UNIT-1
INTRODUCTION AND CONCEPTS

Introduction to Internet of Things, Physical Design of 10T,
Logical Design of loT-loT Enabling Technologies— loT

levels & Deployment Templates.
Domain Specific 1oTs: Introduction—-Home Automation—

Cities, Environment—Energy—Retall, Logistics—
Agriculture, Industry, Health & Lifestyle.

Introduction to Internet of Things

* |oT consist of things that have unique identities and are connected to
Internet.

« By 2020 there will be a total of 50 billion devices /things connected to
Internet.

 |oT Is not limited to just connecting things to the internet but also
allow things to communicate and exchange data

 Definition: A dynamic global network infrastructure with self
configuring capabilities based on standard and interoperable
communication protocols where physical and virtual “things” have
Identities, physical attributes and virtual personalities and use
Intelligent interfaces, and are seamlessly integrated into information
network, often communicate data associated with users and their
environments.

Characteristics:

1) Dynamic & Self Adapting: loT devices and systems may have the capability
to dynamically adapt with the changing contexts and take actions based
on their operating conditions, users context or sensed environment.

Eg: the surveillance system is adapting itself based on context and changing
conditions.

2) Self Configuring: allowing a large number of devices to work together to
provide certain functionality.

3) Interoperable Communication Protocols: support a number of
interoperable communication protocols and can communicate with other
devices and also with infrastructure.

4) Unique ldentity: Each loT device has a unique identity and a unique
identifier (IP address).

5) Integrated into Information Network: that allow them to communicate and
exchange data with other devices and systems.

Applications of |0T:

1) Home : Smart lighting, Smart Appliances, Intrcasion detection, smoke/Gas
detections.

2) Cities: Smart packing, Smart roads, Structural health monitoring, Emergency
Response.

3) Environment: Weather monitoring, Air pollution monitoring, Noise pollution
monitoring and forest fire detection.

4) Energy: Smart grids, Renewable Energy systems and prognostics.
5) Retail : Inventory management, Smart payment, small vending machines.

6) Logistics : Route generation and scheduling, Fgleet tracking, Shipment
monitoring and Remote vehicle diagnostics.

7) Agriculture : Smart irrigation and green house control.
8) Industry : Machine diagnosis and prognosis, indoor air quality monitoring
9) Health & Life Style: Health and fitness monitoring and wearable electronics.

1. Thinks in loT Physical Design of 10T

* The things in loT refers to loT devices which have unique identities and
perform remote sensing, actuating and monitoring capabilities.

* |0T devices can exchange data with other connected devices applications.

* It collects data from other devices and process data either locally or
remotely.

* An loT device may consist of several interfaces for communication to other
devices both wired and wireless.

* These includes
> (1) 1/0O interfaces for sensors,
> (1) Interfaces for internet connectivity
»(111) memory and storage interfaces and
»(1v) audio/video interfaces.

RJ45/Ethernet

'NAND/NOR

DDR1/DDR2/DDR3

2. 10T Protocols:

802.3 - Ethernet

S e
= R e T

a) Link Layer:
» Protocols determine how data is physically sent over the networks physical layer or medium.

» Link layer determines how packets are coded and signaled by the hardware device over the medium to
which the host is attached.

* Protocols:

« 802.3-Ethernet: IEEE802.3 is collection of wired Ethernet standards for the link layer. Eg: 802.3 uses
co-axial cable; 802.3i uses copper twisted pair connection; 802.3; uses fiber optic connection; 802.3ae
uses Ethernet over fiber.

« 802.11-WiFi: IEEE802.11 is a collection of wireless LAN(WLAN) communication standards
Including extensive description of link layer. Eg: 802.11a operates in 5GHz band, 802.11b and
802.11g operates in 2.4GHz band, 802.11n operates in 2.4/5GHz band, 802.11ac operates in 5GHz
band, 802.11ad operates in 60Ghzband.

« 802.16 - WiMax: IEEE802.16 is a collection of wireless broadband standards including exclusive
description of link layer. WiMax provide data rates from 1.5 Mb/s to 1Gb/s.

« .802.15.4-LR-WPAN: IEEE802.15.4 is a collection of standards for low rate wireless personal area

network(LR-WPAN). Basis for high level communication protocols such as ZigBee. Provides data
rate from 40kb/s to250kb/s.

« 2G/3G/4G-Mobile Communication: Data rates from 9.6kb/s(2G) to up to100Mb/s(4G).

B) Network/Internet Layer:

Responsible for sending IP datagrams from source network to destination network.
Datagrams contains source and destination address.

Protocols:

* IPv4: Internet Protocol version4 is used to identify the devices on a network using a
hierarchical addressing scheme. 32 bit address. Allows total of 2*32addresses.

* |IPVv6: Internet Protocol version6 uses 128 bit address scheme and allows 22128 addresses.

 6LOWPAN:(IPv6overLowpowerWirelessPersonal AreaNetwork)operates in 2.4 GHz
frequency range and data transfer 250 kb/s.

C) Transport Layer:
 Provides end-to-end message transfer capability independent of the underlying network.
« Set up on connection with ACK as in TCP and without ACK as in UDP.

 Provides functions such as error control, segmentation, flow control and congestion
control.

Protocols:

« TCP: Transmission Control Protocol used by web browsers(along with HTTP and
HTTPS), email(along with SMTP, FTP). Connection oriented and stateless protocol. IP
Protocol deals with sending packets, TCP ensures reliable transmission of protocols in
order. Avoids network congestion and congestion collapse.

« UDP: User Datagram Protocol is connectionless protocol. Useful in time sensitive
applications, very small data units to exchange. Transaction oriented and stateless
protocol. Does not provide guaranted delivery.

D) Application Layer: Defines how the applications interface with lower layer protocols to send data
over the network. Enables process-to-process communication using ports.

Protocols:

HTTP: Hyper Text Transfer Protocol that forms foundation of WWW. Follow request- response
model Stateless protocol.

CoAP: Constrained Application Protocol for machine-to-machine (M2M) applications with
constrained devices, constrained environment and constrained network. Uses client- server
architecture.

WebSocket: allows full duplex communication over a single socket connection.

MQTT: Message Queue Telemetry Transport is light weight messaging protocol based on publish-
subscribe model. Uses client server architecture. Well suited for constrained environment.

XMPP: Extensible Message and Presence Protocol for real time communication and streaming
XML data between network entities. Support client-server and server-server communication.

DDS: Data Distribution Service is data centric middleware standards for device-to-device or
machine-to-machine communication. Uses publish-subscribe model.

AMQP: Advanced Message Queuing Protocol is open application layer protocol for business
messaging. Supports both point-to-point and publish-subscribe model.

Logical Design of 10T

1) 10T Functional Blocks 2) IoT Communication Models 3) IoT Comm. APIs

1) 1oT Functional Blocks: Provide the system the capabilities for identification, sensing,
actuation, communication and management.

Services

* Device: An loT system includes of devices that provide sensing,
actuation, monitoring and control functions.

« Communication: handles the communication for loTsystem.

 Services: for device monitoring, device control services, data publishing
services and services for device discovery.

« Management: Provides various functions to govern the loT system.

e Security: Secures loT system and priority functions such as
authentication ,authorization, message and context integrity and data
security.

« Application: 10T application provide an interface that the users can use
to control and monitor various aspects of 0T system.

2) 1oT Communication Models:
1) Request-Response 2) Publish-Subscibe 3)Push-Pull 4) ExclusivePair

1) Request-Response Model: In which the client sends request to the server and the server

replies to requests. Is a stateless communication model and each request-response pair is
Independent of others.

. Receives requests
from client, =
. processes ﬁ'
requests, looks
up/fetches
resources,
prepares o
response and
sends response
to client

Request

Response

2) Publish-Subscibe Model:

* Involves publishers, brokers and
consumers.

* Publishers are source of data.
Publishers send data to the topics
which are managed by the broker.

 Publishers are not aware of the
consumers. Consumers subscribe to
the topics which are managed by the
broker.

 When the broker receives data for a
topic from the publisher, it sends the
data to all the subscribed consumers.

Publisher

Broker

Topic-1
Subscribers: |
Consumer-1,
Consumer-2

Topic-2
% Subscribers; \\

v Consumer-1 |

Consumer-3 * \\ |
{ ' Consumer-3 |

%, 2 % n..L]:pIn Cnl\m\";l\a nnmmnn;fmt;nn Y\‘\(\AD]

3) Push-Pull Model: in which data producers push data to queues and consumers pull data
from the queues.

Producers do not need to aware of the consumers. Queues help in decoupling the message
between the producers and consumers.

Queues

messages to

queue ; Messages pushed Messages pulled
to queues from queues

4) Exclusive Pair:

* is bi-directional, fully duplex communication model that uses a persistent connection
between the client and server.

« Once connection is set up it remains open until the client send a request to close the
connection.

« |s a stateful communication model and server is aware of all the open connections.

Request to setup Connection
>

Response accepting the request
=

Message from Client to Server
> Server

Message from Server to Client
Pra—

Connection close request
>

Connection close response

-

3) loT Communication APIs:
a) REST based communication APIs(Request-Response Based Model) :

 Representational State Transfer(REST) is a set of architectural principles by which we
can design web services and web APls that focus on a systems resources and have
resource states are addressed and transferred.

| HTTP Client P TP Packit HTTP Server

} HTTP Command
|
| BESTs % GET PUT | Authorization
Aware l \'
HTTP Client i POST DELETE « N
: ST | REST-ful Web
REST Payload ! Service
' l
| | JSON XML | |
i 1 |
o b RN ! =, = = x
e ==
‘ Resources
| T Ol T |
| w Representationsﬁ '-\ Representations [|
| == z |
51 B | e |
i Resource | Resource
| el el —
L e B

» Client-Server: The principle behind client-server constraint 1Is the
separation of concerns. Separation allows client and server to be
Independently developed and updated.

- Stateless: Each request from client to server must contain all the
Information necessary to understand the request, and cannot take advantage
of any stored context on the server.

« Cache-able: Cache constraint requires that the data within a response to a
request be implicitly or elelcnIy labeled as cache-able or non-cacheable. If
a response Is cache-able, then a client cache is given the right to reuse that
response data for later, equivalent requests.

» Layered System: constraints the behavior of components such that each
gotmpoP_ent cannot see beyond the immediate layer with which they are
Interacting.

» User Interface: constraint requires that the method of communication
between a client and a server must be uniform.

« Code on Demand: Servers can provide executable code or scripts for
cllte_nts }o execute In their context. This constraint is the only one that is
optional.

Request-Response model used by REST:
S e REST
Server

Client

PDATE or DELETE)

GET, PUT, U
ey SON or XML)

with payload (J

Response (JSON or XML)

-+
Request (GET, PUT, UPDATE or DELETE)
with payload (JSON or XML)

Response (JSON or XML)

|

« RESTful web service is a collection of resources which are represented by URIs.

« RESTful web API has a base URI(e.g: http://example.com/api/tasks/).

« The clients and requests to these URIs using the methods defined by the HTTP protocol(e.qg:
GET, PUT, POST or DELETE).

« A RESTful web service can support various internet media types.

n) WebSocket Based Communication APls: WebSocket APIs allow bi-directional, full
duplex communication between clients and servers. WebSocket APIs follow the exclusive
pair communication model.

webSocket Protocol

Server
Client
! nnection
Request to setup WebSocket CO — "
} Initial Handshake
i Response accepting the request (over HTTP)
me
| Data fra = -
-
Data frame
¢ Bidirectional Communication
Data frame j =3 (over persistent
—> WebSocket connection)
Data frame
< =
Connection close request
—p
I Connection close response } Closing Connection

loT Enabling Technologies

* loT Is enabled by several technologies including Wireless Sensor

Networks, Cloud Computing, Big Data Analytics, Embedded
Systems, Security Protocols and architectures, Communication
Protocols, Web Services, Mobile internet and semantic search

engines.
1) Wireless Sensor Network(WSN): Comprises of distributed
devices with sensors which are used to monitor the environmental
and physical conditions. Zig Bee Is one of the most popular
wireless technologies used byWSN:Ss.

WSNs used in loT systems are described as follows:

* Weather Monitoring System: in which nodes collect temp, humidity and
other data, which is aggregated and analyzed.

* Indoor air quality monitoring systems: to collect data on the indoor air
quality and concentration of various gases.

« Soil Moisture Monitoring Systems: to monitor soil moisture at various
locations.

* Surveillance Systems: use WSNs for collecting surveillance data (motion
data detection).

« Smart Grids : use WSNs for monitoring grids at various points.

« Structural Health Monitoring Systems: Use WSNSs to monitor the health of
structures(building, bridges) by collecting vibrations from sensor nodes
deployed at various points in the structure.

2) Cloud Computing: Services are offered to users in different forms.

* Infrastructure-as-a-service(laaS):provides users the ability to provision
computing and storage resources. These resources are provided to the
users as a virtual machine instances and virtual storage.

» Platform-as-a-Service(PaaS): provides users the ability to develop and
deploy application in cloud using the development tools, APIs,
software libraries and services provided by the cloud service provider.

 Software-as-a-Service(SaaS): provides the user a complete software
application or the user interface to the application itself.

3) Big Data Analytics: Some examples of big data generated by 10T are
« Sensor data generated by loT systems.

 Machine sensor data collected from sensors established in industrial
and energy systems.

« Health and fitness data generated loT devices.
« Data generated by loT systems for location and tracking vehicles.
 Data generated by retail inventory monitoring systems

4) Communication Protocols: form the back-bone of I0T systems and enable
network connectivity and coupling to applications.

« Allow devices to exchange data over network.

 Define the exchange formats, data encoding addressing schemes for device and
routing of packets from source to destination.

« It includes sequence control, flow control and retransmission of lost packets.

5) Embedded Systems: Is a computer system that has computer hardware and
software embedded to perform specific tasks.

-Embedded System range from low cost miniaturized devices such as digital
watches to devices such as digital cameras, POS terminals, vending machines,
appliances etc.,

0T levels &
Deployment Templates

10T Level-1:

« System has a single node that
performs sensing and/or actuation,
stores data, performs analysis and
host the application as shown in fig.

