Event Handling and Swings

Event Handling

1) Two Event Handling Mechanisms
2) The Delegation Event Model
a. Events
b. Event Sources
c. Event Listeners
3) Event Classes
4) Sources of Events
5) Event Listener Interfaces

6) Adapter Classes

Swings
1) The Origin of Swing

Swing 1s built on the AW'T

Two Key Features of Swing

Swing Components and Containers
A Simple Swing Application

Event Handling

Create a Swing Applet

Exploring Swing

Lo O

0N O O
SN N S S S S S S

Two Event Handling Mechanisms

d

Event 1s the change 1n the state of the object or source. Events are generated as
result of user interaction with the graphical user interface components.

For example, clicking on a button, moving the mouse, entering a character
through keyboard, selecting an item from list, scrolling the page are the
activities that causes an event to happen.

Event Handling 1s the mechanism that controls the event and decides what
should happen 1if an event occurs. This mechanism have the code which 1s
known as event handler that 1s executed when an event occurs.

The Way in which events are handled changed significantly between the
original version of java 1.e 1.0 and modern versions of java. The Modern
approach 1s called the Delegation Event Model.

This model defines the standard mechanism to generate and handle the events.

Two Event Handling Mechanisms

The Delegation Event Model has the followmng key participants
namely

Source- The source 1s an object on which event occurs. Source 1s
responsible for providing mmformation of the occurred event to its
handler. Java provide us with classes for source object.

Listener - It 1s also known as event handler. Listener 1s responsible for
generating response to an event. 'rom java implementation pomnt of
view the listener 1s also an object. Listener waits until it receives an
event. Once the event 1s received, the listener process the event then
returns.

Two Event Handling Mechanisms

a

The Modern approach to handling events 1s based on the delegation event model, which
defines standard and consistent mechanisms to generate and process events.

A source generates an event and sends it to one or more listeners.

In this schema, the listener simply waits until it receives an event. Once an event 1s
received, the listener processes the event and then returns.

The advantage of this design 1s that the application logic that processes events 1s cleanly
separated from the user mnterface logic that generates those events.

A User mterface element 1s able to “delegate” the processing of an event to a separate
piece of code.

In the delegation Event model, listeners must register with a source n order to receive an
event notification.

This provides an important benefit notifications are sent only to listeners that want or
receive them.

This 1s a more efficient want to handle events than the design used by the old java 1.0

approach.

Event Invokes

Source
crealtes

S

= Event Ll

e Object
Listener Implements Listener
Interface Object

onEvent(EventObj) |[onEvent(EventObj)

In this model, there 1s a source, which generates events.

There 1s a Listener, which can listen to the happenings of an event and mnitiate
an action.

A Listener has to register with a source.

When an event takes place, it 1s notified to the listeners, which are registered
with the source.

The Listener then mitiates an action.

Event Classes

The Classes that represent events are called Event Classes.

EVENT CLASS DESCRIPTION

ActionEvent Generates when a Button 1s pressed, a List item 1s double_clicked, or a Menu

1tem 1s selected.
ItemEvent Generated when a check box or list item 1s clicked
Also occurs when a choice selection 1s made or a checkable Menultem 1s

selected or deselected.

Generated when the value of a TextArea or TextField 1s changed.
Generated when a ScrollBar 1s manipulated

Generated when a component 1s added to or removed form a container.
Generated when mpur is received form the keyboard.

Generated when a component gains or loses keyboard focus.
-

Sources of Events

O An Event sources 1s a GUI Object which generates Events.

L Buttons, ListBoxes and Menus etc., are common Event sources in GUI based
applications. (or)

O The Graphical User Interface Components that generates the Events are called Event

d

Sources.
Some of the User Interface Components that can generate Lvents are

EVENT SOURCE DESCRIPTION

Generates Action Events when the Button 1s Pressed

Generates Item Events when the checkbox 1s Selected or Deselected.

Generates Item Events when the choice 1s changed.
_ Generates Action Events when an item 1s DoubleClicked.
Generates Item Events when a Item 1s Selected or Deselected.
Menultem Generates Action Events when an Menu item 1s Selected.

