
95  

UNIT IV 
LOGIC BASED TESTING 

OVERVIEW OF LOGIC BASED TESTING: 
 

 INTRODUCTION:
o The functional requirements of many programs can be specified by decision 

tables, which provide a useful basis for program and test design. 
o Consistency and completeness can be analyzed by using boolean algebra, which 

can also be used as a basis for test design. Boolean algebra is trivialized by using 
Karnaugh-Veitch charts. 

o "Logic" is one of the most often used words in programmers' vocabularies but 
one of their least used techniques. 

o Boolean algebra is to logic as arithmetic is to mathematics. Without it, the tester 
or programmer is cut off from many test and design techniques and tools that 
incorporate those techniques. 

o Logic has been, for several decades, the primary tool of hardware logic designers. 
o Many test methods developed for hardware logic can be adapted to software 

logic testing. Because hardware testing automation is 10 to 15 years ahead of 
software testing automation, hardware testing methods and its associated 
theory is a fertile ground for software testing methods. 

o As programming and test techniques have improved, the bugs have shifted 
closer to the process front end, to requirements and their specifications. These 
bugs range from 8% to 30% of the total and because they're first-in and last-out, 
they're the costliest of all. 

o The trouble with specifications is that they're hard to express. 
o Boolean algebra (also known as the sentential calculus) is the most basic of all 

logic systems. 
o Higher-order logic systems are needed and used for formal specifications. 
o Much of logical analysis can be and is embedded in tools. But these tools 

incorporate methods to simplify, transform, and check specifications, and the 
methods are to a large extent based on boolean algebra. 

 

o KNOWLEDGE BASED SYSTEM: 
 

 The knowledge-based system (also expert system, or "artificial 
intelligence" system) has become the programming construct of choice 
for many applications that were once considered very difficult. 

 Knowledge-based systems incorporate knowledge from a knowledge 
domain such as medicine, law, or civil engineering into a database. The 
data can then be queried and interacted with to provide solutions to 
problems in that domain. 

 One implementation of knowledge-based systems is to incorporate the 
expert's knowledge into a set of rules. The user can then provide data 
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and ask questions based on that data. 

 The user's data is processed through the rule base to yield conclusions 
(tentative or definite) and requests for more data. The processing is done 
by a program called the inference engine. 

 Understanding knowledge-based systems and their validation problems 
requires an understanding of formal logic. 

o Decision tables are extensively used in business data processing; Decision-table 
preprocessors as extensions to COBOL are in common use; boolean algebra is 
embedded in the implementation of these processors. 

o Although programmed tools are nice to have, most of the benefits of boolean 
algebra can be reaped by wholly manual means if you have the right conceptual 
tool: the Karnaugh-Veitch diagram is that conceptual tool. 

 

 DECISION TABLES:
 

 Figure 6.1 is a limited - entry decision table. It consists of four areas called the condition 
stub, the condition entry, the action stub, and the action entry.

 Each column of the table is a rule that specifies the conditions under which the actions 
named in the action stub will take place.

 The condition stub is a list of names of conditions.

 

Figure 6.1 : Examples of Decision Table. 
 A more general decision table can be as below:
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Figure 6.2 : Another Examples of Decision Table. 

  A rule specifies whether a condition should or should not be met for the rule to be 
satisfied. "YES" means that the condition must be met, "NO" means that the condition 
must not be met, and "I" means that the condition plays no part in the rule, or it is  
immaterial to that rule.

The action stub names the actions the routine will take or initiate if the rule is satisfied. 

 If the action entry is "YES", the action will take place; if "NO", the action will not take 
place.

The table in Figure 6.1 can be translated as follows: 

 
Action 1 will take place if conditions 1 and 2 are met and if conditions 3 and 4 are not met (rule 

1) or if conditions 1, 3, and 4 are met (rule 2). 
 "Condition" is another word for predicate. 
 Decision-table uses "condition" and "satisfied" or "met". Let us use "predicate" and 

TRUE / FALSE. 
 Now the above translations become: 

1. Action 1 will be taken if predicates 1 and 2 are true and if predicates 3 and 4 are 
false (rule 1), or if predicates 1, 3, and 4 are true (rule 2). 

