95

UNIT IV
LOGIC BASED TESTING

OVERVIEW OF LOGIC BASED TESTING:

INTRODUCTION:

(0]

The functional requirements of many programs can be specified by decision
tables, which provide a useful basis for program and test design.

Consistency and completeness can be analyzed by using boolean algebra, which
can also be used as a basis for test design. Boolean algebra is trivialized by using
Karnaugh-Veitch charts.

"Logic" is one of the most often used words in programmers' vocabularies but
one of their least used techniques.

Boolean algebra is to logic as arithmetic is to mathematics. Without it, the tester
or programmer is cut off from many test and design techniques and tools that
incorporate those techniques.

Logic has been, for several decades, the primary tool of hardware logic designers.
Many test methods developed for hardware logic can be adapted to software
logic testing. Because hardware testing automation is 10 to 15 years ahead of
software testing automation, hardware testing methods and its associated
theory is a fertile ground for software testing methods.

As programming and test techniques have improved, the bugs have shifted
closer to the process front end, to requirements and their specifications. These
bugs range from 8% to 30% of the total and because they're first-in and last-out,
they're the costliest of all.

The trouble with specifications is that they're hard to express.

Boolean algebra (also known as the sentential calculus) is the most basic of all
logic systems.

Higher-order logic systems are needed and used for formal specifications.

Much of logical analysis can be and is embedded in tools. But these tools
incorporate methods to simplify, transform, and check specifications, and the
methods are to a large extent based on boolean algebra.

KNOWLEDGE BASED SYSTEM:

» The knowledge-based system (also expert system, or "artificial
intelligence" system) has become the programming construct of choice
for many applications that were once considered very difficult.

*» Knowledge-based systems incorporate knowledge from a knowledge
domain such as medicine, law, or civil engineering into a database. The
data can then be queried and interacted with to provide solutions to
problems in that domain.

* One implementation of knowledge-based systems is to incorporate the
expert's knowledge into a set of rules. The user can then provide data

96

and ask questions based on that data.

= The user's data is processed through the rule base to yield conclusions
(tentative or definite) and requests for more data. The processing is done
by a program called the inference engine.

*» Understanding knowledge-based systems and their validation problems
requires an understanding of formal logic.

o Decision tables are extensively used in business data processing; Decision-table
preprocessors as extensions to COBOL are in common use; boolean algebra is
embedded in the implementation of these processors.

o Although programmed tools are nice to have, most of the benefits of boolean
algebra can be reaped by wholly manual means if you have the right conceptual
tool: the Karnaugh-Veitch diagram is that conceptual tool.

o DECISION TABLES:

e Figure 6.1 is a limited - entry decision table. It consists of four areas called the condition
stub, the condition entry, the action stub, and the action entry.
e Each column of the table is a rule that specifies the conditions under which the actions
named in the action stub will take place.
e The condition stub is a list of names of conditions.
CONDITION ENTRY

ARULE RULE 2 RULED RULE S
CONDITION 1 YEs YES NO NO
CONDITION | CONOITION 2 Yes ! ! 8O !
stus . i |
CONOITION NO Yes NO {
. CONDITION 4 NO YEsS NO | YES
ACTION 3 YES YES NO NO
ACTION ‘
sTus. ACTION 2 NO | NO | YES NO
ACTIOND NO ' NO NO YES
, " ’
ACTION ENTRY

Figure 6.1 : Examples of Decision Table.

e A more general decision table can be as below:
Printer troubleshooter

Rules
Printer does not print p NIN|IN
Conditions | A red light is flashing N Y|YIN|IN
Printer is unrecognised ¥ NIY|N
Check the power cable x
Check the printer-computer cable X
Actions Ensure printer software is installed | X X X X
Check/replace ink XX X | X
Check for paper jam X x

97

Figure 6.2 : Another Examples of Decision Table.

A rule specifies whether a condition should or should not be met for the rule to be
satisfied. "YES" means that the condition must be met, "NO" means that the condition
must not be met, and "I" means that the condition plays no part in the rule, or it is
immaterial to that rule.