Generates [tem Events when a Checkable Menu Item 1s Selected and
Deselected.

Generates Adjustment Events when the scroll bar 1s manipulated.
TextComponent Generates text events when the user enters a character.

Window Generates window Events when a window 1s activated, closed, deactivated,
deiconified, 1conified, opened or quit.

EVENT LISTENER

0 When an Event occurs, the event source invokes the appropriate method defined by the
listener and provides an event object as its argument.

O The below table lists commonly used listener interfaces and provides a brief description of
methods that they define.

A ctionListener Defines one method to receive action events

ItemListener Defines one method to recognize when the state of an 1item
changes.
Deﬁnes one method to recognize when a text value changes.

A djustementlastener Defines one method to receive adjustment event.

ontainerListener Defines two method to recognize when a component 1s added to
or removed from a container.

KeyListener Defines three methods to recognize when a key 1s pressed,
released, or typed.

FocusListener Defines two methods to recognize when a component gains or
losses keyboard focus.

EVENT SOURCE EVENT CLASS [EVENT LISTENER

Button Clicked

ActionEvent

Menultem

ItemEvent
ActionEvent

ItemEvent

croll Bar Repositioned AdjustmentEve nt

indow Changed ‘WindowEvent

Focus Changed FocusEvent

Key Pressed KeyEvent

Mouse clicked MouseLvent

Actionlistener

Action Listener

ItemListener

ListSelectionListene r

Action Listener

ItemListener
Action Listener

ItemListener
AdustmentlListener

WindowListener

FocusListener

KeyListener

MouseListener

METHODS LISTENER
INTERFACE

void actionPerformed(ActionEvent ae)

vold actionPerformed(ActionEvent ae) void
itemState Changed (ItemEvent 1e)

void valueChanged(ListSelectionkvent le)

vold actionPerformed(ActionkEvent ae) void
itemState Changed (ItemEvent 1e)

vold actionPerformed(ActionEvent ae) void
itemState Changed (ItemEvent 1e)

void
adjustmentValuee Changed (AdjustmetEvent ae)
vold windowA citivated(WindowEvent we) void
windowClosed(WindowEvent we) void
windowClosig(WindowEvent we) void
windowdeactivated (Windowkvent we) void
windowDeiconified(WindowEvent we) void
windowlIconified(WindowLEvent we) void
windowOpened(WindowEvent we)

vold focusLost(FocusEvent fe) void
focusGain(FocusEvent fe)

void keyPressed(KeyEvent ke) void
keyReleased(KeyEven tke) void
keyTyped(KeyEvent ke)

vold mouseClicked(MouseEvent me) void

Adapter Classes

An Adapter class provides an empty implementation of all methods in an
event listener mnterface.

Adapter classes are usetul when you want to receive and process only some of
the events that are handled by a particular event listener interface.

Commonly used Listener mterfaces implemented by Adapter Classes are

Adapter Clss
ComponentAdapter Componentlistener

CaontaimmerAdapter ContainerListener
FocusAdapter FocusListener
MouseAdapter MousrListener
MouseMotionAdapter MouseMotionListener

‘WindowAdapter Windowlistener

1)

2)

3)

4)

5)

6)

7)

8)

SWING

The Origin of Swing

Swing is built on the AWT

Two Key Features of Swing

Swing Components and Containers
A Simple Swing Application

Event Handling

Create a Swing Applet

Exploring Swing

1) The origin of swing

Q

d

Swing is a set of classes that provide more powerful and flexible GUI Components than

AWT(Abstract Window Toolkit).

Swing 1s a package which contains classes related to graphical components like
text box, check box, radio button etc...

awt (abstract window toolkit) 1s also such package.

So, awt and swing both are packages which contain classes for creating
Graphical User Interface .

The appearance of graphical components , that are created using awt package
will not look consistent because the look and feel of the components depends
on the os on which the application 1s executed.

To overcome this hmitation, java soft people mtroduced swing package ,

through which the components look and feel does not vary from os to os.

2) SWING IS BUILT ON THE AWT

O Although Swing eliminates a number of limitations inherent in the AW, swing
does not replace 1t.