« Suitable for modeling low cost and
low complexity solutions where the
data involved 1is not big and
analysis requirement are not
computationally intensive.

 An e.g., of loT Levell is Home
automation.

loT Level2:

* has a single node that performs
sensing and/or actuating and local
analysis as shown in fig.

« Data 1s stored In cloud and
application is usually cloud based.

* Level2 loT systems are suitable for
solutions where data are involved is
big,

* however, the primary analysis
requirement is not computationally

Intensive and can be done locally
itself.

 An e,g., of Level2 IoT system for
Smart Irrigation.

loT Level3:
« system has a single node.

 Data is stored and analyzed in the
cloud application is cloud based
as shown in fig. Level3

 |loT systems are suitable for
solutions where the data involved
IS big and analysis requirements
are computationally intensive.

« An example of 10T level3 system
for tracking package handling.

10T Level4:

 System has multiple nodes that
perform local analysis.

 Data is stored in the cloud and
application is cloud based as
shown in fig. Level4

 contains local and cloud based
observer nodes which can
subscribe to and receive
information collected in the cloud
from 10T devices.

« An example of a Level4 10T
system for Noise Monitoring.

'pV"P‘v“'v"‘\"*"‘"‘v"’\ ok sy
IU&-‘..J,‘“‘,L‘ e

L
A

loT Level5:

 System has multiple end nodes and one coordinator node as shown In
fig.

* The end nodes that perform sensing and/or actuation.

 Coordinator node collects data from the end nodes and sends to the
cloud.

» Data Is stored and analyzed in the cloud and application is cloud
pased.

* Level5 loT systems are suitable for solution based on wireless sensor
network, in which data involved is big and analysis requirements are
computationally intensive.

* An example of Level5 system for Forest Fire Detection.

-
5
’

~

e Mo

loT Level6:

« System has multiple independent end nodes that perform sensing
and/or actuation and sensed data to the cloud. Data Is stored in the
cloud and application Is cloud based as shown in fig.

* The analytics component analyses the data and stores the result in the
cloud data base. The results are visualized with cloud based
application.

 The centralized controller 1s aware of the status of all the end nodes
and sends control commands to nodes.

« An example of a Level6 10T system for Weather Monitoring System.

\'7 ?‘7-\‘ v
ultip le Monitorir

d)

Domain Specific loT’s
Home Automation:

Smart Lighting: helps In saving energy by adapting the lighting to the
ambient conditions and switching on/off or diming the light when needed.

Smart Appliances: make the management easier and also provide status
Information to the users remotely.

Intrusion Detection: use security cameras and sensors(PIR sensors and door
sensors) to detect intrusion and raise alerts. Alerts can be in the form of SMS
or email sent to the user.

Smoke/Gas Detectors: Smoke detectors are installed in homes and buildings
to detect smoke that is typically an early sign of fire. Alerts raised by smoke
detectors can be In the form of signals to a fire alarm system. Gas detectors
can detect the presence of harmful gases such as CO, LPGetc.,

2) Cities:

a)

Smart Parking: make the search for parking space easier and convenient
for drivers. Smart parking are powered by 10T systems that detect the no.
of empty parking slots and send information over internet to smart
application backends.

Smart Lighting: for roads, parks and buildings can help in saving energy.

Smart Roads: Equipped with sensors can provide information on driving
condition, travel time estimating and alert in case of poor driving
conditions, traffic condition and accidents.

Structural Health Monitoring: uses a network of sensors to monitor the
vibration levels in the structures such as bridges and buildings.

Surveillance: The video feeds from surveillance cameras can be
aggregated in cloud based scalable storage solution.

Emergency Response: loT systems for fire detection, gas and water
leakage detection can help in generating alerts and minimizing their
effects on the critical infrastructures

3. Environment:

a)

b)

\Weather Monitoring: Systems collect data from a no. of sensors attached and send
the data to cloud based applications and storag?e back ends. The data collected in
cloud can then be analyzed and visualized by cloud based applications.

Air Pollution Monitoring: System can monitor emission of harmful gases(CO2
CO, NO, NO2 etc.,) by factories and automobiles using gaseous and
meteorological sensors. The collected data can be analyzed to make informed
decisions on pollutions control approaches.

Noise Pollution Monitoring: Due to growing urban development, noise levels in
cities have increased and even become alarmingly high in some cities. 10T based
noise pollution monitoring systems use a no. of hoise monitoring systems that are
deFoned at different places in a city. The data on noise levels from the station is
collected on servers or in the cloud. The collected data is then aggregated to
generate noise maps.

Forest Fire Detection: Forest fire can cause damage to natural resources, property
and human life. Early detection of forest fire can help in minimizing damage.

River Flood Detection: River floods can cause damage to natural and human
resources and human life. Early warnings of floods can be given by monitoring
the water level and flow rate. 10T based river flood monitoring system uses a no.
of sensor nodes that monitor the water level and flow rate sensors:.

4) Energy:

a)

b)

Smart Grids: i1s a data communication network integrated with the electrical
grids that collects and analyze data captured In near-real-time about power
transmission, distribution and consumption. Smart grid technology provides
predictive information and recommendations to utilities, their suppliers, and
their customers on how best to manage power. By using IoT based sensing and
measurement technologies, the health of equipment and integrity of the grid can
be evaluated.

Renewable Energy Systems: 10T based systems integrated with the transformers
at the point of interconnection measure the electrical variables and how much
power is fed into the grid. For wind energy systems, closed-loop controls can be
used to regulate the voltage at point of interconnection which coordinate wind
turbine outputs and provides power support.

Prognostics: In systems such as power grids, real-time information is collected
using specialized electrical sensors called Phasor Measurment Units(PMUSs) at
the substations. The information received from PMUs must be monitored in
real-time for estimating the state of the system and for predicting failures.

5) Retail:

a)

b)

C)

Inventory Management: loT systems enable remote monitoring of
Inventory using data collected by RFID readers.

Smart Payments: Solutions such as contact-less payments powered by
technologies such as Near Field Communication(NFC) and Bluetooth.

Smart Vending Machines: Sensors in a smart vending machines monitors
Its operations and send the data to cloud which can be used for predictive
maintenance.

6) Logistics:

Route generation & scheduling: 10T based system backed by cloud can
provide first response to the route generation gueries and can be scaled

a)

0)
C)

d)

u
F
S

nto serve a large transportation network.
eet Tracking: Use GPS to track locations of vehicles inreal-time.

nipment Monitoring: loT based shipment monitoring systems use

sensors such as temp, humidity, to monitor the conditions and send
data to cloud, where it can be analyzed to detect foods poilage.

Remote Vehicle Diagnostics: Systems use on-board IoT devices for
collecting data on \ehicle operations(speed, RPMetc.,) and status of
various vehicle subsystems.

7.Agriculture:

a) Smart Irrigation: to determine moisture amount in soil.
b) Green House Control: to improve productivity.

8. Industry:

a) Machine diagnosis and prognosis

b) Indoor Air Quality Monitoring

9. Health and LifeStyle:

a) Health & Fitness Monitoring

b) Wearable Electronics

The End

Unit-2
|OT AND M2M

Introduction —M2M, Difference between IoT and M2M, SDN
and NFV for loT

loT System management with NETCONF-YANG: Need for
loT Systems Management —Simple network Management
protocol (SNMP)—-Network operator requirements,
NETCONF, YANG, 10T systems management with
NETCONF, YANG-NETOPEER.

Introduction: M2M

* Machine-to-Machine (M2M) refers to networking of machines(or
devices) for the purpose of remote monitoring and control and data
exchange.

« Term which is often synonymous with loT Is Machine-to-Machine
(M2M).

* loT and M2M are often used interchangeably.

 Fig. Shows the end-to-end architecture of M2M systems comprises of

M2M area networks, communication networks and application
domain.

L M2M Gateway

W oy -

W ——— — —

.c-\\
~

 An M2M area network comprises of machines(or M2M nodes) which have
embedded network modules for sensing, actuation and communicating
various communication protocols can be used for M2M LAN such as
ZigBee, Bluetooth, M-bus, Wireless M-Bus etc., These protocols provide
connectivity between M2M nodes within an M2M area network.

 The communication network provides connectivity to remote M2M area
networks.

. ghe C(I:)ommunication network can use either wired or wireless network(IP
ased).

 While the M2M are networks use either proprietary or non-IP based
cognmuknlcatlon protocols, the communication network uses IP-based
network.

* Since non-IP based protocols are used within M2M area network, the M2M
noE:Ies \I/(wthln one network cannot communicate with nodes in an external
network.

 To enable the communication between remote M2M are network, M2M
gateways are used.

Native Protocol

Protocol Translation

Native Protocol -
Protocol Translation

* Fig. Shows a block diagram of an M2M gateway.

* The communication between M2M nodes and the M2M gateway IS
based on the communication protocols which are simple to the M2M
are network.

« M2M gateway performs protocol translations to enable IP-
connectivity for M2M are networks.

« M2M gateway acts as a proxy performing translations from/to native
protocols to/from Internet Protocol(IP).

« With an M2M gateway, each mode in an M2M area network appears
as a virtualized node for external M2M area networks.

Difference Between M2M and IoT

1) Communication Protocols:

« Commonly uses M2M protocols include ZigBee, Bluetooth, ModBus, M-Bus, Wireless M-Bus tec.,
* In 10T uses HTTP, CoAP, WebSocket, MQTT ,XMPP ,DDS ,AMQP etc.,

2) Machines in M2M Vs Things in loT:

« Machines in M2M will be homogenous whereas Things in 10T will be heterogeneous.

3) Hardware Vs Software Emphasis:

» the emphasis of M2M is more on hardware with embedded modules, the emphasis of 10T is more on
software.

4) Data Collection &Analysis

« M2M data is collected in point solutions and often in on-premises storage infrastructure.
« The data in 10T is collected in the cloud (can be public, private or hybrid cloud).

5) Application:

« M2M data is collected in point solutions and can be accessed by on-premises applications such as diagnosis
applications, service management applications, and on- premises enterprise applications.

10T data is collected in the cloud and can be accessed by cloud applications such as analytics applications,
enterprise applications, remote diagnosis and management applications, etc.

SDN and NFV for loT

Software Defined Networking(SDN):

 Software-Defined Networking (SDN) is a networking architecture that
separates the control plane from the data plane and centralizes the
network controller.

» Software-based SDN controllers maintain a united view of the network

» The underlying infrastructure in SDN uses simple packet forwarding
hardware as opposed to specialized hardware in conventional networks.

T i e e

- ——————————— -

: Northbound Open API

T —————— -

Southbound Open API (OpenFlow)

IR St -t) L= s e [T e o e e e e R I L
|
i e S R i T VT

------------------t—---------

Network
J

Network

Layer

Applications Layer
Control

I
| RS ISESS o
I
I

N_etwotk
Application
|

Network
Application
T
IS | ST
I
|

|

[P -~

B e e e N e e e PR P B i e e e e et L N N o

« Key elements of SDN:

1)

2)

3)

Centralized Network: Controller With decoupled control and data
planes and centralized network controller, the network
administrators can rapidly configure the network.

Programmable Open APIs: SDN architecture supports
programmable open APIs for interface between the SDN application
and control layers (Northbound interface).

Standard Communication Interface(OpenFlow): SDN architecture
uses a standard communication interface between the control and
Infrastructure layers (Southbound interface). OpenFlow, which Is
defined by the Open Networking Foundation (ONF) is the broadly
accepted SDN protocol for the Southbound interface.

Network Function Virtualization(NFV):

* Network Function Virtualization (NFV) is a technology that leverages
virtualization to consolidate the heterogeneous network devices onto
Industry standard high volume servers, switches and storage.

* NFV iIs complementary to SDN as NFV can provide the infrastructure
on which SDN can run.

Virtual Network Functions

NFV Infrastructure
Virtual Virtual Virtual
Compute Network Storage

Virtualization Layer

Compute Network Storage

NFV
Management
&
Orchestration

NFV Architecture

Key elements of NFV:

1) Virtualized Network Function(VNF): VNF 1s a software
Implementation of a network function which Is capable of running
over the NFV Infrastructure (NFVI).

2) NFV Infrastructure(NFVI): NFVI includes compute, network and
storage resources that are virtualized.

3) NFV Management and Orchestration: NFV Management and
Orchestration focuses on all virtualization-specific management
tasks and covers the orchestration and life-cycle management of
physical and/or software resources that support the infrastructure
virtualization, and the life-cycle management of VNFs.

Need for loT Systems Management

Need for lIoT Systems Management Managing multiple devices
within a single system requires advanced management capabilities.

1.

2.

Automating Configuration : loT system management
capabilities can help in automating the system configuration.

Monitoring Operational & Statistical Data : Management
systems can help in monitoring operational and statistical data
of a system. This data can be used for fault diagnosis or
prognosis.

Improved Reliability: A management system that allows
validating the system configurations before they are put into
effect can help in improving the system reliability.

4. System Wide Configurations : For loT systems that consists
of multiple devices or nodes, ensuring system wide
configuration can be critical for the correct functioning of the
system.

5. Multiple System Configurations : For some systems it may
be desirable to have multiple valid configurations which are
applied at different times or In certain conditions.

6. Retrieving & Reusing Configurations : Management
systems which have the capability of retrieving configurations
from devices can help In reusing the configurations for other
devices of the same type.

Simple network Management protocol (SNMP)

« SNMP Is a well-known and widely used network management
protocol.

 Using to monitor and configuring network such as routers, switches,
servers, printer, etc.,

« NMS (Network Management Station): execute SNMP commands to
monitor and configure the Management device.

 MIB (Management Information Base): which has all the information
of the device attributes to be managed.

Limitation of SNMP:

« SNMP was designed to provide a
simple management interface
between the management
applications and the managed
devices.

*SNMP Is a connectionless
protocol which uses UDP as the
transport protocol, making it
unreliable as there was no support
for acknowledgement of requests.

* MIB often lack writable objects without which device
configuration is not possible using SNMP. With the absence
of writable object, SNMP can be used only for device
monitoring and status polling.

