UNIT-1
UNIT I: Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction,
Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line
Arguments, User Input to Programs, Escape Sequences Comments, Programming Style.

Data Types, Variables, and Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types,
Type Casting, Scope of Variable Identifier, Literal Constants, Symbolic Constants, Static Variables and Methods,
Introduction to Operators, Precedence and Associativity of Operators, Assignment Operator (=), Basic
Arithmetic Operators, Increment (++) and Decrement (- -) Operators, Ternary Operator, Relational Operat
Boolean Logical Operators, Bitwise Logical Operators.

Control Statements: Introduction, if Expression, Nested if Expressions, if—else Expressions, Switc
Iteration Statements, while Expression, do—while Loop, for Loop, Nested for Loop, Break Stateme
Statement

Object Oriented Programming

U Object Oriented Programming is a programming concept that \A@e principle
that objects are the most important part of your progra

U It allows users create the objects that they want an e&te ethods to handle

those objects. K

U Manipulating these objects to get results is t 0 ject Oriented Programming.

Object Oriented Programming populagly khewrtas OOP, is used in a modern

programming languages like Java \
Object : (3

Any real world entity that tateland behaviour is called as Object .(or)
Objects have state and avigur. Example: Apple, Orange, Bat, Table, etc..
In Java, An Obj i% ce of class.

Class :

Collectio similar objects is called Class . For Example, Apple, orange, Papaya are

te,a class called “Fruits” where as Apple, Table, Bat cannot be grouped as
cause they are not similar groups. It is only an logical component not as

sical entity.

ifance :
One object acquires all properties and behaviour of the parent object.
It’s creating a parent-child relationship between two classes. It offers robust and
natural,mechanism for organizing and structure of any software.

Polymorphism:
It refers as “ one interface and many forms” (or) the ability of a variable , object or
function to take on multiple forms.
Ex:- In English, the verb “run” has a different meaning if you see it with a “laptop”,
and “a foot race”.

Abstraction :
Abstraction is a process of hiding the implementation details from the user.
Ex:- while driving a car, you do not have to be concerned with its internal working.
Abstraction can be achieved using Abstract Class and Abstract Method in Java.
Encapsulation :
Encapsulation is a principle of wrapping data (Variables) and code together as a
single unit. In this OOPS concept, variables of a class are always hidden from
other classes. It can only be accessed using the methods of their current

classes. %
Program Structure in Java cc')b
Elements or Tokens in Java Programs %
In Java programming, elements or tokens are the smallest individua% a pfogram. These

tokens are the building blocks of Java code and are used C t%tatements and
expressions. Here are the main types of tokens in Java

1.Keywords z
2.ldentifiers

3.Literals

4.seperators

5.comments

6.operators \<

1. Keywords éj

Keywords are reserved wor

in Javia that have a predefined meaning and cannot be
jables, classes, methods, etc.). Examples of keywords

used as identifiers (nam
include class, public,%o #int, if, else, for, while, return, etc.

2. ldentifiers

—— e e e ———

Identifier: A name in java program is called identifier. It may be class name, method name,

variable name and label name.

Example:
class Test

{
public static void main(String[] args){

int x=10; T —[_—'_
Yy T 2 3 4
} 5

Rules to define java identifiers:
Rule 1: The only allowed characters in java identifiers are:
1) atoz
2) AtoZ
3) Oto9
4) _
5) S
Rule 2: If we are using any other character we will get compile time error.
Example:
1) total_number----——-- valid
2) Total#-—-———moe - invalid
Rule 3: identifiers are not allowed to starts with digit.
Example:
1) ABC123-——-—--—- valid
2) 123ABC-----—---- invalid
Rule 4: java identifiers are case sensitive up course java language itself treated as case sensitive

language.

Example:
class Test{

int number=10;
int Number=20;

int NUMBER=20; we can differentiate with case.

int NuMbEr=30;

h

Rule 5: There is no length limit for java identifiers but it is not recommended to take more than
15 lengths.

Rule 6: We can’t use reserved words as identifiers.
Example: int if=10; ------—------- invalid

Rule 7: All predefined java class names and interface names we use as identifiers.
A
)

3. Constants or Literals

o Entities that do not change their values in a program are called Constants or Literals.
o Java Literals are classified into 5 types:
1. Integer Literals

Floating Point Literals

Character Literals Q%

2

3

4. Boolean Literals

5. String Literals %%
1) Integer Literals: %

» Awhole number is called an integer. Eg: 25,27 etc...are i

Java supports 3 types of integer literals Decimal, imal.

25, 27 are decimal integers §
% 0.08656 are octal integer

0to9,AtoF.Eg:0*29,0%*2AB9

Octal stats from 0 and followed by 0to 7 .

YV V V V

Hexadecimal start with OX and follo
are hexadecimal integer literals, ¢
2. Floating Point Literals :
» Numbers with decimal @oi ctional values are called floating point
literals.
» They can be exprassed ¥ either standard or scientific notation.

» Standard notati sists of a whole number component followed by a decimal

poi lo a fractional component.

> A ’% nt number followed by letter E (or) and a signed integer. Eg:
% -35 stands for 6.237*107-35.

%Io ing point literals in java defaults to double precision.
olean

. >

literals :

X

4. Character literals:

In java, Boolean literals take two values false or true.
» These two values are not related to any numeric value as in C or C++.

» The Boolean value true is not equal to 1 and false is not value is not equal to 0.

» Single characters in java are called character literals.

» Injava characters belong to 16-bit character set called Unicode.

» Java characters literals are written within a pair of single quote. Eg: ‘a’, ‘7,
represent character literals.

» Torepresent such characters, java provides a set of character literals called

escape sequence.

5. String Literals :
» A sequence of characters written within a pair of double quote is called
String Literal. Q

Eg: “This is String”.

» String Literals are to be started and ended in one line only. %<

4. Separators

Separators (or delimiters) are symbols that separate elements o cotle. Common
separators in Java include:

e Parentheses: () %
e Braces: {}
e Brackets: [] &
e Semicolon:; %

¢ Comma:, \

e Dot:. <

5.Comments

Comments are non-execut arts of the code that are used to describe or explain the
code. They are ignored e Java compiler. There are two types of comments in Java:

taT S

Every variable in java has a data type.
> Datatype specify the size and type of values that can be stored.

> Datatype in java under various categories are shown as:

DATA TYPES

IN JAVA
P S— pum—
—_—
- Non-
RUEIE Primitive

(Intrinsic)

= (Derived)

— 7 —
1 1 1 1

- ~ Y -~ o = -

(: 0 g | |
U Non-. U Classes Arrays U Interface
Numeric L
- ~ S N 5
Integer Flanmg_ Character Boolean
Point

A. Primitive data types : Q

Primitive data types are whose variables allows us to sto I value but they
never allow us to store multiple values of same typgiThis ista data type whose
variables can hold maximum one value at a time.

Example:

int a; v
a=10;//valid
a=10,20,30;//invalid \
B. Non Primitive Data Types or I{rlvj'

ch

Derived data types are tho [e developed by programmers by making use
of appropriate featureswof th age. User defined data types related variables
allow us to store iple Walues either of same type or different type or both.

Example:
Stu = dent();
Java defines ive types of data. They are:
R
afactertypes

oating type

%

oolean type
ger Types:
This type indicates byte, short, int, long which are for whole-valued signed
numbers.
The width and ranges of these integer types vary widely as shown in below :

G

The width and ranges of these integer types vary widely as shown in below : %

Name Width Range

Long 64 -9,223,372,036,854,775,808 TO 9,223,372,036,8 @7
Int 32

-2.147,483,648 to 2.147,483,647
Short 16 -32,768t0 32,767 Q
Byte 8 -128to 127 Q‘\'. °
Byte: &
» Smallest integer type is byte.
» This is signed 8-bit type that hasfange floém =128 to 127
> ltis declared by byte keyw, \%
Short :
» Shortis signed as 1 pe
>

It has range from%32,768 to 32,767

» ltis declared keyword.
Int: y
> T %wmonly used type is integer type as int.
@d as 32 bit type and has range from -2,147,483,648 to
%,1 ,483,647
AN
L)

long is signed as 64-bit type and is useful for those occasions where as int.

The range of long is quite large.

YV V V

This makes it useful when big, whole numbers are needed.

Floating Point Types :
» This group includes float and double which represented numbers in
fractional precision.
» They are two types of floating point types ,float and double, which

represents single and double precision numbers

Name Width in bits Approximate range
Double 64 4.9e-324 to 1.8e+308 Q%

Float 32 1.4e-045 to 3.4e+038

3. Characters: %%
>

In Java, the data type is used to store characters is char.

» Charinjavais not same as C or C++ Q&
» In C/C++ char is 8 bit type whereas in java char is %

4. Boolean Type:
» Java has a primitive data type called Boglea logical values.
» It can have only one of two possibl %r false.
Variables \%
» AVariable is an identifier that de %a e location used to store a data

value . (or) Variables are the n@me age locations.
» Variable names may consist habets, digits, the underscore and dollar

characters.
U They mustno iwith a digit.
O up e wercase are distinct. This means that the variable Total is
n as'total or TOTAL.

hould not be a keyword.

U \White space is not allowed.
\D Variable names can be any length.
%rﬁtion of Variables :
» AVariable must be declared before it is used in the program. The general form of
declaration of a variable is
Type variablel, variable2, variable

» Variables are separated by commas. A declaration statement must end with a

semicolon. Some valid declarations are:

Int count;
float x, y;
Giving values to Variables :

A Variable must be given a value after it has been declared but before it is used in an
expression. This can be in two ways:
1. Byusing an Assignment statement
VariableName=value
2. Byusing aread statement Q%
we may also give values to variables interactively through the keyword usi
the readLine(). %%
Scope of the variable : &

» the scope refers to validity across the java program.

» The scope of a variable is limited to the block defin ithi braces { and
}

» It means a variable cannot be accessed outsi e Scope (Or) The scope or a
particular variable is the range withiga ‘s source code in which that
variable is recognized by the co &

Type Conversion and Casting \

Assigning a value of one type to ria another type is known as Type Casting.
Example:

int x=10;
byte y=(byte)x; \

In Java, type cast iffed into two types.

Wideni mplicit) : Process of Converting lower data type into higher data type

e -&>short --->int --->long --- >float --->double

- >

. Widening

Narrowing Casting (Explicitly done) : Process of converting Higher Data type into
LowerData Type

double --->float ---->long ----> int ---->short --- >byte

- >

Example: Converting int to double

class Main {
public static void main(String[] args) {
// create int type variable
int num = 10;
System.out.printin("The integer value: " + num);

// convert into double type
double data = num;
System.out.printin("The double value: " + data);

}
}

The integer value: 10

The double value: 10.0 &Q
Example: Converting double into an int %
class Main { &
public static void main(String[]
// create double type variahl
double num = 10.99;

System.out.println("Thev alue:" + num);

// convertinto in e
int data = (int)
System.o in

T\

uble value: 10.99

%The teger value: 10
°

he integer value: " + data);

Types of Variables

® Based the type of value represented by the varizble all variables are divided into 2
types. They are:
1) Primitive variables
2) Reference variables
Primitive variables: Primitive variables can be used to represent primitive values.

Example: int x=10;
Reference variables: Reference variables can be used to refer objects.

Example: Student s=new Student();
Diagram:
—O
® Based on the purpose and position of declaration all variables are divided into the3
following 3 types. b
1) Instance variables

2) Static variables

3) Local variables

Instance variables Q%
‘&

e [f the value of a variable is varied from object to object such type of variables are called

instance variables.

e Forevery object a separate copy of instance variables will be created.

® Instance variables will be created at the time of object creation and destroyed at the
time of object destruction hence the scope of instance variables is exactly same as
scope of objects.

® [nstance variables will be stored on the heap as the part of object.

® Instance variables should be declared with in the class directly but outside of any
method or block or constructor.

® Instance variables can be accessed directly from Instance area. But cannot be accessed
directly from static area.

® But by using object reference we can access instance variables from static area.

Example:

class Test

{
int i=10;
public static void main(String[] args)
{

//System.out.printin(i);//C.E:non-static variable i cannot be referenced from a
static context(invalid)

Test t=new Test();

System.out.printIn(t.i);//10(valid)

t.methodOne();

}
public void methodOne()
{
System.out.printin(i);//10(valid)
}

e For the instance variables it is not required to perform initialization JVM will always

provide default values.

jk

Static variables:

* |f the value of a variable is not varied from object to object such type of variables is not
recommended to declare as instance variables. We have to declare such type of
variables at class level by using static modifier.

®* |n the case of instance variables for every object a separate copy will be created but in
the case of static variables for entire class only one copy will be created and shared by
every object of that class.

® Static variables will be crated at the time of class loading and destroyed at the time of
class unloading hence the scope of the static variable is exactly same as the scope of the
.class file.

® Static variables will be stored in method area. Static variables should be declared with in
the class directly but outside of any method or block or constructor. %

® Static variables can be accessed from both instance and static areas directly.

* We can access static variables either by class name or by object reference but usage of
class name is recommended. V

® But within the same class it is not required to use class name we can access directly.

® For the static variables it is not required to perform initialization explicitly, JVM will
always provide default values.

Example:
class Test

{

static String s;
public static void main(String[] args)

{
System.out.println(s);//null
!
b
Example:
class Test
{
int x=10;
static int y=20;
public static void main{String[] args)
{
Test t1=new Test();
t1.x=888;
t1.y=999;
Test t2=new Test();
System.out.printIn(t2.x+"-—--"+t2.y);//10----999
!
H
Diagram:

e Static variables also known as class level variables or fields.
Local variables:
® Some time to meet temporary requirements of the programmer we can declare
variables inside a method or block or constructors such type of variables are called local
variables or automatic variables or temporary variables or stack variables.

e The local variables will be created as part of the block execution in which it is declared

and destroyed once that block execution completes. Hence the scope of the local

variables is exactly same as scope of the block in which we declared.

Example 1:
class Test
{
public static void main(String[] args)
{
int i=0;
for(int j=0;j<3;j++)
{
i=i+;
}
System.out.printin(i+"-—-"+j); javac Test java
Test.java:10: cannot find symbol
symbol :variable j
location: class Test
H
H
Example 2:
class Test
{
public static void main(String[] args)
{
try
{
int i=Integer.parseint("ten");
}
catch(NullPointerException e)
{
System.out.printin(i); _
javac Test.java
C.E « [Test.java:11: cannot find symbol
symbol :variable i
H
}
H

N

)

OPERATORS AND EXPRESSIONS

O In java Operators are symbols that are used to perform some operations on the
operands.
U Combination of operands and operators are known as Expressions.

O Java provides, a rich set of operators to manipulate the variables. There are three

&

types of operators in java.
1. Unary operators
2. Binary operators

3. Ternary operators

Operators
|
I I 1
Unary Binary Ternary
1
1 1
Increment Decrement — Arithmetic Conditional
operator
Post-fix Post-fix | |Assignmen
Increment decrement t
Pre-fix Pre-fix .
- — Logical
increment decrement
— Relational
—| Bitwise
— Compound

which we use one operand is called unary operator. It has two types:

1.1 Increment Unary operator

S

1.1 INCREMENT UNAY OPERATOR:

1.2 Decrement Unary operator

This is used to increase the value one by one. It has two types:
* Post-fix Increment operator

* pre-fix Increment operator

1.1.1 POST-FIX INCREMENT OPERATOR:
“++” symbol is used to represent Post-fix Increment operator. This symbol is used
after the operand.
In this operator, value is first assign to a variable and then incremented the value.
EX: inta, b;
a=10;
b=a++; Q%

In the above example first the value of “a” is assign to the variable “b”, then <

Increment the value, so the value of b variable is “10”. %%
1.1.2 PRE-FIX INCREMENT OPERATOR: Q

“++” symbol is used to represent Pre-Fix open&%y bol is used after

the operand. In this operator value is incremented figst and then assigned to a

variable.
EX: inta,b; &%
a=10; \%

b=++3; (3
In the above exa firstthe increment is done then the value of “a”
iable “b

variable is assigned to theVari ", so the value of “b” variable is “11”.
1.2 DECREMENT UNARY O OR:

“” symb s crease the value by one. It has two types:
1.Post-fixd m erator
2.pregfixdetrement operator

. T_FIX DECREMENT OPEATOR:

‘" symbol is used to represent post-fix decrement operator, this symbol is
%sod after the operand. In this operator, value is first assigned to a variable and then
decrement the value.

EX: inta, b;

In the above example first the value of “a” is assign to the variable ” b”,

then decrement the value. So the value of “b” variable is “10”.

1.2.2 PRE-FIX DECREMENT OPERATOR:

“” Symbol is used to represent the pre-fix decrement operator. This symbol is
used after the operand. In this operator, value is decremented first and then
decremented value is used in expression.

EX: int a,b;
a=10; Q

b=--a; <
In the above example first the value of “a” is decrement then assigh to the
variable “b”. So the value of b variable is “9”.

2. BINARY OPERATOR:
In which we use two operand is called Binary operator. Java s t

types of Binary operators:
* Assignment operator Q

* Arithmetic operator
* Logical operator
* Comparison operator
2.1 ASSIGNMENT OPERATOR: &s‘
This operator is used to assig t% This symbol “=“is used to assign
the value.. \
EX: int a=12; (-)

2.2 ARITHMETIC OPERATOR:
This operator is used to perform mathematical operand. Arithmetic operator

T
Q

Q)

N

N S N

Additional Used to add the value a+
operator (“+”): of two operand.

