
UNIT-1
INTRODUCTION AND CONCEPTS

Introduction to Internet of Things, Physical Design of IoT,
Logical Design of IoT–IoT Enabling Technologies– IoT
levels & Deployment Templates.

Domain Specific IoTs: Introduction–Home Automation–
Cities, Environment–Energy–Retail, Logistics–
Agriculture, Industry, Health & Lifestyle.

Introduction to Internet of Things
• IoT consist of things that have unique identities and are connected to

internet.

• By 2020 there will be a total of 50 billion devices /things connected to
internet.

• IoT is not limited to just connecting things to the internet but also
allow things to communicate and exchange data

• Definition: A dynamic global network infrastructure with self
configuring capabilities based on standard and interoperable
communication protocols where physical and virtual “things” have
identities, physical attributes and virtual personalities and use
intelligent interfaces, and are seamlessly integrated into information
network, often communicate data associated with users and their
environments.

Characteristics:
1) Dynamic & Self Adapting: IoT devices and systems may have the capability

to dynamically adapt with the changing contexts and take actions based
on their operating conditions, users context or sensed environment.

Eg: the surveillance system is adapting itself based on context and changing
conditions.

2) Self Configuring: allowing a large number of devices to work together to
provide certain functionality.

3) Interoperable Communication Protocols: support a number of
interoperable communication protocols and can communicate with other
devices and also with infrastructure.

4) Unique Identity: Each IoT device has a unique identity and a unique
identifier (IP address).

5) Integrated into Information Network: that allow them to communicate and
exchange data with other devices and systems.

Applications of IoT:
1) Home : Smart lighting, Smart Appliances, Intrcasion detection, smoke/Gas
detections.

2) Cities: Smart packing, Smart roads, Structural health monitoring, Emergency
Response.

3) Environment: Weather monitoring, Air pollution monitoring, Noise pollution
monitoring and forest fire detection.

4) Energy: Smart grids, Renewable Energy systems and prognostics.

5) Retail : Inventory management, Smart payment, small vending machines.

6) Logistics : Route generation and scheduling, Fgleet tracking, Shipment
monitoring and Remote vehicle diagnostics.

7) Agriculture : Smart irrigation and green house control.

8) Industry : Machine diagnosis and prognosis, indoor air quality monitoring

9) Health & Life Style: Health and fitness monitoring and wearable electronics.

Physical Design of IoT
1. Thinks in IoT

• The things in IoT refers to IoT devices which have unique identities and
perform remote sensing, actuating and monitoring capabilities.

• IoT devices can exchange data with other connected devices applications.

• It collects data from other devices and process data either locally or
remotely.

• An IoT device may consist of several interfaces for communication to other
devices both wired and wireless.

• These includes
➢(i) I/O interfaces for sensors,
➢(ii) Interfaces for internet connectivity
➢(iii) memory and storage interfaces and
➢(iv) audio/video interfaces.

2. IoT Protocols:

a) Link Layer :

➢ Protocols determine how data is physically sent over the networks physical layer or medium.

➢Link layer determines how packets are coded and signaled by the hardware device over the medium to
which the host is attached.

• Protocols:

• 802.3-Ethernet: IEEE802.3 is collection of wired Ethernet standards for the link layer. Eg: 802.3 uses
co-axial cable; 802.3i uses copper twisted pair connection; 802.3j uses fiber optic connection; 802.3ae
uses Ethernet over fiber.

• 802.11-WiFi: IEEE802.11 is a collection of wireless LAN(WLAN) communication standards
including extensive description of link layer. Eg: 802.11a operates in 5GHz band, 802.11b and
802.11g operates in 2.4GHz band, 802.11n operates in 2.4/5GHz band, 802.11ac operates in 5GHz
band, 802.11ad operates in 60Ghzband.

• 802.16 - WiMax: IEEE802.16 is a collection of wireless broadband standards including exclusive
description of link layer. WiMax provide data rates from 1.5 Mb/s to 1Gb/s.

• .802.15.4-LR-WPAN: IEEE802.15.4 is a collection of standards for low rate wireless personal area
network(LR-WPAN). Basis for high level communication protocols such as ZigBee. Provides data
rate from 40kb/s to250kb/s.

• 2G/3G/4G-Mobile Communication: Data rates from 9.6kb/s(2G) to up to100Mb/s(4G).

B) Network/Internet Layer:

 Responsible for sending IP datagrams from source network to destination network.
Datagrams contains source and destination address.

Protocols:

• IPv4: Internet Protocol version4 is used to identify the devices on a network using a
hierarchical addressing scheme. 32 bit address. Allows total of 2^32addresses.

• IPv6: Internet Protocol version6 uses 128 bit address scheme and allows 2^128 addresses.

• 6LOWPAN:(IPv6overLowpowerWirelessPersonalAreaNetwork)operates in 2.4 GHz
frequency range and data transfer 250 kb/s.

C) Transport Layer:

• Provides end-to-end message transfer capability independent of the underlying network.

• Set up on connection with ACK as in TCP and without ACK as in UDP.

• Provides functions such as error control, segmentation, flow control and congestion
control.

Protocols:

• TCP: Transmission Control Protocol used by web browsers(along with HTTP and
HTTPS), email(along with SMTP, FTP). Connection oriented and stateless protocol. IP
Protocol deals with sending packets, TCP ensures reliable transmission of protocols in
order. Avoids network congestion and congestion collapse.

• UDP: User Datagram Protocol is connectionless protocol. Useful in time sensitive
applications, very small data units to exchange. Transaction oriented and stateless
protocol. Does not provide guaranted delivery.

D) Application Layer: Defines how the applications interface with lower layer protocols to send data
over the network. Enables process-to-process communication using ports.

Protocols:

• HTTP: Hyper Text Transfer Protocol that forms foundation of WWW. Follow request- response
model Stateless protocol.

• CoAP: Constrained Application Protocol for machine-to-machine (M2M) applications with
constrained devices, constrained environment and constrained network. Uses client- server
architecture.

• WebSocket: allows full duplex communication over a single socket connection.

• MQTT: Message Queue Telemetry Transport is light weight messaging protocol based on publish-
subscribe model. Uses client server architecture. Well suited for constrained environment.

• XMPP: Extensible Message and Presence Protocol for real time communication and streaming
XML data between network entities. Support client-server and server-server communication.

• DDS: Data Distribution Service is data centric middleware standards for device-to-device or
machine-to-machine communication. Uses publish-subscribe model.

• AMQP: Advanced Message Queuing Protocol is open application layer protocol for business
messaging. Supports both point-to-point and publish-subscribe model.

Logical Design of IoT
1) IoT Functional Blocks 2) IoT Communication Models 3) IoT Comm. APIs

1) IoT Functional Blocks: Provide the system the capabilities for identification, sensing,
actuation, communication and management.

• Device: An IoT system includes of devices that provide sensing,
actuation, monitoring and control functions.

• Communication: handles the communication for IoTsystem.

• Services: for device monitoring, device control services, data publishing
services and services for device discovery.

• Management: Provides various functions to govern the IoT system.

• Security: Secures IoT system and priority functions such as
authentication ,authorization, message and context integrity and data
security.

• Application: IoT application provide an interface that the users can use
to control and monitor various aspects of IoT system.

2) IoT Communication Models:

1) Request-Response 2) Publish-Subscibe 3)Push-Pull 4) ExclusivePair

1) Request-Response Model: In which the client sends request to the server and the server
replies to requests. Is a stateless communication model and each request-response pair is
independent of others.

2) Publish-Subscibe Model:

• Involves publishers, brokers and
consumers.

• Publishers are source of data.
Publishers send data to the topics
which are managed by the broker.

• Publishers are not aware of the
consumers. Consumers subscribe to
the topics which are managed by the
broker.

• When the broker receives data for a
topic from the publisher, it sends the
data to all the subscribed consumers.

3) Push-Pull Model: in which data producers push data to queues and consumers pull data
from the queues.

Producers do not need to aware of the consumers. Queues help in decoupling the message
between the producers and consumers.

4) Exclusive Pair:

• is bi-directional, fully duplex communication model that uses a persistent connection
between the client and server.

• Once connection is set up it remains open until the client send a request to close the
connection.

• Is a stateful communication model and server is aware of all the open connections.

3) IoT Communication APIs:

a) REST based communication APIs(Request-Response Based Model) :

• Representational State Transfer(REST) is a set of architectural principles by which we
can design web services and web APIs that focus on a systems resources and have
resource states are addressed and transferred.

• Client-Server: The principle behind client-server constraint is the
separation of concerns. Separation allows client and server to be
independently developed and updated.

• Stateless: Each request from client to server must contain all the
information necessary to understand the request, and cannot take advantage
of any stored context on the server.

• Cache-able: Cache constraint requires that the data within a response to a
request be implicitly or explicitly labeled as cache-able or non-cacheable. If
a response is cache-able, then a client cache is given the right to reuse that
response data for later, equivalent requests.

• Layered System: constraints the behavior of components such that each
component cannot see beyond the immediate layer with which they are
interacting.

• User Interface: constraint requires that the method of communication
between a client and a server must be uniform.

• Code on Demand: Servers can provide executable code or scripts for
clients to execute in their context. This constraint is the only one that is
optional.

Request-Response model used by REST:

• RESTful web service is a collection of resources which are represented by URIs.

• RESTful web API has a base URI(e.g: http://example.com/api/tasks/).