2. Action 2 will be taken if the predicates are all false, (rule 3). 
3. Action 3 will take place if predicate 1 is false and predicate 4 is true (rule 4). 

 In addition to the stated rules, we also need a Default Rule that specifies the default 
action to be taken when all other rules fail. The default rules for Table in Figure 6.1 is 
shown in Figure 6.3 

 

Figure 6.3 : The default rules of Table in Figure 6.1 

 DECISION-TABLE PROCESSORS: 

o Decision tables can be automatically translated into code and, as such, are a 
higher-order language 

o If the rule is satisfied, the corresponding action takes place 
o Otherwise, rule 2 is tried. This process continues until either a satisfied rule 

results in an action or no rule is satisfied and the default action is taken 
o Decision tables have become a useful tool in the programmers kit, in business 

data processing. 
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DECISION-TABLES AS BASIS FOR TEST CASE DESIGN: 
 

1. The specification is given as a decision table or can be easily converted into one. 
2. The order in which the predicates are evaluated does not affect interpretation of 

the rules or the resulting action - i.e., an arbitrary permutation of the predicate 
order will not, or should not, affect which action takes place. 

3. The order in which the rules are evaluated does not affect the resulting action - 
i.e., an arbitrary permutation of rules will not, or should not, affect which action 
takes place. 

4. Once a rule is satisfied and an action selected, no other rule need be examined. 
5. If several actions can result from satisfying a rule, the order in which the actions 

are executed doesn't matter. 
 

DECISION-TABLES AND STRUCTURE: 
 

o Decision tables can also be used to examine a program's structure. 
o Figure 6.4 shows a program segment that consists of a decision tree. 
o These decisions, in various combinations, can lead to actions 1, 2, or 3. 

 

Figure 6.4 : A Sample Program 
o If the decision appears on a path, put in a YES or NO as appropriate. If the 

decision does not appear on the path, put in an I, Rule 1 does not contain 
decision C, therefore its entries are: YES, YES, I, YES. 

o The corresponding decision table is shown in Table 6.1 
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 RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6  

CONDITION A 
CONDITION B 
CONDITION C 
CONDITION D 

 

 
YES 
YES I 

 

 
YES 
NO I 

 

 
YES 
YES I 

 

 
NO I 
YES I 

 

 
NO I 
NO 

 

 
NO I 
NO 

 YES I NO  YES NO 

ACTION 1 
ACTION 2 
ACTION 3 

YES 
NO 
NO 

YES 
NO 
NO 

NO 
YES 
NO 

NO 
YES 
NO 

NO 
YES 
NO 

NO 
NO 
YES 

 

 

Table 6.1: Decision Table corresponding to Figure 6.4 
As an example, expanding the immaterial cases results as below: 

 

Table 6.2: Expansion of Table 6.1 
o Similalrly, If we expand the immaterial cases for the above Table 6.1, it results in 

Table 6.2 as below: 

 R 1 RULE 2 R 3 RULE 4 R 5 R 6 

CONDITION A 
CONDITION B 
CONDITION C CONDITION 
D 

YY 
YY 
YN 
YY 

YYYY 
NNNN 
NNYY 
YNNY 

YY 
YY 
YN 
NN 

NNNN 
YYNN 
YYYY 
NYYN 

NN 
NY 
NN 
YY 

NN 
YN 
NN 
NN 

1. Sixteen cases are represented in Table 6.1, and no case appears twice. 
2. Consequently, the flowgraph appears to be complete and consistent. 
3. As a first check, before you look for all sixteen combinations, count the number 

of Y's and N's in each row. They should be equal. We can find the bug that way. 
 

 ANOTHER EXAMPLE - A TROUBLE SOME PROGRAM: 
 

1. Consider the following specification whose putative flowgraph is shown in Figure 
6.5: 

1. If condition A is met, do process A1 no matter what other actions are 
taken or what other conditions are met. 
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2. If condition B is met, do process A2 no matter what other actions are 
taken or what other conditions are met. 

