

The generic flow-anomaly detection problem (note: not just data-flow
anomalies, but any flow anomaly) is that of looking for a specific sequence of
options considering all possible paths through a routine.

Let the operations be SET and RESET, denoted by s and r respectively, and we
want to know if there is a SET followed immediately a SET or a RESET followed
immediately by a RESET (an SS or an It sequence).

Some more application examples:

1. Afile can be opened (0), closed (c), read (r), or written (w). If the file is
read or written to after it's been closed, the sequence is nonsensical.
Therefore, cr and cw are anomalous. Similarly, if the file is read before
it's been written, just after opening, we may have a bug. Therefore, or is
also anomalous. Furthermore, 00 and cc, though not actual bugs, are a
waste of time and therefore should also be examined.

2. Atape transport can do a rewind (d), fast-forward (f), read (r), write (w),
stop (p), and skip (k). There are rules concerning the use of the transport;
for example, you cannot go from rewind to fast-forward without an
intervening stop or from rewind or fast-forward to read or write without
an intervening stop. The following sequences are anomalous: df, dr, dw,
fd, and fr. Does the flowgraph lead to anomalous sequences on any path?
If so, what sequences and under what circumstances?

3. The data-flow anomalies discussed in Unit 4 requires us to detect the
dd, dk, kk, and ku sequences. Are there paths with anomalous data
flows?

« THEMETHOD:

(0]

Annotate each link in the graph with the appropriate operator or the null
operator 1.

Simplify things to the extent possible, using the factthata+a=aand 12 =1.

You now have a regular expression that denotes all the possible sequences

of operators in that graph. You can now examine that regular expression for

the sequences of interest.

EXAMPLE: Let A, B, C, be nonempty sets of character sequences whose smallest
string is at least one character long. Let T be a two-character string of characters.
Then if T is a substring of (i.e., if T appears within) AB"C, then T will appear in
AB2C. (HUANG's Theorem)

As an example, let

A=pp
B = sIr
C=r1p
T=ss

The theorem states that ss will appear in pp(srr)"rp if it appears in pp(srr)2rp.
However, let

A=p+pp+ps

B = psr + ps(r + ps)
C=rp

T=p*

Is it obvious that there is a p® sequence in AB"C? The theorem states that we have only to look at

(p + pp + ps)[psr + ps(r + ps)]*rp

Multiplying out the expression and simplifying shows that there is no p*

sequence.
(o}

Incidentally, the above observation is an informal proof of the wisdom of looping
twice discussed in Unit 2. Because data-flow anomalies are represented by two-
character sequences, it follows the above theorem that looping twice is what you
need to do to find such anomalies.

o LIMITATIONS:

(0]

(o}

Huang's theorem can be easily generalized to cover sequences of greater length
than two characters. Beyond three characters, though, things get complex and
this method has probably reached its utilitarian limit for manual application.
There are some nice theorems for finding sequences that occur at the beginnings
and ends of strings but no nice algorithms for finding strings buried in an
expression.

Static flow analysis methods can't determine whether a path is or is not
achievable. Unless the flow analysis includes symbolic execution or similar
techniques, the impact of unachievable paths will not be included in the analysis.

The flow-anomaly application, for example, doesn't tell us that there will be a flow anomaly - it tells us
that if the path is achievable, then there will be a flow anomaly. Such analytical problems go away, of
course, if you take the trouble to design routines for which all paths are achievable.

94

UNIT V
GRAPH MATRICES AND APPLICATIONS

Problem with Pictorial Graphs

Graphs were introduced as an abstraction of softwarestructure.

Whenever a graph is used as a model, sooner or later we trace paths through it- to find a set of
covering paths, a set of values that will sensitize paths, the logic function that controls the flow,
the processing time of the routine, the equations that define the domain, or whether a state is
reachable ornot.

Path is not easy, and it’s subject to error. You can miss a link here and there or cover some links
twice.

One solution to this problem is to represent the graph as a matrix and to use matrix operations
equivalent to path tracing. These methods are more methodical and mechanical and don’t depend
on your ability to see a path they are morereliable.

Tool Building

If you build test tools or want to know how they work, sooner or later you will be implementing
or investigating analysis routines based on thesemethods.