• The clients and requests to these URIs using the methods defined by the HTTP protocol(e.g:

GET, PUT, POST or DELETE).

• A RESTful web service can support various internet media types.

b) WebSocket Based Communication APIs: WebSocket APIs allow bi-directional, full
duplex communication between clients and servers. WebSocket APIs follow the exclusive
pair communication model.

IoT Enabling Technologies

• IoT is enabled by several technologies including Wireless Sensor
Networks, Cloud Computing, Big Data Analytics, Embedded
Systems, Security Protocols and architectures, Communication
Protocols, Web Services, Mobile internet and semantic search
engines.

1) Wireless Sensor Network(WSN): Comprises of distributed
devices with sensors which are used to monitor the environmental
and physical conditions. Zig Bee is one of the most popular
wireless technologies used byWSNs.

WSNs used in IoT systems are described as follows:

• Weather Monitoring System: in which nodes collect temp, humidity and
other data, which is aggregated and analyzed.

• Indoor air quality monitoring systems: to collect data on the indoor air
quality and concentration of various gases.

• Soil Moisture Monitoring Systems: to monitor soil moisture at various
locations.

• Surveillance Systems: use WSNs for collecting surveillance data (motion
data detection).

• Smart Grids : use WSNs for monitoring grids at various points.

• Structural Health Monitoring Systems: Use WSNs to monitor the health of
structures(building, bridges) by collecting vibrations from sensor nodes
deployed at various points in the structure.

2) Cloud Computing: Services are offered to users in different forms.

• Infrastructure-as-a-service(IaaS):provides users the ability to provision
computing and storage resources. These resources are provided to the
users as a virtual machine instances and virtual storage.

• Platform-as-a-Service(PaaS): provides users the ability to develop and
deploy application in cloud using the development tools, APIs,
software libraries and services provided by the cloud service provider.

• Software-as-a-Service(SaaS): provides the user a complete software
application or the user interface to the application itself.

3) Big Data Analytics: Some examples of big data generated by IoT are

• Sensor data generated by IoT systems.

• Machine sensor data collected from sensors established in industrial
and energy systems.

• Health and fitness data generated IoT devices.

• Data generated by IoT systems for location and tracking vehicles.

• Data generated by retail inventory monitoring systems

4) Communication Protocols: form the back-bone of IoT systems and enable
network connectivity and coupling to applications.

• Allow devices to exchange data over network.

• Define the exchange formats, data encoding addressing schemes for device and
routing of packets from source to destination.

• It includes sequence control, flow control and retransmission of lost packets.

5) Embedded Systems: is a computer system that has computer hardware and
software embedded to perform specific tasks.

-Embedded System range from low cost miniaturized devices such as digital
watches to devices such as digital cameras, POS terminals, vending machines,
appliances etc.,

IoT levels &
Deployment Templates

IoT Level-1:

• System has a single node that
performs sensing and/or actuation,
stores data, performs analysis and
host the application as shown in fig.

• Suitable for modeling low cost and
low complexity solutions where the
data involved is not big and
analysis requirement are not
computationally intensive.

• An e.g., of IoT Level1 is Home
automation.

IoT Level2:

• has a single node that performs
sensing and/or actuating and local
analysis as shown in fig.

• Data is stored in cloud and
application is usually cloud based.

• Level2 IoT systems are suitable for
solutions where data are involved is
big,

• however, the primary analysis
requirement is not computationally
intensive and can be done locally
itself.

• An e,g., of Level2 IoT system for
Smart Irrigation.

IoT Level3:

• system has a single node.

• Data is stored and analyzed in the
cloud application is cloud based
as shown in fig. Level3

• IoT systems are suitable for
solutions where the data involved
is big and analysis requirements
are computationally intensive.

• An example of IoT level3 system
for tracking package handling.

IoT Level4:

• System has multiple nodes that
perform local analysis.

• Data is stored in the cloud and
application is cloud based as
shown in fig. Level4

• contains local and cloud based
observer nodes which can
subscribe to and receive
information collected in the cloud
from IoT devices.

• An example of a Level4 IoT
system for Noise Monitoring.

IoT Level5:

• System has multiple end nodes and one coordinator node as shown in
fig.

• The end nodes that perform sensing and/or actuation.

• Coordinator node collects data from the end nodes and sends to the
cloud.

• Data is stored and analyzed in the cloud and application is cloud
based.

• Level5 IoT systems are suitable for solution based on wireless sensor
network, in which data involved is big and analysis requirements are
computationally intensive.

• An example of Level5 system for Forest Fire Detection.

IoT Level6:

• System has multiple independent end nodes that perform sensing
and/or actuation and sensed data to the cloud. Data is stored in the
cloud and application is cloud based as shown in fig.

• The analytics component analyses the data and stores the result in the
cloud data base. The results are visualized with cloud based
application.

• The centralized controller is aware of the status of all the end nodes
and sends control commands to nodes.

• An example of a Level6 IoT system for Weather Monitoring System.

Domain Specific IoT’s
1) Home Automation:

a) Smart Lighting: helps in saving energy by adapting the lighting to the
ambient conditions and switching on/off or diming the light when needed.

b) Smart Appliances: make the management easier and also provide status
information to the users remotely.

c) Intrusion Detection: use security cameras and sensors(PIR sensors and door
sensors) to detect intrusion and raise alerts. Alerts can be in the form of SMS
or email sent to the user.

d) Smoke/Gas Detectors: Smoke detectors are installed in homes and buildings
to detect smoke that is typically an early sign of fire. Alerts raised by smoke
detectors can be in the form of signals to a fire alarm system. Gas detectors
can detect the presence of harmful gases such as CO, LPGetc.,

2) Cities:

a) Smart Parking: make the search for parking space easier and convenient
for drivers. Smart parking are powered by IoT systems that detect the no.
of empty parking slots and send information over internet to smart
application backends.

b) Smart Lighting: for roads, parks and buildings can help in saving energy.

c) Smart Roads: Equipped with sensors can provide information on driving
condition, travel time estimating and alert in case of poor driving
conditions, traffic condition and accidents.

d) Structural Health Monitoring: uses a network of sensors to monitor the
vibration levels in the structures such as bridges and buildings.

e) Surveillance: The video feeds from surveillance cameras can be
aggregated in cloud based scalable storage solution.

f) Emergency Response: IoT systems for fire detection, gas and water
leakage detection can help in generating alerts and minimizing their
effects on the critical infrastructures

3. Environment:

a) Weather Monitoring: Systems collect data from a no. of sensors attached and send
the data to cloud based applications and storage back ends. The data collected in
cloud can then be analyzed and visualized by cloud based applications.

b) Air Pollution Monitoring: System can monitor emission of harmful gases(CO2,
CO, NO, NO2 etc.,) by factories and automobiles using gaseous and
meteorological sensors. The collected data can be analyzed to make informed
decisions on pollutions control approaches.

c) Noise Pollution Monitoring: Due to growing urban development, noise levels in
cities have increased and even become alarmingly high in some cities. IoT based
noise pollution monitoring systems use a no. of noise monitoring systems that are
deployed at different places in a city. The data on noise levels from the station is
collected on servers or in the cloud. The collected data is then aggregated to
generate noise maps.

d) Forest Fire Detection: Forest fire can cause damage to natural resources, property
and human life. Early detection of forest fire can help in minimizing damage.

e) River Flood Detection: River floods can cause damage to natural and human
resources and human life. Early warnings of floods can be given by monitoring
the water level and flow rate. IoT based river flood monitoring system uses a no.
of sensor nodes that monitor the water level and flow rate sensors.

4) Energy:

a) Smart Grids: is a data communication network integrated with the electrical
grids that collects and analyze data captured in near-real-time about power
transmission, distribution and consumption. Smart grid technology provides
predictive information and recommendations to utilities, their suppliers, and
their customers on how best to manage power. By using IoT based sensing and
measurement technologies, the health of equipment and integrity of the grid can
be evaluated.

b) Renewable Energy Systems: IoT based systems integrated with the transformers
at the point of interconnection measure the electrical variables and how much
power is fed into the grid. For wind energy systems, closed-loop controls can be
used to regulate the voltage at point of interconnection which coordinate wind
turbine outputs and provides power support.

c) Prognostics: In systems such as power grids, real-time information is collected
using specialized electrical sensors called Phasor Measurment Units(PMUs) at
the substations. The information received from PMUs must be monitored in
real-time for estimating the state of the system and for predicting failures.

5) Retail:

a) Inventory Management: IoT systems enable remote monitoring of
inventory using data collected by RFID readers.

b) Smart Payments: Solutions such as contact-less payments powered by
technologies such as Near Field Communication(NFC) and Bluetooth.

c) Smart Vending Machines: Sensors in a smart vending machines monitors
its operations and send the data to cloud which can be used for predictive
maintenance.

6) Logistics:

a) Route generation & scheduling: IoT based system backed by cloud can
provide first response to the route generation queries and can be scaled
upto serve a large transportation network.

b) Fleet Tracking: Use GPS to track locations of vehicles inreal-time.

c) Shipment Monitoring: IoT based shipment monitoring systems use
sensors such as temp, humidity, to monitor the conditions and send
data to cloud, where it can be analyzed to detect foods poilage.

d) Remote Vehicle Diagnostics: Systems use on-board IoT devices for
collecting data on Vehicle operations(speed, RPMetc.,) and status of
various vehicle subsystems.