3. If condition C is met, do process A3 no matter what other actions are 
taken or what other conditions are met. 

4. If none of the conditions is met, then do processes A1, A2, and A3. 
5. When more than one process is done, process A1 must be done first, then 

A2, and then A3. The only permissible cases are: (A1), (A2), (A3), (A1,A3), 
(A2,A3) and (A1,A2,A3). 

2. Figure 6.5 shows a sample program with a bug. 

 
Figure 6.5 : A Troublesome Program 

o The programmer tried to force all three processes to be executed for the 
cases but forgot that the B and C predicates would be done again, thereby 

bypassing processes A2 and A3. 
o Table 6.3 shows the conversion of this flow graph into a decision table after 

expansion. 

 
 

Table 6.3: Decision Table for Figure 6.5 

PATH EXPRESSIONS: 
GENERAL: 

o Logic-based testing is structural testing when it's applied to structure (e.g., 
control flow graph of an implementation); it's functional testing when it's applied 
to a specification. 



101  

o In logic-based testing we focus on the truth values of control flow predicates. 

o A predicate is implemented as a process whose outcome is a truth-functional 
value. 

o For our purpose, logic-based testing is restricted to binary predicates. 
o We start by generating path expressions by path tracing as in Unit V, but this 

time, our purpose is to convert the path expressions into boolean algebra, using 
the predicates' truth values (e.g., A and ) as weights. 

 

BOOLEAN ALGEBRA: 
o STEPS: 

1. Label each decision with an uppercase letter that represents the truth 
value of the predicate. The YES or TRUE branch is labeled with a letter 
(say A) and the NO or FALSE branch with the same letter overscored (say 

). 
2. The truth value of a path is the product of the individual labels. 

Concatenation or products mean "AND". For example, the straight- 
through path of Figure 6.5, which goes via nodes 3, 6, 7, 8, 10, 11, 12, and 
2, has a truth value of ABC. The path via nodes 3, 6, 7, 9 and 2 has a value 
of . 

3. If two or more paths merge at a node, the fact is expressed by use of a 
plus sign (+) which means "OR". 

 
Figure 6.5: A Troublesome Program 

o Using this convention, the truth-functional values for several of the nodes can be 
expressed in terms of segments from previous nodes. Use the node name to 
identify the point. 
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o There are only two numbers in boolean algebra: zero (0) and one (1). One means 
"always true" and zero means "always false". 

o RULES OF BOOLEAN ALGEBRA: 
 Boolean algebra has three operators: X (AND), + (OR) and (NOT) 
 X : meaning AND. Also called multiplication. A statement such as AB (A X 

B) means "A and B are both true". This symbol is usually left out as in 
ordinary algebra. 

  + : meaning OR. "A + B" means "either A is true or B is true or both". 

  meaning NOT. Also negation or complementation. This is read as either "not A" or "A 
bar". The entire expression under the bar is negated. 

 The following are the laws of boolean algebra: 

 
In all of the above, a letter can represent a single sentence or an entire boolean algebra expression. 
Individual letters in a boolean algebra expression are called Literals (e.g. A,B) The product of 
several literals is called a product term (e.g., ABC, DE). 
An arbitrary boolean expression that has been multiplied out so that it consists of the sum of products (e.g., ABC + 
DEF + GH) is said to be in sum-of-products form. 
The result of simplifications (using the rules above) is again in the sum of product form and each product term in such a 
simplified version is called a prime implicant. For example, ABC + AB 
+ DEF reduce by rule 20 to AB + DEF; that is, AB and DEF are prime implicants. The path 
expressions of Figure 6.5 can now be simplified by applying the rules. 

The following are the laws of boolean algebra: 
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Similarly, 

 
The deviation from the specification is now clear. The functions should have been: 

 
Loops complicate things because we may have to solve a boolean equation to determine what predicate value 
combinations lead to where. 

