MACHINE LEARNING-23CSM241T

UNIT-I – INTRODUCTION TO MACHINE LEARNING

TWO-MARK QUESTIONS

- 1. Define Machine Learning.
- 2. What is the difference between Learning by Rote and Learning by Induction?
- 3. Define Reinforcement Learning with an example.
- 4. List different Paradigms for Machine Learning.
- 5. What is Feature Engineering?
- 6. What is Model Evaluation?
- 7. Give two examples for types of data used in ML.
- 8. What is Data Acquisition?
- 9. Define Model Prediction.
- 10. What is the role of Search in Learning?

TEN-MARK QUESTIONS

- 1. Explain the evolution of Machine Learning from traditional programming.
- 2. Discuss different Machine Learning paradigms with suitable examples.
- 3. Explain the various stages in a Machine Learning pipeline.
- 4. Compare Learning by Rote and Learning by Induction with real-time use cases.
- 5. Explain Reinforcement Learning with architecture and example.
- 6. What is Feature Engineering? Explain different techniques involved.
- 7. Explain Model Selection strategies with cross-validation techniques.
- 8. Discuss the importance of Data Acquisition and Data Representation in ML.
- 9. Write about different types of datasets used in ML along with examples.
- 10. Explain Model Learning, Evaluation and Prediction with a flow diagram.

UNIT-II - NEAREST NEIGHBOR-BASED MODELS

TWO-MARK QUESTIONS

- 1. Define Proximity Measure.
- 2. What is Euclidean Distance?
- 3. What are Non-Metric Similarity Functions?
- 4. Define K-Nearest Neighbor Classifier.
- 5. What is Radius Distance NN Algorithm?
- 6. What is KNN Regression?
- 7. List two advantages of KNN.
- 8. How is proximity between binary patterns measured?
- 9. What is the main drawback of KNN?
- 10. Define Performance Metrics for Classification.

TEN-MARK QUESTIONS

- 1. Explain different Distance Measures used in ML.
- 2. Discuss Proximity Measures for binary and continuous data.
- 3. Explain K-Nearest Neighbor Classification with algorithm and example.
- 4. Differentiate between KNN Classifier and KNN Regression.
- 5. Explain Radius Distance Nearest Neighbor Algorithm.
- 6. Discuss Non-Metric Similarity Functions with examples.
- 7. How to evaluate the performance of KNN Classifier?
- 8. Explain how K value selection affects accuracy in KNN.
- 9. Describe real-time applications of KNN in classification and regression.
- 10. Explain performance measures for Regression algorithms.

UNIT-III - DECISION TREES & BAYES CLASSIFIER

TWO-MARK QUESTIONS

- 1. What is a Decision Tree?
- 2. Define Impurity Measure.

- 3. What is Gini Index?
- 4. What is Random Forest?
- 5. Define Bias-Variance Trade-off.
- 6. State Bayes' Rule.
- 7. What is Naive Bayes Classifier?
- 8. Define Class Conditional Independence.
- 9. What is Entropy in Decision Trees?
- 10. What is Multi-class Classification?

TEN-MARK QUESTIONS

- 1. Explain the working of Decision Trees with an example.
- 2. Discuss various impurity measures used in Decision Trees.
- 3. Explain Regression based on Decision Trees.
- 4. What is Bias-Variance Trade-off? Explain with illustration.
- 5. Explain Random Forests for classification and regression.
- 6. Derive Bayes' Rule and explain its importance.
- 7. Explain the Bayes Classifier and its optimality.
- 8. Discuss Naive Bayes Classifier with assumptions and example.
- 9. Compare Decision Tree and Naive Bayes models.
- 10. Explain multi-class classification using Bayes approach.

UNIT-IV - LINEAR DISCRIMINANTS & NEURAL MODELS

TWO-MARK QUESTIONS

- 1. Define Linear Discriminant.
- 2. What is Perceptron?
- 3. Define Hyperplane.
- 4. What is Support Vector Machine?
- 5. What is Kernel Trick?

- 6. Define Logistic Regression.
- 7. What is Backpropagation?
- 8. What is Linearly Non-Separable Case?
- 9. Define MLP.
- 10. What is Linear Regression?

TEN-MARK QUESTIONS

- 1. Explain Linear Discriminants for classification with equation.
- 2. Describe Perceptron learning algorithm with flowchart.
- 3. Discuss SVM architecture and working.
- 4. Explain the difference between Linear and Non-linear SVM.
- 5. Write in detail about Kernel Trick with examples.
- 6. Explain Logistic Regression with derivation.
- 7. Describe Linear Regression algorithm with implementation steps.
- 8. What is Multi-Layer Perceptron? Explain structure and working.
- 9. Explain Backpropagation algorithm for training an MLP.
- 10. Compare Perceptron, SVM and Logistic Regression.

UNIT-V - CLUSTERING MODELS

TWO-MARK QUESTIONS

- 1. Define Clustering.
- 2. What is Partitioning Method?
- 3. Define K-Means Clustering.
- 4. What is Soft Clustering?
- 5. Define Fuzzy C-Means.
- 6. What is Spectral Clustering?
- 7. Define Agglomerative Clustering.
- 8. What is Divisive Clustering?

- 9. What is Rough Clustering?
- 10. What is EM-Based Clustering?

TEN-MARK QUESTIONS

- 1. Explain various types of Clustering techniques.
- 2. Compare Partitional and Hierarchical Clustering.
- 3. Explain K-Means Clustering algorithm with example.
- 4. Discuss Soft Partitioning and Soft Clustering in detail.
- 5. Explain Fuzzy C-Means Clustering with step-wise procedure.
- 6. What is Rough K-Means Clustering? Explain with algorithm.
- 7. Describe EM-Based Clustering with Gaussian Mixture Models.
- 8. Explain Spectral Clustering with mathematical formulation.
- 9. Compare K-Means, Fuzzy C-Means and Rough Clustering.
- 10.Discuss Clustering evaluation metrics.