It is hard to build algorithms over visual graphs so the properties or graph matrices are
fundamental to toolbuilding.

The Basic Algorithms

The basic tool kit consistsof:

Matrix multiplication, which is used to get the path expression from every node to every
othernode.

A partitioning algorithm for converting graphs with loops into loop free graphs or
equivalence classes.

A collapsing process which gets the path expression from any node to any othernode.

The Matrix of a Graph

e A graph matrix is a square array with one row and one column for every node in thegraph.

e Each row-column combination corresponds to a relation between the node corresponding to
the row and the node corresponding to thecolumn.

e The relation for example, could be as simple as the link name, if there is a link between the
nodes.

Some of the things to beobserved:

The size of the matrix equals the number of nodes.

There is a place to put every possible direct connection or link between any and any othernode.

The entry at a row and column intersection is the link weight of the link that connects the two

nodes in thatdirection.

A connection from node i to j does not imply a connection from node j to nodei.

If there are several links between two nodes, then the entry is a sum; the “+” sign denotes parallel

links asusual.

Some Graphs and their
Matrices A

® [®
a
® O

A simple weight
B A simplest weight we can use is to note that there is or isn’t a connection. Let “1” mean that there
is a connection and “0” mean that thereisn’t.

B The arithmetic rulesare:
B 1+1=1 1*1=1
B 1+0=1 1*0=0
B 0+0=0 0*0=0
[]

A matrix defined like this is called connectionmatrix.
Connection matrix
B The connection matrix is obtained by replacing each entry with 1 if there is a link and 0 if there
isn’t.
B Asusual we don’t write down 0 entries to reduce theclutter.

Connection Matrix-continued

Each row of a matrix denotes the out links of the node corresponding to thatrow.
Each column denotes the in links corresponding to thatnode.

A branch is a node with more than one nonzero entry in itsrow.

A junction is node with more than one nonzero entry in its column.

A self loop is an entry along thediagonal.

Cyclomatic Complexity

The cyclomatic complexity obtained by subtracting 1 from the total number of entries in each row
and ignoring rows with no entries, we obtain the equivalent number of decisions for each row.
Adding these values and then adding 1 to the sum yields the graph’s cyclomaticcomplexity.

11 2-1=1

1 1-1 1+1=2 (cyclomatic complexity)

)
o

0

1 1-1

Relations

A relation is a property that exists between two objects of interest.

Forexample,

“Node a is connected to node b” or aRb where “R” means “is connectedto”.

“a>=b” or aRb where “R” means greater than orequal”.

A graph consists of set of abstract objects called nodes and a relation R between thenodes.
If aRb, which is to say that a has the relation R to b, it is denoted by a link from a tob.

For some relations we can associate properties called as linkweights.

Transitive Relations

A relation is transitive if aRb and bRc impliesaRc.
Most relations used in testing aretransitive.

Examples of transitive relations include: is connected to, is greater than or equal to, is less than or
equal to, is a relative of, is faster than, is slower than, takes more time than, is a subset of,
includes, shadows, is the bossof.

Examples of intransitive relations include: is acquainted with, is a friend of, is a neighbor of, is
lied to, has a du chainbetween.

Reflexive Relations

A relation R is reflexive if, for every a,aRa.

A reflexive relation is equivalent to a self loop at everynode.

Examples of reflexive relations include: equals, is acquainted with, is a relativeof.
Examples of irreflexive relations include: not equals, is a friend of, is on top of, isunder.

Symmetric Relations

A relation R is symmetric if for every a and b, aRb impliesbRa.
A symmetric relation mean that if there is a link from a to b then there is also a link from b toa.
A graph whose relations are not symmetric are called directedgraph.

e A graph over a symmetric relation is called an undirectedgraph.
e The matrix of an undirected graph is symmetric (a;=a;;) for alli,j)

Antisymmetric Relations

e Arrelation R is antisymmetric if for every a and b, if aRb and bRa, then a=b, or they are the same
elements.

o Examples of antisymmetric relations: is greater than or equal to, is a subset of time.

e Examples of nonantisymmetric relations: is connected to, can be reached from, is greater than, is
a relative of, is a friendof

Equivalence Relations

e Anequivalence relation is a relation that satisfies the reflexive, transitive, and symmetric
properties.

e Equality is the most familiar example of an equivalencerelation.

e If a set of objects satisfy an equivalence relation, we say that they form an equivalence class over
thatrelation.

e The importance of equivalence classes and relations is that any member of the equivalence class
is, with respect to the relation, equivalent to any other member of thatclass.

e The idea behind partition testing strategies such as domain testing and path testing, is that we can
partition the input space into equivalenceclasses.

e Testing any member of the equivalence class is as effective as testing themall.