 

KV CHARTS: 

INTRODUCTION: 
o If you had to deal with expressions in four, five, or six variables, you could get 

bogged down in the algebra and make as many errors in designing test cases as 
there are bugs in the routine you're testing. 

o Karnaugh-Veitch chart reduces boolean algebraic manipulations to graphical 
trivia. 

o Beyond six variables these diagrams get cumbersome and may not be effective. 
SINGLE VARIABLE: 

o Figure 6.6 shows all the boolean functions of a single variable and their 
equivalent representation as a KV chart. 
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Figure 6.6 : KV Charts for Functions of a Single Variable. 
o The charts show all possible truth values that the variable A can have. 
o A "1" means the variable’s value is "1" or TRUE. A "0" means that the variable's 

value is 0 or FALSE. 
o The entry in the box (0 or 1) specifies whether the function that the chart 

represents is true or false for that value of the variable. 
o We usually do not explicitly put in 0 entries but specify only the conditions under 

which the function is true. 
TWO VARIABLES: 

o Figure 6.7 shows eight of the sixteen possible functions of two variables. 
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Figure 6.7: KV Charts for Functions of Two Variables. 
o Each box corresponds to the combination of values of the variables for the row 

and column of that box. 
o A pair may be adjacent either horizontally or vertically but not diagonally. 
o Any variable that changes in either the horizontal or vertical direction does not 

appear in the expression. 
o In the fifth chart, the B variable changes from 0 to 1 going down the column, and 

because the A variable's value for the column is 1, the chart is equivalent to a 
simple A. 

o Figure 6.8 shows the remaining eight functions of two variables. 



106  

 

Figure 6.8: More Functions of Two Variables. 
o The first chart has two 1's in it, but because they are not adjacent, each must 

be taken separately. 
o They are written using a plus sign. 
o It is clear now why there are sixteen functions of two variables. 
o Each box in the KV chart corresponds to a combination of the variables' values. 
o That combination might or might not be in the function (i.e., the 

box corresponding to that combination might have a 1 or 0 entry). 
o Since n variables lead to 2n combinations of 0 and 1 for the variables, and 

each such combination (box) can be filled or not filled, leading to 22n ways of 
doing this. 

o Consequently for one variable there are 221 = 4 functions, 16 functions of 2 
variables, 256 functions of 3 variables, 16,384 functions of 4 variables, andso 
on. 
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o Given two charts over the same variables, arranged the same way, their product 
is the term by term product, their sum is the term by term sum, and the 
negation of a chart is gotten by reversing all the 0 and 1 entries in the chart. 

 
OR 

 
THREE VARIABLES: 

o KV charts for three variables are shown below. 
o As before, each box represents an elementary term of three variables with a bar 

appearing or not appearing according to whether the row-column heading for 
that box is 0 or 1. 

o A three-variable chart can have groupings of 1, 2, 4, and 8 boxes. 
o A few examples will illustrate the principles: 
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Figure 6.8: KV Charts for Functions of Three Variables. 
o You'll notice that there are several ways to circle the boxes into maximum- 

sized covering groups. 
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STATES, STATE GRAPHS, AND TRANSITION TESTING 
 

 

Introduction 
  The finite state machine is as fundamental to software engineering as boolean algebra 

to logic. 
     State testing strategies are based on the use of finite state machine models for software 

structure, software behavior, or specifications of software behavior. 
     Finite state machines can also be implemented as table-driven software, in which case 

they are a powerful design option. 
State Graphs 

 A state is defined as: “A combination of circumstances or attributes belonging for the 
time being to a person or thing.” 

     For example, a moving automobile whose engine is running can have the following 
states with respect to its transmission. 

 Reverse gear 
 Neutral gear 
 First gear 
 Second gear 
 Third gear 
 Fourth gear 

State graph - Example 

 For example, a program that detects the character sequence “ZCZC” can be in the 
following states. 

     Neither ZCZC nor any part of it has been detected. 
 Z has been detected. 
 ZC has been detected. 
 ZCZ has been detected. 
 ZCZC has been detected. 