O Instead, swing is built on the foundation of AW'T. This is the reason why the
AWT 1s still a crucial part of java.

O Swing also uses the same event handling mechanism as the AWT.

O Therefore, a basic understanding of the AW and of event handling 1s required

to use swing.

3) TWO KEY FEATURES OF SWING

O Swing was created to address the limitations present in the AW'T.
O It does this through two key features
O Lightweight components
O Pluggable look and feel.
1) Swing components are LightWeight
O Swing components are lightweight, means that they are written entirely in java and do
not map directly to platform-specific peers.
0 Because light weight components do not translate into native peers, the look and feel
of each component i1s determined by swing, not by underlying operating system.

O 1.e Each component will work in a consistent manner across all platforms.

3) TWO KEY FEATURES OF SWING

2) Swing supports a pluggable look and feel

Q
Q

Swing supports a pluggable look and feel(PLAF).

Since swing follows MVC architecture, 1t 1s possible to separate the look and feel of
the component from the logic of the component.

Separating out the look and feel provides a significant advantage

It becomes possible to change the way that a component 1s rendered without affecting
any of 1ts other aspects.

In other words, 1t 1s possible to “plug in” a new look and feel for any given component

without creating any side effects mn the code that uses that component.

3) TWO KEY FEATURES OF SWING

O Instead, swing is built on the foundation of AW'T. This is the reason why the AWT 1s still
a crucial part of java.

O Swing also uses the same event handling mechanism as the AWT.

O Therefore, a basic understanding of the AW'T and of event handling 1s required to use

SWIng.

4) Components and containers

Q

Q

g

Q

U

Swing GUI consists of two key 1tems
1) Components
2) Containers

However, this distinction 1s mostly conceptual because all containers are also
Components

A Component 1s an independent visual control, such as a push button or radio
button. A Container holds a group of components.

Thus, a container 1s a special type of component that 1s designed to hold other
components. Furthermore, 1n order for a component to be displayed, 1t must be
held within a container.

Thus, all Swing GUIs will have at least one container.

Because containers are components, a container can also hold other containers.

4) Components and containers

1) Components

O In general, Swing components are derived from JComponent class.
O JComponent provides the functionality that 1s common to all components.
O All of Swing’s components are represented by classes defined within the package

javax.swing. Notice that all component classes begin with the letter J.

4) Components and containers

2) Containers

Swing defines two types of Containers.

2.1) Top-level containers (or) Heavy Weight Containers

2.2) Non Top-level Containers (or) Light Weight Containers

4) Components and containers

1) Top-level containers (or) Heavy Weight Containers

[The First type of containers supported by Swing are heavy Weight containers
(or) Top-level containers. They are JFrame, JApplet, JDialog, JWindow.

[These containers do not inherit JComponent. They do, however, inherit the
AWT classes Component and Container. So, we call them as Heavy Weight
Containers.

O Top-level containers are defined as those which can be displayed directly on
the desktop.

O The one most commonly used for applications i1s JFrame. The one used for

Applets 1s JApplet.

4) Components and containers

2) Non Top-level Containers (or) LightWeight Containers

[The second type of Containers supported by Swing are Light Weight Containers

(or) Non top-level Containers.

J JPanel comes under Light Weight Containers because 1t inherits from

JComponent.

O Light Weight Components are often used to organize and manage groups of

related controls that are contained within an outer container.

4) Components and containers

1) Top-level Container Panes

O Each top-level container defines a set of window Panes.

d A Window Pane represents a free area of a window where some text or
component can be displayed.

O We have 4 types of window panes available in javax.Swing package.