Partial Ordering Relations
o A partial ordering relation satisfies the reflexive, transitive, and antisymmetricproperties.

e Partial ordered graphs have several important properties: they are loop free, there is at least one
maximum element, and there is at least one minimumelement.

The Powers of a Matrix

e Each entry in the graph’s matrix expresses a relation between the pair of nodes that corresponds
to thatentry.

e Squaring the matrix yields a new matrix that expresses the relation between each pair of nodes
via one intermediate node under the assumption that the relation istransitive.

e The square of the matrix represents all path segments two linkslong.
e The third power represents all path segments three linkslong.

Matrix Powers and Products
e Given a matrix whose entries are aij, the square of that matrix is obtained by replacing every entrywith
e n
* 8= Aidyj
o k1
o more generally, given two matrices A and B with entries aik and bkj, respectively, their product is a new matrix C, whose
entries are cij,where:
" n
o Cj=X ajby

[] k=1

3.1. The Set of AllPaths

Our main objective is to use matrix operations to obtain the set of all paths between all nodes or,
equivalently, a property (described by link weights) over the set of all paths from every node to every
other node, using the appropriate arithmetic rules for such weights. The set of all paths between all nodes
is easily expressed in terms of matrix operations. It’s given by the following infinite series of matrix
pOWers:

This is an eloquent, but practically useless, expression. Let | be an n by n matrix, where n is the number
of nodes. Let I’s entries consist of multiplicative identity elements along the principal diagonal. For link
names, this can be the number “1.” For other kinds of weights, it is the multiplicative identity for those
weights. The above product can be re-phrased as:

Al+A+A*+ A+ A LAY
But often for relations, A+ A= A, (A +1)>=A?’+ A+A + | A+ A + |. Furthermore, for any
finiten, A+ D=1+ A+ A7+ A%, . A"

Therefore, the original infinite sum can be replaced by
0
> A =AA+H)”?
i=1
This is an improvement, because in the original expression we had both infinite products and infinite sums,
and now we have only one infinite product to contend with. The above is valid whether or not there are
loops. If we restrict our interest for the moment to paths of length n — 1, where n is the number of nodes,
the set of all such paths is givenby

n-1
Y A =AA+H)"?
i=1

This is an interesting set of paths because, with n nodes, no path can exceed n — 1 nodes without
incorporating some path segment that is already incorporated in some other path or path segment.
Finding the set of all such paths is somewhat easier because it is not necessary to do all the intermediate

products explicitly. The following algorithm iseffective:

1. Express n— 2 as a binarynumber.

2. Take successive squares of (A + 1), leading to (A + 1)%, (A + 1)*, (A + 1)8, and soon.

3. Keep only those binary powers of (A + 1) that correspond to a 1 value in the binary representation ofn— 2.
4. The set of all paths of length n — 1 or less is obtained as the product of the matrices you got in step 3

with the original matrix.

As an example, let the graph have 16 nodes. We want the set of all paths of length less than or equal to 15.
The binary representation of n — 2 (14) is 2 + 2% + 2. Consequently, the set of paths is given by

15
Y A" =AA+HDE A+ (A+])?
=1

Partitioning Algorithm
e Consider any graph over a transitive relation. The graph may haveloops.

o We would like to partition the graph by grouping nodes in such a way that every loop iscontained
within one group oranother.

e Such a graph is partiallyordered.
e There are many used for an algorithm that doesthat:

¢ We might want to embed the loops within a subroutine so as to have a resulting graph which is
loop free at the toplevel.

e Many graphs with loops are easy to analyze if you know where to break theloops.

e While you and I can recognize loops, it’s much harder to program a tool to do it unless you have
a solid algorithm on which to base thetool.