2. Subtract Used to subtract the a-b
operator (“-“) : value of two operand.

3. Multiply Used to multiply the a*b
operator (“*”): value of two operand.

4. Division Used to divide the a/b
operator (“/”) : value of two operand.

5. Modulus Used returns the a%b
operator(“%”) : remainder of a division

operation.

{_)\J

R),&&(conditional-AND),!(conditional-NOT)

LOGICAL OPERATOR:
The logical operator | | (eondit
operates on booIea@

ns, here’s how they work:

OPERATOR

Il Conditional-OR: true if either of ~ False || true is evaluated to true.

the boolean expression is true.
Q. §& Conditional-AND; true if all False && true is evaluated to false.

boolean expressions are true.

! Conditional-NOT; true if expression ! False is evaluated to true.
is false.

LOGICAL NOT OPERATOR:
» Logical NOT operator is used to reverse the logical state of its operand. If a condition
is true then
logical NOT operator will make false. If a condition is false then Logical NOT
operator will make true.

» Then NOT operator is probably the easiest to understand. It is simply the oppoﬁ%

of what the condition says.

EX: boolean a=true; @%
if(1a) :&

System.out.printIn(“u r win”);
else

System.out.printin(“u r not win”);

» In above example “if not true” is asking if th ri ” variable is not true,
otherwise known as false.

» If “a” variable is false, java will di Nr,in" “a” variable is not true, so that
a

code will not execute, then_th is execute shown in output.

RELATIONAL OPERATOR:

» This operator is use ompare the two values, so this operator is also known as
%
and
[N

OPERATOR CONDITION DESCRIPTION | EXAMPLE |

“compariso

» Conditio their meanings for comparison operator are below:

e is equal to Checks if the values of (a==b) is not true
‘ two operands are equal
\ or not, if yes then
condition becomes true.
1= Is not equal to Checks if the value of two (al=b) is true

operands are equal or
not, if values are not
equal then condition
becomes true.

> Is greater than Checks if the value of left (a=b) is not true
operand is greater than
the value of right
operand, if yes then
condition becomes true.

< Is less than Checks if the value of left (a<b) is true
operand is less than the
value of right operand, if
yes then condition
becomes true.

TERNARY OPERATOR:

In ternary operator use three operands. It is also called Conditional assignment statement
because the value assigned to a variable depends upon a logical expression.

SYNTAX:
variable=(test expression)?Expression 1: Expression 2
EX:
c=(a>b)?a:b:

c= (a>b) ? a:b; %
Test condition ? Expressionl : Expression2; Q
BITWISE OPERATORS: %
Java provides 4 bitwise and 3 bit shift operators to perfOQ%

operations.

| Bitwise OR Q
& Bitwise AND %

* - Bitwise Complement &Q

* A Bitwise XOR %

* << Left shift v

* >> Right shift &

* >>> Unsigffed Right Shift

Bitwise and bit shift operat ﬁ’on integral types (byte, short, int and
long) to perform bit—Ievere

OPERATOR DESCRIPTION

*

*

| Bitwise OR

& Bitwise AND

~ Bitwise Complement
A Bitwise XOR

K Left shift

>> Right shift

>>> Unsigned Right shift

BITWISE OR:
Bitwise OR is a binary operator(operates on two operands). It's denoted by |. The | operator

compares corresponding bits of two operands. If their of the bits is 1. If not, it gives 0.

EX:
12= 00001100
25=00011001
Bitwise OR Operation of 12 and 25 %
00001100 Q
00011001 < c’)
00011101 =29(In decimal) &%
BITWISEAND :

Bitwise AND is a binary operator (operates on two op€rands)®lt’s denoted by &. The &
operator compares corresponding bits of two operands b&lre 1. If either of the bits is
not 1, it gives 0.
EX: 12= 00001100 \v
25=00011001 %
Bit operation of 12 and 25 \

0000110
1

e

= 8(in decimal)

BITWISE CO
Bitwi nt is an unary operator(works on only one operand). It is denoted
T erator inverts the bit pattern. It makes every O to 1, and every 1 to 0.
35= 00100011(in binary)
. bitwise complement of 35

~ 00100011

11011100 = 220(in decimal)

BITWISE XOR :

Bitwise XOR is a binary operator(operates on two operands). It's denoted by “*” .
The operator compares corresponding bits of two operands. If corresponding bits
are different, It gives 1. If corresponding bits are same, it gives 0.

EX: 12=00001100
25=00011001
Bitwise XOR operation of 12 and 25 is:

00001100
100011001 Q
00010101 =21(in decimal) @%

Control Statements
Causes the flow of execution to advance and branch based on changes to the state of
program.

In Java, control statements can be divided into the following three catego

1) Selection Statements

2) Iteration Statements

3) Jump Statements
1) Selection Statements
Selection statements allow you to control the f
outcome of an expression or state of a va S
can be divided into the following ca %
a) Theifand if-else statemen k
b) The if-else statemen

c) The if-else-if statement
d) The switch

The if statements : %
The first contained statement (that can be a bloc an ment only executes when
the specified condition is true. If the conditi e ere is not else keyword then
the first contained statement will be skip (N tion continues with the rest of the

program. The condition is an expressio retdins a boolean value.

General form of simple if statement

if<expression>

{
Statement-bloc

}

t be single statement or a group of statements .

if the e iOn is\true, the statement block will be executed, otherwise the statement

bl wiljbe skipped to the statement-x.

if else statement:-

if else statement is an extension of the simple if statement. The general form is

if(expression)
{

True-block statements
}
Else
{

False-block statements
}

" if the test expressionis true, then the true-block statements immediately following the if statementare executed. Otherwi.
the false-block statementsare executed .

L] In either case, Either true-block or false-block will be executed, not both.
" In both the cases, the control is transferred subsequently to the statement-x Diagram <

Nested if else statement :-
O Anested if is an if statement that is the target of another if or else.
O Nested ifs are very common in programming
0O General form of Nested if looks like
O Nested if else statement is made by placing one if else in another if else statement.
O Nested if else statement helps to select one out of many chooses.
O General form of Nested if else is Q
if<cond1>
{
if<cond2>
{
if<cond3>

stmt
else
tm
}
e
% stmt2

else
stmt 1

In nested if else statement, the outermost if is evaluated first.
a t}@ conditionl is false, the statement is the outermost else is evaluated and if else ends.
e conditon1 is true, the control goes to execute the nextinner if statement.
O Ifconditon?2 is false, statement2 is executed otherwise conditon3 is evaluated
O If condition3 is false statement3 is executed. Otherwise statement is executed.

elseifladder:-

0 A common programming construct thatis based a sequence of nested is based upon a
sequence of nested ifs is the if else if ladder.

(1 e General form of if else ladder
if<condition>
stmt
else if<condition>

stmt;
else if<condition> %
stmt; Q
else %
stmt; %
e 0 % ions
% the rest of the
ladder is bypassed.
O Ifnone of the condition is true, then the final else stmt wil Q

@ Thefinal else acts as a default condition; i.e if all othe nditional tests fail, then the last

else stmtis performed.
 Ifthereisnofinal else and all other condition are
Switch statement:-)

¢ The switch statement helps to seél€ct®ne out of many chooses.
e [t often provides a be altégnative than a large d=series of if else if statements
e General form of switch'sta tis

L The if statements are Executed from the top down. As soon as o
controlling the if is true, the stmt associated with thatif is Execute

Switch(e

value 1:stmtl;
Break;

Case value 2:stmt2;

Break;

Case value N: stmt N;
S Break;
Default: stmt;
}
e The expression must be of type byte, short, int or char.
* Each of the values specified in the case stmts must be of a type compatible with the expression.
e Each case value must be unique literal.
e Duplicate case value are not allowed.
e The switch stmt works like this

while:-
The while loop is java’s most fundamental loop stmt
e [t repeats a stmt or block while its controlling expression is true.
e The general form of while stmt is
While <condition>

{

Body of the loop
}
The condition can be any Boolean expression.
u

The body of the loop will be executed as long as the conditional expression i

When condition becomes false, control passes to the next line of code imm€di owing the
loop.

The curly braces are unnecessary if only a single stmt is being repeQ&

Do-while:- %
U If the conditional expression controlling a while loop js in e, then the body
of the loop will not executed at all &
U However, it is desirable to execute the of %st once even if condition
expression is false to begin with w

U Fortunately, java supplies a loop th stthat : the do while
U The do while loop always exe &.3 least once, because its conditional

expression is at bottom of
U The general form of do While |
do \
{
f the loop

ilexcondition>

: eral form of traditional for statement
% LY isfor(initialization; condition;
iteration)

{
Body of the loop

}

[t is important to understand that initialization expression is only executed

once. Next, condition is evaluated. This must be a Boolean expression .i.e the

=

If this expression is true, then the body of the loop is executed.

=

If it is false, the loop terminates.

=

Next, the iteration portion of the loop executed

=

This is usually an expression that increments or decrements the loop

controlsvariable.

This loop then ITERATES

First evaluating the conditional expression, then executing the body of the Q%
loop ,and then executing the iteration expression with each pass. %

This process repeats until the controlling expression is false. @

Nested loop:- %
e nested.

Like all other programming languages, java allows lgbps t
i.e one loop may be inside
anotherEg:- %
For(i=0;i<10; i++) y
For(j=I;j<10; j+ \
S
state t bl
) v
D
5

=

Jump stmts:_
Java supports 3 jump stmts

1. break
2. continue

3. return.

Break stmt:-

It has 3 uses. %
1. It terminates a stmts sequence in a switch stmt. c Q

2. If can be used to exit a loop.

3.If can be used as a “civilized” form of goto.
When a break stmt is encountered inside a loop. The loop is terminate ogram control
resumes at the next stmt following the loop.

i.e by using break, we can force immediate termination of a l&@g the conditional
p:

expression (eg: i<=10) and any Remaining code in the body

continue:-

sometimes, you might want to continue running the %p continue running the
lariteration

remainder of the code in its body for this parti

the continue stmt performs such as an ac 1\
Return:- %

Return stmt is used to explicitly kgturmfroth a method
i.e it causes program control nsfer back to the caller of the method

return stmt can be u% xecution to branch back to the caller at the method.

N

UNIT-2

Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members,
Declaration of Class Objects, Assigning One Object to Another, Access Control for Class
Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded
Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value
and by Reference, Keyword this.

Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor
Methods, Class Objects as Parameters in Methods, Access Control, Recursive Met
Nesting of Methods, Overriding Methods, Attributes Final and Static.

CLASSES AND OBJECTS: c %

Class Declaration And Modifiers

Defining a Class

» Aclass is a user-defined data type with a template t efine its
properties.

» Once the class type has been defined, we can createN{variables” of that type using

declarations that are similar to the basic typ ations.
> InJava, these variables are terme iRstan€es of classes, which are the actual
objects.

» Class Defines Data and Mer%\ranipulate the Data.

The basic form of a class definit

class ClassName [ext uperClassName]
{
S tion]
[declaration]

Mo%
Nr are keywords that you can use to change the behavior or visibility of classes,

ethods, and variables. They can be divided into two categories: Access Modifiers and Non-
Adcess Modifiers.

Access Modifiers

Access modifiers determine the visibility of the class to other classes. Java provides four access
levels:

1. public: The class is accessible from any other class.

w

protected: The class is accessible within its package and by subclasses.

default (no modifier): The class is accessible only within its own package.

private: The class is accessible only within the class it is defined. Note that private is
not applicable to top-level classes.

Non-Access Modifiers

Non-access modifiers provide functionality other than visibility control:

N

final: The class cannot be subclassed.
abstract: The class cannot be instantiated and may contain abstract methges!
static: The modifier indicates that the nested class is a static member

t
class %
Class Members

Class members include fields (variables), methods, constructor
classes/interfaces.

Fields Declaration &
» Datais encapsulated in a class by placin %side the body of the class

R

>

definition.
These variables are called instanceeria s Decause they are created whenever an

object

of the class is instantiated. \

We can declare the instanc jablas exactly the same way as we declare local
variables

Class Rectangle \Q E

\s

he class Rectangle contains two integer type instance variables.
It is allowed them in one line as
int length,width;

Methods Declaration
The General form of a method declaration is

type methodName(parameter-list)

{

Method-body;

} %
Method declarations have four basic parts Q

* The name of the method(method name)

* Thetype of the value the method returns(type)

* Alist of parameters(parameter-list)

* The body of the method k

Constructors
» Java supports a special type of method called a constr ables an object to

L

Constructor Method

Constructor's are used to initialize | Methods are used to do general purpose
instance variables calculation

Constructor Name and Class name should | Constructor name and Class name may or
he same may not same

Constructor should have neither return | Method should have either return type or
type or void void

Constructors are invoked at the time of | Methods are invoked after object is
object creation created.
initialize i W ated.

» Constrageto ed to initialize instance variables.
Nest /Interfaces

% and interfaces defined within another class.
wbﬁc class OuterClass

public class InnerClass

{
public void display()

{

System.out.printin("Inner Class");
}
}
}

Example:
class OuterClass

staticintx=10; %
inty=20; Q
private staticint z = 30; %%
static class Innerclass %
{ Q(ﬁ

void display() %

| Q

System.out.printin("x =" +x); &

System.out.printin("z = "+z); %

OuterClass obj =new Outeﬁ%

System.out.println(“y%"%/)
W
} V‘
public class Dem %

SN

publig st ain(String args[])

%accessing a static nested class
% . OuterClass.Innerclass objl1= new OuterClass.Innerclass();

objl.display();

Declaration of Class Objects

Creating an instance of a class is called declaring a class object.

Person person = new Person("John", 30);
Assigning One Object to Another

Assigning one object to another makes both references point to the same object in VQ%

public class Person

{)
public String name;
public int age; k
// Constructor Q
public Person(String name, int age)
{

this.name = name;

Q
o

// Method to display person's details

public void display() \
{

System.out.printin("Name @&+ " Age: "+ age);

}

P new Person("Alice", 25);

erso&
%. .printin("Details of personl:");

%sonl.display();
A .
b // Assign personl to person2

Person person2 = personl;

public static void ma ingl args)
{
// Create%&

System.out.printIn("Details of person2 (after assignment):");
person2.display();
// Modify person2's details

person2.name = "Bob";

person2.age = 30; %

// Display details of both personl and person2

System.out.printin("Details of person1 (after modifying person2):"); %%
personl.display();

System.out.printin("Details of person2 (after modifying person .
person2.display();

}
} L
Access Control for Class Members &
Access control determines the visibility of class %

Java provides four access levels:
1. public: Accessible from any other €lass.
2. protected: Accessible within e package and subclasses.

3. default (no modifier): Accessi hin the same package.
4. private: Accessible onlyvithi me class.

1. Public Access Modifier

The public modifier ﬂoN embers to be accessed from any other class.

import java.ut
public clas m

{
ublictnt a = 10;
@bl'c void display()
% . System.out.printin("Public method");
}

}

class Maindemo

{

public static void main(String[] args)
{
Demo obj = new Demo();
System.out.printin(obj.a); // Accessible
obj.display(); // Accessible

2. Protected Access Modifier

The protected modifier allows class members to be accessed within the same package and
subclasses.

import java.util.*;

class Demo6
{
protected int a = 20; %
protected void display() Q

{ (>
System.out.printIn("Protected method"); %
}

} ®
class Demo7 extends Demo6
{

void display1() &

{

System.out.printin(a); // Accessijble

display(); // Accessible
} '\
class Maindemol %

{
public static void gnain args)
{
Demo7%bjs néw Demo7();
J a
}

ob (); // Access protected members via subclass

Default Access Modifier

The default access modifier (no modifier) allows class members to be accessed only within
the same package.

import java.util.*;
class DemoDefault

{
int a = 30; // Accessible only within the same package
void display() Q

{

System.out.printin("Default method"); %
} (.)
} k
class TestDefault {
public static void main(String args[]) %

{
DemoDefault obj = new DemoDefault();
System.out.printIn("Default Field: " + obj.a);

obj.display(); // Accessible

}
} 4\
4.Private Access Modifier \%
The private modifier allows cIasW) o be accessed only within the same class.

import java.util.*;

public class Demo

{
private i =40; ccessible only within the same class
Privaﬂ

\ System.out.printIn("Private method");
%s public void display1()
{

System.out.printIn("Private Field: " + a);
display(); // Accessible within the same class

}

class Testprivate

{
public static void main(String[] args)
{
Demoprivate obj = new Demoprivate();
obj.displayl1(); // Accesses private members through public method
}

}
This Keyword ;%

In Java, this keyword is used to refer to the current object inside a method or a cQnstr
class Main k&,

{

int age;

Main(int age)
{

this.age = age;

}

public static void main(Stfin)
{

Main obj = new

System.out.ppi
D
}

‘age =" +obj.age);

Constructor Overloading

The constructor overloading can be defined as the concept of having more than one

constructor with different parameters so that every constructor can perform a different task

ferminal Help

1

Rectangle

Coljava - p11 - Visual Studio Code

length,width;

Rectangle

length=x;
width=y;

Rectangle

X

length=width=x;

res=length*width;

res;

main args

obij= Rectangle(x: 10,y: 20

ra=obj.areal();

System.out.println

objl= Rectangle(x: 10);

ral=objl.areal();

System.out.println

Final Class and method

The final method in Java is used as a non-access modifier applicable only to a variable,
a method, or a class. It is used to restrict a user in Java.
The following are different contexts where the final is used:

1. Variable

2. Method

3. Class %
p

S

Final Variable = To Create constantvariable
Final Methods = Prevent Method Overriding
FinalClasses =P PreventInheritance
‘S\
Parameter Passing In Java (&

» There are different ways in wiiich ter data can be passed into and out of methods

and functions.
» Let us assume thata fuRgtion'B() is called from another function A().