[These panes can be imagined like transparent sheets lying one below the

other.
 The Four Panes are
1) JGlassPane
2) JRoot Pane
3) JLayeredPane
4) JContentPane

4) Components and containers

JContentPane: This 1s the bottom most pane of all. The pane with which you will
add visual components. In other words, when you add a component, such as a

button, to a top-level container, you will add 1t to the content pane.
To reach this ContentPane, we use getContentPane() method of JFrame class
which returns container class object

ASIMP

5) A Simple Swing Application

mmport java.awt.”;
1Import javax.swing.”;
class Demo2 extends JFrame
{
JLabel 11,12;
JTextkeld t1,t2;
Contaner con;
ButtonGroup rbg;
Demo2()
{
setS1ze(400,400);
con=getContentPane();
con.setLayout(new FlowLayout(FlowLayout.LEFT));
11=new JLabel("Name");
t1=new JTextField(10);
12=new JLabel("DOB'");
t2=new J TextField(10);
rbg=new ButtonGroup();
JRadioButton rbl1=new JRadioButton("male");
JRadioButton rb2=new JRadioButton("female");
con.add(1);
con.add(tl);
con.add(2);
con.add(t2);
rbg.add(rbl);
rbg.add(rb2);
con.add(rbl);
con.add(rb?);

JButton bl=new JButton("'Save");
£ YY) 'II]I] 11\1 \‘11

5) A Simple Swing Application

class Demod

{

public static void main(String args|])

{

Demo2 ob=new Demo2();

ob.setTitle("trail box");

ob.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE); ob.setVisible(true);
}

6) EVENT HANDLING

import javax.swing.*;
import java.applet.”;
/ *
<applet code=Demol width=200 height=200>
</applet> */
public class Demol extends JApplet implements ActionListener
{
JButton bl,b2;
public void 1nit()
{
bl = new JButton("Alpha");
b2 = new JButton("Beta");
bl.addActionListener(this);
b2.addActionListener(this);
add(bl);
add(b2);
}
public void actionPerformed(ActionEvent ae)
{
if (ae.getSource() == bl)
showStatus("Alpha 1s pressed");
else
showStatus("Beta 1s pressed"); }

6) EVENT HANDLING

= Applet Viewer:-... @@

Beta is pressed

7) CREATE A SWING APPLET

import java.awt.*;

import javax.swing.*;

import java.applet.*;

/*

<applet code=AppletDemo width=300 height=300>
</applet> */

public class AppletDemo extends JApplet

{

public void paint(Graphics g)

{
g.drawString(""Hello , This is a Simple Applet Program™, 20,20);

¢ Applet Viewer: AppletDemo 9 =119

Applet started

8) Exploring Swing

1)
2)
3)

4)
5)
6)
7)
8)

JLabel and Imagelcon
JTextField

The swing Buttons
a) Jbutton

b) JRadioButton
c¢) JToggleButton
d) JCheckBox
JTabbedPane
JScrollPane

JLast

JComboBox
JTrees

Exploring Swing

1) JLabel and Imagelcon

O JLabel 1s Swing’s easiest-to-use component.
O Itis a passive component In that it does not respond to user input.
 The text can be changed by the application and not by the user. A JLabel can be
used to display text and/or an 1con.
[The JLabel has the following int type constants that indicate the alignment of the
labels content.
JLabel. CENTER,JLabel. LEFT, JLabel. RIGHT,JLabel. TOP,JLabel. BOTTOM
[JLabel defines several constructors. Here are 3 of them
JLabel(Icon1)// Creates a label using the Icon 1
JLabel(String str)//Creates a Label with the specified String str.
JLabel(String str, Icon i, int align)// Creates a Label using the icon I, String
Str and with the specified Alignment.

Exploring Swing

JLabel class has number of methods. Some of them are
Icon getlcon()//Returns the icon of the Label
String getText()//Returns the text of the Label
void setFont(Font font)//Sets the font for the Label’s text
void setText(String str)//Sets the specified String str as the Label’s content.