7.Agriculture:

a) Smart Irrigation: to determine moisture amount in soil.

b) Green House Control: to improve productivity.

8. Industry:

a) Machine diagnosis and prognosis

b) Indoor Air Quality Monitoring

9. Health and LifeStyle:

a) Health & Fitness Monitoring

b) Wearable Electronics

The End

Unit-2
IOT AND M2M

Introduction –M2M, Difference between IoT and M2M, SDN
and NFV for IoT

IoT System management with NETCONF-YANG: Need for
IoT Systems Management –Simple network Management
protocol (SNMP)–Network operator requirements,
NETCONF, YANG, IOT systems management with
NETCONF, YANG–NETOPEER.

Introduction: M2M

• Machine-to-Machine (M2M) refers to networking of machines(or
devices) for the purpose of remote monitoring and control and data
exchange.

• Term which is often synonymous with IoT is Machine-to-Machine
(M2M).

• IoT and M2M are often used interchangeably.

• Fig. Shows the end-to-end architecture of M2M systems comprises of
M2M area networks, communication networks and application
domain.

• An M2M area network comprises of machines(or M2M nodes) which have
embedded network modules for sensing, actuation and communicating
various communication protocols can be used for M2M LAN such as
ZigBee, Bluetooth, M-bus, Wireless M-Bus etc., These protocols provide
connectivity between M2M nodes within an M2M area network.

• The communication network provides connectivity to remote M2M area
networks.

• The communication network can use either wired or wireless network(IP
based).

• While the M2M are networks use either proprietary or non-IP based
communication protocols, the communication network uses IP-based
network.

• Since non-IP based protocols are used within M2M area network, the M2M
nodes within one network cannot communicate with nodes in an external
network.

• To enable the communication between remote M2M are network, M2M
gateways are used.

• Fig. Shows a block diagram of an M2M gateway.

• The communication between M2M nodes and the M2M gateway is
based on the communication protocols which are simple to the M2M
are network.

• M2M gateway performs protocol translations to enable IP-
connectivity for M2M are networks.

• M2M gateway acts as a proxy performing translations from/to native
protocols to/from Internet Protocol(IP).

• With an M2M gateway, each mode in an M2M area network appears
as a virtualized node for external M2M area networks.

Difference Between M2M and IoT
1) Communication Protocols:

• Commonly uses M2M protocols include ZigBee, Bluetooth, ModBus, M-Bus, Wireless M-Bus tec.,

• In IoT uses HTTP, CoAP, WebSocket , MQTT ,XMPP ,DDS ,AMQP etc.,

2) Machines in M2M Vs Things in IoT:

• Machines in M2M will be homogenous whereas Things in IoT will be heterogeneous.

3) Hardware Vs Software Emphasis:

• the emphasis of M2M is more on hardware with embedded modules, the emphasis of IoT is more on
software.

4) Data Collection &Analysis

• M2M data is collected in point solutions and often in on-premises storage infrastructure.

• The data in IoT is collected in the cloud (can be public, private or hybrid cloud).

5) Application:

• M2M data is collected in point solutions and can be accessed by on-premises applications such as diagnosis
applications, service management applications, and on- premises enterprise applications.

• IoT data is collected in the cloud and can be accessed by cloud applications such as analytics applications,
enterprise applications, remote diagnosis and management applications, etc.

SDN and NFV for IoT

Software Defined Networking(SDN):

• Software-Defined Networking (SDN) is a networking architecture that
separates the control plane from the data plane and centralizes the
network controller.

• Software-based SDN controllers maintain a united view of the network

• The underlying infrastructure in SDN uses simple packet forwarding
hardware as opposed to specialized hardware in conventional networks.

• Key elements of SDN:

1) Centralized Network: Controller With decoupled control and data
planes and centralized network controller, the network
administrators can rapidly configure the network.

2) Programmable Open APIs: SDN architecture supports
programmable open APIs for interface between the SDN application
and control layers (Northbound interface).

3) Standard Communication Interface(OpenFlow): SDN architecture
uses a standard communication interface between the control and
infrastructure layers (Southbound interface). OpenFlow, which is
defined by the Open Networking Foundation (ONF) is the broadly
accepted SDN protocol for the Southbound interface.

Network Function Virtualization(NFV):

• Network Function Virtualization (NFV) is a technology that leverages
virtualization to consolidate the heterogeneous network devices onto
industry standard high volume servers, switches and storage.

• NFV is complementary to SDN as NFV can provide the infrastructure
on which SDN can run.

Key elements of NFV:

1) Virtualized Network Function(VNF): VNF is a software
implementation of a network function which is capable of running
over the NFV Infrastructure (NFVI).

2) NFV Infrastructure(NFVI): NFVI includes compute, network and
storage resources that are virtualized.

3) NFV Management and Orchestration: NFV Management and
Orchestration focuses on all virtualization-specific management
tasks and covers the orchestration and life-cycle management of
physical and/or software resources that support the infrastructure
virtualization, and the life-cycle management of VNFs.

Need for IoT Systems Management
Need for IoT Systems Management Managing multiple devices
within a single system requires advanced management capabilities.

1. Automating Configuration : IoT system management
capabilities can help in automating the system configuration.

2. Monitoring Operational & Statistical Data : Management
systems can help in monitoring operational and statistical data
of a system. This data can be used for fault diagnosis or
prognosis.

3. Improved Reliability: A management system that allows
validating the system configurations before they are put into
effect can help in improving the system reliability.

4. System Wide Configurations : For IoT systems that consists
of multiple devices or nodes, ensuring system wide
configuration can be critical for the correct functioning of the
system.

5. Multiple System Configurations : For some systems it may
be desirable to have multiple valid configurations which are
applied at different times or in certain conditions.

6. Retrieving & Reusing Configurations : Management
systems which have the capability of retrieving configurations
from devices can help in reusing the configurations for other
devices of the same type.

Simple network Management protocol (SNMP)

• SNMP is a well-known and widely used network management
protocol.

• Using to monitor and configuring network such as routers, switches,
servers, printer, etc.,

• NMS (Network Management Station): execute SNMP commands to
monitor and configure the Management device.

• MIB (Management Information Base): which has all the information
of the device attributes to be managed.

Limitation of SNMP:

• SNMP was designed to provide a
simple management interface
between the management
applications and the managed
devices.

• SNMP is a connectionless
protocol which uses UDP as the
transport protocol, making it
unreliable as there was no support
for acknowledgement of requests.

• MIB often lack writable objects without which device
configuration is not possible using SNMP. With the absence
of writable object, SNMP can be used only for device
monitoring and status polling.

• It is difficult to differentiate between configuration and state
data in MIBs.

• Retrieving the current configuration from a device can be
difficult with SNMP, SNMP does not support easy retrival
and playback of configurations.

• Earlier version of SNMP did not have strong security features
making the management information vulnerable to network
intruders. Through security features were added in the later
version of SNMP, it increased the complexity a lot.

Network Operator Requirements
• Ease of use: From the operators point of view, ease of use is the key

requirement for any network management technology.

• Distinction between configuration and state data: Configuration data is
the set of writable data that is required to transform the system from its
initial state to its current state. State data is the data which is not
configurable. State data includes operational data which is collected by
the system at runtime and statistical data which describes the system
performance. For an effective management solution, it is important to
make a clear distinction between configuration and state data.

• Fetch configuration and state data separately: it should be possible to
fetch the configuration and state data separately from the management
device. This is useful when the configuration and state data from
different devices needs to be compared.

• Configuration of the network as a whole: It should be possible for
operators to configure the network as a whole rather than individual
devices. This is important for systems which have multiple devices
and configuring them within one network wide transaction is required
to ensure the correct operation of the system.

• Configuration transactions across devices: Configuration transactions
across multiple device should be supported.

• Configuration deltas: It should be possible to generate the operations
necessary for going from one configuration state to another. The
devices should support configuration deltas with minimal state
changes.

• Dump and restore configurations: It should be possible to dump
configurations from devices and restore configurations to devices.

• Configuration validation: It should be possible to validate
configuration.

• Configuration database schemas: There is a need for standardized
configuration data base schemas or data models across operators.

• Role-based access control: Devices should support role-based access
control model. So that a user is given the minimum access necessary
to perform a required task.

• Consistency configurations: Devices should not arbitrarily reorder
data, so that it is possible to use text processing tools such as diff to
compare configurations.

• Consistency of access control lists: It should be possible to do
consistency checks of access control lists across devices.

• Multiple configuration sets: There should be support for multiple
configurations sets on devices. This way a distinction can be provided
between candidate and active configurations.

• Support for both data oriented and task oriented access control: While
SNMP access control is data-oridented. CLI access control is usually
task oriented. There should be support for both types of access control.

NETCONF
• NETCONF: ‘Network Configuration Protocol’ is a session-based network

management protocol.

• NETCONF allows state or configuration data and manipulating configuration data
on network devices.

• For network management architecture based on NETCONF, the terms client and
management system and the terms server and device are often used interchangeably
(shown in Figure).

• NETCONF works on SSH transport protocol. In addition to Secure Shell Transport
Layer Protocol (SSH), NETCONF implementations can support other transport
mappings such as Blocks Extensible Exchange Protocol (BEEP).

• Transport layer provides end-to-end connectivity and ensure reliable delivery of
messages.

• NETCONF uses XML-encoded Remote Procedure Calls (RPCs) for framing
request and response messages.

• The RPC layer provides mechanism for encoding of RPC calls and notifications.