The action stub names the actions the routine will take or initiate if the rule is satisfied.

If the action entry is "YES", the action will take place; if "NO", the action will not take
place.

The table in Figure 6.1 can be translated as follows:

Action 1 will take place if conditions 1 and 2 are met and if conditions 3 and 4 are not met (rule
1) orif conditions 1, 3, and 4 are met (rule 2).

"Condition" is another word for predicate.
Decision-table uses "condition" and "satisfied" or "met". Let us use "predicate" and
TRUE / FALSE.
Now the above translations become:

1. Action 1 will be taken if predicates 1 and 2 are true and if predicates 3 and 4 are

false (rule 1), or if predicates 1, 3, and 4 are true (rule 2).

2. Action 2 will be taken if the predicates are all false, (rule 3).

3. Action 3 will take place if predicate 1 is false and predicate 4 is true (rule 4).
In addition to the stated rules, we also need a Default Rule that specifies the default
action to be taken when all other rules fail. The default rules for Table in Figure 6.1 is
shown in Figure 6.3

" Rule 5 Rule6 ' - Rule7] Rule8
cmomont | 1| w | ves T‘?gs i
CONOITION 2] 1 YES ! | ~NO
CONOITION 3 ‘ YES ! NO ’ NO
CONDITIONG | NO NO vEsS | |
DEFAULT i

| YES 1 YES YES

Figure 6.3 : The default rules of Table in Figure 6.1

DECISION-TABLE PROCESSORS:

o Decision tables can be automatically translated into code and, as such, are a
higher-order language
If the rule is satisfied, the corresponding action takes place
Otherwise, rule 2 is tried. This process continues until either a satisfied rule
results in an action or no rule is satisfied and the default action is taken

o Decision tables have become a useful tool in the programmers kit, in business
data processing.

DECISION-TABLES AS BASIS FOR TEST CASE DESIGN:

1. The specification is given as a decision table or can be easily converted into one.

2. The order in which the predicates are evaluated does not affect interpretation of
the rules or the resulting action - i.e., an arbitrary permutation of the predicate
order will not, or should not, affect which action takes place.

3. The order in which the rules are evaluated does not affect the resulting action -
i.e., an arbitrary permutation of rules will not, or should not, affect which action
takes place.

4. Once arule is satisfied and an action selected, no other rule need be examined.

5. If several actions can result from satisfying a rule, the order in which the actions
are executed doesn't matter.

DECISION-TABLES AND STRUCTURE:

o Decision tables can also be used to examine a program's structure.
o Figure 6.4 shows a program segment that consists of a decision tree.
o These decisions, in various combinations, can lead to actions 1, 2, or 3.

| ACTION

A, NO 9 ACTION 2 —.GB_
N\ C.YES (R4)

ACTION 3

Figure 6.4 : A Sample Program
o If the decision appears on a path, put in a YES or NO as appropriate. If the
decision does not appear on the path, put in an I, Rule 1 does not contain
decision C, therefore its entries are: YES, YES, |, YES.
o The corresponding decision table is shown in Table 6.1

98

RULE1 RULE2 RULE3 RULE4 RULE5 RULE®

CONDITION A

CONDITION B

CONDITION C YES YES YES NO | NO | NO |

CONDITION D YES| NOI YES| YES| NO NO
YES I NO YES NO

ACTION 1 YES YES NO NO NO NO

ACTION 2 NO NO YES YES YES NO

ACTION 3 NO NO NO NO NO YES

Table 6.1: Decision Table corresponding to Figure 6.4
As an example, expanding the immaterial cases results as below:

E' RULE 1 | RULE 2 | ruLe 10 [RULE 1 2 [Auee 20 [Ruie 22

{oo«‘o-noo« 2| wves vES | wves YES YES YES

| CONDITION 2 v | wo | ves NO | NO NO
conoTIoON3| vES |+ C> ‘ ves ves vis ~O

1 CONDITION &. NO J NO i =~o NO NO NO

[ACTION | ves | »o j ves YES NO NO

i ACTION 2 J' NO | VIS | »NO NO | YES | VvES

Table 6.2: Expansion of Table 6.1
o Similalrly, If we expand the immaterial cases for the above Table 6.1, it results in
Table 6.2 as below:

R1 RULE 2 R3 RULE 4 R5 R6
CONDITION A YY YYYY YY NNNN NN NN
CONDITION B YY NNNN YY YYNN NY YN
CONDITION C CONDITION YN NNYY YN YYYY NN NN
D YY YNNY NN NYYN YY NN

1. Sixteen cases are represented in Table 6.1, and no case appears twice.

2. Consequently, the flowgraph appears to be complete and consistent.

3. Asafirst check, before you look for all sixteen combinations, count the number
of Y's and N's in each row. They should be equal. We can find the bug that way.

. ANOTHER EXAMPLE - A TROUBLE SOME PROGRAM:

1. Consider the following specification whose putative flowgraph is shown in Figure
6.5:
1. If condition A is met, do process Al no matter what other actions are
taken or what other conditions are met.

2. Figure 6.5 shows a sample program with a bug.

o The programmer tried to force all three processes to be executed for the

If condition B is met, do process A2 no matter what other actions are
taken or what other conditions are met.
If condition C is met, do process A3 no matter what other actions are
taken or what other conditions are met.
If none of the conditions is met, then do processes Al, A2, and A3.
When more than one process is done, process A1l must be done first, then
A2, and then A3. The only permissible cases are: (A1), (A2), (A3), (A1,A3),
(A2,A3) and (A1,A2,A3).

| AY |

[E .
c
c
9 Cc
= c
8
B\ 8 c\ C

NG

12

A3

Figure 6.5 : A Troublesome Program

ABC cases but forgot that the B and C predicates would be done again, thereby
bypassing processes A2 and A3.
o Table 6.3 shows the conversion of this flow graph into a decision table after

expansion.
RULES

ABC |ABc | Asc | Al | At | ABCc | ABC | ABC

CONDITION A | NO NO NO NO YES YES YEs YES
CONDITION B NO NO YES Yis YES Yis NO ~NO
CONDITION C ~NO YES YES NO NO YES YES ~NO
ACTION 1 YES NO | NO NO YES YES Yis YES
ACTION 2 Yis NO YES Yis Yis YES NO NO
ACTION D YES vis 1 YES NO NO YES YEsS NO

PATH EXPRESSIONS:
GENERAL:

Table 6.3: Decision Table for Figure 6.5

o Logic-based testing is structural testing when it's applied to structure (e.g.,
control flow graph of an implementation); it's functional testing when it's applied
to a specification.

100

o Inlogic-based testing we focus on the truth values of control flow predicates.

o A predicate is implemented as a process whose outcome is a truth-functional
value.
For our purpose, logic-based testing is restricted to binary predicates.
We start by generating path expressions by path tracing as in Unit V, but this
time, our purpose is to convert the path expressions into boolean algebra, using
the predicates' truth values (e.g., A and A) as weights.

z BOOLEAN ALGEBRA:
o STEPS:

1. Label each decision with an uppercase letter that represents the truth
value of the predicate. The YES or TRUE branch is labeled with a letter
(say A) and the NO or FALSE branch with the same letter overscored (say
A).

2. The truth value of a path is the product of the individual labels.
Concatenation or products mean "AND". For example, the straight-
through path of Figure 6.5, which goes via nodes 3, 6, 7, 8, 10, 11, 12, and
2, has a truth value of ABC. The path via nodes 3, 6, 7, 9 and 2 has a value
of ABC.,

3. If two or more paths merge at a node, the fact is expressed by use of a
plus sign (+) which means "OR".

[E \’
-
¢
C

A
3 ‘; 6 Al g Sole A2 ¢ |P
A
B\ 8
ry M»=7
-
¢
c

Figure 6.5: A Troublesome Program
o Using this convention, the truth-functional values for several of the nodes can be
expressed in terms of segments from previous nodes. Use the node name to
identify the point.