Exploring Swing

mmport java.awt.”; import javax.swing.”;
class Ibl extends JFrame

{
JLabel 11,12,13;
Container con;
Icon Imgl,Img2,Img3;
1bl()
{ setSize(400,400); con=getContentPane();
con.setLayout(new FlowLayout(FlowLayout. LEFT));
Imgl=new Imagelcon("lion,pg");
Img2=new Imagelcon("giratfee.jpg");
Img3=new Imagelcon("PBear.jpg");
I1=new JLabel("LION",Imgl,JLabel. LEFT);
[2=new JLabel("GIRAFFLE",Img2,JLabel. LEFT);
I3=new JLabel("POLAR BEAR"Img3,JLabel. LEFT);
con.add(I1); con.add(I2);con.add(I3);
}
}
class JLabelDemo
{
public static void main(String args|])
{
bl ob=new Ibl();
ob.setTitle("JLabel in JFrame");
ob.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE); ob.setVisible(true); }
}

Exploring Swing

Exploring Swing

JTextField

Q

The JTextleld class implements a single-line text-entry area, usually called an edit
control.
Textkield allow the user to enter Strings.
JTextField 1s a subclass of JTextComponent, which 1s a subclass of JComponent/
The Alignment of the text 1s defined by the following it type constants.

TextField. LEFT, JTextField. CENTER, JTextField RIGHT
JTextField defines the following constructors.

JTextField() // Creates a new Text field; the text 1s set to null and the number
of columns Is set to 0.
JTextFieldont columns) //Creates a new empty texthrld with the specified
number of columns.
JTextField(String str) // Creates a new Text field with the specified string as
text.

JTextField class has number of methods. Some of them are
String getText() // Returns the text contained 1n this Text Field.
String getSelected Text() // Returns the selected text contained 1n this text field.
Void setEditable(Boolean edit) // Sets the textfield to editable(true) or not

Exploring Swing

Import java.awt.”;
Import javax.swing.”;
Class Txt extends Jirame

{
JLabel I1,12,13;
JTextFeld t1,t2,t3;
Container con;
T'xt()
{
setS1ze(350,200);
con=getContentPane();
con.setLayout(new FlowLayout(FlowLayout. LEFT));
I1=new JLabel(“Name”); t1=new J TextField(10);
I12=new JLabel(“RollINo0”); t2=new J TextField(10);
I3=new JLabel(“Branch”); t3=new J TextField(10);
con.add(I1); con.add(tl); con.add(I2); con.add(t2); con.add(I3); con.add(t3);
}
}
class JTextFieldDemo
{
public static void main(String args|])
{

Txt ob=new Txt(); ob.setTitle(“J TextField in JFrame”);
ob.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE); ob.setVisible(true);

Exploring Swing

}

OUTPUT:

Exploring Swing

¢) The swing Buttons Jbutton
The JButton 1s a concrete subclass of AbstractButton which 1s a subclass of JComponent.

The counterpart of JButton in AW'T 1s Button. Perphaps the most widely used control 1s the
push button.

A Push button 1s a component that contains a label and that generates an event when it 1s
pressed.

JButton defines four constructors
JButton() \\ constructs a button with no label.
JButton(String Str) \\ constructs a button with a specified label.
JButton(Icon 1) \\ constructs a button with the icon I as button

JButton(String str, icon 1) \\ constructs a button with the 1con I as button and the
string as Label

JButton has several methods. Some of them are
void setText(String str) \\ sets the buttons label to the specified string
void getText() \\ Returns the label of the button
Icon getlcon() \\ Returns the icon of the button
void setTool TipText(String str) \\ Sets the Tool Tip text to the
void setMinemonic(char c) \\ sets Shortcut key to the utton

Exploring Swing

mmport java.awt.”;
mmport javax.swing.*;
class Btn extends JFrame
{
JButton bl,b2,b3,b4,b5;
Bmn()
{
setS1ze(400,350);
Container con=getContentPane();
con.setLayout(new FlowLayout(FlowLayout. LEFT));
Icon Imgl=new Imagelcon(“new.jpg”);
Icon Img2=new Imagelcon(“save pg”);
Icon img3=new Imagelcon(“open.jpg”);
Icon img4=new Imagelcon(“back.pg”);
Icon Imgb=new Imagelcon(“forward.jpg”);
bl=new JButton(“New”,Imgl);
b2=new JButton(“Save”,Img2);
b3=new JButton(“open”,Img3);
b4=new JButton(“Back”,Img4);
b5s=new JButton(“Forward”,Img));
bl.setToolTipText(“New”);
b2.setForeground(Color.red);
b3.setMnemonic(‘c’); // Shortcut key for save Button(AL'T+C)
con.add(bl);
con.add(b?);
con.add(b3);
con.add(b4);
con.add(b));

}

Exploring Swing

Class JButtonDemo
{
public static void main(String args||)
{
Btn ob=new Btn();
ob.setTitle(“JButton in JFrame”);
ob.setDefaultCloseOperation(JFrame . EXIT_ON_CLOSE);
ob.setVisible(true);

OUTPUT:

Exploring Swing

JRadioButton

(J Radio buttons are like check boxes.