• NETCONF provides various operations to retrieve and edit
configuration data from network devices.

• The Content Layer consists of configuration and state data which is
XML-encoded.

• The schema of the configuration and state data is defined in a data
modeling language called YANG.

• NETCONF provides a clear separation of the configuration and state
data.

• The configuration data resides within a NETCONF configuration
datastore on the server. The NETCONF server resides on the network
device.

• When a session is established the client and server exchange 'hello"
messages which contain information on their capabilities.

• Client can then send multiple requests to the server for retrieving or
editing the configuration data.

• NETCONF allows the management client to discover the capabilities
of the server (on the device).

• NETCONF gives access to the native capabilities of the device.
NETCONF defines one or more configuration datastores.

• A configuration store contains all the configuration information to
bring the device from its initial state to the operational state.

• NETCONF is a connection oriented protocol and NETCONF
connection persists between protocol operations.

• NETCONF overcomes the limitations of SNMP and is suitable not
only for monitoring state information, but also for configuration
management.

YANG
• YANG is a data modeling language used to model

configuration and state data manipulated by the NETCONF
protocol.

• YANG modules contain the definitions of the configuration
data, state data, RPC calls that can be issued and the format
of the notifications.

• YANG modules defines the data exchanged between the
NETCONF client and server.

• YANG modules having various node types, they are, (shown
in table)

IoT System management with NETCONF, YANG

• YANG is a data modelling language used to model configuration and
state data manipulated by the NETCONF protocol.

• The generic approach of IoT device management with NETCONF-
YANG. Roles of various components are:

1) Management System 2) Management API

3) Transaction Manager 4) Rollback Manager

5) Data Model Manager 6) Configuration Validator

7) Configuration Database 8) Configuration API

9) Data Provider API

1) Management System : The operator uses a management
system to send NETCONF messages to configure the IoT
device and receives state information and notifications from
the device as NETCONF messages.

2) Management API : allows management application to start
NETCONF sessions.

3) Transaction Manager: executes all the NETCONF
transactions and ensures that ACID properties hold true for
the transactions.

4) Rollback Manager : is responsible for generating all the
transactions necessary to rollback a current configuration to
its original state.

5) Data Model Manager : Keeps track of all the YANG data models and
the corresponding managed objects. Also keeps track of the
applications which provide data for each part of a data model.

6) Configuration Validator : checks if the resulting configuration after
applying a transaction would be a valid configuration.

7) Configuration Database : contains both configuration and
operational data.

8) Configuration API : Using the configuration API the application on
the IoT device can be read configuration data from the configuration
datastore and write operational data to the operational datastore.

9) Data Provider API: Applications on the IoT device can register for
callbacks for various events using the Data Provider API. Through
the Data Provider API, the applications can report statistics and
operational ldata.

NETOPEER
• Netopeer is set of open source NETCONF tools built on the

Libnetconf library.

• Netopeer-server: Netopeer-server is a NETCONF protocol server
that runs on the managed device. Netopeer-server provide an
environment for configuring the device using NETCONF RPC
operations and also retrieving the state data from the device.

• Netopeer-agent: Netopeer-agent is the NETCONF protocol agent
running as a SSH/TLS subsystems. NETopeer-agent accepts
incoming NETCONF connection and passes the NETCONF RPC
operations received from the NETCONF client to the Netopeer-
server.

• Netopper-cli: Netopper-cli is a NETCONF client that provide a
command line interface(cli) for interacting with the Netopeer
server. The operator can use the Netopeer-cli from the
management system to send NETCONF RPC operations for
configuring the device and retrieving the state information.

• Netopeer manager: Netopeer-manager allows managing the
YANG and Libnetconf Transaction API(TransAPI) modules on
the Netopeer-server. With Netopeer-manager module can be
loaded or removed from the server.

• Netopeer-configurator: Netopeer-configurator is a tool that can
be used to configure the Netopeer-server.

Steps for IoT device Management with NETCONF-YANG:

1) Create a YANG model of the system that defines the configuration
and state data of the system.

2) Complete the YANG model with the “Inctool” which comes with
Libnetconf.

3) Fill in the IoT device management code in the TransAPI module.

4) Build the callbacks C file to generate the libraryfile.

5) Load the YANG module and the TransAPI module into the Netopeer
server using Netopeer manager tool.

6) The operator can now connect from the management system to the
Netopeer server using the Netopeer CLI.

7) Operator can issue NETCONF commands from the Netopeer CLI.
Command can be issued to change the configuration data, get
operational data or execute an RPC on the IoTdevice.

Unit – III

DESIGN METHOLOGY INTERNET OF THINGS

IoT Platforms Design Methodology, Introduction, IoT
Design Methodology, Case Study on IoT System for Weather
Monitoring

Motivation for Using Python – IoT Systems, logical Design
using Python, installing Python, Python Data Types& Data
Structures, Control flow, functions, Modules, Packages, File
Handling, Data/Time Operations, Classes, Python Packages of
Interest for IoT.

IoT Platforms Design Methodology
Introduction:

• IoT systems comprise of multiple components and deployment tiers.

• IoT defined six different levels. Each level is suited for different applications and has
different component and deployment configurations.

• The IoT systems involve interactions between various components such as IoT devices
and network resources, web services, analytics components, application and database
servers.

• IoT system designers may find it difficult to evaluate the available alternatives.

• IoT system designers often tend to design IoT systems keeping specific
product/services in mind.

• Any problem in systems, the designer updating the system design to add new features
or replacing a particular product/service choice.

IoT Design Methodology
IoT designers often tend to design the system keeping specific products
in mind

Step 1: Purpose & Requirements Specification

Step 2: Process Specification

Step 3 : Domain Model Specification

Step 4: Information Model Specification

Step 5: Service Specifications

Step 6: IoT Level Specification

Step 7:Functional View Specification

Step 8 : Operational View Specification

Step 9: Device & Component Integration

Step 10: Application Development

We will look at a generic

design methodology which

is independent of specific

product, service or

programming language.

IoT systems designed with

this methodology will have

reduced design time,

testing time, maintenance

time, complexity and better
interoperability.

Step 1: Purpose & Requirements Specification

First step is to define the purpose and requirements of the
system. In this step, the system purpose, behavior and
requirements are captured.

Requirements can be:
• Data collection requirements

• Data analysis requirements

• System management requirements

• Security requirements

• User interface requirements

Purpose
A home automation system that allows controlling the lights

remotely using a web application

Behaviour

Home automation system should support two modes: auto and

manual

Auto: System measures the light level in the room and switches

on the light when it is dark

Manual: Allows remotely switching lights on and off

System Management System should provide remote monitoring and control functions

Data Analysis System should perform local analysis of the data

Application Deployment
Application should be deployed locally, but should be accessible

remotely

Security Should provide basic security like user authentication

For home automation system the purpose and requirements specification is as follows:

Step 2: Process Specification

• The Second step in the IoT
design methodology is to
define the process
specification. In this step,
the use cases of the IoT
system are formally
described based on and
derived from the purpose
and requirement
specifications.

Step 3: Domain Model Specifications

• The domain model describes the main concepts, entities and objects in
the domain of the IoT system to be designed.

• Domain model defines the attributes of the objects and relationships
between objects.

• The domain model is independent of any specific technology or
platform.

• Using domain model, system designers can get an understanding of
the IoT domain for which the system is to be designed.

• The entities, objects and concepts defined in the domain model of
home automation system include the following:

Physical Entity

• The physical identifiable objects in the environment

• IoT system provides information about the physical entity (using

sensors) or performs actuation upon the physical entity

Virtual Entity
• Virtual entity is a representation of the physical entity in the digital world

• For every physical entity there is a virtual entity

Device

• Devices provide a medium for interaction between physical and virtual

entities

• Devices are used to gather information from or perform actuation on

physical entities

Resource

• Resources are software components which can be either on-device or

network-resources

• On-device resources are hosted on the device and provide sensing or

actuation (eg: operating system)

• Network-resources include software components that are available on the

network (eg: database)

Service
• Services provide an interface for interacting with the physical entity

• Services access resources to perform operations on physical entities

The domain model specification diagram for home automation system is as shown in the below figure.

Step 4: Information Model Specification

• Information model defines the structure of all the information in the
IoT system.

• To define the information model, we first list the virtual entities. Later
more details like attributes and relationships are added.

The information model specification for home automation system is as shown

below:

Step 5: Service Specifications

• The service specification defines the following:
• Services in the system

• Service types

• Service inputs/output

• Service endpoints

• Service schedules

• Service preconditions

• Service effects

• For each state and attribute in the process specification and information
model, we define a service. Services either change the state of attributes or
retrieve their current values.

The service specification for each state in home automation systems are
as shown below:

Step 6: IoT Level Specification

• The sixth step in the IoT
design methodology is to
define the IoT level for the
system (unit-1, we defined five
IoT deployment levels)

• The deployment level for
home automation system is
shown in the below figure.

Step 7: Functional View Specification

• The functional view defines the functions of the IoT systems grouped
into various functional groups.

• Each functional group provides functionalities for interacting with
concepts in the domain model and information related to the concepts.

• The functional groups in a functional view include: Device,
Communication, Services, Management, Security, and Application.

The functional view specification for home automation system is shown in the below figure:

The mapping between the IoT level and the functional groups
is as shown in the below figure.