N6 = A + ABC B B
N8 = (N6)B + AB = AB + ABCB + AB
NIl = (N8)C + (N6)BC
NI2 = NIl + ABC .
N2 = N12 + (N8)C + (N6)BT

101

o There are only two numbers in boolean algebra: zero (0) and one (1). One means
"always true" and zero means "always false".

o RULES OF BOOLEAN ALGEBRA:
= Boolean algebra has three operators: X (AND), + (OR) and A(NOT)
= X : meaning AND. Also called multiplication. A statement such as AB (A X
B) means "A and B are both true". This symbol is usually left out as in
ordinary algebra.
= +:meaning OR. "A + B" means "either A is true or B is true or both".

= Ameaning NOT. Also negation or complementation. This is read as either "not A" or "A
bar". The entire expression under the bar is negated.

= The following are the laws of boolean algebra:

LA+A = A If something is true, saying it

A+ A = A twice doesn’t make it truer, ditto
for falsehoods.

2. A+1 = | If something is always true, then

“‘either A or true or both™ must
also be universally true.

3L.A+0 = A

4. A+B =B+ A Commutative law.

S. A+ A = | If either A is true or not-A is true,
then the statement is always true.

6. AA = A
AA = A

7. AX1 = A

8. Ax0 =0

9. AB = BA

[0. AA =0 A statement can't be simulta-
o ncously tnue and faise.

LA = A *You ain't not going’*' means you
are. How about, **I ain’t not never
going to get this nohow,"?

12. 0 = |

13. T =0

4. A+ B = AB Called **De Morgan's theorem or
law.""

IS. AB =A+B

6. A(B + C) = AB + AC Distributive law.

{7. (AB)C = A(BC) Multiplication is associative.

8. (A+B)+C=A+(B+C) Soisaddition.

9. A+ AB =A+ B Absorptive law.

0. A+ AB = A

In all of the above, a letter can represent a single sentence or an entire boolean algebra expression.

Individual letters in a boolean algebra expression are called Literals (e.g. A,B) The product of

several literals is called a product term (e.g., ABC, DE).

An arbitrary boolean expression that has been multiplied out so that it consists of the sum of products (e.g., ABC +

DEF + GH) is said to be in sum-of-products form.

The result of simplifications (using the rules above) is again in the sum of product form and each product term in such a
simplified version is called a prime implicant. For example, ABC + AB

+ DEF reduce by rule 20 to AB + DEF; that is, AB and DEF are prime implicants. The path

expressions of Figure 6.5 can now be simplified by applying the rules.

The following are the laws of boolean algebra:

102

N6 = A+ ABC

= A+ BC : Use rule 19, with “B* = BT,
N8 = (N6)B + AB _
=(A+BOB + AB : Substitution,
=AB + BCB+ AB : Rule 16 (distributive law).
= AB + BBC + AB : Rule 9 (commutative
= multiplication).
= AB + 0C + AB : Rule 10.
= AB + 0+ AB :Rule 8.
= AB + AB : Rule 3.
= (A+ A)B : Rule 16 (disteibutive law),
=] xB : Rule §.
=B : Rules 7, 9.
Similarly,
NIl = (N8)C + (N6)BC
=BC+ (A + BC)BC : Substitution,
= BC + ABC : Rules 16, 9, 10, 8, 3.
= C(B + BA) : Rules 9, 16,
=C(B + A) : Rule 19.
= AC + BC : Rules 16, 9, 9, 4,

Ni2 = N1l + ABC __
= AC + BC + ABC
= C(B + AB) + AC
=C(A + B) + AC
= CA + AC + BC

C + BC
C

N2 = NI2 +(N8)C + (N§)BC

C + BC + (A + BOBC

C+ BC + BC

C+

C+

1

g n R unnane

The deviation from the specification is now clear. The functions should have been:

N6 =A+ABC=A+BC :corect.
Ng =B + I_\Eg =B+ AC :wrong, was just B.
Ni2=C + ABC=C + AB : wrong, was just C.