* It Is difficult to differentiate between configuration and state
data in MIBs.

* Retrieving the current configuration from a device can be
difficult with SNMP, SNMP does not support easy retrival
and playback of configurations.

* Earlier version of SNMP did not have strong security features
making the management information vulnerable to network
Intruders. Through security features were added In the later
version of SNMP, it increased the complexity a lot.

Network Operator Requirements

 Ease of use: From the operators point of view, ease of use is the key
requirement for any network management technology.

« Distinction between configuration and state data: Configuration data Is
the set of writable data that is required to transform the system from its
Initial state to Its current state. State data Is the data which is not
configurable. State data includes operational data which is collected by
the system at runtime and statistical data which describes the system
performance. For an effective management solution, It Is important to
make a clear distinction between configuration and state data.

* Fetch configuration and state data separately: i1t should be possible to
fetch the configuration and state data separately from the management
device. This i1s useful when the configuration and state data from
different devices needs to be compared.

 Configuration of the network as a whole: It should be possible for
operators to configure the network as a whole rather than individual
devices. This is important for systems which have multiple devices
and configuring them within one network wide transaction is required
to ensure the correct operation of the system.

 Configuration transactions across devices; Configuration transactions
across multiple device should be supported.

 Configuration deltas: It should be possible to generate the operations
necessary for dgomg from one configuration state to another. The
dﬁVICES should support configuration deltas with minimal state
changes.

 Dump and restore configurations: It should be possible to dump
configurations from devices and restore configurations to devices.

« Configuration validation: It should be possible to validate
configuration.

 Configuration database schemas: There 1s a need for standardized
configuration data base schemas or data models across operators.

* Role-based access control: Devices should support role-based access
control model. So that a user Is given the minimum access necessary
to perform a required task.

» Consistency configurations: Devices should not arbitrarily reorder
data, so that It is possible to use text processing tools such as diff to
compare configurations.

» Consistency of access control lists: It should be possible to do
consistency checks of access control lists across devices.

* Multiple configuration sets: There should be support for multiple
configurations sets on devices. This way a distinction can be provided
between candidate and active configurations.

 Support for

o[o]i

N data oriented and task oriented access control: While

SNMP access control Is data-oridented. CLI access control is usually

task oriented.

T

nere should be support for both types of access control.

NETCONF

* NETCONF: ‘Network Configuration Protocol’ IS a session-based network
management protocol.

« NETCONF allows state or configuration data and manipulating configuration data
on network devices.

* For network management architecture based on NETCONF, the terms client and
management system and the terms server and device are often used interchangeably
(shown In Figure).

« NETCONF works on SSH transport protocol. In addition to Secure Shell Transport
Layer Protocol (SSH), NETCONF implementations can support other transport
mappings such as Blocks Extensible Exchange Protocol (BEEP).

 Transport layer provides end-to-end connectivity and ensure reliable delivery of
messages.

* NETCONF uses XML-encoded Remote Procedure Calls (RPCs) for framing
request and response messages.

* The RPC layer provides mechanism for encoding of RPC calls and notifications.

Content i
| *—— YANG Defined

(Configuration Data) /

Client -
Server

:

NETCONF
Configuration Datastore

T

YANG Defined

Figure 4.2: NETCONF protocol layers

Operation | Description S e
connect Connect to a NETCONF server
getl Retrieve the running configuration and state information

get-config

edit-config

copy-config

delete-config
lock

unlock

get-schema

commit

close-session

kill-session

Retrieve all or a portion of a configuration datastore

Loads all or part of a specified configuration to the specified target
configuration

Create or replace an entire target configuration datastore with a
complete source configuration

Delete the contents of a configuration datastore
Lock a configuration datastore for exclusive edits by a client
Release the lock on a configuration datastore

This operation is used to retrieve a schema from the NETCONF
server

Commit the candidate configuration as the device’s new current
configuration

Gracefully terminate a NETCONF session
Forcefully terminate a NETCONF session

Table 4.1: List of commonly used NETCONF RPC methods

« NETCONF provides various operations to retrieve and edit
configuration data from network devices.

* The Content Layer consists of configuration and state data which Is
XML-encoded.

* The schema of the configuration and state data is defined in a data
modeling language called YANG.

« NETCONF provides a clear separation of the configuration and state
data.

* The configuration data resides within a NETCONF configuration
datastore on the server. The NETCONF server resides on the network
device.

* When a session Is established the client and server exchange ‘hello”
messages which contain information on their capabilities.

* Client can then send multiple requests to the server for retrieving or
editing the configuration data.

« NETCONF allows the management client to discover the capabilities
of the server (on the device).

« NETCONF gives access to the native capabilities of the device.
NETCONF defines one or more configuration datastores.

* A configuration store contains all the configuration information to
bring the device from its initial state to the operational state.

« NETCONF 1s a connection oriented protocol and NETCONF
connection persists between protocol operations.

* NETCONF overcomes the limitations of SNMP and is suitable not
only for monitoring state information, but also for configuration
management.

YANG

* YANG 1Is a data modeling language used to model

configuration and state data manipulated by the NETCONF
protocol.

* YANG modules contain the definitions of the configuration

data, state data, RPC calls that can be iIssued and the format
of the notifications.

* YANG modules defines the data exchanged between the
NETCONTF client and server.

* YANG modules having various node types, they are, (shown
In table)

- =S y - -~ v "
O s L T {00 T Y A T Mo e e Ty
. ~ T - W~ T e N L TV S TS O TR
i P T g : Desc LEA seiy o Mot OALENT & \f 'l""'"'\ \ e AT TV PN D Tl PR T ———
¢ > . + 7 et s e g B ST e A N i s e L T PR A N = s
| RN (1 CaamE At = L R ,':4\ - «-."‘ AL, Ryt S NPT s s B ST T i Y T | R e e
Ny =g - E LK I N . . e REEN AOA RS S r“'\-v-. A.;.<'<‘_-L Ay - 4% .. a1 e 32 ST B D 20 W oA X T Rmip i LTy 1=
] v A . - S LAY R0t 6 Py s ST T e L O e TR e i e s A -
FETT : g i A_O. A o .‘_.,\ .#-._ v i 3 M4 e ;- e 3 e e
y 22 LAY

RESUE ~r @P oA S0y, -~
TR SRCTTER T SRRt ket o
£ > e T e

’

' Leaf Nodes

Leaf-List Nodes

Container Nodes

| List Nodes

Contams 51mp1e data structures such as an mteger Or a strmg Leaf

has exactly one value of a particular type and no child nodes.
Is a sequence of leaf nodes with exactly one value of a particular

type per leaf.

Used to group related nodes in a subtree. A container has only child
nodes and no value. A container may contain any number of child
nodes of any type (including leafs, lists, containers, and leaf-lists).

Defines a sequence of list entries. Each entry is like a structure
or a record instance, and is uniquely identified by the values of its

key leafs. A list can define multiple key leafs and may contain any
number of child nodes of any type.

Table 4.2: YANG Node Types

loT System management with NETCONF, YANG

* YANG is a data modelling language used to model configuration and
state data manipulated by the NETCONF protocol.

* The generic approach of loT device management with NETCONF-
YANG. Roles of various components are:

1) Management System
3) Transaction Manager
5) Data Model Manager
7) Configuration Database
9) Data Provider API

2) Management API
4) Rollback Manager
6) Configuration Validator
8) Configuration API

YANG

1) Management System : The operator uses a management
system to send NETCONF messages to configure the loT
device and receives state information and notifications from
the device as NETCONF messages.

2) Management API : allows management application to start
NETCONF sessions.

3) Transaction Manager: executes all the NETCONF
transactions and ensures that ACID properties hold true for
the transactions.

4) Rollback Manager : 1s responsible for generating all the
transactions necessary to rollback a current configuration to
Its original state.

S)

6)
/)

8)

9)

Data Model Manager : Keeps track of all the YANG data models and
the corresponding managed objects. Also keeps track of the
applications which provide data for each part of a data model.

Configuration Validator : checks If the resulting configuration after
applying a transaction would be a valid configuration.

Configuration Database : contains both configuration and
operational data.

Configuration API : Using the configuration API the application on
the 10T device can be read configuration data from the configuration
datastore and write operational data to the operational datastore.

Data Provider API: Applications on the IoT device can register for
callbacks for various events using the Data Provider API. Through
the Data Provider API, the applications can report statistics and
operational Idata.

NETOPEER

* Netopeer Is set of open source NETCONF tools built on the
Libnetconf library.

* Netopeer-server: Netopeer-server i1s a NETCONF protocol server
that runs on the managed device. Netopeer-server provide an
environment for configuring the device using NETCONF RPC
operations and also retrieving the state data from the device.

» Netopeer-agent: Netopeer-agent is the NETCONF protocol agent
running as a SSH/TLS subsystems. NETopeer-agent accepts
Incoming NETCONF connection and passes the NETCONF RPC
operations received from the NETCONF client to the Netopeer-
server.

Figure 4.6: [oT device management with NETCONEF - a specific approach based on Netopeer
tools

* Netopper-cli: Netopper-cli is a NETCONF client that provide a
command line interface(cli) for interacting with the Netopeer
server. The operator can use the Netopeer-cli from the
management system to send NETCONF RPC operations for
configuring the device and retrieving the state information.

* Netopeer manager: Netopeer-manager allows managing the
YANG and Libnetconf Transaction API(TransAPI) modules on
the Netopeer-server. With Netopeer-manager module can be
loaded or removed from the server.

* Netopeer-configurator: Netopeer-configurator is a tool that can
be used to configure the Netopeer-server.

Steps for loT device Management with NETCONF-YANG:

1)
2)

3)
4)
S)

6)

/)

Create a YANG model of the system that defines the configuration
and state data of the system.

Complete the YANG model with the “Inctool” which comes with
Libnetconf.

Fill in the 10T device management code in the TransAPI module.
Build the callbacks C file to generate the libraryfile.

Load the YANG module and the TransAPI module into the Netopeer
server using Netopeer manager tool.

The operator can now connect from the management system to the
Netopeer server using the Netopeer CLI.

Operator can issue NETCONF commands from the Netopeer CLI.
Command can be issued to change the configuration data, get
operational data or execute an RPC on the loTdevice.

Unit - III
DESIGN METHOLOGY INTERNET OF THINGS

loT Platforms Design Methodology, Introduction, loT
Design Methodology, Case Study on loT System for Weather
Monitoring

Motivation for Using Python — loT Systems, logical Design
using Python, installing Python, Python Data Types& Data
Structures, Control flow, functions, Modules, Packages, File
Handling, Data/Time Operations, Classes, Python Packages of
Interest for loT.

loT Platforms Design Methodology

Introduction:
* |0T systems comprise of multiple components and deployment tiers.

* |0T defined six different levels. Each level is suited for different applications and has
different component and deployment configurations.

* The 10T systems involve interactions between various components such as loT devices
and network resources, web services, analytics components, application and database

servers.
* |0T system designers may find it difficult to evaluate the available alternatives.

* [oT system designers often tend to design loT systems keeping specific
product/services in mind.

« Any problem in systems, the designer updating the system design to add new features
or replacing a particular product/service choice.

loT Design Methodology

loT deaigners often tend to design the system keeping specific products
IN Min

Step 1. Purpose & Requirements Specification
Step 2: Process Specification

Step 3 : Domain Model Specification

Step 4: Information Model Specification

Step 5: Service Specifications

Step 6: 10T Level Specification

Step 7:Functional View Specification

Step 8 : Operational View Specification

Step 9: Device & Component Integration

Step 10: Application Development

- Purpose & Requirements

Define Purpose & Requirements of IoT system

CESS ' f‘“i»,'bl‘: | Specificatior
Define the use cases

\ 4

I PREGUARCR! G W PRGN PR |y oo f - SRR ey
Domain Model Specification

Define Physical Entities, Virtual Entities, Dvices, Resources and Services in the loT system

\ 4

Define the structure (e.g. relations, attributes) of all the information in the loT system

fications

Map Process and Information Mod ss and define service specifications

Define the loT level for the system

Functional View Specification

ap loT Level to al s

Operational View Specificatior
Define communication options, service hosting options, storage options, device options

Integrate devices, develop and integrate the components

Develop Applications

We will look at a generic
design methodology which
IS independent of specific
oroduct, service or
programming language.
oT systems designed with
this methodology will have
reduced design time,
testing time, maintenance
time, complexity and better
Interoperability.

Step 1: Purpose & Reqguirements Specification

First step Is to define the purpose and requirements of the
system. In this step, the system purpose, behavior and
requirements are captured.

Requirements can be:
« Data collection requirements
 Data analysis requirements
 System management requirements
* Security requirements
 User interface requirements

For home automation system the purpose and requirements specification is as follows:

A home automation system that allows controlling the lights

Purpose remotely using a web application

Home automation system should support two modes: auto and
manual

Behaviour Auto: System measures the light level in the room and switches
on the light when it is dark
Manual: Allows remotely switching lights on and off

System Management System should provide remote monitoring and control functions

Data Analysis System should perform local analysis of the data

Application should be deployed locally, but should be accessible

Application Deployment remotely

Security Should provide basic security like user authentication

Step 2: Process Specification

* The Second step in the loT Q
design methodology Is to
define the process e () Statof roces
specification. In this step,
the use cases of the loT AN <> Decision box
system are formally N4
described based on and ! |
derived from the purpose — —
and requirement
specifications.

State or Attribute

\
state: On state: Off

7

state: On state: Off state: On state: Off

Step 3: Domain Model Specifications

* The domain model describes the main concepts, entities and objects In
the domain of the loT system to be designed.

« Domain model defines the attributes of the objects and relationships
between objects.

 The domain model Is Independent of any specific technology or
platform.

« Using domain model, system designers can get an understanding of
the 1oT domain for which the system is to be designed.