O In Radio button, the selection 1s displayed in a round graphics.

O Radio buttons are generally used to represent a collection of mutually exclusive options 1.e,
out of several options,only one will be selected state and all the remaining are 1 deselected
state.

[The radio buttons are created using JRadioButton class, which 1s subclass of JToggle Button.

O The JRadioButton must be placed in a Button Group.

O The Button group is created using the ButtonGroup class which has no argument
constructor.

O After creating JRadioButton, the radio buttons are to be placed to the ButtonGroup using
add() method.

O If the JRadio buttons are not grouped using Buttongroup, then each radio button will behave

exactly like JCheckBox.

O JRadioButton generates ActionEvent, ItemEvent and ChangeEvent

Exploring Swing

JRadioButton defines several constructors

1)

JRadioButton() // Creates a radio button without any label; the Radio Buton 1s set to

deselected state

JRadioButton(String str)//Creates a radio button with the string str as label; the ardio button
1s set to deselected state

JRadioButton(String str, Boolean state)//Creates a radio button with the string str as label; the
radio button 1s set to the specified state

JRadioButton(Icon 1)// Creates a radio button using the 1con I; the radio button 1s set to
deselected state JRadioButton(Icon I, Boolean state)//Creates a radio button using the 1con
1;the radio button 1s set to deselected state.

JRadioButton(String str,Icon 1)// Creates a radio button using the 1con I with the string str as
label

JRadioButton(String str, Icon I, Boolean state)//Creates a radio button using the Icon I with

the string str set as label; the radio button is set to the specified state

Exploring Swing

mmport java.awt.*; import javax.swing.”;
class RButton extends JFrame

{

JRadioButton rbl,rb2,rb3,rb4,mb.,ib;
ButtonGroup rbg;

JLabel 11,12;
RButton()

{ setSi1ze(600,300);

Container ¢ = getContentPane();
c.setLayout(new FlowLayout());

11 = new JLabel("Buttons to be added");
12 = new JLabel("Buttons Not added to group");
mb = new JRadioButton("Male");

fb = new JRadioButton("Female");

rb1= new JRadioButton("T'imes New Roman");
rb2 = new JRadioButton("Courier");
rb3 = new JRadioButton("T'erminal');
rb4 = new JRadioButton("Aral");

rbg = new ButtonGroup(); c.add(1);
c.add(rbl);

c.add(rb2);

c.add(rb3);

c.add(rb4);

rbg.add(rbl);

rbg.add(rb2);

rbg.add(rb3);

rbg.add(rb4);

c.add(12);

c.add(mb);

Exploring Swing

class JRadioButtonDemo

{

public static void main(String args|])

{

RButton ob = new RButton(); ob.setTitle("JRadioButton in Jframe");
ob.setDefaultClose Operation(JFrame . EXIT_ON_CLOSE); ob.setVisible(true);
}

}

Buttons to be added > Times New Roman (Courier) Terminal () Arial

Buttons Not added to group < Male < Female

Exploring Swing

JCheckBox

The JCheckBox class provides the functionality of a check box. Its immediate superclass is

JToggleButton, which provides support for two-state buttons.

JCheckBox defines the following constructors
JCheckBox() //Creates an mitially unselected check box button with no text, no icon.
JCheckBox(Icon icon)//Creates an mitially unselected check box with an icon.
JCheckBox(String text)//Creates an mitially unselected check box with text.
JCheckBox(Icon icon, boolean selected)//Creates a check box with an icon and specifies

whether or not 1t 1s mitially selected.