States are represented by Nodes. State are numbered or may identified by words or whatever else is convenient. 

State, State Graphs and Transition testing:- state graphs, good & bad state graphs, state 
testing, Testability tips. 
Graph Matrices and Application:-Motivational overview, matrix of graph, relations, power of 
a matrix, node reduction algorithm, building tools. ( Student should be given an exposure to a tool 
like JMeter or Win-runner). 
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Inputs and Transitions 
  Whatever is being modeled is subjected to inputs. As a result of those inputs, the state 

changes, or is said to have made a Transition. 

     Transitions are denoted by links that join the states. 
 

     The input that causes the transition are marked on the link; that is, the inputs are link 
weights. 

     There is one out link from every state for every input. 

 If several inputs in a state cause a transition to the same subsequent state, instead of 
drawing a bunch of parallel links we can abbreviate the notation by listing the several 
inputs as in: “input1, input2, input3………”. 

 
Finite State Machine 

  A finite state machine is an abstract device that can be represented by a state graph 
having a finite number of states and a finite number of transitions between states. 

o Outputs 
     An output can be associated with any link. 

 Out puts are denoted by letters or words and are separated from inputs by a slash as 
follows: “input/output”. 

 As always, output denotes anything of interest that’s observable and is not restricted to 
explicit outputs by devices. 

Outputs are also link weights. 
If every input associated with a transition causes the same output, then denoted it as: 

o “input1, input2, input3… ......... /output” 

State tables
es

 

 Big state graphs are cluttered and hard to follow. 
 It’s more convenient to represent the state graph as a table (the state table 

or state transition table) that specifies the states, the inputs, the transitions 
and the outputs. 

 The following conventions are used: 
 Each row of the table corresponds to a state. 
 Each column corresponds to an input condition. 
 The box at the intersection of a row and a column specifies the next state 

(the transition) and the output, if any. 
State Table-Example 
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Time Versus Sequence 

 State graphs don’t represent time-they represent sequence. 
A transition might take microseconds or centuries; 
A system could be in one state for milliseconds and another for years- the state graph 
would be the same because it has no notion of time. 

     Although the finite state machines model can be elaborated to include notions of time 
in addition to sequence, such as time Petri Nets. 

o Software implementation 
     There is rarely a direct correspondence between programs and the behavior of a 

process described as a state graph. 
     The state graph represents, the total behavior consisting of the transport, the software, 

the executive, the status returns, interrupts, and so on. 
     There is no simple correspondence between lines of code and states. The state table 

forms the basis. 
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Good State Graphs and Bad 
  What constitutes a good or a bad state graph is to some extent biased by the kinds of 

state graphs that are likely to be used in a software test design context. 
     Here are some principles for judging. 

o The total number of states is equal to the product of the possibilities of factors 
that make up the state. 

o For every state and input there is exactly one transition specified to exactly one, 
possibly the same, state. 

o For every transition there is one output action specified. The output could be 
trivial, but at least one output does something sensible. 

o For every state there is a sequence of inputs that will drive the system back to 
the same state. 

 

Important graphs 

 

State Bugs-Number of States 
  The number of states in a state graph is the number of states we choose to recognize or 

model. 
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     The state is directly or indirectly recorded as a combination of values of variables that 
appear in the data base. 

     For example, the state could be composed of the value of a counter whose possible 
values ranged from 0 to 9, combined with the setting of two bit flags, leading to a total 
of 2*2*10=40 states. 

     The number of states can be computed as follows: 
o Identify all the component factors of the state. 
o Identify all the allowable values for each factor. 
o The number of states is the product of the number of allowable values of all the 

factors. 
     Before you do anything else, before you consider one test case, discuss the number of 

states you think there are with the number of states the programmer thinks there are. 

 There is no point in designing tests intended to check the system’s behavior in various 
states if there’s no agreement on how many states there are. 

o Impossible States 
     Some times some combinations of factors may appear to be impossible. 

 The discrepancy between the programmer’s state count and the tester’s state count is 
often due to a difference of opinion concerning “impossible states”. 