* The entities, objects and concepts defined in the domain model of
home automation system include the following:

Physical Entity

e The physical identifiable objects in the environment
e loT system provides information about the physical entity (using

Virtual Entity

Device

Resource

Service

sensors) or performs actuation upon the physical entity

* Virtual entity is a representation of the physical entity in the digital world
* For every physical entity there is a virtual entity

 Devices provide a medium for interaction between physical and virtual
entities

» Devices are used to gather information from or perform actuation on
physical entities

» Resources are software components which can be either on-device or
network-resources

« On-device resources are hosted on the device and provide sensing or
actuation (eg: operating system)

» Network-resources include software components that are available on the
network (eg: database)

« Services provide an interface for interacting with the physical entity
* Services access resources to perform operations on physical entities

The domain model specification diagram for home automation system

Is as shown in the below figure.

User interocts with
A
Artefoct 1
App |
|
invokes/subscribes |~ | Virtual Entity relotes to d Physical Entity
‘ 1 g = monitors
ossocioted|with | Room Room <

|

Service |

|

|

. |

associated|with '——— virtyal Entity relatesto | Physicol Entity
exposes Appliance Appliance i€ acts on
—>
Resource associated with
= —e
hosts P Device
| I Minicomputer
Network OaDevice attached to T gttached to Type
Resource Resource - I I
Sensor 1 Actuator

LOR l Relay

I

One-way Association
Generalization/Specialization

Aggregation Relationship

Type: Entity, service, resource,
device, attribute

Step 4: Information Model Specification

* Information model defines the structure of all the information In the
loT system.

* To define the information model, we first list the virtual entities. Later
more details like attributes and relationships are added.

The information model specification for home automation system is as shown

below:

‘ ‘ Virtual Entity:
V:m’:zal Entity: inToom LightAppliance
oom
EntityType : Room Mwmmff'am
ID: Room1 RoomiD : Room1
¢
Attribute: Attribute:
Light-Level State

AttributeName : lightLevel
AttributeType : level

has light-level has light-level

Level: High Level: Low

AttributeName : lightState
AttributeType : state

y/\mm

State: Cﬂ State: Off ‘

Step 5: Service Specifications

 The service specification defines the following:
* Services in the system
* Service types
e Service inputs/output
* Service endpoints
« Service schedules
* Service preconditions
* Service effects

* For each state and attribute in the process specification and information
model, we define a service. Services either change the state of attributes or
retrieve their current values.

The service specification for each state in home automation systems are
as shown below:

Output
Current Mode: has Output
Auto/Manual
Service
Name: Mode
Type: REST
~—
/ Nas Service Endpoint
has Input \
T Endpoint
Input £
Set Mode: WM ﬂiome/mode/
Auto/Manual Protocol: HTTP

Step 6: 10T Level Specification

* The sixth step In the loT
design methodology 1Is to
define the I1oT level for the
system (unit-1, we defined five
loT deployment levels)

* The deployment level for
home automation system Is
shown in the below figure.

Local

App

REST
Communication

> REST

— JL —

Darabasel
——

Services

> Controller Service
J

Resource

J

Device

O

Monitoring Node
performs analysis, stores data

Cloud

Step 7: Functional View Specification

* The functional view defines the functions of the loT systems grouped
Into various functional groups.

« Each functional group provides functionalities for interacting with
concepts In the domain model and information related to the concepts.

 The functional groups In a functional view include: Device,
Communication, Services, Management, Security, and Application.

The functional view specification for home automation system is shown in the below figure:

Web Application Database Server

Application

STARTER

Application Mgrt.

Services
Database Mgmt. _ _ _

Management Security

Communication
TUTORIALS
Device

The mapping between the 10T level and the functional groups
IS as shown In the below figure.

Local

Step 8: Operational view specification

In this step, various options related to the loT system

deployment and operation are defined, such as:
* Service hosting options
« Storage options
 Device options
 Application hosting options

he options chosen for home automation system are as
shown In the below figure.

Nathe Service: ContralrSenvce
Wob Sendes: Moo RESTSevdn, ¢ _
State REST Service

Web App: Diingo Web Apg
= = Alkton e, g S
Database Server: WyS0L

/" Wthotaton Web p, Doaise
/

Commenicaton APl EST APl
Communication Protocols:
-) Link Layer 80211

Network Lyer | 16
Trangport: TCP
Appliation: HTTP

ComputingDevke: Ras ey P
Sensor; LOR “
Actator. ey Swtch

Step 9: Device & Component Integration

* In this step the devices like
sensors, computing devices and
other components are integratec
together.

* The Interconnection of different
components In our home
automation system are as shown
In the figure given below.

Step 10: Application Development

« Using all the information
from previous steps, we will
develop the application
(code) for the 10T system.

* The application interface for
home automation system Is
shown below.

Case Study on loT System for
Weather Monitoring

Refer Enclosed PDF and Submit case study with your own idea and
Experience

Motivation for Using Python

 Python is a general-purpose high level programming language and suitable for
providing a solid foundation to the reader in the area of cloud computing.

« The main characteristics of Python are:
1) Multi-paradigm programming language.

2) Python supports more than one programming paradigms including object- oriented
programming and structured programming.

3) Python is an interpreted language and does not require an explicit compilation step.

4) The Python interpreter executes the program source code directly, statement by
statement, as a processor or scripting engine does.

5) Python provides an interactive mode in which the user can submit commands at the
Python prompt and interact with the interpreter directly.

Benefits:

Easy-to-learn, read and maintain

* Python is a minimalistic language with relatively few keywords, uses English keywords and has fewer syntactical constructions
as compared to other languages. Reading Python programs feels like English with pseudo-code like constructs. Python is easy
to learn yet an extremely powerful language for a wide range of applications.

Object and Procedure Oriented

* Python supports both procedure-oriented programming and object-oriented programming. Procedure oriented paradigm
allows programs to be written around procedures or functions that allow reuse of code. Procedure oriented paradigm allows
programs to be written around objects that include both data and functionality.

Extendable

* Python is an extendable language and allows integration of low-level modules written in languages such as C/C++. This is
useful when you want to speed up a critical portion of a program.

Scalable
* Due to the minimalistic nature of Python, it provides a manageable structure for large programs.

Portable

* Since Python is an interpreted language, programmers do not have to worry about compilation, linking and loading of
programs. Python programs can be directly executed from source

Broad Library Support

* Python has a broad library support and works on various platforms such as Windows, Linux, Mac, etc.

Python Setup

* Windows
* Python binaries for Windows can be downloaded from http://www.python.org/getit .

* For the examples and exercise in this book, you would require Python 2.7 which can be directly downloaded from
http://www.python.org/ftp/python/2.7.5/python-2.7.5.msi

* Once the python binary is installed you can run the python shell at the command prompt using
> python

* Linux

#Install Dependencies
sudo apt-get install build-essential
sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev libsglite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev

#Download Python

wget http://python.org/ftp/python/2.7.5/Python-2.7.5.tgz
tar -xvf Python-2.7.5.1gz

cd Python-2.7.5

#Install Python
Jconfigure

make

sudo make install

Datatypes

« Every value in Python has a datatype. Since everything is an object in Python programming, data types
are actually classes and variables are instance (object) of these classes.

» There are various data types in Python. Some of the important types are listed below.
Python Numbers

* Integers, floating point numbers and complex numbers falls under Python numbers category.
» They are defined as int, float and complex class in Python.

» \We can use the type() function to know which class a variable or a value belongs to and the isinstance()
function to check If an object belongs to a particular class.

Script.py

l.a=5

2. print(a, "is of type", type(a))

3.a=2.0

4. print(a, "is of type", type(a))

5.a=1+2]

6. print(a, "is complex number?", isinstance(1+2j,complex))

>>>a =1234567890123456739
>>> g

1234567890123456739
>>> D =0.1234567890123456789
>>> |

0.12345678901234568
>>> ¢ = 1+2]
>>>C

(1+2))

Python List :

e List is an ordered sequence of items.

* |t Is one of the most used datatype in Python and is very flexible.

 All the items in a list do not need to be of the same type.

* Declaring a list Is pretty straight forward.

* [tems separated by commas are enclosed within brackets [].
>>>a =1, 2.2, 'python’]

* We can use the slicing operator [] to extract an item or a range of
items from a list. Index starts form O in Python.

Script.py
1.a=[5,10,15,20,25,30,35,40]
.a[2] =15

. print("a[2] =", a][2])

.a[0:3] =[5, 10, 15]
. print("af[0:3] =", a[0:3])
.a[5:] =[30, 35, 40
7. print("a[5:] =", a[5:])

* Lists are mutable, meaning; value of elements of a list can be altered.
« >>>3=1[1,2,3]

« >>> a[2]=4

« >>>3a 1, 2, 4]

o O &~ WO DN

Python Tuple :

* Tuple 1s an ordered sequences of items same as list.

* The only difference is that tuples are immutable.Tuples once
created cannot be modified.

* Tuples are used to write-protect data and are usually faster
than list as 1t cannot change dynamically.

* It Is defined within parentheses () where items are separated
by commas.

>>>t = (5,'program’, 1+3j)

Script.py

t = (5,'program’, 1+3j)

#t[1] = 'program'’

print("t[1] =", t[1])

1[0:3] = (5, 'program’, (1+3]))
print("t[0:3] =", t[0:3])

Generates error

Tuples are Immutable

t{[0] = 10

Python Strings :
* String Is sequence of Unicode characters.
* \WWe can use single quotes or double quotes to represent strings.
« Multi-line strings can be denoted using triple quotes, " or
>>> 5 ="This Is a string"
>>> s ="a multiline

* Like list and tuple, slicing operator [] can be used with string. Strings are
Immutable.

Script.py

«a={52,3,1,4}

* # printing set variable

* print("fa=", a)

* # data type of variable a
* print(type(a))

* We can perform set operations like union, intersection on two sets.

* Set have unique values. They eliminate duplicates. Since, set are
unordered collection, indexing has no meaning.

* Hence the slicing operator [] does not work. It is generally used when
we have a huge amount of data.

* Dictionaries are optimized for retrieving data. We must know the key
to retrieve the value.

* In Python, dictionaries are defined within braces {} with each item
being a pair in the form key:value. Key and value can be of any type.

>>>d = {1:'value’,'key':2}
>>> type(d)
<class 'dict'>

* We use key to retrieve the respective value. But not the other way
around.

Script.py

«d ={1:'value','key".2}

* print(type(d))

* print("d[1] = ",a[1]);

* print("d['key’] =", d['key’]);
* ## Generates error
 print(*'d[2] =",d[2]);

Python if...else Statement

.r.-._.__.--'" TEEI: --\. Fa IEE Z E
. Expression - Test ~._False
H - ___.---'"' . Expression
True e
Y Y

Body of if | Body of if

Body of else

|

.
'

Fig: Operation of if statement

Fig: Operation of if...else statement

Test ~ False
Expression
of if
rue
Test False
Expression
I Body of if ‘ of elif
tfrue
, - 1
\
IBody of elif Body of else
" '
\J

Fig: Operation of if...elif...else statement

Python Nested If Example:

In this program, we input a number check if the number is

positive #or negative or zero and display an appropriate
message

This time we use nested If

num = float(input("Enter a number: ")) if num >= 0:
If num == 0: print("Zero")

else:

print("Positive number")

else:

print("Negative number"')

Python for Loop

* The for loop in Python is used to iterate over a sequence (list, tuple,
string) or other iterable objects. Iterating over a sequence is called
traversal.

* Syntax of for Loop
for val in sequence:
Body of for

* Here, val is the variable that takes the value of the item inside the
sequence on each iteration.

* Loop continues until we reach the last item in the sequence.

* The body of for loop is separated from the rest of the code using
indentation.

Syntax
Program to find the sum of all numbers stored in a list
List of numbers
numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]
variable to store the sum
sum=20
iterate over the list
for val In numbers:
sum = sum+val
Output: The sum is 48
print("The sum is", sum)

when you run the program, the output will be:
The sum is 48

The range() function
* We can generate a sequence of numbers using range() function.
* range(10) will generate numbers from 0 to 9 (10 numbers).

* We can also define the start, stop and step size as range(start,stop,step
size).

* step size defaults to 1 if not provided.

« # Output: range(0, 10) print(range(10))
 # Output: [0, 1, 2, 3,4,5,6, 7, 8, 9]

e print(list(range(10)))

Output: [2, 3,4, 5, 6, 7]
print(list(range(2, 8)))

Output: [2, 5, 8, 11, 14, 17]
print(list(range(2, 20, 3)))

We can use the range() function in for loops to iterate through a sequence of numbers.
It can be combined with the len() function to iterate though a sequence using indexing.
* Here is an example.
Program to iterate through a list using indexing
genre = ['pop’, 'rock’, 'jazz']
iterate over the list using index
foriin range(len(genre)):
print("l like", genrel[i])
 When you run the program, the output will be:
| like pop
| like rock
| like jazz

while loop in Python

« The while loop in Python is used to iterate over a block of code as long as the test
expression (condition) is true.

. \tNe enerally use this loop when we don't know beforehand, the number of times to
iterate.

 Syntax of while Loop in Python

while test_expression:

Body of while

« In while loop, test expression is checked first.
« The body of the loop is entered only if the test_expression evaluates to True.
« After one iteration, the test expression is checked again.
 This process continues until the test_expression evaluates to False.
* In Python, the body of the while loop is determined through indentation.
« Body starts with indentation and the first unindented line marks the end.
 Python interprets any non-zero value as True.
* None and O are interpreted asFalse.

Program to add natural numbers upto sum = 1+2+3+...+n
To take input from the user, n = int(input("Enter n: "))
n=10

initialize sum and counter

sum=20

1=1

while 1 <= n:
sum = sum + |
1=i+1

updatecounter print the sum
print("The sum is", sum)

When you run the program, the output will be:
Enter n: 10 The sum Is 55

Python Modules

« A file containing a set of functions you want to include in the
application is called Module.

Create a Module

* To create a module just save the code you want in a file with the file
extension .py:

Example
« Save this code In a file named mymodule.py
def greeting(name):
print("Hello, " + name)

Use a Module

* Now we can use the module we just created, by using the import
statement:

Example

Import the module named mymodule, and call the greeting
function:

import mymodule
mymodule.greeting("Jonathan")

Note: When using a function from a module,
use the syntax: module_name.function_name.