Step 8: Operational view specification
• In this step, various options related to the IoT system

deployment and operation are defined, such as:
• Service hosting options

• Storage options

• Device options

• Application hosting options

• The options chosen for home automation system are as
shown in the below figure.

Step 9: Device & Component Integration

• In this step the devices like
sensors, computing devices and
other components are integrated
together.

• The interconnection of different
components in our home
automation system are as shown
in the figure given below.

Step 10: Application Development

• Using all the information
from previous steps, we will
develop the application
(code) for the IoT system.

• The application interface for
home automation system is
shown below.

Case Study on IoT System for
Weather Monitoring

Refer Enclosed PDF and Submit case study with your own idea and
Experience

Motivation for Using Python

• Python is a general-purpose high level programming language and suitable for
providing a solid foundation to the reader in the area of cloud computing.

• The main characteristics of Python are:

1) Multi-paradigm programming language.

2) Python supports more than one programming paradigms including object- oriented
programming and structured programming.

3) Python is an interpreted language and does not require an explicit compilation step.

4) The Python interpreter executes the program source code directly, statement by
statement, as a processor or scripting engine does.

5) Python provides an interactive mode in which the user can submit commands at the
Python prompt and interact with the interpreter directly.

Benefits:

Python Setup

Datatypes

• Every value in Python has a datatype. Since everything is an object in Python programming, data types
are actually classes and variables are instance (object) of these classes.

• There are various data types in Python. Some of the important types are listed below.

Python Numbers

• Integers, floating point numbers and complex numbers falls under Python numbers category.

• They are defined as int, float and complex class in Python.

• We can use the type() function to know which class a variable or a value belongs to and the isinstance()
function to check if an object belongs to a particular class.

Script.py

1. a = 5

2. print(a, "is of type", type(a))

3. a = 2.0

4. print(a, "is of type", type(a))

5. a = 1+2j

6. print(a, "is complex number?", isinstance(1+2j,complex))

>>> a = 1234567890123456789

>>> a

1234567890123456789

>>> b = 0.1234567890123456789

>>> b

0.12345678901234568

>>> c = 1+2j

>>> c

(1+2j)

Python List :

• List is an ordered sequence of items.

• It is one of the most used datatype in Python and is very flexible.

• All the items in a list do not need to be of the same type.

• Declaring a list is pretty straight forward.

• Items separated by commas are enclosed within brackets [].

>>> a = [1, 2.2, 'python']

• We can use the slicing operator [] to extract an item or a range of
items from a list. Index starts form 0 in Python.

Script.py

1. a = [5,10,15,20,25,30,35,40]

2. a[2] = 15

3. print("a[2] = ", a[2])

4. a[0:3] = [5, 10, 15]

5. print("a[0:3] = ", a[0:3])

6. a[5:] = [30, 35, 40]

7. print("a[5:] = ", a[5:])

• Lists are mutable, meaning; value of elements of a list can be altered.

• >>> a = [1,2,3]

• >>> a[2]=4

• >>> a [1, 2, 4]

Python Tuple :

• Tuple is an ordered sequences of items same as list.

• The only difference is that tuples are immutable.Tuples once
created cannot be modified.

• Tuples are used to write-protect data and are usually faster
than list as it cannot change dynamically.

• It is defined within parentheses () where items are separated
by commas.

>>> t = (5,'program', 1+3j)

Script.py

t = (5,'program', 1+3j)

t[1] = 'program'

print("t[1] = ", t[1])

t[0:3] = (5, 'program', (1+3j))

print("t[0:3] = ", t[0:3])

Generates error

Tuples are immutable

t[0] = 10

Python Strings :
• String is sequence of Unicode characters.

• We can use single quotes or double quotes to represent strings.

• Multi-line strings can be denoted using triple quotes, ''' or """.

>>> s = "This is a string"

>>> s = '''a multiline

• Like list and tuple, slicing operator [] can be used with string. Strings are
immutable.

Script.py

• a ={5,2,3,1,4}

• # printing set variable

• print("a = ", a)

• # data type of variable a

• print(type(a))

• We can perform set operations like union, intersection on two sets.

• Set have unique values. They eliminate duplicates. Since, set are
unordered collection, indexing has no meaning.

• Hence the slicing operator [] does not work. It is generally used when
we have a huge amount of data.

• Dictionaries are optimized for retrieving data. We must know the key
to retrieve the value.

• In Python, dictionaries are defined within braces {} with each item
being a pair in the form key:value. Key and value can be of any type.

>>> d = {1:'value','key':2}

>>> type(d)

<class 'dict'>

• We use key to retrieve the respective value. But not the other way
around.

Script.py

• d ={1:'value','key':2}

• print(type(d))

• print("d[1] = ",d[1]);

• print("d['key'] = ", d['key']);

• # Generates error

• print("d[2] = ",d[2]);

Python if...else Statement

Python Nested if Example:

In this program, we input a number check if the number is
positive #or negative or zero and display an appropriate
message

This time we use nested if

num = float(input("Enter a number: ")) if num >= 0:

if num == 0: print("Zero")

else:

print("Positive number")

else:

print("Negative number")

Python for Loop
• The for loop in Python is used to iterate over a sequence (list, tuple,

string) or other iterable objects. Iterating over a sequence is called
traversal.

• Syntax of for Loop

for val in sequence:

Body of for

• Here, val is the variable that takes the value of the item inside the
sequence on each iteration.

• Loop continues until we reach the last item in the sequence.

• The body of for loop is separated from the rest of the code using
indentation.

Syntax

Program to find the sum of all numbers stored in a list

List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

for val in numbers:

sum = sum+val

Output: The sum is 48

print("The sum is", sum)

when you run the program, the output will be:

The sum is 48

The range() function
• We can generate a sequence of numbers using range() function.

• range(10) will generate numbers from 0 to 9 (10 numbers).

• We can also define the start, stop and step size as range(start,stop,step
size).

• step size defaults to 1 if not provided.

• # Output: range(0, 10) print(range(10))

• # Output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

• print(list(range(10)))

• # Output: [2, 3, 4, 5, 6, 7]

• print(list(range(2, 8)))

• # Output: [2, 5, 8, 11, 14, 17]

• print(list(range(2, 20, 3)))

• We can use the range() function in for loops to iterate through a sequence of numbers.

• It can be combined with the len() function to iterate though a sequence using indexing.

• Here is an example.

Program to iterate through a list using indexing

genre = ['pop', 'rock', 'jazz']

iterate over the list using index

for i in range(len(genre)):

print("I like", genre[i])

• When you run the program, the output will be:

I like pop

I like rock

I like jazz

while loop in Python
• The while loop in Python is used to iterate over a block of code as long as the test

expression (condition) is true.

• We generally use this loop when we don't know beforehand, the number of times to
iterate.

• Syntax of while Loop in Python

while test_expression:

Body of while

• In while loop, test expression is checked first.

• The body of the loop is entered only if the test_expression evaluates to True.

• After one iteration, the test expression is checked again.

• This process continues until the test_expression evaluates to False.

• In Python, the body of the while loop is determined through indentation.

• Body starts with indentation and the first unindented line marks the end.

• Python interprets any non-zero value as True.

• None and 0 are interpreted asFalse.

Program to add natural numbers upto sum = 1+2+3+...+n

To take input from the user, n = int(input("Enter n: "))

n = 10

initialize sum and counter

sum = 0

i = 1

while i <= n:

sum = sum + i

i=i+1

updatecounter print the sum

print("The sum is", sum)

When you run the program, the output will be:

Enter n: 10 The sum is 55

Python Modules
• A file containing a set of functions you want to include in the

application is called Module.

Create a Module

• To create a module just save the code you want in a file with the file
extension .py:

Example

• Save this code in a file named mymodule.py

def greeting(name):

print("Hello, " + name)

Use a Module

• Now we can use the module we just created, by using the import
statement:

Example

Import the module named mymodule, and call the greeting
function:

import mymodule

mymodule.greeting("Jonathan")

Note: When using a function from a module,

use the syntax: module_name.function_name.

Variables in Module

• The module can contain functions, as already described, but also
variables of all types(arrays, dictionaries, objects etc):

Example

• Save this code in the file mymodule.py

person1 = {"name": "John","age": 36,"country": "Norway"}

Example

• Import the module named mymodule, and access the person1
dictionary: import mymodule

a = mymodule.person1["age"]

print(a)

Naming a Module

• You can name the module file whatever you like, but it must have the
file extension .py

Re-naming a Module

• You can create an alias when you import a module, by using the as
keyword:

Example

• Create an alias for mymodule called mx:

import mymodule as mx

a = mx.person1["age"]

print(a)

Built-in Modules

• There are several built-in modules in Python, which you can import
whenever you like.

Example

Import and use the platform module:

import platform

x = platform.system()

print(x)

Using the dir() Function

• There is a built-in function to list all the function names (or variable
names) in a module. The dir() function:

Example

List all the defined names belonging to the platform module:

import platform

x = dir(platform)

print(x)

Note: The dir() function can be used on all modules, also the ones you
create yourself.

Import from Module

• You can choose to import only parts from a module, by using the from
keyword.

Example

The module named mymodule has one function and one dictionary:

def greeting(name):

print("Hello, " + name)

person1 = {"name": "John", "age": 36, "country": "Norway"}

Example

Import only the person1 dictionary from the module:

from mymodule import person1

print (person1["age"])

• Note: When importing using the from keyword, do not use the module
name when referring to elements in the module.

• Example: person1["age"], not mymodule.person1["age"].