> In this case A is.cal caller function” and B is called the “called function or callee

function” X uments which A sends to B are called actual arguments and the
pz& e called formal arguments.
Typesof parameters

ormaPParameter: A variable and its type as they appear in the prototype
ohtfe function or method.

Syntax:
function _name(datatype var _name);

Actual Parameter
The variable or expression corresponding to a formal parameter that appears in the function
or method call in the calling environment.

Syntax:
fun _name(var _ name(s));

Call By Value:

» Changes made to formal parameter do not get transmitted back to the calle
» Any modifications to the formal parameter variable inside the calle 0

method affect only the separate storage location and will not be refle Jetual
parameter in the calling environment.
» This method is also called as call by value
Call by reference: Q
» Changes made to formal parameter do get transmitt he caller through

parameter passing.
» Any changes to the formal parameter are r
the calling environment as formal paramet

in the actual parameter in
reference (or pointer) to the

actual data.
» This method is also called as call by rence™his method is efficient in both time
and space. c
Introduction to Methods (%
Methods in Java are blocks of c at bsrform specific tasks and are typically defined within

classes. They encapsulat@i and promote code reusability and modularity.

public class Method

{
// Method t a greeting message
pub id\gréet()
{
stem.out.printin("Hello, welcome to Java methods!");
}

)
/ Method with parameters to calculate the sum of two numbers
public int sum(int a, int b)

{

return a + b;

}

public static void main(String[] args)

{

MethodsExample example = new MethodsExample();

// Calling the greet method
example.greet();

// Calling the sum method
int result = example.sum(5, 3);

System.out.printin("Sum: " + result);
}
} c‘)
Overloaded Methods c‘)
Overloaded methods are methods in the same class with the same p@ erent
parameter lists (number or types), allowing flexibility in method % .
public class OverloadedMethodsExample

{ 4\2
// Method to add two integers %

public int add(int a, int b)

{
return a + b; & E
} \
// Overloaded method to ad th%hrs

publicint add(int a, int b, int

{
return +C}
) \

public static aZ(String[] args)
{
* loadedMethodsExample example = new OverloadedMethodsExample();
% System.out.printin("Sum of two numbers: " + example.add(5, 3));
System.out.printin("Sum of three numbers: " + example.add(5, 3, 2));
&
)

Moljava - p11 - Visual Studio Code

Single.java vel2.jav Hierarchical.java

> %2 Mol

-

1

Demo

sum(int X, int

resl=x+y;
System.out.println(”the sum of numbers

sum(int x,int y,int z)

res2=x+y+z;
System.out.println(™ sum of 3 numbers

sum(int x,int y,int int p)

res3=xX+y+z+p;
System.out.println(™ sum of 4 numbers is:"+res3);

main(Stri

j=new Demo();
obj.sum(x: 10,y: 20);
obj.sum(x: 10,y: 20,z: 30);
obj.sum(x: 10,y: 20,z: 30,p: 40);

] cd "f:\pll\" &8 javac Mol.jawva && jawva Mol
sum of 2 numbers is:30
sum of 23 numbers is:60
sum of 4 numbers is:1@

exited with in 1.682 seconds

Method overriding
Terminal Help Morjava - p11 - Visual Studio Code

Single.java 1 @ Multilevel2.java Hierarchical.java

A

Rectangle‘

area(double

ss Triangle extends Rectangle

resl=0.5*%1%*b;
resl;

le objl=new Triangle();
> ta=objl.area(l: 4,b: 5);
System out.println("the area of triangle is"+ta);

] cd "f:\pll\" && javac Mor.java && java Mor
the area of triangle isl18.@

exited with in 3.822 seconds

Recursive Methods

Recursive methods call themselves directly or indirectly, useful for solving problems where a
method repeats its behavior.

public class RecursiveMethodExample

{ %
// Recursive method to calculate factorial
public int factorial(int n)
{
if(n==0]| n==1) %
returnl; Q&

{

Arrays: Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory,
Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array,
Dynamic Change of Array Size, Sorting of Arrays, Search for Values in Arrays, Class Arrays, Two-
dimensional Arrays, Arrays of Varying Lengths, Three-dimensional Arrays, Arrays as Vectors.

Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class- Object
Class, Inhibiting Inheritance of Class Using Final, Access Control and Inheritance, Multilevel
Inheritance, Application of Keyword Super, Constructor Method and Inheritance, Method Overridin
Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance.

Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Int
Nested Interfaces, Inheritance of Interfaces, Default Methods in Interfaces, Static Methods inf Inte ,
Functional Interfaces, Annotations.

Arrays %

An array is a group of continuous or related items that share a common name.

For instance, we can define an array name salary to represent a set of sa group of employees.

A particular value is indicated by writing a number called index numbe¢or stubscript in brackets after the
array name.

One -Dimensional Arrays &
Alist of items can be given one variable name using onl e stibscriptand such a variable is called a single-
subscripted variable or a one-dimensional array.

Declaration of Array:

Arrays in java may be declared in two for:\a

Form1
type arraynaﬂv-I
Form2
type Qame;
Creating Arrays :
you can create a y using the new operator by using syntax

Syntax: v
ﬁnﬁnew type[array_Size];
Q an array using new type[array_Size]
%igns the reference of the newly created array to the variable arrayname.
Bﬁeclaring, Creating and assigning an array to the variable can be combined in one statement as:
type[]=arrayname=new type[array_Size];
(or)

type[] arrayname={value0, value 1,....value k};

Array indices are start from 0 to arrayname. length-1

Two Dimensional Array :
It is used to store two dimensional data. It is also used to store data, which contains rows and columns.

If the data is linear we can use one dimensional array to work with multi-level data we have to use Multi-
Dimensional Array.

Creating Two Dimensional Array :

Data_Type[][] Array_Name=new int[Row_Size][Column_Size]; :%

Initialization of Two Dimensional Array :

We can initialize the Two Dimensional Array in some ways

Example: %3
int[][] Student_Marks = new int[2][3]; Q

int[][] Employees = {{10,20,30}, {15,25,35}, {22,44,66}, {33,55,77} i:
Accessing Elements of Arrays & Q

Accessing Elements of a One-Dimensional Arra* %

Class ArrayExample &
| ¢ C’D
public static void main(String[] args) \

{
// Declare and initiali% imensional array
Intdata[]= {5%5, 20; 25);

\ual elements

First element: " + data[0]); // Output: 5

Systém.oWt’pointin("Second element: " + data[1]); // Output: 10

tefmgut.println("Third element: " + data[2]); // Output: 15
«S m.out.println("Fourth element: " + data[3]); // Output: 20

ystem.out.println("Fifth element: " + data[4]); // Output: 25

1.

(0]

Accessing Elements of a two-Dimensional Array
class Access2DArray

{

public static void main(String[] args)

{
// Declare and initialize a two-dimensional array Q

Int matrix[][] ={ %
{1,2,3}, %
{4,5, 6}, %
{7, 8,9} Q
I3 %Q
// Access and print individual elements Q
System.out.println("Element at row 0, column 0: " + mat %; // Output: 1
System.out.println("Element at row 0, column 1: " athix[0][1]); // Output: 2

[1]
System.out.println("Element at row 1, colum& rix[1][2]); // Output: 6
[1]

System.out.println("Element at row 2, C 1 matrix[2][1]); // Output: 8

System.out.println("Element at row< c: ol "+ matrix[2][2]); // Output: 9

Storage of Array in Computer

In computer memory, arrdys stored in a contiguous block of memory. The array elements are stored
sequentially in memory,meanihg that each element is placed directly after the previous one. This
arrangement allows ient access to any element in the array using an index, making arrays a popular
data structure i languages like Java.

How ArraysiAre Stored in Memory:

tatype of the array and the number of elements.

ContiﬁD ry Allocation:
A% red in a continuous block of memory. The size of this memory block is calculated based on
e

array is an integer array, for example, each element will take up 4 bytes of memory (assuming a 32-

O
blu’t integer), and the total memory size will be 4 * n, where n is the number of elements.

(0]

Indexing:

Elements in an array are accessed using an index. The index is used to calculate the memory address of the
element.

For example, in a one-dimensional array, the memory address of the element at index i is calculated as:

Address_of_element(i) = Base_address + (i * size_of_element)

where Base_address is the memory address of the first element in the array, i is the index, and
size_of_element is the size of each array element in bytes.

3. Memory Layout Example:

o Consider the following integer array:

int[] arr = {10, 20, 30, 40, 50}; ;%

o Ifthe array is stored starting at memory address 1000, the elements are laid out in mepaer
Address Value ,

1000 10 (arr[0]) Q)%
1004 20 (arr[1]) Q
1008 30 (arr[2])
[
[

1012 40 (arr[3]) Q%

1016 50 (arr[4])

o Here, each element takes 4 bytes (since it's an int), and the ®lements are stored consecutively.

Multi-Dimensional Arrays:

o In the case of multi-dimensional arrays#e.g., @D arrays), the elements are stored in row-major
order in Java. This means that the el f €ach row are stored sequentially in memory.

o Considera?2D array: %\
int[][] matrix = { %
{1,2,3}, ?\

{4,5, 6}, Q
{7,8,9}
b
In memory, thig a would be laid out as:

Q Address Value
Q 1000 1 (matrix[0][0])
& 1004 2 (matrix[0][1])
B‘ 1008 3 (matrix[0][2])
1012 4 (matrix[1][0])
1016 5 (matrix[1][1])
1020 6 (matrix[1][2])
[2][
(211

1024 7 (matrix[2][0])
1028 8 (matrix[2

o row are stored first, followed by the elements of the second row, and so on.
Types of Arrays and Memory Allocation:
1. Primitive Arrays:

o Arrays that store primitive types like int, char, float, etc., store the actual values in contiguous memory.

o Example:
int[] arr={1, 2, 3}; Q

Each int value (4 bytes) is stored contiguously in memory. <
2. Object Arrays:

o Arraysthatstore object references (e.g., arrays of String or user-defined objects)dongt store the actual
objects in contiguous memory.

o Instead, the array stores references (memory addresses) to the objects, wh@r e located anywhere
in memory.

o Example: Q
String|[] arr = {"Apple", "Banana", "Cherry"};

The array arr contains references to String objects, an@lgs are stored at different memory

locations.

Advantages of Contiguous Memory Storage: ‘&v

1. Efficient Indexing:

o Since arrays are stored in cq % emory, the memory address of any element can be
calculated quickly using ﬁ%x his makes accessing elements very fast (O(1) time

complexity).

2. Cache-Friendly: v
o Contiguous me%teor ge takes advantage of CPU caching. When an element of an array is

accessed, ne ergents are likely loaded into the cache, speeding up future access.

Disadvantages:

1. Fixed Size:

o4 a ize is too large or too small.
2. Ine Qﬂs rtion/Deletion:

& oY Inserting or deleting elements in the middle of an array requires shifting elements, which can

be slow (O(n) time complexity).
S

Operations on Array Elements

In Java, you can perform various operations on array elements, such as arithmetic operations, traversals,
modifications, and more. Below are some examples of common operations performed on array elements.

Sum of All Elements in an Array

class ArrayOperations

{ N>
public static void main(String[] args) Q
| &°
int numbers|] = {10, 20, 30, 40, 50}; %
int sum = 0; Q

// Loop through the array to calculate the sum of elements

for (inti=0; i < numbers.length; i++) %
{ 2
sum = sum+ numbers][i]; &

}

System.out.println("Sum of all elements: " cﬁ&

}
} : >
Finding the Maximum Element% y

class ArrayOperations Q

%/ Loop through the array to find the maximum element
B‘ for (inti=1; i < numbers.length; i++)

if (numbers[i] > max)

max = numbers][i];

System.out.println("Maximum element: " + max);

}
}
Finding the Minimum Element in an Array %
class ArrayOperations { %Q
public static void main(String[] args) {

int min = numbers[0];

// Loop through the array to find the minimum element Q%
for (inti=1; i < numbers.length; i++) {

if (numbers[i] < min) { &

min = numbers|[i];

} N
) \C'D
System.out.println("Minimum el%: W+ min);

}

TR
S

int[] numbers = {10, 20, 30, 40, 50}; é}

Get the Firsta t of an Array

To get the figst ang last elements of an array, you need to access the elements at index 0 (for the first
element)dan array.length - 1 (for the last element). Here are examples in different programming
languages:

ic Class ArrayFirstLastElement {

ublic static void main(String][] args) {

BQ int[] arr = {10, 20, 30, 40, 50};

// Get the first element

int firstElement = arr[0];

// Get the last element

System.out.println("First element: " + firstElement);

System.out.println("Last element: " + lastElement);

}

Output: %

First element: 10

Last element: 50 C >

To compare two arrays in Java, you need to determine if they are equal in terms o %t’ent and order.
You can use the Arrays class from the java.util package, which provides ut@ ds for comparing

arrays. Q
Here’s how you can compare two arrays: & 2

Using Arrays.equals()

The Arrays.equals() method checks if two array@ comparing their length and corresponding
elements.

Example Code \%
import java.util.Arrays; : %

public class CompareArrays ; y

public static void main(Sthing[}args) {

int[] arrayl = {1,

int[] array

int[] rr% 72,3, 4, 6};

mpare arrayl and array?2
%oolean areEquall = Arrays.equals(array1, array2);
B‘ System.out.println("arrayl and array2 are equal: " + areEqual1l);

// Compare arrayl and array3
boolean areEqual2 = Arrays.equals(array1, array3);

System.out.println("array1 and array3 are equal: " + areEqual2);

Assigning One Array To Another Array
public class CopyArray {
public static void main(String[] args) {

// Initialize the original array

int[] arrl = new int[] {1, 2, 3, 4, 5};
// Create another array arr2 with the same size as arr1 %
int[] arr2 = new int[arrl.length]; QQ}
// Copy all elements from arr1 to arr2

for (inti=0;i < arrl.length; i++) { Q

arr2[i] = arrl[i];

// Displaying elements of the original array
System.out.println("Elements of the ori 'v%ly: ;
for (inti=0;i<arrl.length; i++) {

System.out.print(arrl[i] +""); %
}

System.out.print

// Displaging‘elements of the new array
S}Q ntln("Elements of the new array: ");

for(int¥= 0; i < arr2.length; i++) {

&

}

tem.out.print(arr2[i] +"");

Dynamic change of arrays

In Java, arrays have a fixed size once they are created. If you need a dynamically sized collection, you'll want to
use ArrayList from the java.util package, which provides dynamic resizing capabilities. Here's how you can use
ArrayList:

Using ArrayListin Java

1. Import ArrayList: Make sure to import the ArrayList class: %

import java.util.ArrayList;

dynamic resizing: %

public class Main {

public static void main(String[] args) { &

// Create an ArrayList of integers

ArrayList<Integer> myList = new ArrayList<@
// Add elements \3
myList.add(1); >
myList.add(2); ?’3

myList.add(3);

// Remove an e \
myList.reu%(ger.valueOf(2)); // Removes the element with value 2

//&Pring the elements
(int num : myList) {
BQSystem.out.print(num +""); //Output: 13
}

}

Common Operations with ArrayList:

Adding Elements:

myList.add(1,5); // Adds 5 atindex 1
Removing Elements:
myList.remove(2); // Removes the element at index 2

myList.remove(Integer.valueOf(3)); // Removes the first occurrence of the value 3

Accessing Elements: %
int element = myList.get(0); // Gets the element at index 0 Q

(@]

Iterating Over Elements: Q)%
for (inti= 0; i < myList.size(); i++) { Q
System.out.println(myList.get(i)); Q
} QR
Getting Size: Q
int size = myList.size(); // Gets the number of el ‘en%n the list

Clearing All Elements:
myList.clear(); // Removes all elements from the@

ArrayList is a versatile and commonly used col%n Java for managing dynamic-sized list.

Arrays Sorting %3

Array sorting refers to the pr%yof arranging the elements of an array in a specific order,
typically in ascending o%zd gorder. In Java, there are several ways to sort arrays, including

using built-in methods,orN menting custom sorting algorithmS
public class SortAr ample2
{

Qbmw

¢ void main(String[] args)

@/ creating an instance of an array

int[] arr = new int[] {4,2,3,1};

B‘ System.out.println("Array elements after sorting:");
//sorting logic

for (inti=0; i < arr.length; i++)

{

for (intj =i+ 1;j <arrlength; j++)

int tmp = 0;

if (arr[i] > arrfj])
{

tmp = arr[i];
arr[i] = arr(j];
arr[j] = tmp;

}

} %::)
//prints the sorted element of the array Q

System.out.println(arr[i]); Q
} Q -

} l
Descending Order %3

public class SortArrayExample%
: QO
public stati Nln(String[] args)

instance of an array

@a =new int[] {78, 34, 1, 3,90, 34, -1, -4, 6, 55, 20, -65};
&stem.out.println("Array elements after sorting:");

//sorting logic

%’ for (inti = 0; i < arr.length; i++)
{
for (intj =i+ 1;j <arr.length; j++)
{

int tmp = 0;

tmp = arr([i];
arr[i] = arr[j];
arr[j] = tmp;

}

} Q-
//prints the sorted element of the array Q

System.out.println(arr[i]);

i <§<C>°

Search for Values in Arrays %3

To search for values in 3@1 Java, you can use various methods depending on the type of search
you want to perform. Belo e examples of two common types of searches: linear search and
binary search.