Loops complicate things because we may have to solve a boolean equation to determine what predicate value
combinations lead to where.

KV CHARTS:

INTRODUCTION:

o If you had to deal with expressions in four, five, or six variables, you could get
bogged down in the algebra and make as many errors in designing test cases as
there are bugs in the routine you're testing.

o Karnaugh-Veitch chart reduces boolean algebraic manipulations to graphical
trivia.

Beyond six variables these diagrams get cumbersome and may not be effective.
B SINGLE VARIABLE:

o Figure 6.6 shows all the boolean functions of a single variable and their

equivalent representation as a KV chart.

103

104

0 1
0 0 0 The function is never true
A
0 1
A 0 1 The function is true when A is true
A
0 1
A 1 0 The function is true when A is false
A
0 1
1 1 1 The function is always true

Figure 6.6 : KV Charts for Functions of a Single Variable.

The charts show all possible truth values that the variable A can have.
A "1" means the variable’s value is "1" or TRUE. A "0" means that the variable's
value is 0 or FALSE.

o Theentry inthe box (0 or 1) specifies whether the function that the chart
represents is true or false for that value of the variable.

o We usually do not explicitly put in 0 entries but specify only the conditions under
which the function is true.

TWO VARIABLES:
o Figure 6.7 shows eight of the sixteen possible functions of two variables.

105

A A
0 1 0 1
1 0 1
AB — NAND AB -~ Aandnor8
A A
0 1 0]
0 0
[} B
' 1 1 1
AB ~ B and not A AB - Aand B
A A
0 1 0 1

X 8

Figure 6.7: KV Charts for Functions of Two Variables.
Each box corresponds to the combination of values of the variables for the row
and column of that box.
A pair may be adjacent either horizontally or vertically but not diagonally.
Any variable that changes in either the horizontal or vertical direction does not
appear in the expression.
In the fifth chart, the B variable changes from 0 to 1 going down the column, and
because the A variable's value for the column is 1, the chart is equivalent to a
simple A.
Figure 6.8 shows the remaining eight functions of two variables.

106

o O O O

0 ! 0 1
ol ol |®
) b [2) —
Lo o
AB + A8 AB+ AB
AIFANDONLY IFB EXCLUSIVE-OR
A A
0 1 0 1

LI
'Q__‘ 1K

A+B A+B
OR AIMPLIES B
& A
0 1 0 1

e0 ‘—‘) o0 1_7;1
|b‘ 1 |

ﬂ i ‘ + A
B IMPLIES A
~ By
0 ' 0 '
of | ol(v | 1
) 8
1 ! 1) ‘
0 1
UNIVERSAL FALSE UNIVERSAL TRUE

Figure 6.8: More Functions of Two Variables.
The first chart has two 1's in it, but because they are not adjacent, each must
be taken separately.
They are written using a plus sign.
It is clear now why there are sixteen functions of two variables.
Each box in the KV chart corresponds to a combination of the variables' values.
That combination might or might not be in the function (i.e., the
box corresponding to that combination might have a 1 or 0 entry).
Since n variables lead to 2" combinations of 0 and 1 for the variables, and
each such combination (box) can be filled or not filled, leading to 22" ways of
doing this.
Consequently for one variable there are 22! = 4 functions, 16 functions of 2
variables, 256 functions of 3 variables, 16,384 functions of 4 variables, andso
on.

o Given two charts over the same variables, arranged the same way, their product
is the term by term product, their sum is the term by term sum, and the
negation of a chart is gotten by reversing all the 0 and 1 entries in the chart.

kI L]
JI U/ (0 (@O

A gsR . A+B
fonl ool ool ac
' ' 1 @ 1 U

THREE VARIABLES:

O
O

107

KV charts for three variables are shown below.