Variables in Module

* The module can contain functions, as already described, but also
variables of all types(arrays, dictionaries, objects etc):

Example
* Save this code in the file mymodule.py
personl = {"name": "John","age": 36,"country": "Norway"}

Example

* Import the module named mymodule, and access the personl
dictionary: import mymodule

a = mymodule.personl['age"]
print(a)

Naming a Module

* You can name the module file whatever you like, but it must have the
file extension .py

Re-naming a Module

* You can create an alias when you import a module, by using the as
keyword:

Example

* Create an alias for mymodule called mx:
import mymodule as mx
a = mx.personl["age"]
print(a)

Built-in Modules

* There are several built-in modules in Python, which you can import
whenever you like.

Example
Import and use the platform module:
import platform
X = platform.system()
print(x)

Using the dir() Function

* There is a built-in function to list all the function names (or variable
names) in a module. The dir() function:

Example
List all the defined names belonging to the platform module:
import platform
x = dir(platform)
print(x)

Note: The dir() function can be used on all modules, also the ones you
create yourself.

Import from Module

* You can choose to import only parts from a module, by using the from
keyword.

Example

The module named mymodule has one function and one dictionary:

def greeting(name):.

print(""Hello, " + name)

personl = {"name": "John", "age": 36, "country": "Norway"}
Example

Import only the personl dictionary from the module:

from mymodule import personl

print (personl["age"])

* Note: When importing using the from keyword, do not use the module
name when referring to elements in the module.

« Example: personl['age''], not mymodule.personl["'age'].

Packages :

« We don't usually store all of our files in our computer in the same location.

* \We use a well- organized hierarchy of directories for easier access. Similar
files are kept in the same directory, for example, we may keep all the songs
In the "music" directory.

 Similarly, Python has packages for directories and modules for files.

* As our application program grows larger in size with a lot of modules, we
place similar modules in one package and different modules In different
plackages. This makes a project (program) easy to manage and conceptually
Clear.

« Similar, as a directory can contain sub-directories and files, a Python
package can have sub- packages and modules.

A directory must contain a file namedinit.py in order for Python to consider
It as a package.

 This file can be left empty but we generally place the initialization code for
that package in this file.

Package Module Structure in Python Programming Importing module from a package

We can import modules from packages using the dot (.) operator. For example, if want to import the start
module in the above example, it is done as follows.

Import Game.Level.start
Now if this module contains a function named select_difficulty(), we must use the full name to reference it.
Game.Level.start.select_difficulty(2)
If this construct seems lengthy, we can import the module without the package prefix as follows.
from Game.Level import start
We can now call the function simply as follows.
start.select_difficulty(2)

Yet another way of importing just the required function (or class or variable) form a module within a
package would be as follows.

from Game.Level.start import select_difficulty
Now we can directly call this function.
select_difficulty(2)

Although easier, this method is not recommended. Using the full namespace avoids confusion and prevents
two same identifier names from colliding. While importing packages, Python looks in the list of directories
defined in svs path. similar as for module search nath

Files

* File Is a named location on disk to store related information.

* |t is used to permanently store data in a non-volatile memory (e.g. hard
disk).

* Since, random access memory (RAM) is volatile which loses its data when
computer Is turned off, we use files for future use of the data.

* When we want to read from or write to a file we need to open it first. When
we are done, it needs to be closed, so that resources that are tied with the

file are freed.
* Hence, in Python, a file operation takes place in the following order.
1. Open a file
2. Read or write (perform operation)
3. Close the file

How to open a file?

>>> f=open("test.txt") # open file in current directory
>>> f = open("C:/Python33/README.txt") # specifying full path

I

'rf Open a file for reading. (default)
'w’ Open a file for writing. Creates a new file if it does not exist or truncates the file if it
exists.

'x' Open a file for exclusive creation. If the file already exists, the operation fails.

'a’ Open for appending at the end of the file without truncating it. Creates a new file if it
does not exist.

't' Open in text mode. (default)

'b' Open in binary mode.

'+ Open a file for updating (reading and writing)

f=open("'test.txt") # equivalent to 'r' or 'rt'
f = open("test.txt",'w") # write in text mode
f = open("img.omp",'r+b") # read and write in binary mode

How to close a file Using Python?

* A safer way is to use a try...finally block. try:

f = open("test.txt",encoding = 'utf-8') # perform file operations
* finally:

f.close()

How to write to File Using Python?

e with open("test.txt",'w',encoding = 'utf-8') as f:
f.write("my first file\n")
f.write("This file\n\n")
f.write("contains three lines\n")

How to read files in Python?

>>> f = open("test.txt",'r',encoding = 'utf-8')

>>> f.read(4) # read the first 4 data

'This'

>>>f.read(4) # read the next 4 data

ig!

>>>f.read() # read in the rest till end of file

'my first file\nThis file\n contains three lines\n'
>>> f.read() # further reading returns empty sting "
>>>f.tell() # get the current file position 56

>>> f.seek(0) # bring file cursor to initial position 0

>>> print(f.read()) # read the entire file This is my first file

Method

Description

close() Close an open file. It has no effect if the file is already closed.

detach() Separate the underlying binary buffer from the TextlOBase and return it.

fileno() Return an integer number (file descriptor) of the file.

flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.

read(n) Read at most n characters form the file. Reads till end of file if it is negative or None.
readable() Returns True if the file stream can be read from.

readline(n=-1)

Read and return one line from the file. Reads in at most n bytes if specified.

readlines(n=-1)

Read and return a list of lines from the file. Reads in at most n bytes/characters if specified.

seek(offset,from=SE

Change the file position to offset bytes, in reference to from (start, current, end).

EK SET)
seekable() Returns True if the file stream supports random access.
tell() Returns the current file location.

truncate(size=None)

Resize the file stream to size bytes. If size is not specified, resize to current location.

writable()

Returns True if the file stream can be written to.

write(s)

Write string s to the file and return the number of characters written.

writelines(lines)

Write a list of lines to the file.

Date & time Operation

import datetime

X = datetime.datetime.now()
print(x)

Date Output:
When we execute the code from the example above the result will be:
2024-09-30 18:29:30.670698

Classes:

* A Class is like an object constructor.

* Create a class named MyClass, with a property named
X:

class MyClass:
X =5
 Now we can use the class named MyClass to create
objects:
pl = MyClass()
print(pl.x)

Python Packages of Interest for loT

* JSON — JavaScript Object Notation
« XML — Extensible Markup Language

 HTTPLIb & URLLIb (Hyper Text Transfer Protocol Lib &
Uniform Resource Locator Lib)

 SMTPLIb — Simple mall transfer Protocol

JSON:
* Easy to read and write data-interchange format.

* Built into two structures: a collection of name-value pairs (python
dictionary) and ordered lists of values (python list)

* |s used for serializing and transmitting structed data over a network
connection.

 EX.: transmitting data between a server and web application.
XML.:
* |s a data format for structured document interchange.

 The Phython minidom Library provides a minimal implementation of
the document object model interface and has an API similar to that in
other language.

HTTPLib & URLLIb:

 Used in network/internet programming.

« HTTPLIib 1san HTTP Client
URLSs

SMTP Lib:
« Which handles sending emai

library and URLL.Ib is library for fetching

| and routing email between mail servers.

* The python smtplib modeule provides an SMTP client session object that

can be used to send email.

 To send an email, first connection is established with the SMTP server by

calling smtplib.SMTP with t
* The user name and password

ne SMTP server name and port.
provided arethen used to login into the server.

* The emall is then sent by cal

Ing server.sendmail function with the form

address, to address list and message as input parameters.

5.3 Case Study on loT System for Weather Monitoring

127

Django-REST Framework.
3. State service - REST-ful web service
Django-REST Framework. ,
e Application:
Web Application - Django Web Application
Application Server - Django App Server, ’
Database Server - MySQL.
e Security:
Authentication: Web App, Database
Authorization: Web App, Database

hosted on device, implemented with

e Management:
Application Management - Django App Management
Database Management - MySQL DB Management,
Device Management - Raspberry Pi device Management.

5.2.9 Step 9: Device & Component Integration

The ninth step in the IoT design methodology is the integration of the devices and components.
Figure 5.12 shows a schematic diagram of the home automation IoT system. The devices
and components used in this example are Raspberry Pi mini computer, LDR sensor and relay
switch actuator. A detailed description of Raspberry Pi board and how to interface sensors
and actuators with the board is provided in later chapters.

5.2.10 Step 10: Application Development

The final step in the IoT design methodology is to develop the IoT application. Figure 5.13
shows a screenshot of the home automation web application. The application has controls
for the mode (auto on or auto off) and the light (on or off). In the auto mode, the IoT system
controls the light appliance automatically based on the lighting conditions in the room. When
auto mode is enabled the light control in the application is disabled and it reflects the current
state of the light. When the auto mode is disabled, the light control is enabled and it is used

for manually controlling the light.

5.3 Case Study on loT System for Weather Monitoring

1In this section we present a case study on design of an [oT system for weather monito.ring
~ using the ToT design methodology. The purpose of the weather monitoring system 1s to
~ collect data on environmental conditions such as temperature, pressure, humidity and light

i _;.'."_“lernet of Things - A Hands-On Al

loT Platforms Design Methq ol

128 - .

caet e saase
'R s &9
! cdad e aeade L]
P IETEEELE BODOOE: hboi
iy see e eesse ¢e
o's ceede RN o0
P "R es e s e
es s e sevee
P .
L LN]
¢« Jeua
¢ oo
e

Sad seceo
Se® Seoen

I.....‘.. +

1Y)
= O 3203
"s.}_'e.Q

EE EERRER]
aanouenaRzEaas

XXX} ssees

i -
L L] L
| SR | se] eeese IS RN
s ‘ . . e
. eseswe

-

-

-

-

»
4ans acaae o
SR8 sesne o

Jragas

L]
-

*hbee ARt e sefine o
L2804 asasss asflae o
.
e L T R
Sl LIS N
o R, R |

wooeaaal
_Seene

S

4

Figure 5.12: Schem'atic diagram of the home automation IoT system showing the device,
sensor and actuator integrated

measurements are stored.

Figure 5.15 shows the doma; i
: main mode el : LA
I'for the weather monitoring system. In this do.maal 1

model the physical entity < :

entity for the environmcztmg;iiizzl.r ""lmem which is being monitored. There isa Vlf“f

: . , ’ Sinclude t : jalt) -

sensor, light sensor and j . €mperature se sor, hum’™" . &

which can be either on-d::]vr;ie(;?oard Mini compyer, ReSOl?::er; [;:‘zs:gfff;:rz compone{,ﬁ .';"‘f*'

that monitors the temperatyre ne‘twork-resourccs. Services include the controller 5 « ¥
» Pressure, humidity and light and sends the reading® it §

5ji{

1
[D T, llaﬂiQﬂni' @Zo

5.3 Case Study on loT System for Weather Monitoring

___-"_‘-—-'_ o R

Figure 5.13: Home automation web application screenshot

g s ey ;7;*"‘-*,’-& g kP2 |

| Read Sensor + <~
ok -*:_.a%wf“&j

Lu-»«--.l.-.&fr.ivi‘w

—>p L Wailt e

Figure 5.14: Process specification for weather monitoring IoT system

cloud.
* “Figure 5.16 shows the information model for the weather monitoring system. In this
example, there is one virtual entity for the environment being sensed. The virtual entity

- has attributes - temperature, pressure, humidity and light. Figure 5.17 shows an example of

’ 'nfernet of Things - A Hands-On Approach

loT Platforms Design Meihodm
130 0

S—
User
Ll dddeiboriat

—

|

! ——T’J
1 [

|
1 t ’E/J]

Human User
I Active Dightal
1 [Artefoct
|
| 1 App
| 3
| | , .
| I “—— Virtuol Entity relates to | Physical Entity
invotes/subscribes ’ — 3 e

1 | ‘ associated | with Environment L Environment

X s
’ o
i
|
|
| | exposes
| Y
! Resource associated with
i il
: hosts Device
| 4 —] Mini-computer
i . On-Device | attached to attached to
| Resource
: - r H‘emu_r:g_ 1 j
| — -
\ — - GLLIL] Sensor Sensor Sensor Sensor
|

Temperature Pressure Humidity i l)q bt
Sensor Se 5 b
o Sensor . Sensor

| R 1 |

Figure 5.18 show -

. S the . i
system. The control]er serv?f: prlg Of, the controller service for the weather monitoring
Tuns as a natjye Service on the device and monitors temperafur, -

The controller service calls ¢

pressure, humidity apqg li

Figure 5.19 s seribed in Chapter.q tcalls the Xively REST API tosio”
€ J.12 shows the deplo '
nodes placed in different | Yment design for the s e
oc) ystem. The of multip
an area. The end nodeg eatlon 1oy rn e Sqlsts

e
the g 4 |
ata to the ¢louq and the data is stored in clOud;;%

Bahga & Madisett; © "4

5.4 Motivation for Using Python 131

Virtual Entity:
Environment
EntityType :
Environment

Attribute: Attribute: ! Attribute: Attribute:

State State ‘ . State _State
AttributeName : ! AttributeName : ! ! AttributeName : AttributeName :
temperature pressure ' humidity : light i
has value has value has value has value
I‘ Temperature: val Pressure:val - Humidity: val Light: val

Figure 5.16: Information model for weather monitoring IoT system

database. The analysis of data is done in the cloud to aggregate the data and make predictions.
A cloud-based application is used for visualizing the data. The centralized controller can
send control commands to the end nodes, for example, to configure the monitoring interval

on the end nodes.

Figure 5.20 shows an example of mapping deployment level to functional groups for the
weather monitoring system. Figure 5.21 shows an example of mapping functional groups to
operational view specifications for the weather monitoring system.

Figure 5.22 shows a schematic diagram of the weather monitoring system. The devices
and components used in this example are Raspberry Pi mini computer, temperature sensor,
humidity sensor, pressure sensor and LDR sensor.