Linea@

- d the search element from the user.

-YCompare the search element with the first element in the list.
- If both are matched, then display "Given element is found!!!" and terminate the function

d k%p
QSt 4 - If both are not matched, then compare search element with the next element in the list.

& Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.
Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and
terminate the function.

Class LinearSearch

{

Public static void main (String args[])

Int a[]={10,20,40,50,30};
Int search_ele=50;
Boolean flag=false;

For(int i=0;i<a.length;i++)

{ %
If(search_ele==a[i]) Q
{ S
System.out.println(“the element is found at : +i); Q)%
flag=true; Q&

break;

} &
}
If(flag==false) &

{

} c_§>\
\Q?»
&
S
(}.

list |65]20]10|55|32|12|50]|99

search element 12

Step 1:
search element (12) is compared with first element (65)

list [@8]20]10]55][32]12][50]99
12

Both are not matching. So move to next element C : >

Step 2:
search element (12) is compared with next elem

list [65]2@]10[55[32[12]50 990
12
|

Both are not matching. So move to ne nt
Step 3:
n

search element (12) is compared ext element (10)

list [65]20]@0]55]3 HER

12 Yy
g

Both are not matching. S o o next element
Step 4: C

search element (12) i ompared with next element (55)
list |65]2 32|12|50]|99
12

Both are not m%ing. So move to next element
Step 5: Q

search e

is 5[20[10]55]22[12]50]99
12

% are not matching. So move to next element
St*j 5:

earch element (12) is compared with next element (12)

‘{ list [65]20]10][55][32]E2]50]99
12

) J
Both are matching. So we stop comparing and display
element found at index 5.

t (12) is compared with next element (32)

N2

Binary search

e Step 1 - Read the search element from the user.

e Step 2 - Find the middle element in the sorted list.

e Step 3 - Compare the search element with the middle element in the sorted list.

e Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function.
o Step 5 - If both are not matched, then check whether the search element is smaller or larger Qg

the middle element.

o Step 6 - [f the search element is smaller than middle element, repeat steps 2, 3,4 and 5 0
sublist of the middle element.

o Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right
sublist of the middle element.

e Step 8 - Repeat the same process until we find the search element in thegaliSgoryintil sublist
contains only one element.

o Step 9 - If that element also doesn't match with the search element, th@ "

found in the list!!!" and terminate the function. Q
public class BinarySearch { & L

public static void main(String[] args) { @

inta[]={1,2,3,4,5,6,78,9, 10} /\
intkey = 5; \Q

intl=0;

inth =W

{

Qq intm=(1+h)/2;

if (a[m] == key) {

Element is not

e in sorted order

boolean flag = false;

System.out.println("Element Found..");
flag = true;

break;

if (a[m] <key) {
l=m+1;

}

if (a[m] > key) { %
h=m-1; Q
} c_;“‘)
} <§)
if (flag == false) {

System.out.println("Element NOT found.."); %Q
} A\
' S
} @

list |10]|12|20|32]|50|55]|65]|80]|99|

search element iz2

Step 1:
search element (12) is compared with middle element (50)

list [1o][12]20o][32]88]55]65][80][29] %
12 Q

Both are not matching. And 12 is smaller than 50. So we
search only in the left sublist (i.e. 10, 12, 20 & 32).

list |10|12|20]|32] %3

Step 2:
search element (12) is compared with middle elem 2)

list [1o]E2]=z0o][32]
12
Both are matching. So the result is “ElementQ at index 1”7

search element (0]

Step 1:

search element (80) is compared iddle element (50)

list |10]|12|20|32 5|65|80|99|

Both are not matching. A
search only in the right s

larger than 50. So we

t@e. 55, 65, 80 & 99).

list Iss|es|s80|99|
Step 2:
search element o) i ompared with middle element (65)
list [ss[ES]so]29]
80
Both are n hing. And 80 is larger than 65. So we
search v he right sublist (i.e. 80 & 99).
S
a element (80) is compared with middle element (80)
80

Both are not matching. So the result is “"Element found at index 77

Arrays as Vectors (Vector Class in Java)

The Vector class in Java implements a dynamic array where elements can be added or removed. It
is synchronized, which means it's thread-safe for use in multi-threaded applications. However,
because of the synchronization overhead, it's generally slower than ArrayList.

Key Features of Vector:
e Dynamic resizing %
e Can hold any type of data Q
e Supports operations like insertion, deletion, and searching %

Declaring and Using a Vector in Java:

import java.util.Vector; %Q
public class VectorExample { & >»
public static void main(String[] args) {
// Create a Vector to hold integer values
Vector<Integer> vector = new Vector<> &
// Adding elements to the Vectfl%\

e Synchronization makes it thread-safe é):

vector.add(10);

vector.add(20); v
vector.add(30); Q
vector.add(40); \

vector.ad

Assmg elements using an index

@m.out.prinﬂn("memem atindex 2: " + vector.get(2)); // Output: 30

L 2
B // Removing an element at a specific index

vector.remove(3); // Removes the element at index 3 (40)

// Iterating over the elements

System.out.println("Vector elements after removal:");

System.out.println("Element at index " + i+ ": " + vector.get(i));

// Size of the vector

System.out.println("Size of the vector: " + vector.size());

// Checking if the vector contains a specific element

if (vector.contains(30)) { %:)
System.out.println("Vector contains 30"); Q
}else {

System.out.println("Vector does not contain 30"); %Q
}
} S
}
Output: &v
Element at index 2: 30 %
Vector elements after removal: \
Element at index 0: 10 %%
Element at index 1: 20 Qv

Element at index 2: 30

Element atindex 3:

Size of the ve

Vector con%
N
(}’

Arrays Of Varying Lengths

In Java, you can create arrays of varying lengths, also known as jagged arrays or ragged arrays.
A jagged array is an array whose elements are arrays of different lengths, unlike a regular
multidimensional array where all rows have the same number of elements.

Declaring and Using Jagged Arrays

When you declare a 2D array, you don’t have to specify the size of each row. Instead, yo z%gn
arrays of varying lengths to each row.

java

Example Program: Arrays of Varying Lengths (Jagged Arrays) % ,

Copy code

public class JaggedArrayExample { Q%

public static void main(String[] args) {

// Declaring a 2D array with 3 rows E&

int[][] jaggedArray = new int[3][];

// Initializing each row with a differeré n‘u&r of columns
jaggedArray[0] = new int[3]; // %\
C

jaggedArray[1] = new int[2]; d row has 2 elements

as 3 elements

jaggedArray[2] = new int[4 ird row has 4 elements

% array with values

jaggedArray.length; i++)

// Populating t

int value =

for(&%
@ for (intj = 0; j < jaggedArray[i].length; j++)

{

B‘ jaggedArray[i][j] = value++;

}

// Printing the elements of the jagged array

m.out.println("Jagged Array Elements:"

for (intj = 0; j < jaggedArray[i].length; j++)

{
System.out.print(jaggedArray[i][j] +" ");
}
System.out.println(); // Move to the next line after each row
}
} <
} §
Output: Q
Jagged Array Elements: %
123 Q

. §
&
@
&

INHERITANCE

» The mechanism of deriving a new class from an old class such that the new class
acquires all the properties of the old class is called Inheritance.

» The old class is known as Parent, base or Super class and the new class that is derived is

known as child, derived or subclass.
> The Inheritance allows subclasses to inherit all the variables and methods of their Q%
parent classes. %
Defining a Subclass %
» A Subclass is defined as follows QQ)
Class subclassname extends superclassname Q
(%
Variables declaration Q
Methods declaration &
}

» The keyword extends signifies that the prope{&iae superclassname are extended
subclassname. %
» The subclass will now contain its ow%ﬁ&es and methods as well those superclass.

» This kind of situation occurs wh ant to add some more properties to an

existing class without actually ifying it.

Inheritance may tak\%nt types

1. Single inheritance

2. Multilevel Inhe
3, Hiera@ﬁtance
|

ritance

4. Hyb
% Inheritance (Does not supports in java)
()‘
These forms of inheritance are shown as

Single Inheritance

l Super Class
—
} |

Hierarchial Inheritance

Super Class J

MultiLevel Inheritance

Super Class

f

Sub Class 1

I Sub Class | ’ Sub Class 1

Sub Class 2 ‘ | Sub Class 3 |

f

Hybrid Inheritance

Sub Class 2

Multiple Inhertance

Super Class

[Super Class 1 ‘ ‘ Super Class 2 ‘

Sub Class 1 Sub Class 2

- >

Sub Class 3

1.Single inheritance

The process of Creating one Child class from one Parent class is called si

Example:

= . « & - 3
Single.java > ‘2 Triangle >
Rectangle

length,width;
Rectangle(int x,i

length=x;
width=y;

res=length®*width;
res;

Triangle exte Rectangle
height;
Triangle(int x,i

PErF(X,Y)5
height=z;

¢t tarea

resl=area()*height;

resl;

i main > args
obj=new Triangle(X:

ra=obj.area();

ta=obj.tarea();

10,y =

System.out.println
System.out.println

5,2

w o

l Sub Class ‘

20);

&
<O

D

2. Multilevel Inheritance

Process of deriving a class from another derived class is called multilevel inheritance

inal Help Multilevel2.java - p11 - Visual Stug

Multilevel2.java

Student

sSno;
- o sname;
Student(int x,String

1
SNo=Xx;
sname=y;

stu()

System.out.println(“"the sno is:"+sno);
System.out.println("the sname is:"+sname);

Student

m3=c;

!

bid stu marks()
System.out.println("the subl marks

System.out.println("the sub2 mark
System.out.println("the sub3 marks

XJy)a)b)C ;
total()
tot=ml+m2+m3;

turn tot;

Percentage

Percentage(int x,String y,int a,int b,int

Multilevel2.java > %2 Percentage > & Percentage(int, String, int, int, int)
Sé ® ; }x er(x,y,a,b,c);
per()
avg=total()/3;
avegs
s Multilevel2

i main(String args[])

obj.stu();
obj.stu marks();
int tm=obj.total();

pa=obj.per();
System.out.println("the student total marks
System.out.println("the student total marks

obj=new Percentage(x: 18,y: "yuvaraju”,a: 90,b: 92,c: 93

is"+tm);
is"+pa);

>

3. Hierarchical Inheritance

Process of deriving one or more subclasses from one super class is called hierarchical inheritance

erminal Help

L L= | L=

J i1.%;
Rectangle

length,width;
Rectangle(X, y)

length=x;
width=y;

rarea()

res=length*width;
res;

Volume Rectangle

Volume(X, y)
{

X>¥)s
vareal()

resl=1/2*rareal();
resl;

class Triangle extends Rectangle

C height;
Triangle(int x,int y,int z)

superix,y); %
height=z; Q
- tarea() C%
>

int res3=rarea()*height;
1 res3;

155 Hierarchical

roid main(String args|])

Triangle objl=new Triangle(x: 10,y: 20,z: 30);
int ta=objl.tareal();
int ra=objl.rarea();
System.out.println("the C
System.out.println("the area of tris:

me obj2=new Volume(x: 10,y: 20);
int va=obj2.varea();
System.out.println("the area of volume is:"+va);

4.Hybrid Inheri{ahy\
" O W 4

Combination of &boVe any inheritance is called hybrid inheritance

5. MultiQ\i ritance
Prgce o-fhaeriving asubclass from one or more superclasses is called multiple inheritance.
a dOes not directly implement multiple inheritance.

lhowever, this concept is implemented using a secondary inheritance path in the form of
interfaces. Class A

{

}
Class B

{
}

Class C extends A,B

{
}

Method Overrididng

A method in subclass, whose name, parameter list and return type are sameé~ th:;t ,
of the method in superclass is called overrided methods.

Triangle Rectangle
area(double 1, uble b)

resl=0.5*1%*b;
resi;

main(String

objl=: ¢ Triangle
ta=objl.area(l: 4,b:

// java does not allow this { }

N2

\(“»

Morjava - p11 - Visual Studio Code

System out.println(”the area o

L) E cd "f:\pll\" &&
the area of triangle isl@. G

Abstract Methods and Classes

» An Abstract method is a method without method body or a method without
implementation.

» An Abstract method is written when the same method has to perform different tasks

depending on the object calling it. %
Example: Q
class A // Automatically Becomes Abstract Class (: >

{ Q{o

void m1(); // Abstract Method

void m2() // Concrete Method Q k
{ &

System.out.println(“method 2”);

} N
} %%\%

» A Class that contains one or m(fw act Methods is called Abstract Class.
» An Abstract class is a class that contains 0 or more Abstract Methods.
n nce variables and concrete methods in addition to abstract

» Abstract class can coritaj
methods. Sin%@’ ss contains incomplete methods, it is not possible to estimate

the total mem ired to create the object.

ExamQ
"@

aet class MyClass

Baﬂ)stract void calculate(double x);

}
Class Sub1 extends MyClass

{

void calculate(double x)

}

}
Class Sub3 extends MyClass

{

void calculate(double x)

{ C’D
System.out.println(“Square Root ="+Math.sqrt(x));

} <
} N\
Class Different Q

{ Q%

public static void main(String args|[]) &

{
Sub1 objl = new Sub1();

Sub2 obj2 = new Sub2(); &v
Sub3 0bj3 = new Sub3(); \CD
obj1.calculate(3); %CD
obj2.calculate(4); v
obj3.calculate(5); \Q
} @
}

QY
N
(}.

Example:2

Abstraction.ja\

regno=x;

i fulltank()

s Maruthi

Maruthi(int x)

id steering()

System.out.println(x: "the maruthi car is normal steering:"

wyy

the maruthi car is re

erminal Help Abstraction,java - p11 - Visual Studio Code

) Welcome Single.java 1 @ Multilev Hierarchical.java Abstraction.java
Abstraction.java > %2 Maruthi > @ breaking()

Santro extends Car

Santro(int x)

f
1

steering()

System.out.println(x: "the santro car is power steering”

breaking()

System.out.println(x: "santro car is hydralic breaking:"

Abstraction

main(String args

obj=new Santro(x: 10);
obj.fulltank
obj.steering();

obj.breaking();
1 objl=new Maruthi(x: 20);
objl.fulltank();
objl.steering();

objl.breaking

ing] cd "f:\p11\" && javac Abstraction.java & java Ab
the car is full tank:
the santro car is power steering
santro car is hydralic breaking:
the car is full tank:
the maruthi car is normal steering:
the maruthi car is ready to breaking:

final class : prevents inheritance

sometimes we may like to prevent a class being further subclasses for security reasons. A
class that cannot be subclasses is called a final class. Any attempt to inherit final classes will
cause an error and the compiler will not allow it.

final class A

| N

class B extend A //error, cannot inherit a because it is a final class %
{ S
| QO

Interfaces:
Defining an Interface
An Interface is basically a kind of class

Like classes, interface contain methods and variables but with a major difference.

YV V V

The difference is that interfaces delline only

Abstract Method &

meaning they cannot be changed by the implementing class. They must al

» All Methods and Variables in the interface are implicitly public. Q
The syntax for defining an interface is very similar to that o@g aclass

Interface InterfaceName &
{

static and final Variables

Abstract Methods & i
} \3

Where Interface is the keyword aeln erfaceName is any valid java variable

Example: Q Z

Interface Item

{ \
static final in 1001;

staticfi& name = “Fan”;
V%play():
*

(}‘

= Final and Static Variables < :)
t.

» i.e methods are declared without any body and variables are implicitly fina % i
be i

Implementing Interface

v An Interface will have 0 or more abstract methods which are all public and abstract by
default.

v' An Interface can have variables which are public, static and final by default,
means all the variables of the interface are constants. %
v" Objects cannot be created to an interface whereas reference can be created. Q
v Once interface is de@ined, any number of classes can implement an interface. %
v’ Also one class can implement any number of interfaces. %
v' To Implement an interface, a class must create the complete set of method%n y the
v

create the methods defined by the interface.

interface. Q
To implement an interface, include the implements clause in a claw@ n, and then

v General form of a class that includes the implements clauws

Class ClassName [extends SuperClass] [imple s lgerfacel|,.. InterfaceN]]
(&
// class body %

} CJ\
Example %
Class A Extends B Imple ent&v

{ \
SRy

S

v ie if a class implements more than one interface, the interfaces are separated with a
comma.