As before, each box represents an elementary term of three variables with a bar
appearing or not appearing according to whether the row-column heading for
that boxisOor 1.

A three-variable chart can have groupings of 1, 2, 4, and 8 boxes.

A few examples will illustrate the principles:
AD
0 01 110

AB
O 0N i 10

®

adc
AD

el ad
AD AB
00 o n 10 00 o " 10
co_d) _l i co @ @
pid s | \1) Cl 1O O,

ABC « ABT « ADC + ABC

00 ¢Y 1% WO 00 01

c
'
[}
AB
0 o 1N 1w 0 M N
0 o(t v | Q
c ¢
' Cn ' ' D 1
[3 I3
AB AD
W o 1 10 00 O M w0
= 73
o t] f' ol 1 1
5 c
\ 1 '
1_\ . () ' 1
8 8+C
AB As
w o N 1w 0 o w0

e
)
aD
-/

PR TR AsBeC
Figure 6.8: KV Charts for Functions of Three Variables.
o You'll notice that there are several ways to circle the boxes into maximum-

sized covering groups.

108

STATES, STATE GRAPHS, AND TRANSITION TESTING

State, State Graphs and Transition testing:- state graphs, good & bad state graphs, state
testing, Testability tips.

Graph Matrices and Application:-Motivational overview, matrix of graph, relations, power of
a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool
like JMeter or Win-runner).

Introduction

The finite state machine is as fundamental to software engineering as boolean algebra
to logic.

State testing strategies are based on the use of finite state machine models for software
structure, software behavior, or specifications of software behavior.

Finite state machines can also be implemented as table-driven software, in which case
they are a powerful design option.

State Graphs

A state is defined as: “A combination of circumstances or attributes belonging for the
time being to a person or thing.”
For example, a moving automobile whose engine is running can have the following
states with respect to its transmission.

= Reverse gear

= Neutral gear

= First gear

= Second gear

= Third gear

= Fourth gear
State graph - Example
For example, a program that detects the character sequence “ZCZC” can be in the
following states.
Neither ZCZC nor any part of it has been detected.

= Zhas been detected.

= ZC has been detected.

= ZCZhas been detected.

= ZCZC has been detected.

AC ’ﬂm Z,CA
Z I Z I C I

s e

States are represented by Nodes. State are numbered or may identified by words or whatever else is convenient.

109

Inputs and Transitions

Whatever is being modeled is subjected to inputs. As a result of those inputs, the state
changes, or is said to have made a Transition.
Transitions are denoted by links that join the states.

The input that causes the transition are marked on the link; that is, the inputs are link
weights.
There is one out link from every state for every input.

If several inputs in a state cause a transition to the same subsequent state, instead of
drawing a bunch of parallel links we can abbreviate the notation by listing the several
inputs as in: “inputl, input2, input3.........”.

Finite State Machine

A finite state machine is an abstract device that can be represented by a state graph
having a finite number of states and a finite number of transitions between states.

o Outputs
An output can be associated with any link.
Out puts are denoted by letters or words and are separated from inputs by a slash as
follows: “input/output”.
As always, output denotes anything of interest that’s observable and is not restricted to
explicit outputs by devices.

B OQOutputs are also link weights.
If every input associated with a transition causes the same output, then denoted it as:
o “inputl, input2, input3............ /output”
State tables™

e Big state graphs are cluttered and hard to follow.

e It’s more convenient to represent the state graph as a table (the state table
or state transition table) that specifies the states, the inputs, the transitions
and the outputs.

e The following conventions are used:

e Eachrow of the table corresponds to a state.

e Each column corresponds to an input condition.

e The box at the intersection of a row and a column specifies the next state
(the transition) and the output, if any.