5.4 Motivation for Using Python

This book uses the Python language for all the examples, though the basic principles apply
to other high level languages. In this section we explain the motivation for using Python
for developing IoT systems. Python is a minimalistic language with English-like keywords
aﬂd. fewer syntactical constructions as compared to other languageé. This makes Python
€asier to learn and understand. Moreover, Python code is compact as compared to other
la_“guages. Python is an interpreted language and does not require an explicit compilation
Step. The Python interpreter converts the Python code to the intermediate byte code, specific

M .
lntemet nf-THiﬁnn A LanAna Nn Annraanh

Unit- IV
|OT PHYSICAL DEVICES & ENDPOINT

What is an IOT devices, Exemplary Devices: Raspberry Pi, About the
Board, Linux on Raspberry Pi, Raspberry Pi Interfaces, Programming

Raspberry Pi with Python—Other 10T Devices.

What is an |OT devices ?

* A "Thing" In Internet of Things (loT) can be any object that has a
unique identifier and which can send/receive data (including user data)
over a network (e.g., smart phone, smartTV, computer, refrigerator,

car, etc.).

* loT devices are connected to the Internet and send information about
themselves or about their surroundings (e.g. information sensed by the
connected sensors) over a network (to other devices or servers/storage)
or allow actuation upon the physical entities/environment around them

remotely

loT Device Examples

* A home automation device that allows remotely monitoring the status
of appliances and controlling the appliances.

« An industrial machine which sends information abouts its operation
and health monitoring data to a server.

A car which sends information about its location to a cloud-based
service.

« A wireless-enabled wearable device that measures data about a person
such as the number of steps walked and sends the data to a cloud-
based service.

Basic building blocks of an 10T Device

» Sensing: Sensors can be either on-board the loT device or attached to
the device.

- Actuation: loT devices can have various types of actuators attached
that allow taking actions upon the physical entities in the vicinity of
the device.

« Communication: Communication modules are responsible for sending
collected data to other devices or cloud-based servers/storage and
receiving data from other devices and commands from remote
applications.

* Analysis & Processing: Analysis and processing modules are
responsible for making sense of the collected data.

CI=NE B | e .

RCA video

NAND/NOR
DDR1/DDR2/DDR3

Exemplary Devices: Raspberry Pi

* Ras

cara.

pberry Pi Is a low-cost mini-computer with the physical size of a credit

e Ras
that

nberry Pi runs various flavors of Linux and can perform almost all tasks
a normal desktop computer can do.

« Raspberry Pi also allows interfacing sensors and actuators through the
general purpose I/0O pins. Since Raspberry Pi runs Linux operating system,
It supports Python "out of the box".

About the Board:

* Processor & RAM: Raspberry Pi(RPI) is based on an ARM processor. The
latest version of Raspberry Pi comes with 700 MHz Low power
ARM11761z-F processor and 512 MB SDRAM.

* USB Ports: RPI comes with two USB 2.0 ports. The USB ports on RPI can
provide a current upto 100mA. For connecting devices that draw current
more than 100mA,

* Ethernet Ports: RPI comes with standards RJ45 Ethernet Port. You can
connect an Ethernet cable or a USB with adapter to provide Internet
connectivity.

 HDMI Output: The HDMI port on RPI provides both video and audio
output. You can connect the RPI to a monitor using an HDMI cable. For
monitors that have a DVI port but no HDMI port, you can use an HDMI to
DVI adapter/cable.

« Composite Video output: RPI comes with a composite video output with an
RCA jack that supports both PAL and NTSC video output. The RCA jack
can be used to connect old televisions that have an RCA input only:.

 Audio output: Raspberry Pi1 has a 3.5mm audio output jack. This audio jack
IS used for providing audio output to old televisions along with the RCA
jJack for video. The audio quality from this jack is inferior to the HDMI
output.

* GPIO Pins: RPI comes with a number of general-purpose input/output pins
whose in RP1 GPIO headers. There are four types of pins on RPI true GPI1O
pins. 12C interface pins, SPI interface pins and serial Rx and Tx pins.

» Display Serial Interface(DSI): The DSI interface can be used to connect an LCD
panel to RPI.

» Camera Serial Interface (CSl): The CSI Interface can be used to connect a
camera module to RPI.

« SD Card slot: RPI does no have a built in operating system and storage, you can
plug-in an SD card loaded with a Linux image to the SD card slot. You will
require at least an 8 GB SD card for setting up NOOBS (New out-of-the-Box
Software).

* Power Input: RPI has a micro-USB connector for power input

e Status LEDs: RPI has five status LEDs. Show in table.

ACT SD card access

PWR 3.3V power Is present

FDX Full duplex LAN connected
LNK Link / Network activity

100 100 Mbit LAN connected

40 Pin General-purpose
input/output Header PoE HAT Header
2.4/5GH2 Wirless | > s ; a‘:;it'”:’ PiA u;»c-c.l 8 =
Bluetooth 5.0 Ll = e et

Micro SD Card Slot

2-lane MIPI DSI
display port

LN ‘:'.'- ‘ , wisi
USB-C Power -
Port 5V/3A
2 x micro HDMI
ports(up to 4Kp60)

China M 1904

. Trxcom®
TRJGO926HENL

0111111 G

Linux on Raspberry Pi

1. Raspbian: Raspbian Linux is a Debian Wheezy port optimized for
Raspberry Pi.

2. Arch: Arch is an Arch Linux port for AMD devices.
3. Pidora: Pidora Linux Is a Fedora Linux optimized for Raspberry PI.

4. RaspBMC: RaspBMC is an XBMC media-center distribution for
Raspberry Pi.

5. OpenELEC: OpenELEC is a fast and user-friendly XBMC media-
center distribution.

6. RISC OS: RISC OS is a very fast and compact operating system.

3.3V
GPIO2
GPIO3
GPIO4
GPIO17
GPI027
GPI1022
P L A e P S GPIO10
. ’j:l-ﬁ.....‘:‘:.':'i‘i. " « = GP'OQ
Soanfel ol & 7 GPIO11
DNC
GPIO5
GPIO6
GPIO13
GPIO19
GP1026
GND

ZEIER 5802 I
cEidi-800ve "q1 2

11
13
15
: b
19
21
23
25
27
29
31
33
35
37
39

16
18

GPIO14
GPIO15
GPIO18

14 (N

GPI1023
GPI1024

ZQIGND___|

22
24
26
28

GPI1025
GPIO8
GPIO7
DNC

30 (N

32

GPIO12

34 [N

36
38
40

GPIO16
GPI1020
GPI021

Rasbian Linux Desktop

A
ICAE
A

l;

%

File explorer on Raspberry Pi

m Sound & Video >
? Graphics >

(&) Archiver

@ Help § EH Calculator

B File Manager

E PDF Viewer Browse the file system and manage the files

8 Raspberry Pi Diagnostics
[} 0 card Copier

i Task Manager

Console on Raspberry Pi

#* pi@raspberrypi: ~

e

m——

#1311 SMP Mon Apr

describe

— e b4 4 S ALl

browser on Raspberry o]

L] \u) L 75 a Q UP' "iraspba’rypl ~
J

S y
\u/
' . b w Otter Browser
| xtowe . Fde Eot View MHstory Sookmarks Tools Hep
’ e | Crossplatfom sof.. @ P LnuxHaowweReve . O @ xter Browser o
c" W Mstory, b o @ C O hupliotter rowser.crg
B o g OTTER B
_ L . ER BROWSER
¥ Controlled by the user, not vice versa
-

Points of Interest

News

B 1) seass (01-10-2016)
Clevert beta has te cmane

Raspberry Pi Configuration tools:

1 Baspberry FPi Software Configuration Tool (raspi-config) }
Setup Options

1 Expand Filesystem Ensures that all of the SD card s
Z Change User Password Change password for the default u
3 Enable Boot to Desktop-Scratch Choose whether to boot into a des
1 Internationalisation Options Set up language and regional sett
S5 Enable Camera Enable this Pi to work with the R
6 Add to Rastrack Add this Pi to the online Raspber
7 Duerclock Configure overclocking for your P
8 Advanced Options Configure advanced settings

9 About raspi-config Information about this configurat

<Select> <Finish>

Raspberry Pi1 frequently used
commands
(Command ___ [Function ___ |EBampe

cd change directory cd/home/pi
cat show file contents cat file.txt
Is list files and folders Is/home/pi
locate search for a file locate file.txt
Isusb list usb devices Isusb
pwd print name for present working pwd
directory
mkdir make directory mkdir/home/pi/new
mv move(rename) file mv sourcefile.txt destfile.txt
rm remove file rm file.txt
reboot reboot device sudo reboot

shutdown shutdown device sudo shutdown —h now

Raspberry P1 frequently used

grep —r “pi”/home/
df -Th

ipconfig

Netstat -Intp

Tar —xzf foo.tar.gz

commands
‘Command | Function | Example |
grep Print lines matching a pattern
df Report file system disk space usage
ipconfig Configure a network interface
netstat Print network connections, routing
tables, interface statistics
tar Extract /create archive
weget Non-interactive network downloader

Weget
http://example.com/filr.tar.
Bz

Raspberry P1 Interfaces

 Serial Interface / UART Interface

— Universal Asynchronous Receiver and
Transmitter(UART)

* SPI

— Serial Peripheral Interface (SPI)

s 12C
— Inter-Integrated Circuits (12C)

Raspberry Pi1 Interfaces

» Serial

— The serial interface on Raspberry P1 has receive (Rx)
and transmit (Tx) pins for communication with serial

peripherals.

« SPI

— Serial Peripheral Interface (SPI) is a synchronous
serial data protocol used for communicating with one
or more peripheral devices.

' T2C

— The I2C interface pins on Raspberry Pi1 allow you to
connect hardware modules.

— 12C interface allows synchronous data transfer with
SO just two pins - SDA (data line) 'and SCL (clock line).

Serial / UART

SPI

* |In SPI Connection, there is one master device and one
or more peripheral devices.

* There are five pins on Raspberry Pi for SPI interface.

— MISO (Master In Slave Out) — Master Line for Sending Data
to the peripherals.

— MOSI (Master Out Slave In) — Slave Line for sending data
to the master.

— SCK (Serial Clock) — Clock Generated by Master to
Synchronize data transmission.

— CEO (Chip Enable 0) — To Enable or Disable devices.
— CE1 (Chip Enable 1) — To Enable or Disable devices.

12C

Inter-Integrated Circuit Bus (I2C)

————
I W—— _—, ——

Modular connections on a printed circuit board
Multi-point connections (needs addressing)
Synchronous transfer (but adapts to slowest device)

Similar to Controller Area Network (CAN) protocol
used in automotive opplications

SDA

device device device |
1 2 n

Y LN

INTER-INTEGRATED CIRCUIT (12C)

© Serial, 8-bit oriented, Bidirectional Hall Duplex, 2-wire bus

used for communications between integrated circuits on the same

PCE.
* Developed by Philips Semiconductors in 1982 (now NXP

Semiconductors),

* Only two bus lines are required: a serial data line (SDA) and a
serial clock line (5CL) 5

¢ Master device generates the clock signal and terminates the

transfer.

* Each device s software addressable by a unique address.

¢ Master/Slave relationships exist at all times, masters can operate
A% master-transmitters or a3 master-receivers,

¢ True multi-master bus including collision detection, arbitration

(using wired-AND) and clock synchronization 1o prevent data

corruption,

Python Programming with Raspberry
Pi

Python programming with Raspberry PI with focus of
— Interfacing external gadgets
— Controlling output
— Reading input from pins
GPIO pins on Raspberry Pi that makes it useful device for loT.

We can interface a wide variety of sensors and actuators with Raspberry
Pi using the GPIO pins and SPI, I12C and Serial Interfaces.

Input from the sensors connected to Raspberry Pi can be processed and
various actions can be taken, for

— Instance,

— Sending data to a server

— Sending an email

— Triggering a relay switch

Controlling LED with Raspberry Pi1

Components Reuired

* You'll need the following components to
connect the circuit.

* 1. Raspberry Pi
2. LED
3. Resistor - 330 ohm

4. Breadboard
5. 2 Male-Female Jumper Wires

e
Baghirr "L it 0 2
OR. T LR AR.

‘ll
HE @& a1
. ol e

R
)
2
amo
ral o
QPO Headury

Step 2: Connecting the Circuit

Python Code

* import RPi.GPIO as GPIO
iImport time
GPI10.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPI0O.setup(21,GP10.0UT)
print "LED on"
GP10.output(21,GPIO.HIGH)
time.sleep(10)
print "LED off"
GPI0.output(21,GPIO.LOW)

Python programming with Raspberry PI with focus of
- Interfacing external gadgets
- Controlling output
- Reading input from pins

Controlling LED with Switch on
Raspberry Pi1

Components Reuired

* You'll need the following components to
connect the circuit.

* 1. Raspberry Pi
2. LED
3. Resistor - 330 ohm
4. Breadboard

5. Button / Switch
6. 2 Male-Female Jumper Wires

Components

T AIRE TR AR
OR . T LR N

-~

HC @ g win
el

Switch / Button

Buttons are a common component used to
control electronic devices.

They are usually used as switches to connect
or disconnect circuits.

Although buttons come in a variety of sizes
and shapes, the one used here is a 6mm mini-
button as shown in the following pictures.

Pins pointed out by the arrows of same color
are meant to be connected.

Switch / Button

Switch / Button

* When the button is pressed, the pins pointed by the
blue arrow will connect to the pins pointed by the red
arrow (see the above figure), thus closing the circuit, as
shown in the following diagrams.

¢

-—-{{ w‘v—- — - " ' — =='

! ‘\\J/-\ vj“‘ |
\ \ | 4 AR 0 mi
v 1 \ ul - —— gL Moby g M
/ I -A-_——M; . - — b—._‘r
' JA \"//‘}—- ‘\ N |
) | ({) A o
= S .

I o

PC B Land Patiern

Switch / Button

Generally, the button can be connected directly to the LED in a circuit to
turn on or off the LED, which is comparatively simple.

However, sometimes the LED will brighten automatically without any
button pressed, which is caused by various kinds of external interference.