     A robust piece of software will not ignore impossible states but will recognize them and 
invoke an illogical condition handler when they appear to have occurred. 

 
Equivalent States 

     Two states are Equivalent if every sequence of inputs starting from one state produces 
exactly the same sequence of outputs when started from the other state. This notion 
can also be extended to set of states. 

 
 

Merging of Equivalent States 
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Recognizing Equivalent States 
Equivalent states can be recognized by the following procedures: 
The rows corresponding to the two states are identical with respect to 
input/output/next state but the name of the next state could differ. 

     There are two sets of rows which, except for the state names, have identical state 
graphs with respect to transitions and outputs. The two sets can be merged. 

 
TransitionBugs- 
unspecified and contradictory Transitions 

Every input-state combination must have a specified transition. 
If the transition is impossible, then there must be a mechanism that prevents the input 
from occurring in that state. 

     Exactly one transition must be specified for every combination of input and state. 
 A program can’t have contradictions or ambiguities. 

     Ambiguities are impossible because the program will do something for every input. Even 
the state does not change, by definition this is a transition to the same state. 

 
Unreachable States 

An unreachable state is like unreachable code. 
A state that no input sequence can reach. 
An unreachable state is not impossible, just as unreachable code is not impossible 
There may be transitions from unreachable state to other states; there usually because 
the state became unreachable as a result of incorrect transition. 

     There are two possibilities for unreachable states: 
o There is a bug; that is some transitions are missing. 
o The transitions are there, but you don’t know about it. 

 
Dead States 

A dead state is a state that once entered cannot be left. 
This is not necessarily a bug but it is suspicious. 

 
 
 

The states, transitions, and the inputs could be correct, there could be no dead or 
unreachable states, but the output for the transition could be incorrect. 

     Output actions must be verified independently of states and 
transitions. State Testing 
Impact of Bugs 

     If a routine is specified as a state graph that has been verified as correct in all details. 
Program code or table or a combination of both must still be implemented. 

A bug can manifest itself as one of the following symptoms: 

Wrong number of states. 
Wrong transitions for a given state-input combination. 
Wrong output for a given transition. 
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Pairs of states or sets of states that are inadvertently made equivalent. 
States or set of states that are split to create in equivalent duplicates. 

States or sets of states that have become dead. 
States or sets of states that have become unreachable. 

 

Principles of State Testing 
     The strategy for state testing is analogous to that used for path testing flow graphs. 

 Just as it’s impractical to go through every possible path in a flow graph, it’s impractical 
to go through every path in a state graph. 

     The notion of coverage is identical to that used for flow graphs. 
 Even though more state testing is done as a single case in a grand tour, it’s impractical to 

do it that way for several reasons. 
In the early phases of testing, you will never complete the grand tour because of bugs. 
Later, in maintenance, testing objectives are understood, and only a few of the states 
and transitions have to be tested. A grand tour is waste of time. 

     Theirs is no much history in a long test sequence and so much has happened that 
verification is difficult. 

 
Starting point of state testing 

  Define a set of covering input sequences that get back to the initial state when starting 
from the initial state. 

     For each step in each input sequence, define the expected next state, the expected 
transition, and the expected output code. 

     A set of tests, then, consists of three sets of sequences: 
o Input sequences 
o Corresponding transitions or next-state names 
o Output sequences 

 
Limitations and Extensions 

State transition coverage in a state graph model does not guarantee complete testing. 
How defines a hierarchy of paths and methods for combining paths to produce covers of 
state graphs. 

 The simplest is called a “0 switch” which corresponds to testing each transition 
individually. 

 The next level consists of testing transitions sequences consisting of two transitions 
called “1 switches”. 

 The maximum length switch is “n-1 switch” where there are n numbers of states. 
o Situations at which state testing is useful 

     Any processing where the output is based on the occurrence of one or more sequences 
of events, such as detection of specified input sequences, sequential format validation, 
parsing, and other situations in which the order of inputs is important. 

     Most protocols between systems, between humans and machines, between 
components of a system. 
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