Packages :
• We don't usually store all of our files in our computer in the same location.

• We use a well- organized hierarchy of directories for easier access. Similar
files are kept in the same directory, for example, we may keep all the songs
in the "music" directory.

• Similarly, Python has packages for directories and modules for files.

• As our application program grows larger in size with a lot of modules, we
place similar modules in one package and different modules in different
packages. This makes a project (program) easy to manage and conceptually
clear.

• Similar, as a directory can contain sub-directories and files, a Python
package can have sub- packages and modules.

• A directory must contain a file namedinit.py in order for Python to consider
it as a package.

• This file can be left empty but we generally place the initialization code for
that package in this file.

Package Module Structure in Python Programming Importing module from a package

• We can import modules from packages using the dot (.) operator. For example, if want to import the start
module in the above example, it is done as follows.

import Game.Level.start

• Now if this module contains a function named select_difficulty(), we must use the full name to reference it.

Game.Level.start.select_difficulty(2)

• If this construct seems lengthy, we can import the module without the package prefix as follows.

from Game.Level import start

• We can now call the function simply as follows.

start.select_difficulty(2)

• Yet another way of importing just the required function (or class or variable) form a module within a
package would be as follows.

from Game.Level.start import select_difficulty

• Now we can directly call this function.

select_difficulty(2)

• Although easier, this method is not recommended. Using the full namespace avoids confusion and prevents
two same identifier names from colliding. While importing packages, Python looks in the list of directories
defined in sys.path, similar as for module search path.

Files
• File is a named location on disk to store related information.

• It is used to permanently store data in a non-volatile memory (e.g. hard
disk).

• Since, random access memory (RAM) is volatile which loses its data when
computer is turned off, we use files for future use of the data.

• When we want to read from or write to a file we need to open it first. When
we are done, it needs to be closed, so that resources that are tied with the
file are freed.

• Hence, in Python, a file operation takes place in the following order.

1. Open a file

2. Read or write (perform operation)

3. Close the file

How to open a file?
>>> f=open("test.txt") # open file in current directory

>>> f = open("C:/Python33/README.txt") # specifying full path

Mode Description

'r‘ Open a file for reading. (default)

'w’ Open a file for writing. Creates a new file if it does not exist or truncates the file if it
exists.

'x' Open a file for exclusive creation. If the file already exists, the operation fails.

'a' Open for appending at the end of the file without truncating it. Creates a new file if it
does not exist.

't' Open in text mode. (default)

'b' Open in binary mode.

'+' Open a file for updating (reading and writing)

f=open("test.txt") # equivalent to 'r' or 'rt'

f = open("test.txt",'w') # write in text mode

f = open("img.bmp",'r+b') # read and write in binary mode

How to close a file Using Python?

• A safer way is to use a try...finally block. try:

f = open("test.txt",encoding = 'utf-8') # perform file operations

• finally:

f.close()

How to write to File Using Python?

• with open("test.txt",'w',encoding = 'utf-8') as f:

f.write("my first file\n")

f.write("This file\n\n")

f.write("contains three lines\n")

How to read files in Python?

>>> f = open("test.txt",'r',encoding = 'utf-8')
>>> f.read(4) # read the first 4 data
'This'
>>>f.read(4) # read the next 4 data
' is'
>>>f.read() # read in the rest till end of file
'my first file\nThis file\n contains three lines\n'
>>> f.read() # further reading returns empty sting ''
>>>f.tell() # get the current file position 56
>>> f.seek(0) # bring file cursor to initial position 0
>>> print(f.read()) # read the entire file This is my first file

Method Description

close() Close an open file. It has no effect if the file is already closed.

detach() Separate the underlying binary buffer from the TextIOBase and return it.

fileno() Return an integer number (file descriptor) of the file.

flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.

read(n) Read at most n characters form the file. Reads till end of file if it is negative or None.

readable() Returns True if the file stream can be read from.

readline(n=-1) Read and return one line from the file. Reads in at most n bytes if specified.

readlines(n=-1) Read and return a list of lines from the file. Reads in at most n bytes/characters if specified.

seek(offset,from=SE

EK_SET)

Change the file position to offset bytes, in reference to from (start, current, end).

seekable() Returns True if the file stream supports random access.

tell() Returns the current file location.

truncate(size=None) Resize the file stream to size bytes. If size is not specified, resize to current location.

writable() Returns True if the file stream can be written to.

write(s) Write string s to the file and return the number of characters written.

writelines(lines) Write a list of lines to the file.

Date & time Operation

import datetime

x = datetime.datetime.now()
print(x)

Date Output:

When we execute the code from the example above the result will be:

2024-09-30 18:29:30.670698

Classes:

• A Class is like an object constructor.

• Create a class named MyClass, with a property named
x:

class MyClass:
x = 5

• Now we can use the class named MyClass to create
objects:

p1 = MyClass()
print(p1.x)

Python Packages of Interest for IoT

• JSON – JavaScript Object Notation

• XML – Extensible Markup Language

• HTTPLib & URLLib (Hyper Text Transfer Protocol Lib &
Uniform Resource Locator Lib)

• SMTPLib – Simple mail transfer Protocol

JSON:

• Easy to read and write data-interchange format.

• Built into two structures: a collection of name-value pairs (python
dictionary) and ordered lists of values (python list)

• Is used for serializing and transmitting structed data over a network
connection.

• Ex.: transmitting data between a server and web application.

XML:

• Is a data format for structured document interchange.

• The Phython minidom Library provides a minimal implementation of
the document object model interface and has an API similar to that in
other language.

HTTPLib & URLLib:

• Used in network/internet programming.

• HTTPLib is an HTTP Client library and URLLib is library for fetching
URLs

SMTP Lib:

• Which handles sending email and routing email between mail servers.

• The python smtplib modeule provides an SMTP client session object that
can be used to send email.

• To send an email, first connection is established with the SMTP server by
calling smtplib.SMTP with the SMTP server name and port.

• The user name and password provided arethen used to login into the server.

• The email is then sent by calling server.sendmail function with the form
address, to address list and message as input parameters.

Unit- IV
IOT PHYSICAL DEVICES & ENDPOINT

What is an IOT devices, Exemplary Devices: Raspberry Pi, About the

Board, Linux on Raspberry Pi, Raspberry Pi Interfaces, Programming

Raspberry Pi with Python–Other IoT Devices.

What is an IOT devices ?

• A "Thing" in Internet of Things (IoT) can be any object that has a
unique identifier and which can send/receive data (including user data)
over a network (e.g., smart phone, smartTV, computer, refrigerator,
car, etc.).

• IoT devices are connected to the Internet and send information about
themselves or about their surroundings (e.g. information sensed by the
connected sensors) over a network (to other devices or servers/storage)
or allow actuation upon the physical entities/environment around them
remotely

IoT Device Examples

• A home automation device that allows remotely monitoring the status
of appliances and controlling the appliances.

• An industrial machine which sends information abouts its operation
and health monitoring data to a server.

• A car which sends information about its location to a cloud-based
service.

• A wireless-enabled wearable device that measures data about a person
such as the number of steps walked and sends the data to a cloud-
based service.

Basic building blocks of an IoT Device

• Sensing: Sensors can be either on-board the IoT device or attached to
the device.

• Actuation: IoT devices can have various types of actuators attached
that allow taking actions upon the physical entities in the vicinity of
the device.

• Communication: Communication modules are responsible for sending
collected data to other devices or cloud-based servers/storage and
receiving data from other devices and commands from remote
applications.

• Analysis & Processing: Analysis and processing modules are
responsible for making sense of the collected data.

Exemplary Devices: Raspberry Pi
• Raspberry Pi is a low-cost mini-computer with the physical size of a credit

card.

• Raspberry Pi runs various flavors of Linux and can perform almost all tasks
that a normal desktop computer can do.

• Raspberry Pi also allows interfacing sensors and actuators through the
general purpose I/O pins. Since Raspberry Pi runs Linux operating system,
it supports Python "out of the box".

About the Board:

• Processor & RAM: Raspberry Pi(RPI) is based on an ARM processor. The
latest version of Raspberry Pi comes with 700 MHz Low power
ARM11761z-F processor and 512 MB SDRAM.

• USB Ports: RPI comes with two USB 2.0 ports. The USB ports on RPI can
provide a current upto 100mA. For connecting devices that draw current
more than 100mA,

• Ethernet Ports: RPI comes with standards RJ45 Ethernet Port. You can
connect an Ethernet cable or a USB with adapter to provide Internet
connectivity.

• HDMI Output: The HDMI port on RPI provides both video and audio
output. You can connect the RPI to a monitor using an HDMI cable. For
monitors that have a DVI port but no HDMI port, you can use an HDMI to
DVI adapter/cable.

• Composite Video output: RPI comes with a composite video output with an
RCA jack that supports both PAL and NTSC video output. The RCA jack
can be used to connect old televisions that have an RCA input only.

• Audio output: Raspberry Pi has a 3.5mm audio output jack. This audio jack
is used for providing audio output to old televisions along with the RCA
jack for video. The audio quality from this jack is inferior to the HDMI
output.

• GPIO Pins: RPI comes with a number of general-purpose input/output pins
whose in RPI GPIO headers. There are four types of pins on RPI true GPIO
pins. I2C interface pins, SPI interface pins and serial Rx and Tx pins.

• Display Serial Interface(DSI): The DSI interface can be used to connect an LCD
panel to RPI.