Exploring Swing

mmport java.awt.*; import javax.swing.”;
class Check extends JFrame

{
JCheckBox r,s,m;
JLabel 11,12;
Check()
{ setSize(600,300);
Container ¢ = getContentPane();
c.setlayout(new FlowLayout());
11 = new JLabel("Hobbies");
r = new JCheckBox("Reading");
s = new JCheckBox("Singing");
m = new JCheckBox("Listening Music");
c.add(1);
c.add(r);
c.add(s);
c.add(m);
}
}
class JCheckBoxDemo
{
public static void main(String args|])
{
Check ob = new Check(); ob.setTitle("JCheckBox in Jframe");
ob.setDefaultCloseOperation(JFrame . EXIT_ON_CLOSE); ob.setVisible(true);
}

Exploring Swing

OouTPUT

Hobbies | | Reading | | Singing [| Listening Music

Exploring Swing
JComoBox
The user can select a single item only. A combo box 1s a visual Swing graphical
component that gives popup list when clicked.
It 1s the combination of JList and J Textkield.
In Combo box, only one item 1s visible at a time. A Popup menu displays the choices a
user can select from.

In JList, the items cannot be edited, but in combo box, the 1items can be edited by setting
the JComboBox editable.
JCombobox defines the following constructors

JComboBox() \\ Creates empty Combo Box

JComboBox(object|[] arr) \\ Creates a combo box taking the items from the

specified Object Array

String [3=(“India”,” America”,”germany”);

ke

JComboBoxbox=new]ComboBox(1%);

JComboBox(Vector v)\\ Creates a combo box taking the items from the

specified vector

Exploring Swing
JComboBox has so many methods. Some of them are
Void addItem(Object oby) \\ adds the specified object to the list
Eg:box.addItem(“Japan”);
Object getSelectltem() \\Returns the currently selected item
Eg: Object obj=box.getSelectedItemy();
Int getSelectIndex() \\ Returns the index of item 1n the list
Eg: int I=box.getSelectedIndex();
Int getltemCount() \\ Returns the number of items 1n the hist
Eg: mt I=box.getltemCount();

Boolean isEditable() \\ Returns a Boolean specifying whether the combobox items are
Editable or not
Eg: Boolean x=box.isEditable();
Void removeltem(Object ob) \\ Removes the specified item from the hist
Eg: box.removeltem(“germany”);

Exploring Swing

mmport java.awt.”;
1Import javax.swing. ”;

class cmbbox extends JFrame
{
JComboBox box1,box2;
String str[]={"Andhra Pradesh","Tamil Nadu","Karnataka"};
cmbbox()
{

Container c=getContentPane();
c.setLayout(new FlowLayout());
box1=new JComboBox();
box2=new JComboBox(str);
JLabel I1=new JLabel("Countries");
JLabel I2=new JLabel("States");
box1.addItem("India");
box1.addItem("germany");
box1.addItem("Japan");
c.add(I1);

c.add(box1);
c.add(I2);
c.add(box2);

}
}

class JComboDemo

{

public static void main(String args|])

{

cmbbox ob=new cmbbox(); ob.setTitle("JComboBox 1n JFrame"); ob.setSize(400,300);
ob.setDefaultCloseOvneration(TFrame EXIT ON CIL.OSFE): ob.setVisible (true):

Exploring Swing

Andhra Pradesh

String class Methods

No.

O R O O o= 0 N =

—_
S

(SR I —
NO | —

13

14
15

Method

char charAt(int index)

mt length()

String substring(int beginlndex)

String substring(int beginlndex, int endIndex)

boolean equals(Object another)

String concat(String str)

String replace(char old, char new)

static String equalslgnoreCase(String another)

String]] split(String regex)
int indexOf(int ch)

it indexOf(nt ch, int fromIndex)

int indexOf(String substring)

String tol.owerCase()

String toUpperCase()

String trimy()

Description

returns char value for the particular index

returns string length

returns substring for given begin mdex.

returns substring for given begin index and end mdex.
checks the equality of string with the given object.
concatenates the specified string.

replaces all occurrences of the specified char value.

compares another string. It doesn't check case.

returns a split string matching regex.
returns the specified char value mndex.

returns the specified char value index starting with given idex.

returns the specified substring index.

returns a string in lowercase.

returns a string in uppercase.
removes beginning and ending spaces of this string.

https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-length
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-equals
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-trim

String class Methods

The string charAt() method returns a character at specified index.
String s="Sachin";

System.out.println(s.charAt(0));//S
System.out.println(s.charAt(3));//h

The java string toUpperCase() method converts this string into uppercase letter and string toLLowerCase() method into
lowercase letter.