The Relationship between classes and Interfaces are

class interface interface
/'y
extends | implements extends
|
class class interface

Example: é\'

Interface Bank v
{ S
float rateOflnterest(); \%

) C_DCJ

Class SBI implements Bank v

(%

public float reateO teN

{

return (%
} @
% ICICI implements Bank

¢

public float reateOfInterest()

{
return (9.8f);

}
}

class IB implements Bank

{

public float reateOfInterest() %
: Q

return (8.8f); %
) %
} $
class InterfaceDemo Q

{ Qs

public staticvoid main(String args[]) &Q

{

SBI obj1 = new SBI();

float sbi_roi = obj1.rateOfInterest(); & Z
ICICI obj1 = new ICICI(); \: >
floaticici_roi= objl.rateOfInteresl(!:, ’

IB obj1 = new IB();

floatib_roi = objl.rateO%ft()

Sk Interest is “+ sbi_roi);
rate of Interest is “+ sbi_icici);

rate of Interest is “+ sbi_ib);

System.out.println(“

System.outgarin
} Qt

}
“A‘terfaces can be Extended

ke classes, interface can also be extended.

v" i.e an interface can be sub interfaced from other interfaces.

v" The new sub interface will inherit all the members of the super interface in the
manner similar to subclasses.

v’ This is achieved using the keyword “extends”.

v General form of extending interfaces is

Syntax:
Interface NameNew extends namel][,...nameN]

{

Body of Interface

}

Example:
interface A %

{ N5
void meth1(); Q

void meth2(); %Q

) Q

interface B extends A &
{ %
void meth3(); v

} 2N

Class MyClass implements B %

{ S
public void meth1() V%

{ N\
System.out.printl "N nting meth1()....");

}

public voidumne
{ §
e

out.printin(“Implementing meth2()....");

Bp.lblic void meth3()

{

System.out.println(“Implementing meth3()....");

}

}

Class InterfaceDemo

{

Public static void main(string args[])
{

MyClass obj = new MyClass();
obj.meth1();

obj.meth2();

obj.meth3();

}

}

&
AN

U When a class implements an interface that inheri@er interface, it must
ed

provide implementations for all methods de
inheritance chain.
Note

abstract class and cannot be inst

S
\@C’
@@3
o

ithin the interface

and the class does not give

: if a class that implements an,in
implementations to all the methods‘% terface, then the class becomes an
iate

Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into
Programs, Path and Class Path, Access Control, Packages in Java SE, Java.lang Package and its Classes,
Class Object, Enumeration, class Math, Wrapper Classes, Auto-boxing and Auto- unboxing, Java util
Classes and Interfaces, Formatter Class, Random Class, Time Package, Class Instant
(java.time.Instant), Formatting for Date/Time in Java, Temporal Adjusters Class, Temporal Adjusters
Class.

Exception Handling: Introduction, Hierarchy of Standard Exception Classes, Keywords thro

throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked Exn f

Checked Exceptions. c ;

Java I/0 and File: Java 1/0 API, standard I/0O streams, types, Byte streams, ‘Qema) streams,

Scanner class, Files in Java ‘%

1. Introduction to Packages in Java %'
In Java, a package is a mechanism for organizing Java classe&ter ces, and sub-packages into

namespaces. Packages act like containers that group related class d intérfaces, helping to avoid naming

conflicts and managing large codebases efficiently.

Key Benefits of Using Packages: &;I

1. Namespace Management: Packages hx :m Jorganizing classes and interfaces into different
namespaces, which prevents namin% 7For example, you can have two classes with the same
c

name in different packages without causiig any conflicts.
2. Access Control: Packages a owgkxplication of'access control. Classes, methods, and fields can be

, private, or package-private (default), controlling how they are

3. Code Reusabilityy Packages make it easier to reuse classes across different projects or parts of a

project. Yowean casily import them into other programs and extend their functionality.

4. Logic ouping: Grouping related classes together makes it easier to maintain and manage code. It
a@zi structure, making the code more readable and understandable.
pac‘%

6 ® > Package a group of similar types of classes and interfaces and subpackages
Or
» Package is a folder that contains collection of related classes and interfaces.
» Injava ,packages can be categorized into two types
1.Built-in packages

2.user-defined packages

Built-in packages

In java we have various built-in packages that are already created by java people and these

packages contain large number of classes and interfaces
User defined packages

As the name suggests user-defined packages are a package that is defined by theuser or
programmer.

Packages

Built-in packages Us ined packages

<
in packages
™
v
{4 Javaio Java.util Java.lang Java.awt Java.util

c\gﬁ
§¥

>

Java.io Contains classes related to input/output operations
Java.util Contains classes and interfaces of collection framework, scanner class
Java.lang Contains fundamental classes like system, object etc for designing java
program
Java.awt Contains classes and interfaces for creating graphical components
A~
Java.swing Contain classes and interfaces for creating graphical components :\O
Advantages
> e

Java package is used to categorized the classes and interfaces so tha@&%

easily categorized.
» Java package provides access protection Q% ~

» Java package helps to avoid name space collision. &

How to create user defined packages A%

>

>
>

To create the package should be starts wi& ord is package

Syntax: package package name; %
It should not contain main class %\
Multiple programs should be Wi or placing multiple classes in samepackage.

Y.,
©

Steps to create a simple user defined packageStep-1

package pack;
public class PackDemo

{
public void show()
{
System.out.println("welcome to java");
}
I

A

«

import pack.PackDemo;
class Packl

{
public static void main(String args[])
{
PackDemo obj=new PackDemo();
obj.show();
;
}

O

D:\java>javac -d . PackDemo.java

D:\java>|

Step-4

D:\java>javac Packl.java

D:\java>java Packl
welcome to java

D:\java>|

A package hierarchy must be reflected in the file system of your Java developm@\. For

example, a package declared as package java.awt.image;

Example: Package demonstration Q
package pack; public Q%
class Addition

{ é&
int x,y; Y’
public Addition(int a, int b) : &

S

y=b;

b;
} E !
public void sum()\

{

m.put.printIn("Sum :"+(x+y));

X~
S
6 ‘

}

Step 1: Save the above file with Addition.java
package pack;
public class Subtraction
| <
int X,y; O

public Subtraction(int a, int b) %b

public void diff()

{ &
System.out.println("Difference :"+(x-y);
} &t’
| o
Step 2: Save the above file with Subtr%. aStep 3:

Compilation %
To compile the java files u,s%ef%g commands

javac -d directory path n% of\the java fileJavac —d

name_of the java file

Note: -d is a swi

represents in whic
directog I;)
ccéss package from another package

i ! Eer three ways to use package in another package:
&

ing options creates a new directory with package name. Directory path

cation you want to create package and . (dot)represents current working

1. With fully qualified name.

class UseofPack

{ &
public static void main(String arg[]) Q
{ o
pack.Addition a=new pack.Addition(10,15);
a.sum(); &

pack.Subtraction s=new pack.Subtraction(20,15); Q

s.difference(); %
2. import package.classname; v

import pack.Addition; ,\
import pack.Subtraction; %
class UseofPack %

{

Subtrac s=new Subtraction(20,15);
Qi rence();
&

3. import package.*;
import pack.*; class
UseofPack

{

public static void main(String arg[])

{ %
Addition a=new Addition(10,15);a.sum(); Q

Subtraction s=new Subtraction(20,15);)
s.difference(); Q)
; <¢

}
Note: Don’t place Addition.java, Subtraction.java files parallel to Q%ﬂ’rectory. If you
ry

place JVM searches for the class files in the current working di(r{ in the pack directory.

Access Control ‘%

e Javaprovides four types of access modifiers: 1i Z protected, default (no modifier), and

private. %
o public: Accessible from an %

o protected: Accessible w same package and subclasses.
o default: Accessible only’Within the same package.

o private: Acces§ible'only within the class where it is declared.

Packages in Java SE

1. java.lang Pack

e
e This ‘pw%gigés gutomatically imported into every Java program, providing fundamental classes
ial

essé the language.
. . &e sses:

o Object: The root class from which all classes in Java inherit.
6 * o String: Immutable sequences of characters.
o Math: Provides mathematical operations such as sqrt(), pow(), abs().
o System: Used to interact with system resources, e.g., System.out for standard output.

o Thread: For multithreading operations.

2. java.util Package

o Contains utility classes and interfaces used for collections, date/time manipulation, and random

number generation.

e Key classes: %f

o ArrayList, LinkedList, HashSet, HashMap: For handling dynamic collections of
o Collections: Utility class for manipulating collections (e.g., sorting, searchin%

o Date, Calendar, TimeZone: For handling date and time.

o Random: For generating random numbers. @

3. java.io Package %
e Provides classes for input and output operations, such as reading%vr ing data to files, handling

streams, and working with serializable objects. &

o Key classes:

o File: Represents file and directory pathna es?
o BufferedReader, BufferedWriter: For ¢fficignt reading/writing of text from/to files.

o InputStream, OutputStream: Base& or byte stream operations.
o Serializable: Marks classes foE % rialization
Wrapper Classes in Java v

Wrapper classes in Java are us convert primitive data types into objects. Each of Java's eight primitive

types (int, char, etc.) has a ¢orrespending wrapper class in the java.lang package. These wrapper classes

provide a way to treat

allowed, such as w%

The process, o verting a primitive type to its corresponding wrapper object is known as boxing, and
convertindit back to a primitive is called unboxing.

itiye data types as objects, which is necessary in scenarios where only objects are

ollections (e.g., ArrayList, HashMap).

@tiye ypes and Corresponding Wrapper Classes:

Primitive Type|Wrapper Class

boolean Boolean

byte Byte

char Character

Primitive Type |Wrapper Class

short Short

int Integer

long Long %r
float Float %Q
double Double %
Why Use Wrapper Classes? @

1. Object-Oriented Collection Classes: Java's collection classes (e. g.%{@st, HashMap) can

only store objects, not primitives. Wrapper classes allow primiti\Q €s to be stored in

collections by converting them into objects.
2. Utility Methods: Wrapper classes provide many useful m @or manipulating and converting
primitive values.
w1l

3. Default Values in Generics: Java Generics work o objects, so wrapper classes are used
when you need to work with generic types.

4. Nullability: Wrapper classes can be null, {re%r mitive types cannot. This can be useful for
representing the absence of a value.

Boxing and Unboxing q :X>
o Boxing is the process of conveﬂ? 1mitive type into its corresponding wrapper object.
e Unboxing is the reverse @, ere the wrapper object is converted back into a primitive type.

Example of Boxing and %

public class boxingExample {
pumh)id main(String[] args) {
//NBoxing (primitive to object)
int num = 100;

C} ¢ Integer obj = Integer.valueOf(num); // explicitly boxing

// Unboxing (object to primitive)

Integer obj1 = new Integer(200);

int num2 = objl.intValue (; // explicitly unboxing

System.out.println("Boxed Integer: " + obj);

System.out.println("Unboxed int: " + num?2);

}

Auto Boxing and Auto Unboxing Q%:

Java automatically handles the conversion between primitives and their corresponding wrap |%és
through auto-boxing and auto-unboxing. %

o Auto-boxing: Automatic conversion of a primitive type into its wrapper clasg
e Auto-unboxing: Automatic conversion of a wrapper object to its correspondi

Example of Auto Boxing and Auto Unboxing: %

public class AutoBoxingUnboxingExample { &

g primitive type.

public static void main(String[] args) {
// Auto-boxing

int num = 100;

Integer obj = num; // no need to call l%(gggalueoﬂnum)
// Auto-unboxing %\

Integer obj1 = new Intege 0}

int num2 = obj1; //m&ed call wrappedNumz2.intValue()

System.out.pri Xuto-boxed Integer: " + obj);

("Auto-unboxed int: " + num2);

]av#&@asses and Interfaces
(s
atter Class (java.util. Formatter)

The Formatter class in Java provides support for formatting data (such as strings, numbers, dates, etc.)
in a way similar to printf() in C. It can format output based on a format string that specifies how data
should be presented. It is often used in logging, console output, or file writing.

Key Methods:

format(): This is the primary method for formatting. It supports a variety of data types, and the

format string uses placeholders.

Key Concepts:
1. Format String: The format string specifies how data should be formatted. It contains placeholders
like %d, %f, %s, which get replaced with actual values.
2. Supported Data Types:
o %d: Integer (decimal).

o %f: Floating-point number (decimal). %,

o %s: String.

o %x: Integer (hexadecimal). %
o %o: Integer (octal). %

o %t: Date/time values. QQ)

Example: %
public class FormatterExample { Q
public static void main(String[] args) { (&

Formatter fmt = new Formatter();
fmt.format("Value of Pi to 2 decimals: %.2{" SW ;
System.out.println(fmt);

fimt.close(); \%
}
Output:

Value of Pi to 2 decima 9@

Example2:

import javautil.

p@ FormatterExample {

static void main(String[] args) {

& // Create a Formatter
C} ¢ Formatter fmt = new Formatter();
// Format an integer, a float, and a string
fmt.format("Integer: %d\n", 123);
fmt.format("Floating-point: %.2f\n", 3.14159);
fmt.format("String: %s\n", "Hello, World!");

// Print the formatted output

System.out.println(fmt);

// Close the Formatter to release resources

fmt.close();

h
Output:

Integer: 123
Floating-point: 3.14

String: Hello, World! %

Formatting Dates and Times:

You can use the Formatter class to format dates and times éin e %t prefix.

%tY: Year (4 digits).

%tm: Month (2 digits). &?"
%td: Day of the month. %

%tH: Hour (24-hour clock). \

%tM: Minute. %%

%tS: Second.

Example3: Q t

importjava.util.Form

import java.util.Cal

public ¢ s?? ormatExample {
atic void main(String[] args) {

Calendar cal = Calendar.getInstance();

p
jgmatter fmt = new Formatter();

©

// Format current date and time
fmt.format("Current Date: %tY-%tm-%td\n", cal, cal, cal);
fmt.format("Current Time: %tH:%tM:%tS\n", cal, cal, cal);

// Print the formatted output

// Close the Formatter

fmt.close();
}
}
Output:
Current Date: 2024-10-13 Q%
Current Time: 09:30:47 %
2. Random Class (java.util. Random)
The Random class in Java is used to generate pseudo-random numbers. It pr %ﬁ‘hods to
generate random integers, floats, longs, and even boolean values. Q%

Key Methods:
o nextInt(): Returns a random integer. %%

o nextInt(int bound): Returns a random integer within the spéeified bound.

e nextDouble(): Returns a random double between 0.0
Example: ‘\;)
import java.util. Random; C\)
public class RandomExa%l{ z
public static void m% ing[] args) {

Random randony=ew Random();

/‘@:gtg random integers
ran

1 Int = random.nextInt(100); // Random integer between 0 and 99

4{ stem.out.println("Random Integer: " + randInt);
&
// Generate random doubles

double randDouble = random.nextDouble(); // Random double between 0.0 and 1.0

e nextBoolean(): Returns a random boolean.

System.out.println("Random Double: " + randDouble);

System.out.println("Random Boolean: " + randBoolean);

Output:
Random Integer: 70
Random Double: 0.024016527282495925

Random Boolean: false

3. Time Package (java.time) %
The java.time package introduced in Java 8 provides a comprehensiv r
and times. It offers a much more flexible and modern way of wo V
the legacy java.util.Date and java.util.Calendar classes.

Key classes include: (6
e LocalDate: Represents a date without time. ‘%
e LocalTime: Represents a time without a date.
e LocalDateTime: Represents a date and ti &
e Duration: Represents a time duration %%urs, 30 minutes).
e Period: Represents a date-based %} time (e.g., 2 years, 3 months).
e ZonedDateTime: Represents ?t» me with a time zone.

Example: XQ

1. LocalDate

Represents a date ut a time zone (year, month, day).
imp@e.mcamate;

CSJI.TJHC class LocalDateExample {
public static void main(String[] args) {
// Get the current date

LocalDate today = LocalDate.now();

System.out.println("Today's date: " + today);

time compared to

handling dates

// Create a specific date

LocalDate specificDate = LocalDate.of(2024, 10, 13);

System.out.println("Specific date: " + specificDate);

// Add days to a date
LocalDate nextWeek = today.plusDays(7); %’
System.out.println("Date after one week: " + nextWeek); Q

boolean isLeapYear = today.isLeapYear();

// Checkif a year is a leap year Q))

System.out.printin("Is this year aleap year? " + isLeapYear); Q

}

Output: &
Today's date: 2024-10-13
Specific date: 2024-10-13 (&z

Date after one week: 2024-10-20

[s this year a leap year? false : %\
Example2: Q ; !

2. LocalTime x
Represents a time wit asdate and without a time zone.

import java.time:

pub@calTimeExample {
b

static void main(String|[] args) {
Get the current time

[
C} LocalTime now = LocalTime.now();

System.out.println("Current time: " + now);

// Create a specific time

LocalTime specificTime = LocalTime.of(14, 30, 45); // 2:30:45 PM

// Add hours and minutes to the current time
LocalTime later = now.plusHours(2).plusMinutes(15);
System.out.println("Time after 2 hours and 15 minutes: " + later);

// Get the hour, minute, and second

int hour = now.getHour(); %f

int minute = now.getMinute();

int second = now.getSecond(); %b

System.out.println("Hour: " + hour + ", Minute: " + minute + ", Secon@ond);
} %
) Q
Output: (&

Current time: 09:30:47.123

Specific time: 14:30:45 ?\
Time after 2 hours and 15 minutes: 11:45:47. é\g&
Hour: 9, Minute: 30, Second: 47 C\

5. Formatting for Date/Time in] ateTimeFormatter)

The DateTimeFormatter class (fxom’java.time.format) is used to format and parse date/time

objects. It provides flexible owerful formatting options.

Common Predefi matters:
. ISO_LOCA% : Formats a date as yyyy-MM-dd.
« ISO L_PATE_TIME: Formats a date and time as yyyy-MM-ddTHH:mm:ss.