• Camera Serial Interface (CSI): The CSI Interface can be used to connect a
camera module to RPI.

• SD Card slot: RPI does no have a built in operating system and storage, you can
plug-in an SD card loaded with a Linux image to the SD card slot. You will
require at least an 8 GB SD card for setting up NOOBS (New out-of-the-Box
Software).

• Power Input: RPI has a micro-USB connector for power input

• Status LEDs: RPI has five status LEDs. Show in table.

Status LED Function

ACT SD card access

PWR 3.3v power is present

FDX Full duplex LAN connected

LNK Link / Network activity

100 100 Mbit LAN connected

Linux on Raspberry Pi

1. Raspbian: Raspbian Linux is a Debian Wheezy port optimized for
Raspberry Pi.

2. Arch: Arch is an Arch Linux port for AMD devices.

3. Pidora: Pidora Linux is a Fedora Linux optimized for Raspberry Pi.

4. RaspBMC: RaspBMC is an XBMC media-center distribution for
Raspberry Pi.

5. OpenELEC: OpenELEC is a fast and user-friendly XBMC media-
center distribution.

6. RISC OS: RISC OS is a very fast and compact operating system.

Rasbian Linux Desktop

File explorer on Raspberry Pi

Console on Raspberry Pi

browser on Raspberry pi

Raspberry Pi Configuration tools:

Other IoT Devices:

The End

UNIT-5
IOT PHYSICAL SERVERS &CLOUD OFFERINGS

Introduction to Cloud Storage Models &
Communication APIs, WAMP-Auto Bahn for IoT, Xively
Cloud for IoT, Python Web Application Framework,
Django, Designing a REST ful Web API, Amazon Web
services for IoT, SkyNet IoT Messaging Platform.

Introduction to Cloud Storage Models &
Communication APIs

• The Internet of Things (IoT) involves the internet-connected devices we use
to perform the processes and services that support our way of life.

• Another component set to help IoT succeed is cloud computing, which acts
as a sort of front end.

• Cloud computing is an increasingly popular service that offers several
advantages to IOT, and is based on the concept of allowing users to perform
normal computing tasks using services delivered entirely over the internet.

• Another example: you have a problem with your mobile device and you
need to reformat it or reinstall the operating system. You can use Google
Photos to upload your photos to internet-based storage. After the reformat or
reinstall, you can then either move the photos back to you device or you can
view the photos on your device from the internet when you want.

• In truth, cloud computing and IoT are tightly coupled.

• Cloud computing as a paradigm for big data storage and analytics.

• While IoT is exciting on its own, the real innovation will come from
combining it with cloud computing.

• The combination of cloud computing and IoT will enable new monitoring
services and powerful processing of sensory data streams.

• For example, sensory data can be uploaded and stored with cloud
computing, later to be used intelligently for smart monitoring and actuation
with other smart devices.

• Ultimately, the goal is to be able to transform data to insight and drive
productive, cost-effective action from those insights.

• The cloud effectively serves as the brain to improved decision-making and
optimized internet-based interactions.

• Cloud computing offers a practical utility-based model that will enable
businesses and users to access applications on demand anytime and from
any where.

Characteristics of Cloud Service
• First, the cloud computing of IoT is an on-demand self service,

meaning it’s there when you need it. Cloud computing is a web-
based service that can be accessed without any special
assistance or permission from other people; however, you need at
minimum some sort of internet access.

• Second, the cloud computing of IoT involves broad network
access, meaning it offers several connectivity options. Cloud
computing resources can be accessed through a wide variety of
internet-connected devices such as tablets, mobile devices and
laptops. This level of convenience means users can access those
resources in a wide variety of manners, even from older devices.
Again, though, this emphasizes the need for network access
points.

• Third, cloud computing allows for resource pooling, meaning
information can be shared with those who know where and how (have
permission) to access the resource, anytime and anywhere. This lends
to broader collaboration or closer connections with other users. From
an IoT perspective, just as we can easily assign an IP address to every
"thing" on the planet, we can share the "address" of the cloud-based
protected and stored information with others and pool resources

• Fourth, cloud computing features rapid elasticity, meaning users can
readily scale the service to their needs. You can easily and quickly edit
your software setup, add or remove users, increase storage space, etc.
This characteristic will further empower IoT by providing elastic
computing power, storage and networking.

• Finally, the cloud computing of IoT is a measured service, meaning you
get what you pay for. Providers can easily measure usage statistics
such as storage, processing, bandwidth and active user accounts
inside your cloud instance.

• Deployment models Deployment in cloud computing comprises
four deployment models: private cloud, public cloud, community
cloud and hybrid cloud.

• A cloud storage API is an application program interface that
connects a locally-based application to a cloud-based storage
system, so that a user can send data to it and access and work
with data stored in it.

• An application program interface (API) is code that allows two
software programs to communicate with each other. The API
defines the correct way for a developer to write a program that
requests services from an operating system (OS) or other
application.

3-types of API
1. Local APIs are the original form, from which the name came. They offer OS or
middleware services to application programs. Microsoft's .NET APIs, the TAPI
(Telephony API) for voice applications, and database access APIs are examples
of the local API form.

2. Web APIs are designed to represent widely used resources like HTML pages
and are accessed using a simple HTTP protocol. Any web URL activates a web
API. Web APIs are often called REST (representational state transfer) or
RESTful because the publisher of REST interfaces doesn't save any data
internally between requests. As such, requests from many users can be
intermingled as they would be on the internet.

3. Program APIs are based on remote procedure call (RPC) technology that
makes a remote program component appear to be local to the rest of the software.
Service oriented architecture (SOA) APIs, such as Microsoft's WS-series of APIs,
are program APIs.

WAMP – AutoBahn for IoT

• Web Application Messaging Protocol (WAMP) is a sub-protocol of
Websocket which provides publish-subscribe and remote procedure
call (RPC) messaging patterns.

• Transport: Transport is channel that connects two peers.

• Session: Session is a conversation between two peers that runs over a
transport.

• Client: Clients are peers that can have one or more roles. In publish-
subscribe model client can have following roles:

– Publisher: Publisher publishes events (including payload) to the topic
maintained by the Broker.

– Subscriber: Subscriber subscribes to the topics and receives the events
including the payload.

In RPC model client can have following roles:

– Caller: Caller issues calls to the remote procedures along with call
arguments.

– Callee: Callee executes the procedures to which the calls are issued by
the caller and returns the results back to the caller.

Router: Routers are peers that perform generic call and event routing.

In publish-subscribe model Router has the role of a Broker:

– Broker: Broker acts as a router and routes messages published to a topic
to all subscribers subscribed to thetopic. In RPC model Router has the
role of a Broker:

– Dealer: Dealer acts a router and routes RPC calls from the Caller to the
Callee and routes results from Callee to Caller.

• Application Code: Application code runs on the Clients (Publisher,
Subscriber, Callee or Caller).

Xively Cloud for IoT
• Use of Cloud IoT cloud-based service

• The service provides for the data collection, data points, messages and calculation
objects.

• The service also provisions for the generation and communication of alerts,
triggers and feeds to the user.

• A user is an application or service. The user obtains responses or feeds from the
cloud service.

Pachube platform: for data capture in real-time over the Internet

• Cosm: a changed domain name, where using a concept of console, one can
monitor the feeds

• Xively is the latest domain name.

A commercial PaaS for the IoT/M2M

• A data aggregator and data mining website often integrated into the Web of Things

• An IoT PaaS for services and business services.

Xively PaaS services:
• Data visualisation for data of connected sensors to IoT devices.
• Graphical plots of collected data.
• Generates alerts.
• Access to historical data
• Generates feeds which can be real-world objects of own or others
Xively HTTP based APIs :
• Easy to implement on device hardware acting as clients to Xively
web services
• APIs connect to the web service and send data.
• APIs provides services for logging, sharing and displaying sensor
data of all

Xively Support:
•The platform supports the REST, WebSockets and MQTT protocols and

connects the devices to Xively Cloud Services
• Native SDKs for Android, Arduino, ARM mbed, Java, PHP, Ruby, and Python
languages
• Developers can use the workflow of prototyping, deployment and
management through the tools provided at Xively
Xively APIs :
• Enable interface with Python, HTML5, HTML5 server, tornado
• Interface with WebSocket Server and WebSockets
• Interface with an RPC (Remote Procedure Call).
Xively PaaS services: (PaaS is a cloud computing model that provides a complete
on-demand platform for developing, running and managing applications)

• Enables services
• Business services platform which connects the products, including
collaboration products
• Rescue, Boldchat, join.me, and operations to Internet
• Data collection in real-time over Internet

Xively Methods for IoT Devices Data:
•Concept of users, feeds, data streams, data points and triggers
• Data feed typically a single location (e.g. a device or devices network),
• Data streams are of individual sensors associated with that location (for
example, ambient lights, temperatures, power consumption).
• Pull or Push (Automatic or Manual Feed) Xively Data formats and Structures
• Number of data formats and structures enable the interaction, data
collection and services
• Support exists for JSON , XML and CSV
• Structures: Tabular, spreadsheet, Excel, Data numbers and Text with a
comma-separated values in file
Xively Uses in IoT/M2M :
• Private and Public Data Access
• Data streams, Data points and Triggers
• Creating and Managing Feeds
• Visualizing Data

Python Web Application Framework - Django
Django is an open source web application framework for developing web
applications in Python.