State Table-Example

110

inputs

STATE

C

NONE

NONE

NONE

Z

ZC

NONE

ZC

CZ

NONE

NONE

CZ

Z

ZCZC

NONE

ZCZC

ZCZC

ZCZC

ZCZC

Time Versus Sequence

111

State graphs don’t represent time-they represent sequence.
A transition might take microseconds or centuries;
A system could be in one state for milliseconds and another for years- the state graph
would be the same because it has no notion of time.
Although the finite state machines model can be elaborated to include notions of time
in addition to sequence, such as time Petri Nets.

o Software implementation
There is rarely a direct correspondence between programs and the behavior of a
process described as a state graph.
The state graph represents, the total behavior consisting of the transport, the software,
the executive, the status returns, interrupts, and so on.
There is no simple correspondence between lines of code and states. The state table
forms the basis.

Good State Graphs and Bad

What constitutes a good or a bad state graph is to some extent biased by the kinds of
state graphs that are likely to be used in a software test design context.
Here are some principles for judging.

o The total number of states is equal to the product of the possibilities of factors
that make up the state.

o For every state and input there is exactly one transition specified to exactly one,
possibly the same, state.

o For every transition there is one output action specified. The output could be
trivial, but at least one output does something sensible.

o For every state there is a sequence of inputs that will drive the system back to
the same state.

Important graphs

1,2
Stat can never be left, the initial state can
nev e entered again.
2
1
< 2
— State C cannot be entered.
1,2

1,2 1,2
‘ . States A and B are not reachable

1 2
._;,2_,. Two transitions are specified for
1 an input of 1 in state A
State Bugs-Number of States

The number of states in a state graph is the number of states we choose to recognize or
model.

112

[~

The state is directly or indirectly recorded as a combination of values of variables that
appear in the data base.

For example, the state could be composed of the value of a counter whose possible
values ranged from 0 to 9, combined with the setting of two bit flags, leading to a total
of 2*¥2*10=40 states.

The number of states can be computed as follows:
o ldentify all the component factors of the state.
o ldentify all the allowable values for each factor.

o The number of states is the product of the number of allowable values of all the
factors.

Before you do anything else, before you consider one test case, discuss the number of
states you think there are with the number of states the programmer thinks there are.
There is no point in designing tests intended to check the system’s behavior in various
states if there’s no agreement on how many states there are.

o Impossible States
Some times some combinations of factors may appear to beimpossible.
The discrepancy between the programmer’s state count and the tester’s state count is
often due to a difference of opinion concerning “impossible states”.

A robust piece of software will not ignore impossible states but will recognize them and
invoke an illogical condition handler when they appear to have occurred.

Equivalent States

Two states are Equivalent if every sequence of inputs starting from one state produces
exactly the same sequence of outputs when started from the other state. This notion
can also be extended to set of states.

Merging of Equivalent States

113

.-

Recognizing Equivalent States

[

Equivalent states can be recognized by the following procedures:

The rows corresponding to the two states are identical with respect to
input/output/next state but the name of the next state could differ.

There are two sets of rows which, except for the state names, have identical state
graphs with respect to transitions and outputs. The two sets can be merged.

TransitionBugs-
unspecified and contradictory Transitions

@

=

Every input-state combination must have a specified transition.

If the transition is impossible, then there must be a mechanism that prevents the input
from occurring in that state.

Exactly one transition must be specified for every combination of input and state.

A program can’t have contradictions or ambiguities.

Ambiguities are impossible because the program will do something for every input. Even
the state does not change, by definition this is a transition to the same state.

Unreachable States

@

B ==

=

An unreachable state is like unreachable code.
A state that no input sequence can reach.
An unreachable state is not impossible, just as unreachable code is not impossible
There may be transitions from unreachable state to other states; there usually because
the state became unreachable as a result of incorrect transition.
There are two possibilities for unreachable states:

o Thereis a bug; that is some transitions are missing.

o The transitions are there, but you don’t know about it.

Dead States

@

A dead state is a state that once entered cannot be left.
This is not necessarily a bug but it is suspicious.

Output Errors

=

(=2

HEE

114

The states, transitions, and the inputs could be correct, there could be no dead or
unreachable states, but the output for the transition could be incorrect.