&m Format Example:

port java.time.LocalDateTime;

import java.time.format.DateTimeFormatter;

public class DateTimeFormattingExample {

public static void main(String[] args) {

LocalDateTime now = LocalDateTime.now();

// Custom format: "dd-MM-yyyy HH:mm:ss"
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("dd-MM-yyyy HH:mm:ss");

String formattedDateTime = now.format(formatter);

System.out.println("Formatted DateTime: " + formattedDateTime);

- Q<§)

Formatted DateTime: 13-10-2024 08:52:35
6. TemporalAdjusters Class (java.time.temporal.TemporalAd%k
The TemporalAdjusters class provides common temporal a@"s, hich allow date

manipulations such as finding the next day of the week, theNast @§ay of the month, etc. Adjusters
are often used with classes like LocalDate.

Common Temporal Adjusters: Y"

o firstDayOfMonth(): Returns the first day© (&rrent month.

o lastDayOfMonth(): Returns the last ﬁcurrent month.

« next(DayOfWeek dayOfWeek): %the next occurrence of the specified day of the week.

e previous(DayOfWeek da Of%r): Returns the previous occurrence of the specified day of
the week.

Example:

import java.time.Local

import java.time.te al.TemporalAdjusters;
import je@n;.DZyOMeek;

g@s TemporalAdjustersExample {
Qp‘u ic static void main(String[] args) {
LocalDate today = LocalDate.now();

// Get the next Sunday
LocalDate nextSunday = today.with(TemporalAdjusters.next(DayOfWeek.SUNDAY));

// Get the last day of the current month

LocalDate lastDayOfMonth = today.with(TemporalAdjusters.lastDayOfMonth());
System.out.println("Last Day of Month: " + lastDayOfMonth);

}
} Q%
Output:

Next Sunday: 2024-10-20 Q)% :

Last Day of Month: 2024-10-31

Exception Handling

Java Errors are classified into 3 types
1) Compile -Time Errors
2) Run -Time Errors
3) Logical Errors

Compile-Time Errors Q%

_ Errors occurred at Compile Time are called Compile Time Errors

T These are Syntactical Errors found in the code, due to which a pro

_ Syntax Errors are detected at Compile Time. %
Q ifs to

compile. Q
— For Example, forgetting a semicolon at the end of a Java cht; or writing a
statement without proper syntax will result in compile-tim&m
T Detecting and Correcting compile-time errors is easy& Java Compiler displays
s

the list of errors with the line numbers along wit ription

Run time errors are not detected by #ie compiler.

Run Time Errors ?
Errors occurred at Run Time are calle@ Errors

[A O I B

It is the JVM which detects it l%e rogram is running.
Semantic Errors like divi ior%ero, Index out of Bound are detectedby JVM at
runtime. Q E y

Logical Errors
— These errors a % the mistakes made by the programmer.

~ Itwill n
ue to wrong idea or concept used by a programmer while coding.

[errorsyaay
Introd@ zException Handling

Q—\ Exception is a Run Time Error (or) An exception is abnormal condition that
1

ted by a compiler nor by the JVM.

% ses in a code sequence at the run time.
. When the jvm encounter an Run Time Error such as Division by zero, JVM creates
C} an object to the Corresponding Class and throws it.
T If the Programmer does not catch the thrown object and handles properly, the
interpreter will display an error message and the program gets terminated

abnormally.

[In order to stop abnormal termination of the program and to fix the error.

exceptions should be caught and handled.

Java exception handling is managed via five keywords

e Try
e (Catch
e Throw
e Throws %
e Finally Q
TRY %
» Statements that need to be monitored for exceptions should be pfa %
within a try block Q@
CATCH Q

exception using catch block and handles it in some rationalaan

» If an exception occurs within the try block, it is thrown and Q&G@ can catch this

THROW

» System generated exception are automatically thrown &A tge jvm. To manually throw an
exception, use the keyword throw. &

THROWS x
» Any exception that is thrown out must be specified as such by a

X~

» Any code that bs%y must be executed after a try block completes isput in a

throws clause

FINALLY
finally bloc

o

Hierarchy of Standard Exception Classes

Types of Exceptions

— S

Checked Exceptions Unchecked Exceptions

— ClassNotFoundException —ArithmeticException

— InterruptedException assCastException

Y
— |0Exception (Qy—i NullPointerException

— InstantiatiﬂhExnepDK — ArraylndexOutOfBoundsExceptior
3 SQLExceptign. — ArrayStoreException
> FIENﬂtFW;LHQH —> lllegalThreadStateException

>

s created by users.

1. User-Defined Exceptions

e These are custom e

e InJava, users e their own exceptions by extending the Exception class (for checked
exceptions)? imeException (for unchecked exceptions).
2. Built-in io

Built-i eptions are predefined in Java and categorized as:
a. Céel Exceptions:

*Checked exceptions must be either caught or declared in the throws clause of a method.
» Examples include:
o ClassNotFoundException
o IOException
o SQLException

o FileNotFoundException

b. Unchecked Exceptions:
o These exceptions occur at runtime and don't need to be declared in a method's throws clause.
e Examples include:
o ArithmeticException
o NullPointerException
o ArraylndexOutOfBoundsException Q%'
o lllegalArgumentException

Examples of Programs %:
i%d)e

1. User-Defined Exception Example: Here’s how you can create and use a user? xception.
class CustomException extends Exception { Q
public CustomException(String message) { %
super(message); Q

h &
} 5 .
public class Main { v

public static void validateAge(int age) throws (@Eption {

if(age < 18) { < E
throw new CustomException("Age% an 18, not eligible.");
} else { YV

System.out.println("Eligi8le");

}

public static VOiW tring[] args) {
try { Q

idatsAge(15);
ch (CustomException e) {

C} oSystem.out.println("Caught: " + e.getMessage());
}

H
Output:
Caught: Age is less than 18, not eligible.

b. Unchecked Exceptions:
o These exceptions occur at runtime and don't need to be declared in a method's throws clause.
e Examples include:

o ArithmeticException

o NullPointerException

o ArraylndexOutOfBoundsException Q%'

o lllegalArgumentException %
Built-in-Exception-Creating own Exceptions %
Arithmetic exception Q@

ArithmeticException Demo {

main(String args[])

a=230,b=0;

c=a/ b;
System.out.println("Result = " + c);

(ArithmeticException e) {

ArraylndexOutOfBoung

class ArraylndexOu ound_Demo {

public staticv,

N

int)a[] = new int[5];
a[6] =9; // accessing 7th element in an array of

C}' // size 5

}

catch (ArrayIndexOutOfBoundsException e) {

amp(String args[])

System.out.println("Array Index is Out Of Bounds");

}

FileNotFoundException

java.io.File;

java.io.FileNotFoundException;

java.io.FileReader;

File notFound Demo {

main(String args[])

File file = File("E:

FileReader fr = FileReader(file);

NullPointerException %b

NullPointer Demo {

main(String args[])

{

String a = 5
System.out.println(a.charAt(9));

(NullPointerException e) {
System.out.println("NullPointerException..");

Java File Handling

In Java by reading and writing text and binary files. File handling is crucial for any software
developer since it allows you to store and retrieve data, create logs, and process input/output

files.

java provides several classes and methods to work with files. The most common classes useb%

for file handling are:

 TFile: Represents a file or directory and provides methods to work with them %%
e FileInputStream and FileOutputStream: Used for reading and writing binary e@

* FileReader and FileWriter: Used for reading and writing text files. 0

e BufferedReader and BufferedWriter: Used for buffered reading and \@,

To read a text file, follow these steps:

Create a Fileobject representing the text ﬁile. 5
om the file efficiently.

Create a FileReaderobject to read the
Create a BufferedReaderobject to read te

Read the file using the readLinE(e

vk wpn =

Close the BufferedReaderobigC

Types of Streams
Java defines two types dfistreaams:
o Byte Stream to perform input and output of 8-bit bytes.

« Charac ms: Used to perform input and output for characters (16-bit

Byte Streams

Byte streams in Java are used to handle raw binary data. These streams read/write data in the form of bytes.
Classes for byte streams are part of the java.io package and typically extend InputStream or OutputStream.

Common Byte Stream Classes:
o FileInputStream: Reads bytes from a file.
o FileOutputStream: Writes bytes to a file.
e BufferedInputStream: Reads bytes from a file with buffering.
e BufferedOutputStream: Writes bytes to a file with buffering.

1. FileInputStream

o Purpose: Reads raw bytes from a file. %’
o Itisused to read the content of a file byte by byte, making it ideaQre ing binary files like

images, audio, etc.
e Itis part of the java.io package and extends the InputSt las§:

Example:

import java.io.FileInputStream; & E’
import java.io.IOException; A\%

public static void main(String[] afgs) {
try (FileInputStream fis 7‘% ileInputStream("example.txt")) {

int data;
while ((data =) !=-1) { // Read byte by byte
Sym%ﬁn

public class FileInputStreamExample {

t((char) data); // Convert byte to char and print

}
tc Exception e) {
e.printStackTrace();
&
¥

O

2. FileOutputStream
e Purpose: Writes raw bytes to a file.
o Itisused to write data into a file byte by byte, useful for writing binary data.

e Itis part of the java.io package and extends the OutputStream class.

Example:

import java.io.FileOutputStream; Qk
import java.io.IOException; %

public class FileOutputStreamExample { @

public static void main(String[] args) { Q

try (FileOutputStream fos = new FileOutputStream("output.txt")) { %

String content = "Hello, World!";
fos.write(content.getBytes()); // Convert string to bytes a to file

System.out.println("Data written to file successfully,");
} catch (IOException e) { &v
e.printStackTrace(); %
} &
| S
} ?"
Explanation: Q

e The content "Hello,\Worl

file output.txt.

e The write()
3. BufferedI ‘%I
. l% eads bytes from a file with buffering to improve performance.

s a FileInputStream and provides buffering, which reduces the number of actual read
atlons performed on the file, improving efficiency.

6 It is part of the java.io package and extends the InputStream class.

" is converted into bytes using the getBytes() method and written to the

rites bytes to the file.

Example:
import java.io.BufferedInputStream;
import java.io.FileInputStream;

import java.io.IOException;

public class BufferedInputStreamExample {
public static void main(String[] args) {

try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream("example.txt"))) {

int data;
while ((data = bis.read()) !=-1) {
System.out.print((char) data); // Convert byte to char and print Q%
| S
} catch (IOException ¢e) { %
e.printStackTrace(); Q@
| O

}
4. BufferedOutputStream &

o Purpose: Writes bytes to a file with buffering to improve'geriormance.

o It wraps a FileOutputStream and provides buffepthg, r§duCing the number of actual write operations
performed on the file.

e Itis part of the java.io package and exte &%!tputStream class.
Example: c E
import java.io.BufferedOutputStream; ?»

import java.io.FileOutputStream;

import java.io.IOException; x
public class BufferedOutputStreamExample {
public staﬁ% %a;'n(String[] args) {
e

try (BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream("output.txt"))) {
‘% ontent = "Hello, Buffered World!";
&
[
System.out.println("Data written to file successfully.");
} catch (IOException e) {

s.write(content.getBytes()); // Write bytes to buffer

e.printStack Trace();

Advantages of Buffered Streams:

e Performance Improvement: Buffered streams improve performance by reducing the number of
disk I/O operations. Instead of reading/writing byte-by-byte, buffered streams work with larger
blocks of data.

o Efficiency: Buffered streams are more efficient when reading from or writing to slow sources, such

as files on a disk or network connections. Q

Key Differences:

1. FileInputStream/FileOutputStream: Q)% :

o Read/write data one byte at a time.

o Suitable for binary data but not optimized for frequent I/O operati@

2. BufferedInputStream/BufferedOQutputStream: %'
o Read/write data in chunks, improving efficiency by re u& operations.

o Suitable for larger files or when efficiency is a congérn?
character Streams : \

Character Streams handle 16-bit Unicode characters, aiaking them ideal for reading and writing text data.
Classes for character streams typically extend the Reader class (for reading) or the Writer class (for writing).

Common Character Stream Classes:

. FileReader: Reads characters frome\lle; >
e

—

2. FileWriter: Writes characters to
3. BufferedReader: Wraps FileReader to provide efficient character buffering while reading text.
4. BufferedWriter: Wra@ riter to provide efficient character buffering while writing text.

FileReader

. Purp@egds!characters from a file.
0

o Itis nvenient class for reading text files as it reads characters rather than bytes, making it
uftablg for handling text data.

amp
. °© . .
port java.io.FileReader;
import java.io.IOException;
public class FileReaderExample {

public static void main(String[] args) {

try (FileReader fr = new FileReader("example.txt")) {

while ((data = fr.read()) !=-1) {

System.out.print((char) data); // Read character-by-character.

}
} catch (IOException e) {

e.printStackTrace();
} QOE
} 3
2. FileWriter @

o Purpose: Writes characters to a file.

o FileWriter is used for writing text data to a file, character-by-charac@ simple way to write text
files.

import java.io.FileWriter;

import java.io.IOException; &v
public class FileWriterExample { %
public static void main(String[] args) { %
try (FileWriter fw = new FileWrite tput.txt")) {
String content = "Hello, f@ite "
fw.write(content); // Wr g to file.
System.out.println(" ritten to file successfully.");
} catch (IOExceptt {
epri%kge'o;
) Q
}4{
o
fferedReader

o Purpose: Wraps FileReader to provide efficient character buffering while reading text.

o It reads text from a file more efficiently by buffering character input. It also provides convenient
methods like readLine() for reading entire lines of text.

Example:
import java.io.BufferedReader;
import java.io.FileReader;

import java.io.IOException;

public class BufferedReaderExample { Qk

public static void main(String[] args) {

try (BufferedReader br = new BufferedReader(new FileReader("example.txt"))) { Q}% :

String line; Q

while ((line = br.readLine()) !=null) { // Read line-by-line. Q
System.out.println(line); %

} <

} catch (IOException e) { &
e.printStackTrace(); %

} &Y’
} %

} &

4. BufferedWriter %

o Purpose: Wraps FileWriter to pr: efficient character buffering while writing text.

o [t writes text to a file mor.effisiently by buffering character output. It also provides convenient
methods like newLine() tte line separators.

Example:
import java.io.Buffered Writer;
import java.i%%r;
import j@o ception;
:c.cﬁs BufferedWriterExample {

%lic static void main(String[] args) {

try (BufferedWriter bw = new BufferedWriter(new FileWriter("output.txt"))) {

bw.write("Hello, BufferedWriter!"); // Write text to file.

bw.newLine(); // Insert a new line.

bw.write("This is the second line.");

} catch (IOException e) {

e.printStackTrace();

}
1. Scanner Class

7, int,

The Scanner class in Java is part of the java.util package. It is widely used to parse primitive t
double, float, etc.) and strings using regular expressions. A common use case for the Scann
reading input from the user, reading files, or processing input from other data sources like treams.

Common Uses: Q

1. Reading from the Console (Standard Input)

2. Reading from Files Q%’

a. Reading from the Console (Standard Input)
The Scanner class can read input from the console using the ?» input stream (System.in).

Example:

import java.util.Scanner; A\%

public class ConsoleIlnputExample {
public static void main(String[] args)
Scanner scanner = new Scann (S stem. 1n)

System.out.print("Enter

String name = scanner! i e(); // Read a full line of text

System.out.prin , "+ name + "!");

Syste Qﬁiné("Emer your age: ");
inf age,= scanner.nextInt(); // Read an integer value

System.out.println("You are " + age + " years old.");

[
&
}
Explanation:

e The nextLine() method is used to read a full line of text.

e The nextInt() method reads an integer value.

b. Reading from a File

The Scanner class can also be used to read data from a file by passing a File object or the file path to the
Scanner constructor.

Example:

import java.io.File;

import java.io.FileNotFoundException; %

import java.util.Scanner;

public class FileReadingExample { @

public static void main(String[] args) { 0

try {
File file = new File("input.txt"); Q

Scanner scanner = new Scanner(file);

while (scanner.hasNextLine()) {
String line = scanner.nextLine(); // Read lj (-&w
System.out.println(line); &
} %%
scanner.close(); Qv
iont) {

} catch (FileNotFoundEx%

e.printStack Tracg();
}
} QY"
}
nation:

Exp
6 .T e Scanner reads lines from the file input.txt line-by-line using the nextLine() method.

The hasNextLine() method checks if there are more lines to read.

2. Files Class

The Files class in Java is part of the java.nio.file package, which provides a variety of utility methods for
file handling, including reading, writing, creating, copying, moving, and deleting files and directories. It
supports working with Path objects, which represent file and directory locations in the file system.

Common Operations:
1. Reading a File
2. Writing to a File
3. Copying Files

4. Deleting Files

5

. Creating Files and Directories @

1. Introduction to String Handling

In Java, strings are objects used to store and manipulate sequences of characters. Java provides several classes,
such as String, StringBuilder, and StringBuffer, for handling strings. Strings in Java are immutable, meaning
once created, their values cannot be changed. This immutability allows for more efficient memory usage and
easier handling of strings.

The java.lang.String class is used to create a string object.

There are two ways to create String object: %
1. By string literal Q
2. By new keyword C%

1. By String Literal %
Java String literal is created by using double quotes. For Example: &

String s=""welcome"’; Q
2. By new keyword Q
String s=new String(""Welcome"); (&

String methods in java
1. length():Returns the number of characters in the st &
String str = "Hello, World!"';
int len = str.length(); / 13 %%
System.out.println(" Length of vw g: " +1len);
Output: Q
Q)

Length of the string: 1

2. equals():Checks if tw, s ave the same content (case-sensitive).