In order to avoid this interference, a pull-down resistor is used — usually
connect a 1K=10KQ resistor between the button and GND. It can be
connected to GND to consume the interference when the button is off.

Use a normally open button as the input of Raspberry Pi.

When the button is pressed, the GPIO connected to the button will turn
into low level (OV).

We can detect the state of the GPIO connected to the button through
programming. That is, if the GPIO turns into low level, it means the button
is pressed. You can run the corresponding code when the button is
pressed, and then the LED will light up.

CIRCUIT Diagram

- o e on

Experimental Procedures

Step 1: Build the circuit
Step 2: Create a Python / C code
Step 3: Run

sudo python 02_btnAndLed.py

Now, press the button, and the LED will light up;
press the button again, and the LED will go out.
At the same time, the state of the LED will be
printed on the screen.

1/

Python Code

#!/usr/bin/env python
import RPi.GPIO as GPIO
import time

LedPin = 11 # pinll - led
BtnPin = 12 # pinl12 --- button
Led_status=1

def setup():
GPI0.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
- GPIO.setup{LedPin, GPIO.OUT) # Set LedPin's mode is output

- IGli’l(').setu::(Bmﬁ’in, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set BtnPin's made is input, and pull up to high
evel(3.3V)

- GPIO.output{LedPin, GPIO.HIGH) # Set LedPin high{+3.3V) to off led

def swled(ev=None):
global Led_status

— Led_status = not Led_status
~ GPID.output(LedPin, Led_status) W switch led status(on-->off; off-->on)
- if Led_status ==

« print'led off.,.
— else:

* print' . ledon'

12/2021 oT Devices - Raspberry Pi

Python Code (Contd.,)

def loopl():

— GPl0.add_event_detect(BtnPin, GPIO.FALLING, callback=swlLed,
bouncetime=200) # wait for falling and set bouncetume to prevent the callback
function from being called multiple times when the button is pressed

— while True:
* time.sleep(1) # Don't do anything
def destroy():
— GPIO.output(LedPin, GPIO.HIGH) # led off
— GPIO.cleanup() # Release resource

if _name__=='_main__": # Program start from here
— setup()
- try:
* loopl)

— except Keyboardinterrupt: # When 'Ctrl+C' is pressed, the child program
destroy() will be executed.
« destroy()

Interfacing

Applications

* |Interfacing a Push Button with Raspberry Pi
might not seem as a big project but it
definitely helps us in understanding the
concept of reading from Input pins.

* A similar concept can be applied to other
input devices like different types of Sensors
— PIR Sensor,

— Ultrasonic Sensor,
— Touch Sensor, and so forth.

Interfacing a Light Sensor (LDR) with

Components Reuired

* You'll need the following components to
connect the circuit.

* 1. Raspberry Pi
2. Light Sensor (LDR Sensor)
3. Capacitor - 1uF
4. Breadboard
5. 2 Male-Female Jumper Wires

nents

Sagtaisr ML Al M 2
ORI UTRAN . A

LDR Sensor

* The light-dependent resistor or also known as
the LDR sensor is the most important piece of
equipment in our circuit. Without it, we
wouldn’t be able to detect whether it is dark
or light.

* |In the light, this sensor will have a resistance
of only a few hundred ohms.

* In the dark, it can have a resistance of several
mega ohms.

LDR Sensor

10T Devices - Raspberry P

LDR Sensor

* A photoresistor, or light-dependent resistor (LDR), or
photocell is a resistor whose resistance will decrease
when incident light intensity increase; in other words,
it exhibits photoconductivity.

* A photoresistor is made of a high resistance
semiconductor.

* If light falling on the device is of high enough
frequency, photons absorbed by the semiconductor
give bound electrons enough energy to jump into the
conduction band. The resulting free electron (and its
hole partner) conduct electricity, thereby lowering
resistance.

CIRCUIT Diagram

PIN2s

PiNig —

SVT\

=\
—(=)
LDR

1L

B A
Capacitor
0.1UF

Led

GND —

LDR Sensor

In this implementation we learn how to Interface a light Sensor (LDR)
with Raspberry Pi and turning an LED on/off based on the ligh-level
sensed.

Look given image, Connect one side of LDR to 3.3V and other side to aluF
capacitor and also to a GPIO pin (pin 18 in this example).

An LED is connected to pin 18 which is controlled based on the light-level
sensed.

The readLDR() function returns a count which is proportional to the light
level.

In this function the LDR pin is set to output and low and then to input.

At this point the capacitor starts charging through the resistor (and a
counter is started) until the input pin reads high (this happens when
capacitor voltage becomes greater than 1.4V).

The counter is stopped when the input reads high. The final count is
proportional to the light level as greater the amount of light, smaller is the
LDR resistance and greater is the time taken to charge the capacitor.

L L A
re e
“hare

LI
LR
SEr e

“nsaae
e e
L

L L
“ s
L
LR RN
“vhan
L LN
R

.
’

.
L

-

-
..
“ww
LR
-

L R
L
L L L
L N

L O
DL L
EE)
L)
-8 s e
L L A
SAhen
AL L
D)
"Ere
L

L L
LR L LA

-

.
-

Shae
LR L

Experimental Procedures

* Step 1: Build the circuit
* Step 2: Create a Python / C code
* Step 3: Run
sudo python 03_IldrAndLed.py

Importing Packages

* To begin, we import the GPIO package that we will
need so that we can communicate with the GPIO pins.

* We also import the time package, so we’re able to put
the script to sleep for when we need to.

import RP1.GPIO as GPIO

import time

Pin Assignment

 We then set the GPIO mode to GPIO.BCM, and
this means all the numbering we use in this script
will refer to the physical numbering of the pins.

* Since we only have one input/output pin, we
only need to set one variable. Set this variable to
the number of the pin you have acting as the
input/output pin.

GPIO.setmode(GPIO.BCM)
Idr_threshold = 1000
LDR_PIN = 18

LIGHT_PIN = 25

Reading the Light Value

Next, we have a function called readLDR() that requires one parameter, which is
the pin number to the circuit. In this function, we initialize a variable
called reading, and we will return this value once the pin goes to high.

We then set our pin to act as an output and then set it to low. Next, we have the
script sleep for 10ms.

After this, we then set the pin to become an input, and then we enter a while
loop. We stay in this loop until the pin goes to high, this is when the capacitor
charges to about 3/4.

Once the pin goes high, we return the count value to the main function. You can
use this value to turn on and off an LED, activate something else, or log the data
and keep statistics on any variance in light.

def readLDR(PIN):
reading =0
GPIO setup{LIGHT_PIN, GPID.OUT)
GPIO, output{PIN, false)
time. sieep{0.1)
GPIO. setupdPIN, GPIO.IN)
while (GPIQ.input (PIN}) ==Flasc):
reading=reading+1
return reading

Python Code

Example code Interfacing a light Sensor (LDR) with Raspberry Pi
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
ldr_threshold = 1000
LDR_PIN = 18

LIGHT_PIN = 25

def readLDR(PIN):
reading = 0
GPIO.setup{LIGHT_PIN, GPIO.OUT)
GPIO.output(PIN, false)
time.sleep(0.1)
GPIO.setup(PIN, GPIO.IN)

while (GPIO.input (PIN) ==Flase):
reading=reading+1
return reading

Python Code to Toggle the LED

def switchOnLight(PIN):
GPIO.setup(PIN, GPIO.OUT)
GPIO.output(PIN, True)

def switchOffLight(PIN):
GPIO.setup(PIN, GPIO.OUT)
GPIO.output(PIN, False)

while True:
Idr_reading = readLDR(LDR_PIN)

if Idr_reading < Idr_threshold:
switchOnLight (LIGHT _PIN)

else:
switchOffLight(LIGHT PIN)

time.sleep(1)

Interfacing

T
NIT R i)

Moo ssnnnvnnnnn

AR
D R A R
SRR RN .
R L R L R R R A)

Applications

There are countless uses for a light sensor in a circuit. | will just
name a few that | thought of while | was writing up this PPT.

Light Activated Alarm — | mentioned this one earlier, but you can
use the LDR to detect when it starts to get light so you can sound an
alarm to wake you up. If the program and sensor are accurate, then
you can have the alarm slowly get louder as it gets lighter.

Garden monitor — A light sensor could be used in a garden to check
how much sun a certain area of the garden is getting. This could be
useful information if you’re planting something that needs lots of
sun or vice versa.

Room Monitor — Want to make sure lights are always turned off in

a certain room? You could use this to alert you whenever some light
is detected where it shouldn’t be.

Other 10T Devices:

GPU VideoCore 1V . PowerVR Dual core ARM
Multimedia Mali 400 SGXS530 Mali 400 MP2

Input/Output | MMC, SDIO | - slot, SATA. IR
card slot sensor

2012/12/21 &%

L=
LOSheav-o
ER16475

TPS65217C

XAM3359A
Processor

DDR3
Etherent PHY

(D Power Jack
@ Ethernet Port
(3 HOMI Port
(@) sPDIF FIBER
() Display Port
(©® WIFI+BT

@ Extended Pin
(8) UBOOT Key
(9) RESET Key
(0 UART Head Pin
@D use 2.072
{2 DRAM

3 Mini USB OTG
dd mic

Gd cru

(© Earphone+MIC
{7 TF-CARD

G® PWER ON/OFF
G9 IR Sensor

@D SATA-DATA
@) SV-SATA

@2 12V-SATA

@) Li-Battery
Extended Pin

The End

UNIT-5
|OT PHYSICAL SERVERS &CLOUD OFFERINGS

Introduction to Cloud Storage Models &
Communication APIls, WAMP-Auto Bahn for 10T, Xively
Cloud for 1oT, Python Web Application Framework,
Django, Designing a REST ful Web API, Amazon Web
services for loT, SkyNet loT Messaging Platform.

Introduction to Cloud Storage Models &
Communication APIs

* The Internet of Things (IoT) involves the internet-connected devices we use
to perform the processes and services that support our way of life.

* Another component set to help 10T succeed is cloud computing, which acts
as a sort of front end.

* Cloud computing Is an increasingly popular service that offers several
advantages to IOT, and is based on the concept of allowing users to perform
normal computing tasks using services delivered entirely over the internet.

* Another example: you have a problem with your mobile device and you
need to reformat it or reinstall the operating system. You can use Google
Photos to upload your photos to internet-based storage. After the reformat or
reinstall, you can then either move the photos back to you device or you can
view the photos on your device from the internet when you want.

* In truth, cloud computing and loT are tightly coupled.
 Cloud computing as a paradigm for big data storage and analytics.
* While 10T Is exciting on its own, the real innovation will come from

combining it with cloud computing.

* The combination of cloud computing and IoT will enable new monitoring
services and powerful processing of sensory data streams.

* For example, sensory data can be uploaded and stored with cloud
computing, later to be'used intelligently for smart monitoring and actuation

with other smart devices.

« Ultimately, the goal is to be able to transform data to insight and drive
productive, cost-effective action from those insights.

* The cloud effectively serves as the brain to improved ¢
optimized internet-based interactions.

« Cloud computing offers a practica

businesses and users to access applications on demanc

any where.

utility-based moc

ecision-ma

King and

el that wil

enable

anytime and from

Blke

servers

||

Appllcatlon Desktong
Monitoring Collaboration @ @
Content Communication
Platfo rm
%=
(v -
Identlty Queue =

Object Storage Runtime Database

Infrastructure
= =
Compute
Block Storage

Tablets

Phones

Cloud computing

Characteristics of Cloud Service

* First, the cloud computing of lolT is an on-demand self service,
meaning it’s there when you need it. Cloud computing is a web-
based service that can be accessed without any special
assistance or permission from other people; however, you need at
minimum some sort of internet access.

* Second, the cloud computing of lol involves broad network
access, meaning it offers several connectivity options. Cloud
computing resources can be accessed through a wide variety of
Internet-connected devices such as tablets, mobile devices and
laptops. This level of convenience means users can access those
resources in a wide variety of manners, even from older devices.
Again, though, this emphasizes the need for network access
points.

* Third, cloud computing allows for resource pooling, meaning
Information can be shared with those who know where and how (have
permission) to access the resource, anytime and anywhere. This lends
to broader collaboration or closer connections with other users. From
an loT perspective, just as we can easily assign an IP address to every
"thing" on the planet, we can share the "address" of the cloud-based
protected and stored information with others and pool resources

Fourth, cloud computing features rapid elasticity, meaning users can
readily scale the service to their needs. You can easily and quickly edit
your software setup, add or remove users, increase storage space, etc.
This characteristic will further empower lol by providing elastic
computing power, storage and networking.

Finally, the cloud computing of loT is a measured service, meaning you
get what you pay for. Providers can easily measure usage statistics
such as storage, processing, bandwidth and active user accounts
Inside your cloud instance.

* Deployment models Deployment in cloud computing comprises
four deployment models: private cloud, public cloud, community
cloud and hybrid cloud.

* A cloud storage APl is an application program interface that
connects a locally-based application to a cloud-based storage
system, so that a user can send data to it and access and work
with data stored in it.

* An application program interface (APIl) is code that allows two
software programs to communicate with each other. The API
defines the correct way for a developer to write a program that
requests services from an operating system (OS) or other
application.

3-types of API

1. Local APIs are the original form, from which the name came. They offer OS or
middleware services to appllcatlon programs. Microsoft's .NET APIs, the TAPI
(Telephony API) for voice applications, and database access APIs are examples
of the local API form.

2. \Web APls are designed to represent widely used resources like HTML pages
and are accessed using a simple HTTP protocol. Any web URL activates a web
APIl. Web APIs are often called REST (representational state transfer) or
RESTful because the publisher of REST interfaces doesn't save any data
internally between requests. As such, requests from many users can be
Intermingled as they would be on the internet.

3. Program APIs are based on remote procedure call (RPC) technology that
makes a remote program component appear to be local to the rest of the software.
Service oriented architecture (SOA) APIls, such as Microsoft's WS-series of APIs,
are program APIs.

WAMP — AutoBahn for IoT

* Web Application Messaging Protocol (WAMP) is a sub-protocol of
Websocket which provides publish-subscribe and remote procedure
call (RPC) messaging patterns.