Output actions must be verified independently of states and
transitions. State Testing

Impact of Bugs

If a routine is specified as a state graph that has been verified as correct in all details.

Program code or table or a combination of both must still be implemented.
A bug can manifest itself as one of the following symptoms:

Wrong number of states.

Wrong transitions for a given state-input combination.

Wrong output for a given transition.

BN =

= =

Pairs of states or sets of states that are inadvertently made equivalent.
States or set of states that are split to create in equivalent duplicates.

States or sets of states that have become dead.
States or sets of states that have become unreachable.

Principles of State Testing

The strategy for state testing is analogous to that used for path testing flow graphs.
Just as it’s impractical to go through every possible path in a flow graph, it’s impractical
to go through every path in a state graph.

The notion of coverage is identical to that used for flow graphs.

Even though more state testing is done as a single case in a grand tour, it’s impractical to
do it that way for several reasons.

In the early phases of testing, you will never complete the grand tour because of bugs.
Later, in maintenance, testing objectives are understood, and only a few of the states
and transitions have to be tested. A grand tour is waste of time.

Theirs is no much history in a long test sequence and so much has happened that
verification is difficult.

Starting point of state testing

Define a set of covering input sequences that get back to the initial state when starting
from the initial state.
For each step in each input sequence, define the expected next state, the expected
transition, and the expected output code.
A set of tests, then, consists of three sets of sequences:

o Input sequences

o Corresponding transitions or next-state names

o Output sequences

Limitations and Extensions

115

[l
]

State transition coverage in a state graph model does not guarantee complete testing.
How defines a hierarchy of paths and methods for combining paths to produce covers of
state graphs.
The simplest is called a “0 switch” which corresponds to testing each transition
individually.
The next level consists of testing transitions sequences consisting of two transitions
called “1switches”.
The maximum length switch is “n-1 switch” where there are n numbers of states.

o Situations at which state testing is useful
Any processing where the output is based on the occurrence of one or more sequences
of events, such as detection of specified input sequences, sequential format validation,
parsing, and other situations in which the order of inputs is important.
Most protocols between systems, between humans and machines, between
components of a system.

	UNIT IV
	OVERVIEW OF LOGIC BASED TESTING:
	 DECISION TABLES:
	Figure 6.1 : Examples of Decision Table.
	Figure 6.2 : Another Examples of Decision Table.
	Figure 6.3 : The default rules of Table in Figure 6.1
	 DECISION-TABLE PROCESSORS:

	DECISION-TABLES AS BASIS FOR TEST CASE DESIGN:
	DECISION-TABLES AND STRUCTURE:
	Figure 6.4 : A Sample Program
	Table 6.1: Decision Table corresponding to Figure 6.4
	Table 6.2: Expansion of Table 6.1
	 ANOTHER EXAMPLE - A TROUBLE SOME PROGRAM:
	Figure 6.5 : A Troublesome Program
	Table 6.3: Decision Table for Figure 6.5
	PATH EXPRESSIONS:

	BOOLEAN ALGEBRA:
	o STEPS:

	Figure 6.5: A Troublesome Program
	o RULES OF BOOLEAN ALGEBRA:
	KV CHARTS:
	INTRODUCTION:

	SINGLE VARIABLE:
	Figure 6.6 : KV Charts for Functions of a Single Variable.
	TWO VARIABLES:
	Figure 6.7: KV Charts for Functions of Two Variables.
	Figure 6.8: More Functions of Two Variables.
	THREE VARIABLES:
	Figure 6.8: KV Charts for Functions of Three Variables.
	Introduction
	State Graphs
	Inputs and Transitions
	Finite State Machine
	State tableses
	Good State Graphs and Bad
	Important graphs
	State Bugs-Number of States

	Equivalent States
	Merging of Equivalent States
	Recognizing Equivalent States

	TransitionBugs-
	Unreachable States
	Dead States
	Principles of State Testing
	Starting point of state testing
	Limitations and Extensions