String stri,="'
Strin@llo";
Sriﬁtr = "hello";
00 isEqual = strl.equals(str2); // true
6 .b olean isEqualCaseSensitive = strl.equals(str3); // false
System.out.println("'strl equals str2: " + isEqual);
System.out.println("'strl equals str3 (case-sensitive): " + isEqualCaseSensitive);
Output:
strl equals str2: true

strl equals str3 (case-sensitive): false

3. equalsIgnoreCase(): Compares strings, ignoring case differences.
String str1 ="Hello";
String str2 = "hello";
boolean isEquallgnoreCase = strl.equalsignoreCase(str2); // true

System.out.println("'str1 equals str2 (ignoring case): " + isEquallgnoreCase);

Output:
strl equals str2 (ignoring case): true Qk

4. startsWith(String prefix):Checks if the string starts with the specified prefix. : %

String str = "Java Programming"’;
boolean startsWithJava = str.startsWith("Java''); // true %

System.out.println(" String starts with 'Java': "' + startsWithJava); Q

Output: %

String starts with 'Java': true

5. endsWith(String suffix):Checks if the string ends with the specified stffix.
String str = "Hello, World!";

boolean endsWithWorld = str.endsWith("'W !")2/ ;rue

Output:

String ends with 'World!": true % :

6. StringBuffer reverse()
Reverses the contents o @Buffer.

a
trifgBuffer("Hello");

System.out.println("' String ends with ' &' ' +endsWithWorld);

StringBuffer sb = né

ersdd StringBuffer: olleH
7. replace(char oldChar, char newChar):Replaces all occurrences of a specified character in a string.
*String str = "balloon";
String replacedStr = str.replace('0', 'a'); / "ballaan"
System.out.println("Replaced String: " + replacedStr);
Output:

Replaced String: ballaan

8. concat(String str):Concatenates the specified string to the end of the current string.
String strl = "Hello";
String str2 = strl.concat(" World");

System.out.println("Concatenated String: " + str2);

Output:
Concatenated String: Hello World
9.charAt(int index):Returns the character at the specified index. Q%

String str = "Hello, World!"; % :
char ch =str.charAt(7); // 'W' %
System.out.println(" Character at index 7: " + ch); Q

Output: Q' t

Character at index 7: World

10. substring(int start, int end):Returns a new string containin &ters from the specified start to
end index.
String str = "Hello, World!""; (&

String subStr = str.substring(7, 12); // " (%
System.out.println("' Substring fro i% 12: " + subStr);
Output:

Substring from index 7 to 12: World

11. toCharArray():Converts th@ a character array.

String str = ""HelloY};

char[] charAr,

System.outtprintha(" Character array: " + Arrays.toString(charArray));
Output:Charactenarray: [H, e, 1, 1, 0]

12. com (String anotherString): Compares two strings lexicographically.

6 .S ring str2 = ""Banana'';

int comparison = strl.compareTo(str2); // returns a negative value because "Apple" < '"Banana"
System.out.println(" Comparison result: " + comparison);

Output:

Comparison result: -1

13. concat(String str):Concatenates the specified string to the end of the current string.

String str1 = "Hello";

Output:
Concatenated String: Hello World

14. replaceAll(String regex, String replacement):Replaces each substring that matches the given regular
expression with the specified replacement.

String sentence = ""The rain in Spain"’;

String replacedSentence = sentence.replaceAll("ain", "oon"); // " The roon in Spoon"

System.out.println("Replaced Sentence: " + replacedSentence); %r
Output: Q
Replaced Sentence: The roon in Spoon %

15. toLowerCase() and toUpperCase():Converts all characters in the string to lowercase
String str = "Hello, World!"'; Q
String lower = str.toLowerCase(); / ""hello, world!" Q
String upper = str.toUpperCase(); / "HELLO, WORLD!" %
System.out.println(" Lowercase: " + lower); Q
System.out.println(" Uppercase: " + upper); &

Output:

Lowercase: hello, world! v

Uppercase: HELLO, WORLD! \%&

Multithreading

Multithreaded programming is a method of concurrent execution in which multiple threads, or smaller
units of a process, run simultaneously. This technique enhances the efficiency of a program, particularly
on multi-core processors, by allowing multiple tasks to execute at once. Let's break down some of the
essential concepts in multithreaded programming:

1. Need for Multiple Threads

Multiple threads enable concurrent execution, which improves program performance and respo ess.

For example, in a GUI application, one thread can handle the user interface while another thr
calculations in the background.

2. Multithreaded Programming for Multi-core Processors %b

Multi-core processors can execute multiple threads in parallel, allowing program e full advantage
of the processor's capabilities. This enables faster computation and can reduce-theime required for
processing tasks.

Thread Life Cycle ng
y ar

During the life time of a thread there are many states it can ente e

A. NewBorn state

B. Runnable state YV
C. Running State %&

D. Blocked state %%\

E. Dead state

A thread 1s always in any one of these %ates.lt can move from one state to another via a
variety of ways as shown belo

New Thread New-born
T T TTTTTTTT T T I
| |
I | I
| |
. | 1
Active | Running Runnable '_’stop[' Dead
Thread | ed : |
| yield() | Kilied Threod
| |
| |
A O N o s e e e S e o el |
stop||
suspend] “asume Pl
sieet| afer %’ msac
waz]] notey

idle Thread Blocked

New Born state

v' when we create a thread object, the thread is born and is said to be in new born state.

v' The thread is not yet scheduled for running .At this state, we can do only one of the
following things with it.

¢

Schedule it for running using start() method.

Kill it using stop() method. %

start

runnable state

¢ If scheduled ,it moves to the runnable state ,é&
Runnable State &z
» The runnable state means that the t%%ady for execution and is waiting for
t

availability of the processor .i.e % ead has joined the queue of threads that are

waiting for execution.

o
*

¢

o
*

dead state

» If all threads have eqt@ty, then they are given time slots for execution in Round
S

Robin fashion,i.e ECFS manner.

> The thread thafitelingiishes control joins the queue at the end & again waits for its turn

vield

Runnable Threads

Running
Thread

Relinquishing control using yield() method

Running State

» Running means that the processor has given its time to the thread for its execution.
» The thread runs until it relinguishes its control in one of the following situations.

1)It has been suspended using suspend().
a suspended thread can be received by using the resume() method. %
2)It has been made wait by using wait() method Q

A thread that is waiting will get resumed after notify() method q%

3)It has been slept for a t seconds.

A thread will get invoked after t seconds §
Example %
P 2

2. sleep()

It has been made to sleep, We can put a thread to sleep for a specified
time period using the method sleep (time) where time is in milliseconds. This
means that the thread is out of the queue during this time period. The thread re —
enters the runnable state as soon as this time period is elapsed.

sleep (1)
Running Runnable Sleeping
46
o

Blocked sta

» Thread cap also be temporarily suspended or blocked from entering into the

ruhpable and subsequently running state by using either of the following

thifead methods.

@ep() // blocked for specified time

Suspended() // blocked until further orders

Wait() // blocked until certain condition occurs.

» These methods cause the thread to go into the blocked sate. The thread will
return to runnable state when the specified time is elapsed in the case of
sleep(),the resume() method is invoked in case of suspend(),and notify()

method is called in case of wait().

Dead State

» Every thread has a life cycle . Qk

» A running thread ends its life when it has completed executing its run().it is

natural death. %
» However, we can kill it by using stop message to it at any stage.Thus @

premature death to it. Q
Creating threads in java is simple. Threads in java can be created in&ay;'
1) By extending the thread class. ‘%
2) By implementing the runnable inter?{.?»
1) Creating threads by extending t 4&% class:
U Define a class that extends thr |
required by the thread.
O Steps to create threa%fx“teaing thread class are

a) Declari e class

and override its run()with the code

I enting the run() method.

arting New Thread.
Declaring@%

Declagg the class by extending the thread
s: Class MyThread extends Thread

Implementing the run() method:

* the run method is the heart and soul of any thread.

* We have to override this method in order to implement the code to be
executed by our thread.

» It makes up the entire body of a thread and is the only method in which
the threads behavior can be implemented.

* The basic implementation of run() Q%r

will look like public void run()

{ :
Thread code @
} O
When we start new thread ,java calls the threads run() method. Q%’
Starting New Thread: &

* create a thread object and call the start() methed to ‘witiate the thread execution.
* To create and run an instance of our threa&%, e must write the
following: MyThread tl=new MyT

T1.start(); h%rx

* The first line instantiates a agw object of class MyThread.
* The second line calls@) cgusing the thread to move into runnable state.
i

* Then, the java runt schedule the thread to run by invoking its
run().Hence th ead is said to be in Running state.

w
&
6 .

fl class & extends Thread

; ¢ public woid run()
3 {
try
i
for({int i=1;i<=5;i++)
¢ system.out.println{"From Thread A :™+1)};
E Thread.sleep{lee);

k)
catch{Interruptedexception ie)
¢ system.cut.println{ie};

T
k)
k)
class B extends Thread
{

public woid run()
tryf
i

for{int i=1;i<=5;1i++)

{
system.cut.println{"From Thread B :"+i);
Thread.sleep{lee);
¥
catch{Interruptedexception ie)
i
system.cut.println{ie};
k)

3

public class Helloworld{

public static woid main(string [Jargs)

{
A obl = new A(};
B ob2 = new B(};
obl.start(};
ob2.start(};

k)

‘\g\/

$javac HelloWorld. jawva

Fjava -HmxlZ2E8M -MXms16M Hellokorld

From Thread
From Thread
From Thread
From Thread
From Thread
From Thread
From Thread
From Thread
From Thread
From Thread

DEDEDEDE0O0
W WWRMNRE

T

Creating Thread using Runnable Interface

A) Create a Class that implements Runnable Interface

B) override run() method
create a thread by passing an object to the implementation class of runnable interface

class A implements Runnable

public woid run(d}
i
Ty
{
for{int i=1;i<=5;3i++}
{
system.out.println{™"From Thread a: "=1i);
Thread.slesp(l1aa]} ;
¥

catch{InterruptedeException ie}
system.out.println{ie};

T
I

class B implements Runnable

i

public woid rundd}

{
tTry

for{int i=1;i<=5;3i++)}

{
System.cut.println{®"From Thread B: "+1);
Thread.slesp{l1aa);

i)

catch{Interruptedexception ie}

{
¥

System.cut.println{iel};

T
¥
public class HellowWworld{

public static wold main{String [Jargs)
{
A oba new Al
B ob2 new B}
Thread ti new Thread(obl);
Thread t2 new Thread({ob2);

"N

[}

H

A
$javac HelloWorld.java

$java -Xmx128M -Xms16M Hellokiorld

From Thread B: 1
From Thread &: 1
From Thread B: 2
From Thread &: 2
From Thread B: 3
From Thread &: 3
From Thread B: 4
From Thread &: 4
From Thread B: 5
From Thread 4A: 5

Thread Priority and Synchronization

Thread Priority is a concept in multithreaded programming that determines the relative
importance of each thread when they compete for CPU time. Thread priorities help the system’s
scheduler decide which thread to run when multiple threads are ready for execution.

1. Priority Levels:

thread priorities range from MIN_ PRIORITY (1) to MAX_PRIORITY (10),

o Threads are assigned priority levels, typically as integers. In Java, for exampl
NORM_PRIORITY (5) as the default. k

o A higher priority thread is more likely to be selected by the CPU sch: L%(er a
lower-priority thread, although this behavior is platform-depende%

Synchronization in multithreaded programming is crucial for managin% to shared

resources to avoid data inconsistency and ensure thread safety. Q

1. The Need for Synchronization: %'
o When multiple threads access shared resources (%s(ted variables, files, or

memory), there is a risk of race conditions, re thdfinal outcome depends on
the timing of thread execution.

o Synchronization prevents threads from wterfering with each other and ensures that
only one thread accesses a shared & a time.
2. Synchronized Blocks and Methods:
nchronization is achieved using synchronized

o In many programming language
blocks or methods. A schEr iZed block allows only one thread at a time to access

the code block or resQurce,

o Forexample, indava, t;; synchronized keyword locks an object, so no other thread
can access t nchronized code block or method of that object until the current
thread complctes 1t

r mutex) is a mechanism used to enforce synchronization by allowing

e) C
«,(%n%e thread to hold the lock at a time.

hen a thread acquires a lock on a resource, other threads must wait until the lock

Q is released before they can access the same resource.
4

. YWeadlock:
®
6 o Deadlock occurs when two or more threads wait indefinitely for resources held by
each other, creating a cycle of dependencies with no resolution.

o Avoiding deadlock requires careful resource allocation and sometimes the use of
timeout-based locking mechanisms.

5. Avoiding Race Conditions:

o Race conditions occur when multiple threads attempt to modify shared data
concurrently, leading to inconsistent results. Synchronization helps avoid race
conditions by enforcing an orderly access to shared resources.

Deadlock and RaceConditions
Both deadlock and race conditions are critical concurrency issues in multithreaded programming.

Deadlock involves threads waiting indefinitely for each other, which halts progress, off
requiring a restart or intervention.

Race Conditions involve unpredictable results due to concurrent access to shared data, eaglbg to
data inconsistency.

Using synchronization techniques and careful resource management can révent both
deadlock and race conditions, resulting in safer and more predictable mul@ programs.

Java Database Connectivity (JDBC)

Java Database Connectivity (JDBC) is a standard Java API that enables Java applications to
interact with a wide range of databases. It provides methods for querying and updating data in a
database and is widely used for developing Java applications that need to communicate with
databases like MySQL, PostgreSQL, Oracle, and others.

1. Introduction to JDBC

JDBC allows Java programs to: %

e Connect to a database.

e Send SQL queries and update statements to the database. %%

o Process the results retrieved from the database.
JDBC provides a universal data access API that is independent of any patabase or
platform, enabling developers to switch databases without altering their a je significantly.
2. JDBC Architecture %’
The JDBC architecture consists of two main components: (6

1. JDBC API: This provides a standard interface J%a applications to connect to the

Its

database, execute SQL queries, and retrieve r NThe JDBC API includes classes and
interfaces such as DriverManager, CO}Q , YStatement, PreparedStatement, and

ResultSet.
2. JDBC Driver: JDBC drivers are d. @eciﬁc implementations of the JDBC API that
communicate with the database. rivers translate the API calls into database-specific

calls, making the interaction b ava applications and databases possible. There are
four types of JDBC driverszzy

o Typel: JDB@C ridge Driver

o Type2: Nati Driver

twork Protocol Driver

o hin Driver (pure Java driver; commonly used for databases like

)
3. Ins% SQL and MySQL Connector/J
Toguse J with MySQL, you need to install both MySQL and the MySQL Connector/J.

@stallmg MySQL
1. Download the MySQL installer from the MySOQL official website.

2. Run the installer and follow the installation steps.

3. Setup aroot password and configure any other settings as needed.

https://dev.mysql.com/downloads/

Installing MySQL Connector/J

The MySQL Connector/J is the JDBC driver for MySQL, which is required to connect Java
applications to a MySQL database.

1. Download the MySQL Connector/J from the MySQL Connector/J download page.

2. Extract the downloaded ZIP file, and locate the mysql-connector-java-<version> jar file.

3. Add this .jar file to your project’s classpath. In IDEs like IntelliJ or Eclipse, you can do
this by right-clicking your project, selecting "Add External JARs," and choosing th %
Connector/J JAR file. Q

4. JDBC Environment Setup %%
To set up the JDBC environment in a Java application: Q)
1. Ensure the MySQL Connector/J JAR file is in your project’s class Q
2. Import necessary JDBC packages: DQ
import java.sql.Connection; Q%
import java.sql.DriverManager; &
import java.sql.ResultSet; ‘%
import java.sql.Statement; Yy
import java.sql.SQLException; %&
5. Establishing JDBC Database Conne

To establish a connection with a databa%

1. Load the JDBC Driver (optighal since JDBC 4.0):
Class.forName("com.mysq,@Driver" ;
ion:

anager.getConnection() with the JDBC URL, username, and

p?xo .
Qh JDBC URL format for MySQL is:
jd@<hostname>:<port>/<databasename>

For e ple:

ava, follow these steps:

2. Establish a Con'

o Us

@n‘g url ="jdbc:mysql://localhost:3306/mydatabase";

String username = "root";

String password = "password";

Connection connection = DriverManager.getConnection(url, username, password);

https://dev.mysql.com/downloads/connector/j/

3. Create a Statement:

Statement statement = connection.createStatement();

4. Execute Queries:

ResultSet resultSet = statement.executeQuery("SELECT * FROM users");
5. Close the Connection:

resultSet.close(); %

statement.close();
connection.close(); %b
6. ResultSet Interface

The ResultSet interface represents the result set obtained by executing a S g and provides
methods to navigate and retrieve data from it. A ResultSet can be thou % table of data,
with rows representing each record returned by the query.

Commonly Used Methods of the ResultSet Interface

1. Navigating the ResultSet:
o next(): Moves the cursor to the next ro s false if there are no more rows.

o previous(): Moves the cursor to th(& s row (only if ResultSet is scrollable).
o first(), last(): Moves to the ﬁ

2. Retrieving Data: ,.; %

ieves a column as a String.

o getString(columnLa
o getInt(coluan:el): trieves a column as an int.
o getDouble(cﬁ%

o Column 1 can be the column name or the column index.

abel): Retrieves a column as a double.