• A web application framework in general is a collection of solutions, packages and
best practices that allows development of web applications and dynamic websites.

• Django is based on the Model-Template-View architecture and provides a
separation of the data model from the business rules and the user interface.

• Django provides a unified API to a database backend.

• Thus web applications built with Django can work with different databases
without requiring any code changes.

• With this flexibility in web application design combined with the powerful
capabilities of the Python language and the Python ecosystem, Django is best
suited for cloud applications.

• Django consists of an object-relational mapper, a web templating system and a
regular-expression based URL dispatcher.

• Django is Model-Template-View (MTV) framework.

Model:

The model acts as a definition of some stored data and handles the
interactions with the database. In a web application, the data can be stored
in a relational database, non-relational database, an XML file, etc. A
Django model is a Python class that outlines the variables and methods for
a particular type of data.

Template :

In a typical Django web application, the template is simply an HTML page
with a few extra placeholders. Django’s template language can be used to
create various forms of text files (XML, email, CSS, Javascript, CSV, etc.)

View :

The view ties the model to the template. The view is where you write the
code that actually generates the web pages. View determines what data is
to be displayed, retrieves the data from the database and passes the data to
the template.

Designing a RESTful Web API,

i) REST based communication APIs(Request-Response Based Model)

ii) WebSocket based Communication APIs(Exclusive Pair Based
Model)

i) REST based communication APIs: Representational State
Transfer(REST) is a set of architectural principles by which we can
design web services and web APIs that focus on a system‘s
resources and have resource states are addressed and transferred.

• Client-Server: The principle behind client-server constraint is the
separation of concerns. Separation allows client and server to be
independently developed and updated.

• The REST architectural constraints are as follows: The below figure
shows the communication between client server with REST APIs.

• Stateless: Each request from client to server must contain all the info.
Necessary to understand the request, and cannot take advantage of any
stored context on the server.

• Cache-able: Cache constraint requires that the data within a response to a
request be implicitly or explicitly labeled as cache-able or non-cacheable.
If a response is cacheable, then a client cache is given the right to reuse
that response data for later, equivalent requests.

• Layered System: constraints the behavior of components such that each
component cannot see beyond the immediate layer with which they are
interacting.

• User Interface: constraint requires that the method of communication
between a client and a server must be uniform.

• Code on Demand: Servers can provide executable code or scripts for
clients to execute in their context. This constraint is the only one that is
optional.

• The Request-Response model used by

REST:

• RESTful web service is a collection of

resources which are represented by

URIs.

• RESTful web API has a base URI(e.g:

http://example.com/api/tasks/).

• The clients and requests to these URIs

using the methods defined by the HTTP

protocol(e.g: GET, PUT, POST or

DELETE).

• A RESTful web service can support

various internet media types.

ii) WebSocket Based Communication APIs

• WebSocket APIs allow bi-
directional, full duplex
communication between
clients and servers.
WebSocket APIs follow the
exclusive pair
communication model.

Amazon Web services for IoT

i) Amazon EC2 (Elastic Compute Cloud):

In this example, a connection to EC2 service is first established by calling
boto.ec2.connect_to_region.

• The EC2 region, AWS access key and AWS secret key are passed to this
function. After connecting to EC2 , a new instance is launched using the
conn.run_instances function.

• The AMI-ID, instance type, EC2 key handle and security group are
passed to this function.

ii) Amazon AutoScaling:

• A connection to AutoScaling service is first established by calling
boto.ec2.autoscale.connect_to_region function.

• Launch Configuration :After connecting to AutoScaling service, a new
launch configuration is created by calling
conn.create_launch_configuration. Launch configuration contains
instructions on how to launch new instances including the AMI-ID,
instance type, security groups, etc.

• AutoScaling Group:After creating a launch configuration, it is then
associated with a new AutoScaling group. AutoScaling group is
created by calling conn.create_auto_scaling_group. The settings for
AutoScaling group such as the maximum and minimum number of
instances in the group, the launch configuration, availability zones,
optional load balancer to use with the group, etc.

• AutoScaling Policies :

➢After creating an AutoScaling group, the policies for scaling up and scaling
down are defined.

➢In this example, a scale up policy with adjustment type Change In Capacity
and scaling_ad justment = 1 is defined.

➢Similarly a scale down policy with adjustment type ChangeInCapacity and
scaling_ad justment = -1 is defined.

• CloudWatch Alarms:

➢With the scaling policies defined, the next step is to create Amazon
CloudWatch alarms that trigger these policies.

➢ The scale up alarm is defined using the CPUUtilization metric with the
Average statistic and threshold greater 70% for a period of 60 sec. The scale
up policy created previously is associated with this alarm. This alarm is
triggered when the average CPU utilization of the instances in the group
becomes greater than 70% for more than 60 seconds.

➢The scale down alarm is defined in a similar manner with a threshold less
than 50%.

iii)Amazon S3 (Simple Storage Service):

• In this example, a connection to S3 service is first established by calling
boto.connect_s3 function.

• The upload_to_s3_bucket_path function uploads the file to the S3 bucket
specified at the specified path.

iv)Amazon RDS (Relational Database Services):

In this example, a connection to RDS service is first established by calling
boto.rds.connect_to_region function.

• The RDS region, AWS access key and AWS secret key are passed to this
function.

• After connecting to RDS service, the conn.create_dbinstance function is
called to launch a new RDS instance.

• The input parameters to this function include the instance ID, database size,
instance type, database username, database password, database port,
database engine (e.g. MySQL5.1), database name, security groups, etc.

v) Amazon DynamoDB:

 In this example, a connection to DynamoDB service is first
established by calling boto.dynamodb.connect_to_region.

• After connecting to DynamoDB service, a schema for the new table is
created by calling conn.create_schema.

• The schema includes the hash key and range key names and types.

• A DynamoDB table is then created by calling conn.create_table
function with the table schema, read units and write units as input
parameters.

SkyNet IoT Messaging Platform
• SkyNet is running on a dozen Amazon EC2 servers and has nearly 50,000 registered

smart devices including: Arduinos, Sparks, Raspberry Pis, Intel Galileos, and
BeagleBoards, Matthieu said.

• SkyNet runs as an IoT platform-as-a-service (PaaS) as well as a private cloud
through Docker, the new lightweight container technology.

• The platform is written in Node.js and released under an MIT open source license
on GitHub.

• The single SkyNet API supports the following IoT protocols: HTTP, REST,
WebSockets, MQTT (Message Queue Telemetry Transport), and CoAP
(Constrained Application Protocol) for guaranteed message delivery and low-
bandwidth satellite communications, Matthieu said.

• Every connected device is assigned a 36 character UUID and secret token that act as
the device’s strong credentials.

• Security permissions can be assigned to allow device discoverability, configuration,
and messaging.

The End

	Slide 1: UNIT-1 INTRODUCTION AND CONCEPTS
	Slide 2: Introduction to Internet of Things
	Slide 3: Characteristics:
	Slide 4: Applications of IoT:
	Slide 5: Physical Design of IoT
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Logical Design of IoT
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Request-Response model used by REST:
	Slide 22
	Slide 23: IoT Enabling Technologies
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: IoT levels & Deployment Templates
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Domain Specific IoT’s
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 1: Unit-2 IOT AND M2M
	Slide 2: Introduction: M2M
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Difference Between M2M and IoT
	Slide 8: SDN and NFV for IoT
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Need for IoT Systems Management
	Slide 15
	Slide 16: Simple network Management protocol (SNMP)
	Slide 17
	Slide 18
	Slide 19: Network Operator Requirements
	Slide 20
	Slide 21
	Slide 22: NETCONF
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: YANG
	Slide 28
	Slide 29: IoT System management with NETCONF, YANG
	Slide 30
	Slide 31
	Slide 32
	Slide 33: NETOPEER
	Slide 34
	Slide 35
	Slide 36
	Slide 1: Unit- IV IOT PHYSICAL DEVICES & ENDPOINT
	Slide 2: What is an IOT devices ?
	Slide 3: IoT Device Examples
	Slide 4: Basic building blocks of an IoT Device
	Slide 5
	Slide 6: Exemplary Devices: Raspberry Pi
	Slide 7
	Slide 8
	Slide 9: Status LEDs: RPI has five status LEDs. Show in table.
	Slide 10
	Slide 11: Linux on Raspberry Pi
	Slide 12
	Slide 13: Rasbian Linux Desktop
	Slide 14: File explorer on Raspberry Pi
	Slide 15: Console on Raspberry Pi
	Slide 16: browser on Raspberry pi
	Slide 17: Raspberry Pi Configuration tools:
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Other IoT Devices:
	Slide 65
	Slide 66
	Slide 67
	Slide 1: UNIT-5 IOT PHYSICAL SERVERS &CLOUD OFFERINGS
	Slide 2: Introduction to Cloud Storage Models & Communication APIs
	Slide 3
	Slide 4
	Slide 5: Characteristics of Cloud Service
	Slide 6
	Slide 7
	Slide 8: 3-types of API
	Slide 9: WAMP – AutoBahn for IoT
	Slide 10
	Slide 11
	Slide 12: Xively Cloud for IoT
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Python Web Application Framework - Django
	Slide 17
	Slide 18: Designing a RESTful Web API,
	Slide 19
	Slide 20
	Slide 21
	Slide 22: ii) WebSocket Based Communication APIs
	Slide 23: Amazon Web services for IoT
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: SkyNet IoT Messaging Platform
	Slide 29