String s="Sachin";

System.out.println(s.toUpperCase());//SACHIN

System.out.println(s.toLLowerCase());//sachin

System.out.println(s);//Sachin(no change n original)

The string trim() method eliminates white spaces before and after string.
String s=" Sachin "
System.out.println(s);// Sachin

System.out.println(s.trim());//Sachin

Java String startsWith() and endsWith() method
String s="Sachin";
System.out.println(s.starts With("Sa"));//true
System.out.println(s.endsWith('n"));//true

The string length() method returns length of the string.
String s="Sachin";
System.out.println(s.length());//6

The string replace() method replaces all occurrence of first sequence of character with second sequence of character.
String s1="Java 1s a programming language. Java 1s a platform. Java 1s an Island.";

String replaceString=s1.replace("Java","Kava");//replaces all occurrences of "Java" to "Kava"
Qveterm ont nrintln(enlace Strino)

StringBuffer class and its Methods

Java StringBuffer class 1s used to create mutable (modifiable) string.
The StringButffer class in java 1s same as String class except it 1s mutable 1.e. 1t can be changed.

1) StringBuffer append() method
The append() method concatenates the given argument with this string.
class StringBufferExample

{
public static void main(String args||)
{
StringBuffer sb=new StringBuffer("Hello ");
sb.append('Java");//now original string 1s changed
System.out.println(sb);//prints Hello Java
}
}

2) StringBuffer insert() method
The mnsert() method inserts the given string with this string at the given position.
class StringBufferExample2

{
public static void main(String args|])

{
StringBuffer sb=new StringBuffer("Hello ");
sb.nsert(1,"Java");//now original string 1s changed
System.out.println(sb);//prints HJavaello

}

StringBuffer class and its Methods
3) StringBuffer replace() method

The replace() method replaces the given string from the specified beginIndex and endIndex.
class StringBufferExample3

{
public static void main(String args|])
{
StringBufter sb=new StringBuffer("Hello");
sb.replace(1,3,"Java");
System.out.println(sb);//prints HJavalo
}
}

4) StringBuffer delete() method

The delete() method of StringBuffer class deletes the string from the specified beginIndex to
endIndex.

class StringBufferkExample4

{
public static void main(String args|])
{
StringBuffer sb=new StringBuffer("Hello");
sb.delete(1,3);
System.out.println(sb);//prints Hlo
}

StringBuffer class and its Methods

5) StringBuffer reverse() method

The reverse() method of StringBuilder class reverses the current string.
class StringBufferExample)

{
public static void main(String args|])
{
StringBuffer sb-new StringBuffer("Hello");
sb.reverse();
System.out.println(sb);//prints olle H
]

To Check Given String 1s Palindrome or Not

mmport java.lo.”;
class Palin

{

public static void main(String args[]) throws Exception
{
String str;
BufteredReader br;
br=new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter a String:");
str=br.readlLine();
StringBuffer strl=new StringBuffer(str);
strl.reverse();
String rev=strl.toString();
if(rev.compareTo(str)==0)
System.out.println(“The Given String” + str+ “ 1s Palindrome");
else
System.out.println("The Given String” +str +” 1s Not Palindrome");

To Check Given String 1s Palindrome or Not

OUTPUT :

7:\JAVA>javac Palin.java

7Z:\JAVA>java Palin

Enter a String:

MADAM

The Given String MADAM 1s Palindrome

7:\JAVA>javac Palin java

7:\JAVA>java Palin

Enter a String:

SITAMS

The Given String SITAMS 1s Not Palindrome