Partitioning algorithm:

il f ek
e i § 1
5|k
0N (IR 1!
1 1
1
1 1 1
1 1

6 RELATION MATRIX

... Considering that the graph may have loops.
Diagonal entries are made to represent self loop.

Partitioning algorithm(cont...):

(S = S
S ™
R OR R R R

A T T
a T K €

[S e = T = ~ S

1

TRANSITIVE CLOSURE MATRIX
... Explanation for getting the transitive closure matrix
& its transpose is not included since we assumed that
you would know this. Please get back if you need any
info. [

Partitioning algorithm(cont...):

1
1 1
/
. 1 1
B ;

| g
[
BBk e
[

INTERSECTION WITH ITS TRANSPOSE

a Considering the entries is the above matrix, we
have the following...
Example: to get values

for B — It is evident that
B(row 2) has entries at
column 2 & 7. Hence the
values.

00

moowp»

munmnn

OO wWN =
N
(3]

—————
[

Partitioning algorithm(cont...):

@
@
@

The resulting graph is ---

A B C D E
" ol
B : b 1 From the
earlier slide,
31 1 we had --
= A=[1]
1 B=[2,7]
D C=[3,4,5]
D=[6]
E = e E=[8]

... Considering that the graph had self loops.
Diagonal entries are made to represent self loop.

Node Reduction Algorithm (General)

The matrix powers usually tell us more than we want to know about mostgraphs.

In the context of testing, we usually interested in establishing a relation between two nodes-
typically the entry and exitnodes.

In a debugging context it is unlikely that we would want to know the path expression between
every node and every other node.

The advantage of matrix reduction method is that it is more methodical than the graphical method
called as node by node removalalgorithm.

Select a node for removal; replace the node by equivalent links that bypass that node and add
those links to the links theyparallel.

Combine the parallel terms and simplify as youcan.

Observe loop terms and adjust the out links of every node that had a self loop to account for the
effect of theloop.

The result is a matrix whose size has been reduced by 1. Continue until only the two nodes of
interestexist.

10

Node Reduction Algorithm

STEP 1: Eliminate a node 3 d b

and replace it with a set of

equivalent links. .. & € -
g e h

Say, we start with eliminating
node 5-

TIP: The out-link of the node removed will correspond to
the row and the in-link will correspond to the column

Node Reduction Algorithm

Eliminating node 5 ... the self loop is represented with a *
and the outgoing link from the node is multiplied . . .

Say, we start with eliminating 4 c f
node 5. First, we remove the
self loop- 5 -

TIP: The out-link of the node removed will correspond to
the row and the in-link will correspond to the column

11

Node Reduction Algorithm

Eliminating node 5 ... the self loop is represented with a *
and the outgoing link from the node is multiplied . . .

a b C

+
fh*e (fh*g)

Now, we eliminate node 5-

TIP: The out-link of the node
removed will correspond to the 3
row and the in-link will correspond

to the column

12

Node Reduction Algorithm

Eliminating node 4 ... the parallel link is added up and serial
links multiplied . ..

Now, we eliminate node 4-

Removing the loop term yields (bfh*e)

(bfh*e)*X(d+bc+bfh*q)

The final result yields to :
a(bfh*e)*(d + bc + bfh * g)

13

BUILDING TOOLS:

BUildiI"]g tools (node degree & graph density).

The out-degree of a node is the number of
out-links it has.

The in-degree of a node is the number of in-
links it has.

The degree of a node is the sum of in-degree
and out-degree.

The average degree(mean) of a node is b/w 3
and 4.

Degree of a simple branch/junction is 3
Degree of a loop contained in 1 statement is 4
Mean degree of 4 or 5 [very busy flow graph

What’s wrong with arrays?
Matrix as a 2-dimensional array is not

convenient for larger graphs. Herez why!...

We have four reasons for the same-

Space: For a matrix representation of an array,
space grows as n’ whereas, for a linked list, it
grows only as kn, where k is a small number
such as 3 or 4.