Roles
Publisher Roles

Dealer

Subscriber

Broker
Caller

Callee

* Transport: Transport is channel that connects two peers.

« Session: Session Is a conversation between two peers that runs over a
transport.

* Client: Clients are peers that can have one or more roles. In publish-
subscribe model client can have following roles:

— Publisher: Publisher publishes events (including payload) to the topic
maintained by the Broker.

— Subscriber: Subscriber subscribes to the topics and receives the events
Including the payload.

In RPC model client can have following roles:

— Caller: Caller issues calls to the remote procedures along with call
arguments.

— Callee: Callee executes the procedures to which the calls are issued by
the caller and returns the results back to the caller.

Router: Routers are peers that perform generic call and event routing.
In publish-subscribe model Router has the role of a Broker:

— Broker: Broker acts as a router and routes messages published to a topic

to all subscribers subscribed to thetopic. In RPC model Router has the
role of a Broker:

— Dealer: Dealer acts a router and routes RPC calls from the Caller to the
Callee and routes results from Callee to Caller.

» Application Code: Application code runs on the Clients (Publisher,
Subscriber, Callee or Caller).

Xively Cloud for loT

e Use of Cloud 10T cloud-based service

. Ttr)]_e stervice provides for the data collection, data points, messages and calculation
objects.

* The service also provisions for the generation and communication of alerts,
triggers and feeds to the user.

« A user is an application or service. The user obtains responses or feeds from the
cloud service.

Pachube platform: for data capture in real-time over the Internet

« Cosm: a chan%ed domain name, where using a concept of console, one can
monitor the feeds

« Xively Is the latest domain name.

A commercial PaaS for the loT/M2M

A data aggregator and data mining website often integrated into the Web of Things
* An IoT PaaS for services and business services.

Xively PaaS services:

e Data visualisation for data of connected sensors to lol devices.

e Graphical plots of collected data.

e Generates alerts.

e Access to historical data

* Generates feeds which can be real-world objects of own or others
Xively HTTP based APls :

e Easy to implement on device hardware acting as clients to Xively
web services

e APls connect to the web service and send data.

* APIs provides services for logging, sharing and displaying sensor
data of all

Xively Support:

*The platform supports the REST, WebSockets and MQTT protocols and
connects the devices to Xively Cloud Services

e Native SDKs for Android, Arduino, ARM mbed, Java, PHP, Ruby, and Python
languages

e Developers can use the workflow of prototyping, deployment and
management through the tools provided at Xively

Xively APls :

e Enable interface with Python, HTMLS5, HTML5 server, tornado
e Interface with WebSocket Server and WebSockets

e Interface with an RPC (Remote Procedure Call).

Xively PaaS services: (PaasS iIs a cloud computing model that provides a complete
on-demand platform for developing, running and managing applications)

e Enables services

* Business services platform which connects the products, including
collaboration products

e Rescue, Boldchat, join.me, and operations to Internet
e Data collection in real-time over Internet

Xively Methods for loT Devices Data:
eConcept of users, feeds, data streams, data points and triggers
e Data feed typically a single location (e.g. a device or devices network),

* Data streams are of individual sensors associated with that location (for
example, ambient lights, temperatures, power consumption).

e Pull or Push (Automatic or Manual Feed) Xively Data formats and Structures

* Number of data formats and structures enable the interaction, data
collection and services

e Support exists for JSON , XML and CSV

 Structures: Tabular, spreadsheet, Excel, Data numbers and Text with a
comma-separated values in file

Xively Uses in lo[/M2M .

* Private and Public Data Access

e Data streams, Data points and Triggers
e Creating and Managing Feeds

e Visualizing Data

Python Web Application Framework - Django

Django Is an oFen source web application framework for developing web
applications in Python.

« A web application framework in general is a collection of solutions, packages and
best practices that allows development of web applications and dynamic websites.

* Django is based on the Model-Template-View architecture and provides a
separation of the data model from the business rules and the user interface.

 Django provides a unified API to a database backend.

 Thus web applications built with Django can work with different databases
without requiring any code changes.

« With this flexibility in web application design combined with the powerful
capabilities of the Python language and the Python ecosystem, Django is best
suited for cloud applications.

* Django consists of an object-relational mapper, a web templating system and a
regular-expression based URL dispatcher.

 Django is Model-Template-View (MTV) framework.

Model:

The model acts as a definition of some stored data and handles the
Interactions with the database. In a web application, the data can be stored
In a relational database, non-relational database, an XML file, etc. A
Django model is a Python class that outlines the variables and methods for

a particular type of data.
Template :

In a typical Django web application, the template is simply an HTML page
with a few extra placeholders. Django’s template language can be used to
create various forms of text files (XML, emall, CSS, Javascript, CSV, etc.)

View :

The view ties the model to the template. The view Is where you write the
code that actually generates the web pages. View determines what data Is
to be displayed, retrieves the data from the database and passes the data to

the template.

Designing a RESTful Web API,

1) REST based communication APIs(Request-Response Based Model)

11) WebSocket based Communication APIs(Exclusive Pair Based
Model)

1) REST based communication APls: Representational State
Transfer(REST) Is a set of architectural principles by which we can
design web services and web APIs that focus on a system‘s
resources and have resource states are addressed and transferred.

* Client-Server: The principle behind client-server constraint is the
separation of concerns. Separation allows client and server to be
Independently developed and updated.

* The REST architectural constraints are as follows: The below figure
shows the communication between client server with REST APIs.

: HTTP
HTTP Client Packet HTTP Server
HTTP Command
REST- GET PUT Authorization
Aware
HTTP Client - > POST DELETE - >
REST-ful D
REST Payload Service
JSON XML
s
: 4
Resources
URI UR
Representations Representabons
|
RE’__QY\K‘

Resource |

» Stateless: Each request from client to server must contain all the info.
Necessary to understand the request, and cannot take advantage of any
stored context on the server.

 Cache-able: Cache constraint requires that the data within a response to a
request be implicitly or explicitly labeled as cache-able or non-cacheable.
If a response Is cacheable, then a client cache is given the right to reuse
that response data for later, equivalent requests.

 Layered System: constraints the behavior of components such that each
component cannot see beyond the Immediate layer with which they are
Interacting.

« User Interface: constraint requires that the method of communication
between a client and a server must be uniform.

« Code on Demand: Servers can provide executable code or scripts for
clients to execute In their context. This constraint is the only one that is
optional.

REST

Server
Client
E
Request (GET, pUT, UPDATE (;(rN[IDLE)LET)
with payload (JSON or F
Response (JSON or XML)
<+
Request (GET, PUT, UPDATE or DELETE)
with payload (JSON or XML) 248
Response (JSON or XML)
—

The Request-Response model used by
REST:

RESTful web service is a collection of
resources which are represented by
URISs.

RESTful web API has a base URI(e.g:
http://example.com/api/tasks/).

The clients and requests to these URIs
using the methods defined by the HTTP
protocol(e.g: GET, PUT, POST or
DELETE).

A RESTful web service can support
various internet media types.

1) WebSocket Based Communication APls

/ﬂebSocket protocol
* WebSocket APIs allow bi- Server
directional, full duplex Clent
communication between ,
clients and servers. |

Initial Handshake
WebSocket APls follow the | Response accepting the request J’ (over HTTP)

pair .

nnection
Request to setup webSocket Co b

exclusive i
. . Data frame
communication model. == i
Data frame
< It Bidirectional Communication
Data frame (over persistent
> WebSocket connection)
Data frame
ﬁ P
Connection close request
—
J» Closing Connection

Connection close response

Amazon Web services for loT

1) Amazon EC2 (Elastic Compute Cloud):

In this example, a connection to EC2 service is first established by calling
boto.ec2.connect_to_region.

* The EC2 region, AWS access key and AWS secret key are passed to this
function. After connecting to EC2 , a new Instance Is launched using the
conn.run_instances function.

 The AMI-ID, Instance type, EC2 key handle and security group are
passed to this function.

1) Amazon AutoScaling:

* A connection to AutoScaling service Is first established by calling
boto.ec2.autoscale.connect_to_region function.

 Launch Configuration :After connecting to AutoScaling service, a new
launch configuration IS created by calling
conn.create_launch_configuration. Launch configuration contains
instructions on how to launch new instances including the AMI-ID,
Instance type, security groups, etc.

» AutoScaling Group:After creating a launch configuration, it is then
assoclated with a new AutoScaling group. AutoScaling group Is
created by calling conn.create_auto_scaling_group. The settings for
AutoScaling group such as the maximum and minimum number of
Instances In the group, the launch configuration, availability zones,
optional load balancer to use with the group, etc.

« AutoScaling Policies :

» After creating an AutoScaling group, the policies for scaling up and scaling
down are defined.

» In this example, a scale up policy with adjustment type Change In Capacity
and scaling_ad justment = 1 is defined.

»Similarly a scale down policy with adjustment type ChangelnCapacity and
scaling_ad justment = -1 is déefined.

e CloudWatch Alarms:

»With the scaling policies defined, the next step Is to create Amazon
CloudWatch alarms that trigger these policies.

» The scale up alarm is defined using the CPUUTtilization metric with the
Average statistic and threshold greater 70% for a period of 60 sec. The scale
up policy created previously Is associated with this alarm. This alarm Is
triggered when the average CPU utilization of the instances in the group
becomes greater than 70% for more than 60 seconds.

> The scale down alarm is defined in a similar manner with a threshold less
than 50%.

l)Amazon S3 (Simple Storage Service):

* In this example, a connection to S3 service Is first established by calling
boto.connect_s3 function.

* The upload to _s3 bucket path function uploads the file to the S3 bucket
specified at the specified path.

IV)Amazon RDS (Relational Database Services):

In this example, a connection to RDS service is first established by calling
boto.rds.connect_to_region function.

.]]'he RDS region, AWS access key and AWS secret key are passed to this
unction.

« After connecting to RDS service, the conn.create_dbinstance function Is
called to launch a new RDS instance.

* The Input parameters to this function include the instance ID, database size,
Instance type, database username, database password, database port,
database engine (e.g. MySQL5.1), database name, security groups, etc.

v) Amazon DynamoDB:

In this example, a connection to DynamoDB service is first
established by calling boto.dynamodb.connect_to region.

 After connecting to DynamoDB service, a schema for the new table Is
created by calling conn.create_schema.

* The schema includes the hash key and range key names and types.

« A DynamoDB table is then created by calling conn.create_table

function with the table schema, read units and write units as input
parameters.

SkyNet l1oT Messaging Platform

« SkyNet is running on a dozen Amazon EC2 servers and has nearly 50,000 registered
smart devices including: Arduinos, Sparks, Raspberry Pis, Intel Galileos, and
BeagleBoards, Matthieu said.

« SkyNet runs as an loT platform-as-a-service (PaaS) as well as a private cloud
through Docker, the new lightweight container technology.

 The platform is written in Node.js and released under an MIT open source license
on GitHub.

* The single SkyNet API supports the following loT protocols: HTTP, REST,
WebSockets, MQTT (Message Queue Telemetry Transport), and CoAP
(Constrained Application Protocol) for guaranteed message delivery and low-
bandwidth satellite communications, Matthieu said.

 Every connected device Is assigned a 36 character UUID and secret token that act as
the device’s strong credentials.

* Security permissions can be assigned to allow device discoverability, configuration,
and messaging.

The End

	Slide 1: UNIT-1 INTRODUCTION AND CONCEPTS
	Slide 2: Introduction to Internet of Things
	Slide 3: Characteristics:
	Slide 4: Applications of IoT:
	Slide 5: Physical Design of IoT
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Logical Design of IoT
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Request-Response model used by REST:
	Slide 22
	Slide 23: IoT Enabling Technologies
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: IoT levels & Deployment Templates
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Domain Specific IoT’s
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 1: Unit-2 IOT AND M2M
	Slide 2: Introduction: M2M
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Difference Between M2M and IoT
	Slide 8: SDN and NFV for IoT
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Need for IoT Systems Management
	Slide 15
	Slide 16: Simple network Management protocol (SNMP)
	Slide 17
	Slide 18
	Slide 19: Network Operator Requirements
	Slide 20
	Slide 21
	Slide 22: NETCONF
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: YANG
	Slide 28
	Slide 29: IoT System management with NETCONF, YANG
	Slide 30
	Slide 31
	Slide 32
	Slide 33: NETOPEER
	Slide 34
	Slide 35
	Slide 36
	Slide 1: Unit- IV IOT PHYSICAL DEVICES & ENDPOINT
	Slide 2: What is an IOT devices ?
	Slide 3: IoT Device Examples
	Slide 4: Basic building blocks of an IoT Device
	Slide 5
	Slide 6: Exemplary Devices: Raspberry Pi
	Slide 7
	Slide 8
	Slide 9: Status LEDs: RPI has five status LEDs. Show in table.
	Slide 10
	Slide 11: Linux on Raspberry Pi
	Slide 12
	Slide 13: Rasbian Linux Desktop
	Slide 14: File explorer on Raspberry Pi
	Slide 15: Console on Raspberry Pi
	Slide 16: browser on Raspberry pi
	Slide 17: Raspberry Pi Configuration tools:
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Other IoT Devices:
	Slide 65
	Slide 66
	Slide 67
	Slide 1: UNIT-5 IOT PHYSICAL SERVERS &CLOUD OFFERINGS
	Slide 2: Introduction to Cloud Storage Models & Communication APIs
	Slide 3
	Slide 4
	Slide 5: Characteristics of Cloud Service
	Slide 6
	Slide 7
	Slide 8: 3-types of API
	Slide 9: WAMP – AutoBahn for IoT
	Slide 10
	Slide 11
	Slide 12: Xively Cloud for IoT
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Python Web Application Framework - Django
	Slide 17
	Slide 18: Designing a RESTful Web API,
	Slide 19
	Slide 20
	Slide 21
	Slide 22: ii) WebSocket Based Communication APIs
	Slide 23: Amazon Web services for IoT
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: SkyNet IoT Messaging Platform
	Slide 29