Example Program JDBC to Query MySQL Database
Here's an @1 ogram that connects to a MySQL database, retrieves data from a table, and

display

im qu.Connecﬁon;

1 ﬁﬂva.sql.DriverManager;
%o.rt java.sql.ResultSet;

import java.sql.Statement;

import java.sql.SQLException;

public class JDBCExample {
public static void main(String[] args) {
String url = "jdbc:mysql://localhost:3306/mydatabase";
String username = "root";

String password = "password";

try (Connection connection = DriverManager.getConnection(url, username, passwo
System.out.println("Database connected successfully!");

Statement statement = connection.createStatement(); §)
String query = "SELECT id, name, email FROM users"; %’
ResultSet resultSet = statement.executeQuery(query)&Q
System.out.println("User Details:"); ‘%
while (resultSet.next()) { &E y

int id = resultSet.getInt("1d"); %

String name = resultSet.getStril%Xe ");
String email = resultSet.getS%‘ mail");
System.out.prinu@ +1id + ", Name: " + name + ", Email: " + email);

}

re@);
m

.close();

<
@tch (SQLException €) {
e.printStackTrace();

This program:
e Connects to a MySQL database.
e Queries a table named users.

o [terates over the ResultSet to print each user’s id, name, and email.

JavaFX Scene Builder

JavaFX Scene Builder is a visual design tool used for building the user interface (UI) of JavaFX
applications without manual coding. Instead of writing Java code for UI layouts, Scene Builder
allows you to visually design the interface and automatically generates an FXML file to
represent the structure.

Key Features %
1. Drag-and-Drop Interface Q
o You can easily add UI components like buttons, labels, and text ﬁelds%)

dragging them from the toolbox onto the design canvas.

2. Set Properties for Controls

style directly in Scene Builder.

o Configure Ul components by setting properties such as tfx@%ignment, and

3. FXML Code Generation

o Automatically generates an FXML file based‘qn the layout you design. This file
can be loaded in your JavaFX application ering.

4. Link to Controller Classes

o Allows you to assign event han e&bind UI components to your JavaFX
application’s controller clasi.\

How to Use Y»
1. Download and Install S¢ene Builder

o Download Scéne Builder from the official Gluon website.

o Instakwit off your computer.

2. Design (Q[I‘J» Interface
Qp Scene Builder and start a new design.

Add nodes like buttons, text fields, or labels by dragging them from the toolbox
to the design area.

(.f . o Arrange and configure properties for each node using the Properties panel.
3. Save as FXML
o Once the design is complete, save it as an .fxml file.

o Example: MainUIL fxml.

4. Integrate FXML with Your JavaFX Application
o Use the FXMLLoader class in your JavaFX code to load the saved FXML file.

Example Code Integration

FXML File (MainUI.fxml):

S

Copy code

<?xml version="1.0" encoding="UTF-8"?> (E I)

<?import javafx.scene.control. Button?> Q

<?import javafx.scene.layout.StackPane?> %’
<StackPane xmlns:fx="http://javafx.com/fxml"> ;&

<Button text="Click Me!" fx:id="myButton"/>
</StackPane> &Yw
Java Application: %
java %%\

Copy code

import javafx.application.A;i%OR y
T,

import javafx.fxml.FXML]&

import javafx.scene.Par

import javafx.scene? ;
import jav@%&age;
publi Q/lainApp extends Application {

@.O erride
ublic void start(Stage primaryStage) throws Exception {
Parent root = FXMLLoader.load(getClass().getResource("MainULfxml"));

Scene scene = new Scene(root, 400, 300);

http://javafx.com/fxml

primaryStage.setTitle("JavaFX with Scene Builder");
primaryStage.setScene(scene);

primaryStage.show();

launch(args);

public static void main(String[] args) { %

O

2. JavaFX App Window Structure %
A JavaFX application follows a hierarchical structure where comp@s e organized into three
main layers: Stage, Scene, and Nodes. Let’s explore these co&nen in detail:

1. Stage Yyi

o What is it?
The Stage is the top-level container tat sents the application window. It is
automatically created when a Jav 1cation starts.

o Key Features: %

o Controls the wi OW%, size, and visibility.
o Acts as the @y point for displaying the user interface.

Example: E\

primaryStage.setTi JavaFX Application");

primaryStQ%h(SOO);
pﬁma@. Height(600);
@cen!

®

e What is it?

The Scene holds all the visual elements (nodes) of the application and represents the
content to be displayed in the Stage.

o Key Features:

o Acts as a container for the Scene Graph, which is a hierarchical tree of nodes.

o Defines properties like dimensions and styling.

o A Stage can have only one Scene at a time, but the Scene can be swapped
dynamically.

Example:

Scene scene = new Scene(rootNode, 400, 300);

primaryStage.setScene(scene); %
3. Nodes : %

e What are they?
Nodes are the building blocks of the Scene Graph. They are individua nts like
buttons, labels, text fields, and layout panes.

e Types of Nodes: Q
o Root Node: The top-most node in the Scene Graph’% out panes like

StackPane, VBox, etc.).

o Child Nodes: Ul elements (e.g., Button, @ ImageView) added to the

Root Node or other containers.

S
S

Label label = new Label("Hello, JavaFX!"); \
Button button = new Button("Click Mg} %
VBox rootNode = new VBox(10, la‘ﬁli button);

A,
Complete Example: \Q

Here’s a simple JavaFX yeation demonstrating the structure:
import javafx.applic “Application;

import jav@&g:ene;

impoq@«scene.control.Button;
irn%va x.scene.control.Label,

impart javafx.scene.layout.VBox;

import javafx.stage.Stage;

public class JavaFX AppStructure extends Application {
@Override

public void start(Stage primaryStage) {
/I Create Nodes
Label label = new Label("Welcome to JavaFX!");

Button button = new Button("Click Me");

// Create Root Node (Layout Pane) %

VBox rootNode = new VBox(10, label, button);

// Create Scene and Set Dimensions @)

Scene scene = new Scene(rootNode, 400, 300); Q

// Set Scene to the Stage Q t

primaryStage.setScene(scene);

primaryStage.setTitle("JavaFX App Window Structure!));

primaryStage.show(); &E y
§ \%
public static void main(String[] a s% :
launch(args); ;;)

=S

3. Displayin T%d Images in JavaFX

JavaFX prqvides straightforward ways to display both text and images in a user interface.
Hiwil w you can use the Label, Text, and ImageView nodes effectively:

7
@pﬁaying Text

Options:
1. Label
o Used for short, non-editable text.

o Often used in forms or as a description for UI components.

Example:
Label label = new Label("Welcome to JavaFX!");
2. Text
o More flexible than Label, allowing custom fonts, styles, and multi-line text.

o Used for rich text display or larger content.

Example: %
Text text = new Text("Hello, JavaFX Text Node!"); Q
text.setStyle("-fx-font-size: 20px; -fx-fill: blue;"); %%

Code Example for Text Display: Q@

import javafx.application. Application;

import javafx.scene.Scene; Q
import javafx.scene.layout. VBox; Q%'
import javafx.scene.text. Text; &

import javafx.scene.control.Label; ‘%

import javafx.stage.Stage; &v

public class DisplayTextExample extends% on {

@Override
public void start(Stage prim. Stage) %
@ is a Label!");

Label label = new Lab%)
Text text = new TextE is a Text node!");

VBom VBox(10, label, text);
‘@cene =new Scene(root, 300, 200);
6 primaryStage.setTitle("Displaying Text");
®
primaryStage.setScene(scene);

primaryStage.show();

public static void main(String[] args) {

launch(args);

Using Image and ImageView:

1. Image: Represents the image file loaded from a URL or local file. (E l)

2. ImageView: Displays the image in the scene. @

Steps: Q
e Create an Image object. %'
o Pass it to an ImageView. Q

Code Example for Image Display: &
import javafx.application. Application; ‘%
import javafx.scene.Scene; &Yw
import javafx.scene.image.Image; %

import javafx.scene.image.hnageView;%%\

Displaying Images %

import javafx.scene.layout. VBox;

import javafx.stage.Stage; Q ;)

public class Displaylma ple extends Application {
@Override

public \q%ge primaryStage) {
//@1 ge from a file (adjust the file path as needed)
a

‘% mage = new Image("file:your image path.jpg");
6 ImageView imageView = new ImageView(image);

// Optional: Set image dimensions
imageView.setFitWidth(200);

imageView.setPreserveRatio(true);

VBox root = new VBox(imageView);

Scene scene = new Scene(root, 300, 300);

primaryStage.setTitle("Displaying Image");
primaryStage.setScene(scene);
primaryStage.show(); Q&

public static void main(String[] args) { @
launch(args); Q

} &
4. Event Handling in JavaFX ~ i
e

Event handling in JavaFX allows you to define actions viors that occur when a user
interacts with Ul components, such as clicking a on, pressing a key, or moving the mouse.
JavaFX uses an event-driven model to handle these interactions.

A\
b4
Key Components of Event Handling

1. Event Source

The UI component ti@era:es the event (e.g., Button, TextField).

2. Event Handler
A method or lam

ression that defines the response to the event.

Provides ation about the event, such as the source of the event and event type.

A

StepS§ t dle Events
.&n Event Handler
@l.can set an event handler for a Ul component using:
o A Lambda Expression

e An Anonymous Class

e A Separate Method

2. Use Event Methods

The most common method for handling events is setOnAction, which is used for buttons and
similar controls.

Examples
1. Button Click Event

Using a Lambda Expression: Q%'
import javafx.application. Application; %
import javafx.scene.Scene; Q)%
import javafx.scene.control.Button; Q

import javafx.scene.layout.StackPane;

import javafx.stage.Stage; Q% ’
public class ButtonEventExample extends Application { ,%(&
@Override (@»

public void start(Stage primaryStage) {
Button button = new Button("Click Me!);
button.setOnAction(e -> System.(%' ("Button clicked!"));

StackPane root = new Sfack ne; button);

Scene scene = newyScend(root, 300, 200);

t Pitle("Button Click Event");

pri e’setScene(scene);

‘{ aryStage.show();
}
&
public static void main(String[] args) {

launch(args);

2. Handling Mouse Events

JavaFX provides methods like setOnMouseEntered and setOnMouseClicked for handling mouse
interactions.

Example:

import javafx.application. Application;
import javafx.scene.Scene; %’
import javafx.scene.layout.StackPane; %Q
import javafx.scene.text. Text; %

import javafx.stage.Stage; Q@

public class MouseEventExample extends Application { Q%’

@Override

public void start(Stage primaryStage) { E&

Text text = new Text("Hover over me!");
text.setOnMouseEntered(e -> text.setText(", e Bntered!"));
text.setOnMouseExited(e -> text.setTf&) r over me!"));
StackPane root = new StackPa%f@,
Scene scene = new Sceng(rdot, 300, 200);
primaryStage.setTit ouse Event Example");
primaryStagge.setScene(scene);
primae&gzhowo;
3@

ublic static void main(String[] args) {

launch(args);

3. Handling Events with a Separate Method

You can define a separate method to handle the event.
Example:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.layout.StackPane;

import javafx.stage.Stage;

public class SeparateMethodEventExample extends Application { Q

@Override %’
public void start(Stage primaryStage) { Q
Button button = new Button("Click Me"); ;&

button.setOnAction(this::handleButtonClick);

StackPane root = new StackPane(buttor@

Scene scene = new Scene(root, 300,

S

primaryStage.setTitle("Event H%dfmg with Separate Method");

primaryStage.setScen e)

primaryStage.show e\
| :
pri\@andleButtonClick(javafx.event.ActionEvent event) {
&
&

public static void main(String[] args) {

.out.println("Button was clicked!");

launch(args);

Event Types
e ActionEvent: Triggered by actions like button clicks or menu item selection.
e MouseEvent: Triggered by mouse actions like clicks or movement.

o KeyEvent: Triggered by keyboard actions like key presses or releases.

o WindowEvent: Triggered by changes in the application window (e.g., close or r i@
o f)
Y

5. Laying Out Nodes in the Scene Graph

In JavaFX, layout panes are used to organize and position nodes (Ul competren ithin the
Scene Graph. Each layout pane provides a specific way to arrange its ¢ '1

N
X Yy
Common Layout Panes &

1. HBox (Horizontal Layout)
e Description: Arranges its children in a sin(gﬁ al row.

e Use Case: Useful for toolbars or placing*buttdgs side-by-side.

Example: \
import javafx.application.Application; %b
import javafx.scene.Scene; Yy

import javafx.scene.control,

import javafx.scene.layqut.H

import javafx.sta ge)

public cl OX;xample extends Application {

publie void start(Stage primaryStage) {
6 Button btn1 = new Button("Button 1");

Button btn2 = new Button("Button 2");

Button btn3 = new Button("Button 3");

HBox hbox = new HBox(10, btnl, btn2, btn3); // Spacing between nodes

Scene scene = new Scene(hbox, 300, 100);

primaryStage.setTitle("HBox Example");
primaryStage.setScene(scene);

primaryStage.show();

public static void main(String[] args) { (E ;)
launch(args); @

e Description: Arranges its children in a single ve umn.

2. VBox (Vertical Layout) &
ﬁ%«

e Use Case: Useful for forms, menus, or sta‘u@ ntrols.

Example: %
import javafx.application.Application; %\v

import javafx.scene.Scene;

import javafx.scene.control.Bu on;v
import javafx.scene.layou@
import javafx.stage.Sta
public cla@%!mple extends Application {
@O@e
% d start(Stage primaryStage) {
6 Buitton btn1 = new Button("Button 1");
Button btn2 = new Button("Button 2");
Button btn3 = new Button("Button 3");

VBox vbox = new VBox(10, btn1, btn2, btn3); / Spacing between nodes

Scene scene = new Scene(vbox, 200, 150);

primaryStage.setTitle("VBox Example");
primaryStage.setScene(scene);

primaryStage.show();

public static void main(String[] args) {

launch(args);

3. GridPane (Grid Layout)

Description: Arranges children in a flexible grid

Use Case: Useful for complex forms or ta&
Example: %
import javafx.application.Application; %\v

Buﬁon

public class 1®Example extends Application {

import javafx.scene.Scene;
import javafx.scene.control.
import javafx.scene.layou

import javafx.stage.Sta

@d start(Stage primaryStage) {
&
®

Button btn2 = new Button("Button 2");

tton btnl = new Button("Button 1");

Button btn3 = new Button("Button 3");

Button btn4 = new Button("Button 4");

‘&%{!S\

and columns.

GridPane grid = new GridPane();
grid.setHgap(10); // Horizontal gap between columns
grid.setVgap(10); // Vertical gap between rows

// Adding buttons to the grid (column, row)

grid.add(btn1, 0, 0); %
grid.add(btn2, 1, 0); Q
grid.add(btn3, 0, 1); %%
grid.add(btn4, 1, 1); QQ)
Scene scene = new Scene(grid, 300, 200);
primaryStage.setTitle("GridPane Example"); Q%'
primaryStage.setScene(scene); &
primaryStage.show(); ‘%

} Q?”

public static void main(String[] args){%%\%

launch(args);
} :
} Q
A
I
4. BorderPane (ayout)

. Desgt IDivides the layout into five regions: top, bottom, left, right, and center.
. @l : Useful for creating applications with a header, footer, sidebar, and main
ntent

Exam

@o.rt javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.BorderPane;

import javafx.stage.Stage;

public class BorderPaneExample extends Application {
@Override
public void start(Stage primaryStage) {

Button topButton = new Button("Top");

Button bottomButton = new Button("Bottom");

Button leftButton = new Button("Left"); Q)%'
Button rightButton = new Button("Right"); %

Button centerButton = new Button("Center"); %%

BorderPane borderPane = new BorderPane(); Q

borderPane.setTop(topButton); &r

borderPane.setBottom(bottomButton); &
borderPane.setLeft(leftButton); %
borderPane.setRight(rightButton); Yw
borderPane.setCenter(centerButton); :&

Scene scene = new Scene(border\’%%, 300);

primaryStage.setTitle("Border ample");

primaryStage.setScen@

primaryStage.show();

public static V01; main(String[] args) {

5 ch(args);
&

6. Handling Mouse Events in JavaFX

JavaFX provides a rich set of mouse events to handle interactions such as clicks, drags, and
hover actions. These events are defined in the MouseEvent class, and you can attach event
handlers to any node in your scene.

Common Mouse Events

1. Mouse Click Events Q%'

o setOnMouseClicked: Triggered when a mouse button is clicked on a nod¢

2. Mouse Hover Events Q)%

o setOnMouseEntered: Triggered when the mouse enters a node&

o setOnMouseExited: Triggered when the mouse leaves a no
3. Mouse Drag Events

o setOnMouseDragged: Triggered when the mous 's%ged while pressing a

button.
o setOnMousePressed / setOnMouseReleas ered when the mouse button is
pressed/released. &Yy
D 4

Example 1: Handling a Mouse Click x
This example changes the text of a Lal%%c icked.
import javafx.application.Applicati%

import javafx.scene.Scene; Q

import javafx.scene.control.CabeT;

import javﬁ?&

publi ss MouseClickExample extends Application {

rride
Qu'olic void start(Stage primaryStage) {
Label label =new Label("Click Me!");

/I'Set Mouse Click Event
label.setOnMouseClicked(e -> label.setText("Label Clicked!"));

StackPane root = new StackPane(label);

Scene scene = new Scene(root, 300, 200);

primaryStage.setTitle("Mouse Click Example");

primaryStage.setScene(scene);

primaryStage.show(); Q&
public static void main(String[] args) { @

launch(args);