Weights: Most weights in arrays are
complicated and may have many components.
This means that an additional weight matrix is
required for each such weight.

14

What’s wrong with arrays? (cont...)

* Variable-length weights: If the weights are
regular expressions/algebraic expressions, we
would then need a 2-dimensional string array
(most of whose entries would be null).

* Processing time: Even though operations over
null entries are fast, it still takes time to access
such entries and discard them.

The matrix representation forces us to spend a

lot of time processing combinations of entries
that we know will yield null results.

Bunldlng tOO|S jnked list representatlons.

0000 .

5

N

3 d b

e Gf/’ g 4 c f

he 3 g e h
’ nodel, 3;a

. . nodel,2, The link names will usually

Every node is a unique hode3 2.4 Dbe pointers to entries in a

na{ne/ .numbgr. et string array(where actual
A link is a pair of node node3, 4; b

weight expressions are

names.
: stored).
The linked list entries for no:e:' z - :)
the aboveare [... Qe 30 Hithe weights are fixed
nodeS,2;€ jength, they can be
E t for linked list node5, 3 ;e associated with links in
entries: nodes, 5; h Parallel-fixed entry length

row, column ; data en array.

15

Building tools - Linked list

representations:
Clarifying entries by using node
names & pointers...

1,3:a
2,
3,2;d
3,4;b
4,2;c
4,5;f
52;g
53;e
55;h

list entry

1
2

3

content
nodel, 3;a
node2,exit
node3,2;d
3,4 b
noded, 2;c
4,5;f
node5,2;g
53;e
55;h

Fig.1 is represented in a more logical format
in Fig.2 by representing the nodes under list
entry. Fig 3 is more detailed the with in-links
to that node added (highlighted in black).

Matrix operations:

list entry
1
2

content
nodel, 3;a

node2,exit

node3, 2;d
3,4;b
1,
5,
node4,2;c
4,5;f
3,
node5, 2;¢g
3;e
5:;h
4,
5,

* Parallel Reduction: the easiest operation. After
sorting, parallel links are adjacent entries with the
same pair of node names.

Example: Say we have 3 parallel links from node 17 to
node 44. vy, z & w are the pointers to the weight

expressions.

Depicting all the entries for
parallel links between node
17 & node 44, we have -

node 17, 21; x

node 17,21; x

where,y=y+z+w

, 44y

16

Matrix operations:

* Loop Reduction: the self loop is identified. To remove
the loop, the link weight must be multiplied with all the out-
links from that node.

Start by identifying the out-links to be multiplied. Multiply the
self loop (h*) where h is the link weight of the self loop with
the out-link.

Example: From the below entries, it is evident at entry(5,5;h) that
it is a self loop at node 5 with link weight h. Also, from the 1st
two entries, we see that the out-links from node 5 are 2 and 3.
We need to multiply the self loop (h*) with the link weights of

nodes going from node 5 to node 2 & 3.
going J Refer fig. on slide 43 for the

node5,2;g node 5, 2 ; h*g graph.
53;e 0 5,3; h*e
5,5;h [E—

Matrix operations:

* Cross-Term Reduction: Select a node for reduction. The
cross-term step requires that you combine every in-link to the
node with every out-link from that node. The in-links are
obtained by back pointers. The new links created be removing
the node will be associated with the nodes of the in-links.

Example: Say that the nade to be removed was node 4
T list entry content

list entry content
2 node2, exit 2 node2, exit
inli —/—
(inlink)4, 2
. pe (inlink)3,2
(inlink)3,2
3 node3,2; d

3 node3,2 ; d The changes are 3.2:be
3,4:b highlighted in dark red

3,5; bf

a4 noded, 2; c - d
4,5;f b
(inlink)3,4; b
5 (inlink)4, 5 5 {mllnk] 4,5

17

NODE — REDUCTION OPTIMIZATION:

Node Reduction Optimization (tips):

* The optimum order for node reduction is to
do the lowest degree nodes first.

* When a node with degree 3(may be 1 in-link &
2out-links or 2 in-links & 1 out-link) is removed
, it reduces the total link count by 1 link.

* A degree 4 node keeps the link count the
same & all higher degree nodes increase the
link count.

